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The Knowledge Graph for End-to-End Learning
on Heterogeneous Knowledge

UNIVERSITY Xander Wilcke, Peter Bloem, en Victor de Boer
AMSTERDAM {w.x.wilcke, p.bloem, v.de.boer}@vu.nl

® In modern machine learning, manual feature engineering has given way to ® Knowledge is encoded using binary statements
end-to-end learning. e Statements are of the form:

e With end-to-end learning ( subject, predicate, object)

B every step in the machine learning pipeline

is differentiable and can thus be tuned B Subjects: entities ("things") to and from which can be linked
B we can incorporate feature engineering B Objects: entities or literals ("attributes") holding a raw value
into the machine learning model and let it X é B Predicates: relations between subjects and objects

L

learn relevant features automatically

B we minimize bias otherwise introduced by
the adding, removing, or transformation of
data

"32" age Mary "27-03-1982"

error signal

® Background knowledge is similarly

® However, current end-to-end models are encoded and integrates naturally

unsuited for learning on heterogeneous knowledge e Any two knowledge graphs can be

integrated instantaneously if they
share (at least) a single subject

® A global network of interlinked and
open knowledge graphs already
exists, and is called the Linked
Open Data cloud.

Amsterdam

End-to-End Learning
on Knowledge Graphs

Example of a knowledge graph
which depicts three individuals, two
of which live in Amsterdam. A single
Graph convolutions attribute is given for each of them,

each of a different data type.
B generalize convolutional filters to graphs

B allow for end-to-end learning on knowledge graph

® Advantages to data scientists:
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B Dealing with implicit knowledge R
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A machine learning model should cope with
missing values natively.

B Dealing with differently-structured knowledge ® To achieve multi-modal learning, we must
While knowledge graphs encode knowledge uniformly. ¢ @ P O?O@ _ _
different modelling choices do lead to different graph p/\pj Di D, B treat literals and non-literals as separate cases
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® Special attention is given to spatial information
which is an intrinsic aspect of all physical entities,
and which enables us to perform spatially-oriented
learning tasks.

Challenges Multi-modal Graph Embeddings
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