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Abstract

In this paper, we prove existence of symmetric homoclinic orbits for the suspension bridge equation 
u′′′′ +βu′′ + eu − 1 = 0 for all parameter values β ∈ [0.5, 1.9]. For each β, a parameterization of the stable 
manifold is computed and the symmetric homoclinic orbits are obtained by solving a projected boundary 
value problem using Chebyshev series. The proof is computer-assisted and combines the uniform contrac-
tion theorem and the radii polynomial approach, which provides an efficient means of determining a set, 
centered at a numerical approximation of a solution, on which a Newton-like operator is a contraction.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

One of the simplest models [15,12] for a suspension bridge is the partial differential equation 
(PDE)

∂2U

∂T 2 = −∂4U

∂X4 − eU + 1. (1.1)

Here U(T , X) describes the deflection of the roadway from the rest state U = 0 as a function 
of time T and the spatial variable X (in the direction of traffic). This paper is concerned with 
traveling wave solutions of (1.1), i.e., solutions U(T , X) = u(X − cT ) describing a disturbance 
with profile u propagating at velocity c along the surface of the bridge. In particular, we apply a 
computer-assisted proof method to show that there is a large range of velocities for which such a 
solitary wave exists.

Looking for traveling waves of (1.1) with wave speed c leads to the ordinary differential 
equation

u′′′′ + c2u′′ + eu − 1 = 0. (1.2)

For large positive and negative values of the independent variable t = X − cT we assume the 
solution to converge to the equilibrium u = 0. Due to the reversibility symmetry of the PDE in 
both time and space, we may restrict our attention to symmetric solutions. Hence, setting β = c2, 
we are looking for symmetric homoclinic orbits satisfying

⎧⎨⎩
u′′′′ + βu′′ + eu − 1 = 0
u(−t) = u(t)

limt→∞ u(t) = 0.

(1.3)

Fourth order differential equations of the form u′′′′ + βu′′ + f (u) = 0 for various nonlinear-
ities f have been studied extensively. For the bistable nonlinearity f (u) = u3 − u the equation 
is a standard model in pattern formation, called the Swift-Hohenberg equation (see [18] and 
references therein), whereas the quadratic nonlinearity f (u) = u2 − u appears, for example, in 
the study of water waves [4]. For the piecewise linear case f (u) = max{u, 0} homoclinic solu-
tions were obtained in [15,8]. For the problem with the exponential nonlinearity f (u) = eu − 1
a family of periodic solutions was established in [17].

In [8] the question about existence of a symmetric homoclinic orbit of (1.3) is raised. This 
question was addressed by variational methods in [21], where the authors proved the result for al-
most all parameter values β ∈ (0, 2). In [20] the existence of homoclinic orbits was demonstrated 
for all β ∈ (0, c2∗) ≈ (0, 0.5516), again using variational methods as well as intricate estimates 
on the second variation. In a different direction, using a computer-assisted proof, it was proven 
in [3] that (1.3) has at least 36 homoclinic solutions for the single parameter value β = 1.69.

In the present paper we complement the above results by proving the following.

Theorem 1. For all parameter values β ∈ [0.5, 1.9] there exists a symmetric homoclinic orbit of 
(1.3).
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We remark that for |β| < 2 the origin is a saddle-focus, while for β > 2 it is a saddle-center. 
Furthermore, we note the integral identity 

∫
R

|u′′|2 − β|u′|2 = − 
∫
R
(eu − 1)u. Since the right 

hand side is non-positive, homoclinic orbits are excluded for β ≤ 0. It is thus expected that 
the parameter range for which homoclinics exist is β ∈ (0, 2), or, equivalently, wave speeds 
c ∈ (0, 

√
2). Our method for proving the result in Theorem 1 is computer-assisted. While it can 

certainly be extended somewhat beyond the interval [0.5, 1.9], it is not possible to cover the entire 
range (0, 2) in this way. Indeed, as β decreases towards 0 the amplitude of the solution diverges 
(u becomes very negative), whereas when β tends to 2 the homoclinic orbit collapses onto the 
trivial solution. In both limit regimes computer-assisted proofs become harder and harder. Since 
the result in [20] already covers the range β ∈ (0, 0.55], we thus focus on the parameter range 
[0.5, 1.9]. We note that at β = 2 a Hamiltonian–Hopf bifurcation occurs. In future work we 
intend to unfold this bifurcation and subsequently connect the homoclinic orbit that bifurcates to 
the branch covered by Theorem 1 (at that point we will know how far we have to push the current 
continuation technique beyond β = 1.9 to connect all the way to the bifurcation point).

The rest of the paper is dedicated to the proof of Theorem 1. Our approach begins by rewriting 
(1.3) as a first order system for (u1, u2, u3, u4) = (u, u′, u′′, u′′′) and then making the change of 
variables (v1, v2, v3, v4) = (eu1 − 1, u2, u3, u4) to obtain⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

v′
1 = v2 + v1v2

v′
2 = v3

v′
3 = v4

v′
4 = −βv3 − v1.

(1.4)

There are two reasons for performing this change of variables. First, it turns the system into a 
polynomial vector field, which has technical advantages when performing the analysis to derive 
the necessary bounds. Second, while u1 may become very negative for small values of β , the 
variable v1 is always bounded from below by −1. Our goal is now to prove the existence of 
symmetric homoclinic solutions to (1.4) for all β ∈ [0.5, 1.9].

We split the problem into two parts. On the one hand a rigorous computational description 
of the local (un)stable manifold is required. On the other hand we need to solve, via a rigorous 
computational technique, a boundary value problem for the part of the orbit between the local 
invariant manifolds. We attack both parts by a continuation technique in the context of the radii 
polynomial approach. This parametrized Newton–Kantorovich method, adapted to a computa-
tional setting, is introduced in Section 2. In Section 3 we combine this with the parameterization 
method to obtain descriptions of the local (un)stable manifold of the equilibrium 0 ∈R

4. Essen-
tially the same technique is then applied in Section 4 in a Chebyshev series setting to solve the 
boundary value problem. These two aspects are then combined into a rigorous computational 
continuation of the homoclinic solution to (1.3). We note that for smaller values of β the bound-
ary value problem is the more difficult part of the problem, as the orbit makes a bigger and bigger 
excursion away from the origin. On the other hand, for values of β close to 2 it is more difficult 
to obtain the local (un)stable manifold of the origin, as the real part of the eigenvalues tends to 
0. The algorithmic issues encountered when implementing the proof of Theorem 1 are discussed 
in Section 5.

Finally, let us mention that there is a growing literature on the subject of computer-assisted 
methods for proving existence of connecting orbits, see [22,24,26,29–32]. The main novel contri-
bution of the current paper is to do rigorous continuation of a homoclinic orbit over a large range 
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of parameter values. The method is generally applicable for connecting orbits problems in pa-
rameter dependent problems. In that sense Theorem 1, while providing a new result for traveling 
waves in the suspension bridge problem which complements earlier work, is an illustration.

2. The radii polynomial approach

In this section we present the functional analytic setup of our continuation method, which is 
formulated in terms of the radii polynomials, see Definition 5. It will be used both to find the 
stable manifold and to solve the boundary value problem. For more details and proofs we refer 
to [2,11,25].

Consider a sequence of Banach spaces 
(
X1,‖ · ‖X1

)
, . . . , 

(
Xd,‖ · ‖Xd

)
and the (product) Ba-

nach space

X = X1 × X2 × · · · × Xd,

with the induced norm defined by

‖x‖X = max
(
‖x(1)‖X1, . . . ,‖x(d)‖Xd

)
,

where x = (x(1), . . . , x(d)) ∈ X with x(j) ∈ Xj for j = 1, . . . , d . Denote by

Br(y) = {x ∈ X | ‖x − y‖X ≤ r}
the closed ball of radius r > 0 centered at y ∈ X.

Consider an interval of parameters [β0, β1] ⊂ R and T : [β0, β1] × X → X a Fréchet differ-
entiable operator. For each j = 1, . . . , d , denote by T (j) : [β0, β1] × X → Xj the projection of 
T onto Xj . Let x̄β0, x̄β1 ∈ X be approximate fixed points of T (β0, ·) and T (β1, ·), respectively, 
and define the linear interpolation

x̄β
def= β1 − β

β1 − β0
x̄β0 + β − β0

β1 − β0
x̄β1 . (2.1)

Define the line of centers by {x̄β | β ∈ [β0, β1]} ⊂ X. For each j = 1, . . . , d , define the bounds

sup
β∈[β0,β1]

∥∥∥T (j)(β, x̄β) − x̄
(j)
β

∥∥∥
Xj

≤ Y (j), (2.2)

sup
b,c∈Br (0)
β∈[β0,β1]

∥∥∥DxT
(j)(β, x̄β + b)c

∥∥∥
Xj

≤ Z(j)(r), (2.3)

for some Y (j) > 0 and Z(j) : R+ �→R
+ : r → Z(j)(r). The goal of the radii polynomial approach 

is to provide an efficient way to prove that an operator is a uniform contraction over a subset of X. 
This subset consists of small balls around the line of centers, provided by the linear interpolation 
between two numerical approximations of solutions at different parameter values.

Definition 2. Let X be a Banach space and B ⊂ X. Let [β0, β1] ⊂ R be a set of parameters. 
A function T̃ : [β0, β1] × B → B is a uniform contraction if there exists a constant κ such that 
0 < κ < 1 and such that ‖T̃ (β, x) − T̃ (β, y)‖X ≤ κ‖x −y‖X for all x, y ∈ B and all β ∈ [β0, β1].



3090 J.B. van den Berg et al. / J. Differential Equations 264 (2018) 3086–3130
The following result is a restatement of the uniform contraction principle (e.g. see [9] for a 
proof).

Theorem 3 (Uniform contraction principle). Suppose there exists some r > 0 such that

T̃ :
⎧⎨⎩ [β0, β1] × Br(0) −→ Br(0)

(β, x) �−→ T̃ (β, x)
def= T (β, x + x̄β) − x̄β

(2.4)

is a uniform contraction, then for every β ∈ [β0, β1], there exists a unique x̃(β) ∈ Br(x̄β) such 
that T (β, x̃(β)) = x̃(β). Moreover, the function β �→ x̃(β) is of class Ck if (β, x) �→ T (β, x) is 
of class Ck .

With the bounds Y and Z on the residue and the derivative of T , see Equations (2.2) and (2.3), 
contractivity can be checked explicitly. This is expressed by the next theorem (we refer to [2,11,
25] for a proof).

Theorem 4. Given a set of parameters [β0, β1] ⊂ R, consider the set of centers {x̄β | β ∈
[β0, β1]} with x̄β given by (2.1). Assume that T : [β0, β1] × X → X is an operator satisfying the 
bounds (2.2) and (2.3). If there exists r > 0 such that Y (j) + Z(j)(r) < r , for each j = 1, . . . , d , 
then T̃ , defined by (2.4), is a uniform contraction (on Br(0)).

Assuming we have determined explicit bounds Y (j) and Z(j)(r), where in practice the latter 
is a polynomial with positive coefficients, satisfying (2.2) and (2.3). It is convenient to introduce 
the radii polynomials, which provide an efficient way in verifying the hypotheses of Theorem 4.

Definition 5. Let Y = (Y (1), . . . , Y (d)) and Z = (Z(1), . . . , Z(d)) be the bounds on the operator 
Tβ as given by (2.2) and (2.3) respectively. We define the radii polynomials as

pj (r)
def= Y (j) + Z(j)(r) − r, j = 1, . . . , d. (2.5)

One can see that the radii polynomials depend on the upper bounds Y and Z, and therefore 
they are not uniquely defined. But the smaller these bounds are, the higher the chances are to 
prove that the operator Tβ is a contraction over a ball around the approximation. The following 
result shows how the radii polynomials are used in practice to give us the value of r for which 
we can apply Theorem 4.

Proposition 6. Let

I def=
d⋂

j=1

{r > 0 | pj (r) < 0},

and assume that I 
= ∅. Then I is an open interval of R+, i.e., I = (rmin, rmax). For any r0 ∈
(rmin, rmax), T̃ : Br0(0) × [β0, β1] −→ Br0(0) is a uniform contraction.
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3. Parameterization of the stable manifold

In this section we compute an approximate parameterization of the (local) stable manifold 
at 0, and provide explicit error bounds on this parameterization. This is done by combining the 
ideas of the parameterization method (first introduced in [5–7], see also [13]) and of rigorous 
computation (following the approach of [27,1]). Having computed the parameterization, we will 
be able to obtain the homoclinic connection in the next section by taking advantage of the fact 
that it is now enough to compute an orbit on a finite time interval, i.e., an orbit that ends up in the 
local stable and unstable manifolds (or rather, we compute and verify an orbit that starts from the 
symmetric section and ends up, after some finite time, in the local stable manifold, see (1.3)).

3.1. Looking for the stable manifold as a zero finding problem F(β, a) = 0

The first step is to recast the problem of finding a parameterization as looking for a zero of a 
map F , which is the aim of this section. Setting

�β(v)
def=

⎛⎜⎜⎝
v2 + v1v2

v3
v4

−βv3 − v1

⎞⎟⎟⎠ ,

Equation (1.4) is rewritten as v′ = �β(v). The Jacobian at the origin is

D�β(0) =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1

−1 0 −β 0

⎞⎟⎟⎠ ,

and one finds that for β ∈ [0, 2) it has two complex conjugated eigenvalues with negative real 
part, which we denote by λ(β) and λ∗(β):

λ(β) = −1

2

√
2 − β + i

1

2

√
2 + β. (3.1)

The associated eigenvectors are given by V (β) and V ∗(β), where

V (β) =

⎛⎜⎜⎝
1

λ(β)

λ(β)2

λ(β)3

⎞⎟⎟⎠ . (3.2)

The stable manifold at 0 is thus two dimensional. Since �β is analytic we may look for an 
analytic local parameterization of this manifold. We will look for this parameterization as a power 
series
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Qβ(θ) =
∑
|α|≥0

aα(β)θα, θ =
(

θ1
θ2

)
∈C

2, aα(β) =

⎛⎜⎜⎜⎝
a

(1)
α (β)

a
(2)
α (β)

a
(3)
α (β)

a
(4)
α (β)

⎞⎟⎟⎟⎠ ∈ C
4, (3.3)

with standard multi-index notation: α ∈N
2, |α| = α1 + α2, θα = θ

α1
1 θ

α2
2 , and satisfying

Qβ(0) = 0, DQβ(0) = (
V (β) V ∗(β)

)
, (3.4)

together with the invariance equation

DQβ(θ)

(
λ(β) 0

0 λ∗(β)

)
θ = �β(Qβ(θ)). (3.5)

Remark 7. Even though the vector field �β is real, the fact that we have two complex eigenvalues 
makes it easier to first look for a parameterization Qβ of the complex manifold and then recover 
the real parameterization (the one which will be of interest in the next section for computing the 
homoclinic orbit) by considering

Pβ(θ)
def= Qβ(θ1 + iθ2, θ1 − iθ2), for θ ∈ R

2,

see [16,27] for more details. This is due to the underlying symmetry a(α2,α1) = a∗
(α1,α2)

, which is 
respected by the function F introduced below.

Plugging the power series (3.3) into the invariance equation (3.5) we get

∑
|α|≥0

(α1λ(β) + α2λ
∗(β))aα(β)θα =

∑
|α|≥0

⎛⎜⎜⎜⎝
a

(2)
α (β) + (a(1)(β) 	 a(2)(β))α

a
(3)
α (β)

a
(4)
α (β)

−a
(1)
α (β) − βa

(3)
α (β)

⎞⎟⎟⎟⎠ θα, (3.6)

where 	 stands for the Cauchy product. We recall that, given two sequences u and v of complex 
numbers (indexed over N2), their Cauchy product is the sequence defined by

(u 	 v)α =
∑

0≤σ≤α

uσ vα−σ , for all α ∈ N
2,

where σ ≤ α means σ1 ≤ α1 and σ2 ≤ α2 (and similarly α − σ = (α1 − σ1, α2 − σ2)).
Notice that the additional conditions (3.4) imply that the coefficients of total degree 0 and 1 

are equal on both sides of Equation (3.6).
Finding an analytic parameterization of the local manifold is now equivalent to find a zero of 

F(β, ·), defined component-wise by
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F(β,a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0,0 if α = (0,0),

a1,0 − V (β) if α = (1,0),

a0,1 − V ∗(β) if α = (0,1),

(α1λ(β) + α2λ
∗(β))aα −

⎛⎜⎜⎜⎝
a

(2)
α + (a(1) 	 a(2))α

a
(3)
α

a
(4)
α

−a
(1)
α − βa

(3)
α

⎞⎟⎟⎟⎠ for |α| ≥ 2.

3.2. Getting to the fixed point formulation

Let ν ≥ 1 and denote by �1
ν the Banach space of complex valued sequences u = (uα)|α|≥0

such that

‖u‖1,ν
def=

∞∑
|α|=0

|uα|ν|α| < ∞.

This space is a Banach algebra under the Cauchy product, which gives us control on the quadratic 
terms.

Lemma 8. For u, v ∈ �1
ν , ‖u 	 v‖1,ν ≤ ‖u‖1,ν ‖v‖1,ν .

Definition 9. In this section we consider

X
def= (�1

ν)
4, with the norm ‖a‖X

def= max
j=1,...,4

∥∥a(j)
∥∥

1,ν
.

We are going to look for zeros a of F(β, ·) in the space X. Notice that a ∈ X means that∑
|α|≥0

∣∣a(j)
α

∣∣ν|α| < ∞, for j = 1, . . . ,4,

which ensures that the associated parameterization Qβ is well defined at least for

|θ |∞ def= max (|θ1|, |θ2|) ≤ ν.

We now explain how to rigorously determine a parameterization of the manifold for all values 
of β in a given interval [β0, β1]. It will be more convenient to work with a rescaled parameter s
ranging between 0 and 1. Therefore we define

βs = β0 + s(β1 − β0) = β0 + s
β, for s ∈ [0,1].

We want to get a parameterization a(s) such that

F(βs, a(s)) = 0, for s ∈ [0,1].
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Since we are working on the interval [β0, β1], parameterized by s ∈ [0, 1], we have altered the 
notation of the parametrization of the coefficients a slightly compared to Section 3.1, namely a(s)

instead of a(β). We will use a(s) throughout the remainder of the paper, except in Section 4.1, 
where the notation a(β) is more appropriate.

We first compute approximate zeros ā(0) and ā(1) of F(β0, ·) and F(β1, ·) respectively, by 
solving numerically the truncated problem (for s = 0 and s = 1)

F [N ](βs, ·) def= (Fα(βs, ·))0≤|α|<N = 0,

for some N ≥ 1, and by padding the obtained solutions with 0 to get elements of X = (�1
ν)

4. We 
then define for s ∈ [0, 1]

ā(s)
def= ā(0) + s(ā(1) − ā(0)) = ā(0) + s
ā.

If ā(0) and ā(1) are two good approximate zeros (of F(β0, ·) and F(β1, ·) respectively) and if 
|β1 − β0| is not too large, ā(s) should be a good approximate zero of F(βs, ·) for each s ∈ [0, 1]. 
We are going to reformulate this claim into a mathematical statement and prove that in a given 
neighborhood of ā(s) there exist a unique zero of F(βs, ·) for all s ∈ [0, 1]. To put this in the 
framework described in Section 2, we consider the operator

T (β, a) = a − AF(β,a),

where A, defined below, is an approximate inverse of DaF(β0, ā(0)). Namely, for N large 
enough,

A† def=

⎛⎜⎜⎜⎝
DaF

[N ](β0, ā(0)) 0
M̃N

0 M̃N+1
. . .

⎞⎟⎟⎟⎠
should be a reasonably good approximation of DaF(β0, ā(0)), where, for any k ≥ N , M̃k is the 
4(k + 1) by 4(k + 1) block diagonal matrix

M̃k
def=

⎛⎜⎜⎜⎝
kλ(β0)I4 0

((k − 1)λ(β0) + λ∗(β0))I4

0
. . .

kλ∗(β0)I4

⎞⎟⎟⎟⎠ ,

with I4 the 4 by 4 identity matrix. Finally, we define A as

A
def=

⎛⎜⎜⎜⎝
J 0

MN

0 MN+1
. . .

⎞⎟⎟⎟⎠ , (3.7)
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where J is a numerical approximation of 
(
DaF

[N ](β0, ā(0))
)−1

, while the Mk = M̃−1
k are exact 

inverses. The operators A† and A are then approximate inverses of each other: approximate in 
the finite part and exact in the infinite tail.

Remark 10. To make sense of this matrix representation of A† and A, as well as M̃k and Mk , one 
should think of aα as an infinite vector where the elements are ordered according to increasing 
degree |α| = α1 + α2 and within fixed degree by increasing α2, while also taking into account 
that each aα is a vector in C4. This means that a is represented as

a =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0,0
a1,0
a0,1
a2,0
a1,1
a0,2
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, where aα =

⎛⎜⎜⎜⎝
a

(1)
α

a
(2)
α

a
(3)
α

a
(4)
α

⎞⎟⎟⎟⎠ for each α ∈N
2, and that a(j) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
(j)
0,0

a
(j)
1,0

a
(j)
0,1

a
(j)
2,0

a
(j)

1,1

a
(j)

0,2
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for j = 1, . . . ,4.

The above representation describes the operators as infinite matrices where each element Aα′,α
is a linear operator on C4, i.e. a 4 × 4 matrix that we will occasionally denote by Aα′,α =
{A(i,j)

α′,α }1≤i,j≤4.

We now follow the ideas described in Section 2, using the Banach space X = (
�1
ν

)4
endowed 

with the norm ‖a‖X = max
j=1,...,4

‖a(j)‖1,ν . In the next subsections we are going to compute the 

bounds Y (j) and Z(j)(r) and the associated radii polynomials, and then prove that for some 
positive r each radii polynomial pj(r) is negative, which will yield (for each s ∈ [0, 1]) the 
existence of a unique zero a(βs) of F(βs, ·) in the ball of radius r around ā(s). At this point 
we will know that ā(s) defines an approximate parameterization of the stable manifold, with an 
error bound controlled by r . We will use this in Section 4 to prove the existence of a homoclinic 
orbit for all β ∈ [β0, β1]. Moreover, derivatives of the manifold with respect to θ , which will be 
needed in Section 4.1, can also be approximately computed with rigorous control on the error 
bound, see Lemma 14.

3.3. The bound Y

In this section we focus on the bound Y defined in (2.2). Let |A| denote the component-wise 
absolute value of A. In order to define the bound we are looking for, we try to bound every term 
(T (βs, ā(s)) − ā(s))

(j)
α with |α| ≥ 0 and j = 1, 2, 3, 4:∣∣∣(T (βs, ā(s)) − ā(s))(j)

α

∣∣∣= ∣∣∣(AF(βs, ā(s))
)(j)

α

∣∣∣
≤
(

|A|
(

|F(β0, ā(0))| + ∣∣DaF(β0, ā(0))
ā + DβF(β0, ā(0))
β
∣∣
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+ 1

2
max

s∈[0,1]

∣∣∣D2
aaF (βs, ā(s))(
ā)2 + 2D2

aβF (βs, ā(s))
ā
β

+ D2
ββF (βs, ā(s))(
β)2

∣∣∣))(j)

α

.

A straightforward calculation (using that |λ(β)| = 1 and computing the derivatives of λ and V
with respect to β) yields that, for all |α| ≥ 0,

1

2
max

s∈[0,1]

∣∣∣D2
aaFα(βs, ā(s))(
ā)2 + 2D2

aβFα(βs, ā(s))
ā
β + D2
ββFα(βs, ā(s))(
β)2

∣∣∣≤ Gα,

where

Gα
def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 α = (0,0),

1

2

⎛⎜⎜⎝1

4

√
4 + 3β2

1

(2 − β1)3(2 + β1)3

⎛⎜⎜⎝
0
1
2
3

⎞⎟⎟⎠+ 1

4

1

(2 − β1)(2 + β1)

⎛⎜⎜⎝
0
0
2
6

⎞⎟⎟⎠
⎞⎟⎟⎠ (
β)2 |α| = 1,

1

4

√
(α1 + α2)2

2 − β1
+ (α1 − α2)2

2 + β0

β
āα +

⎛⎜⎜⎜⎝
∣∣
ā(1) 	 
ā(2)

∣∣
α

0
0∣∣∣
β
ā

(3)
α

∣∣∣

⎞⎟⎟⎟⎠ |α| ≥ 2.

Since (ā(s))α = 0 for all |α| ≥ N and F(β, ·) is quadratic in a, we have that Fα(βs, ā(s))

vanishes as soon as |α| ≥ 2N − 1. Therefore, we define F̃ component-wise by

F̃α =
{ |F(β0, ā(0))|α + ∣∣DaF(β0, ā(0))
ā + DβF(β0, ā(0))
β

∣∣
α

+ Gα |α| < 2N − 1,

0 |α| ≥ 2N − 1,

and then set

Y (j) =
∥∥∥∥(|A|F̃

)(j)
∥∥∥∥

1,ν

,

so that ∥∥∥(T (βs, ā(s)) − ā(s))(j)
∥∥∥

1,ν
≤ Y (j) for j = 1, . . . ,4, s ∈ [0,1].

3.4. The bound Z

In this section we derive the bound Z defined in (2.3). Let b, c ∈ Br(0). We split 
DaT (βs, ā(s) + b)c in three terms which will be easier to bound separately. For each j =
1, . . . , 4,
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∥∥∥(DaT (βs, ā(s) + b)c)(j)
∥∥∥

1,ν

=
∥∥∥((I − ADaF(βs, ā(s) + b)) c)(j)

∥∥∥
1,ν

≤
∥∥∥∥((I − AA†

)
c
)(j)

∥∥∥∥
1,ν

+
∥∥∥∥(A(

DaF(βs, ā(s) + b) − A†
)

c
)(j)

∥∥∥∥
1,ν

≤
∥∥∥∥((I − AA†

)
c
)(j)

∥∥∥∥
1,ν

+
∥∥∥∥(A(

DaF(βs, ā(s)) − A†
)

c
)(j)

∥∥∥∥
1,ν

+
∥∥∥∥(AD2

aaF (βs, ā(s))(b, c)
)(j)

∥∥∥∥
1,ν

≤ Z
(j)

0 r + Z
(j)

1 r + Z
(j)

2 r2.

The bounds Zi
def=

(
Z

(1)
i ,Z

(2)
i ,Z

(3)
i ,Z

(4)
i

)
∈ R

4 (i = 0, 1, 2) are given in the following subsec-

tions.

3.4.1. The bound Z0
From the definitions of A and A† we get

I − AA† =

⎛⎜⎜⎜⎝
I 4N(N+1)

2
− JDaF

[N ](β0, ā(0)) 0

0 0
. . .

⎞⎟⎟⎟⎠ .

The finite matrix B = I2N(N+1) −JDaF
[N ](β0, ā(0)) can be computed using interval arithmetic. 

To obtain the bound Z0 we only need to compute the operator norm of B (as acting on (�1
ν)

4). 
This is the content of the following lemma.

Lemma 11. Let h = (hα)α∈N2 ∈ �1
ν (with hα ∈C for all α) and � a linear operator acting on �1

ν . 
Then

sup
‖h‖1,ν=1

‖�h‖1,ν = sup
α∈N2

1

ν|α|
∑

α′∈N2

|�α′,α|ν|α′|.

In particular, if � consists in a finite block �[N ] of size N(N +1)/2 ×N(N +1)/2 and a diagonal 
tail (γα)|α|≥N

� =

⎛⎜⎜⎜⎝
�[N ] 0

γN,0
0 γN−1,1

. . .

⎞⎟⎟⎟⎠ ,

then
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sup
‖h‖1,ν=1

‖�h‖1,ν = max

⎛⎝max|α|<N

1

ν|α|
∑

|α′|<N

|�α′,α|ν|α′|, sup
|α|≥N

|γα|
⎞⎠ .

Hence, we define

K(i,j)(B)
def= max

0≤|α|<N

1

ν|α|
∑

|α′|<N

|B(i,j)

α′,α |ν|α′|, (3.8)

with the notation B(i,j)

α′,α introduced in Remark 10, and set

Z
(i)
0 =

4∑
j=1

K(i,j)(B),

to obtain ∥∥∥∥((I − AA†
)

c
)(j)

∥∥∥∥
1,ν

≤ Z
(j)
0 r, for j = 1, . . . ,4. (3.9)

3.4.2. The bound Z1
This term is the most involved one to bound tightly, so again we split it into several parts that 

we bound separately. For each j = 1, . . . , 4,∥∥∥∥(A(
DaF(βs, ā(s)) − A†

)
c
)(j)

∥∥∥∥
1,ν

≤
∥∥∥∥(|A|

∣∣∣(DaF(β0, ā(s)) − A†
)

c

∣∣∣ )(j)
∥∥∥∥

1,ν

+
∥∥∥∥(|A| max

η∈[0,1] |
β|
∣∣∣D2

βaF (βη, ā(s))c

∣∣∣ )(j)
∥∥∥∥

1,ν

≤
∥∥∥∥(|A|

∣∣∣(DaF(β0, ā(0)) − A†
)

c

∣∣∣ )(j)
∥∥∥∥

1,ν

+
∥∥∥∥(|A|

∣∣∣D2
aaF (β0, ā(0))(
ā, c)

∣∣∣ )(j)
∥∥∥∥

1,ν

+
∥∥∥∥(|A| max

η∈[0,1] |
β|
∣∣∣D2

βaF (βη, ā(s))c

∣∣∣ )(j)
∥∥∥∥

1,ν

.

Let us focus first on the first term. Since

DaF
[N ](β0, ā(0))c[N ] = (DaF(β0, ā(0))c)[N ] ,

we get that

((
DaF(β0, ā(0)) − A†

)
c
)[N ] = 0.
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For the tail |α| ≥ N we find

dα
def=

((
DaF(β0, ā(0)) − A†

)
c
)

α
=

⎛⎜⎜⎜⎝
c
(2)
α + (ā(0)(1) 	 c(2))α + (ā(0)(2) 	 c(1))α

c
(3)
α

c
(4)
α

−c
(1)
α − β0c

(3)
α

⎞⎟⎟⎟⎠ ,

which we estimate by

∥∥∥d(1)
α

∥∥∥
1,ν

≤
(

1 +
∥∥∥ā(0)(1)

∥∥∥
1,ν

+
∥∥∥ā(0)(2)

∥∥∥
1,ν

)
r∥∥∥d(2)

α

∥∥∥
1,ν

≤ r∥∥∥d(3)
α

∥∥∥
1,ν

≤ r∥∥∥d(4)
α

∥∥∥
1,ν

≤ (1 + β0) r.

Now we use Lemma 11 again and from the fact that |(n − k)λ(β0) + kλ∗(β0)| ≥ n|�(λ(β0))| =
n

√
2−β0
2 we infer that

∥∥∥(Ad)(j)
∥∥∥

1,ν
≤ 2

N
√

2 − β0

∥∥∥d(j)
∥∥∥

1,ν
,

and we are done with the first term. For the second term

D2
aaFα(β0, ā(0))(
ā, c) =

⎛⎜⎜⎝
(
ā(1) 	 c(2))α + (
ā(2) 	 c(1))α

0
0
0

⎞⎟⎟⎠ .

Again we use Lemma 11 to obtain

∥∥∥∥(|A|
∣∣∣D2

aaF0(ā(0))(
ā, c)

∣∣∣)(j)
∥∥∥∥

1,ν

≤

⎧⎪⎨⎪⎩
max

(
K(1,1)(J ), 2

N
√

2−β0

)(
‖
ā(1)‖1,ν + ‖
ā(2)‖1,ν

)
r j = 1,

K(j,1)(J )
(
‖
ā(1)‖1,ν + ‖
ā(2)‖1,ν

)
r j = 2,3,4,

where we recall that J is the block of A corresponding to the floating point data, see (3.7), and 
K(i,j) is defined by (3.8). Finally, computing the derivative of λ with respect to β , we get that



3100 J.B. van den Berg et al. / J. Differential Equations 264 (2018) 3086–3130
max
η∈[0,1] |
β|

∣∣∣D2
βaF (βη, ā(s))c

∣∣∣
α

≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 |α| < 2,


β

⎛⎜⎜⎜⎝ |α|
2
√

(2 − β1)(2 + β1)
|cα| +

⎛⎜⎜⎜⎝
0
0
0∣∣∣c(3)
α

∣∣∣

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ |α| ≥ 2.

Now we need the following lemma, which is a slightly modified version of Lemma 11.

Lemma 12. Let c = (cα)α∈N2 ∈ (�1
ν

)4
. We denote by e the vector such that for all α, eα = |α|cα . 

Then for all 1 ≤ j ≤ 4

∥∥∥(Ae)(i)
∥∥∥

1,ν
≤ max

⎛⎝ 4∑
j=1

K̃(i,j)(J ),
2√

2 − β0

⎞⎠ r

where

K̃(i,j)(J )
def= max|α|<N

⎛⎝ |α|
ν|α|

∑
|α′|<N

∣∣∣J (i,j)

α′,α

∣∣∣ν|α′|
⎞⎠ .

Using Lemmas 11 and 12 we infer that∥∥∥∥(|A| max
η∈[0,1] |
β|

∣∣∣D2
βaF (βη, ā(s))c

∣∣∣ )(j)
∥∥∥∥

1,ν

≤

⎧⎪⎪⎨⎪⎪⎩

β

(
Kj + K(j,4)(J )

)
r j = 1,2,3


β

(
K4 + max

(
K(4,4)(J ),

2

N
√

2 − β0

))
r j = 4,

where

Ki
def=

max
(∑4

j=1 K̃(i,j)(J ), 2√
2−β0

)
2
√

(2 − β1)(2 + β1)
.

Finally, putting everything together, we define

Z
(1)
1 =

2
(

1 + ∥∥ā(0)(1)
∥∥

1,ν
+ ∥∥ā(0)(2)

∥∥
1,ν

)
N

√
2 − β0

+ max

(
K(1,1)(J ),

2

N
√

2 − β0

)(∥∥∥
ā(1)
∥∥∥

1,ν
+
∥∥∥
ā(2)

∥∥∥
1,ν

)
+ 
β

(
K1 + K(1,4)(J )

)
,

Z
(2)
1 =

(
2√ + K(2,1)(J )

(∥∥∥
ā(1)
∥∥∥ +

∥∥∥
ā(2)
∥∥∥ )

+ 
β
(
K2 + K(2,4)(J )

))
,

N 2 − β0 1,ν 1,ν
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Z
(3)
1 =

(
2

N
√

2 − β0
+ K(3,1)(J )

(∥∥∥
ā(1)
∥∥∥

1,ν
+
∥∥∥
ā(2)

∥∥∥
1,ν

)
+ 
β

(
K3 + K(3,4)(J )

))
,

Z
(4)
1 =

(
2(1 + β0)

N
√

2 − β0
+ K(4,1)(J )

(∥∥∥
ā(1)
∥∥∥

1,ν
+
∥∥∥
ā(2)

∥∥∥
1,ν

)
+ 
β

(
K4 + max

(
K(4,4)(J ),

2

N
√

2 − β0

)))
,

so that ∥∥∥∥(A(
DaF(βs, ā(s)) − A†

)
c
)(j)

∥∥∥∥
1,ν

≤ Z
(j)

1 r for j = 1, . . . ,4, s ∈ [0,1].

3.4.3. The bound Z2
Since

D2
aaFα(βs, ā(s))(b, c) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 |α| ≤ 1,⎛⎜⎜⎝
(b(1) 	 c(2))α + (b(2) 	 c(1))α

0
0
0

⎞⎟⎟⎠ |α| ≥ 2,

we directly use one more time Lemma 11 and set

Z
(1)
2 = 2 max

(
K(1,1)(J ),

2

N
√

2 − β0

)
, Z

(2)
2 = 2K(2,1)(J ), Z

(3)
2 = 2K(3,1)(J ) and

Z
(4)
2 = 2K(4,1)(J ),

so that ∥∥∥∥(AD2
aaF (βs, ā(s))(b, c)

)(j)
∥∥∥∥

1,ν

≤ Z
(j)
2 r2 for j = 1,2,3,4, s ∈ [0,1].

3.5. Use of the uniform contraction principle and error bounds

Following (2.5), we set

p(j)(r)
def= Y (j) +

(
Z

(j)
0 + Z

(j)
1 − 1

)
r + Z

(j)
2 r2, for j = 1, . . . ,4. (3.10)

If we find an r > 0 such that p(j)(r) < 0 for all j = 1, . . . , 4, then according to Proposition 6
we have validated the numerical approximation ā(s) of the local stable manifold for β = βs , for 
every s ∈ [0, 1].
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Proposition 13. For every s ∈ [0, 1], let

Qβs
(θ) =

N−1∑
|α|=0

āα(s)θα

be the approximate parameterization of the complex local stable manifold that we have computed 
(for β = βs ). Assume that there exists an r > 0 such that p(j)(r) < 0 for all j = 1, . . . , 4. Then, 
for each s ∈ [0, 1], there exists a parameterization Qβs of the complex local stable manifold (for 
β = βs ) of the form

Qβs (θ) =
∞∑

|α|=0

aα(s)θα,

which is well defined for all θ ∈C
2 satisfying |θ |∞ ≤ ν. Let

ĥβs (θ)
def= Qβs (θ) − Qβs

(θ), (3.11)

then we have the error bound |ĥβs (θ)|∞ ≤ r for all |θ |∞ ≤ ν. These statements still hold true for 
the real (approximate and exact) local stable manifold, defined by

Pβs (θ)
def= Qβs (θ1 + iθ2, θ1 − iθ2) (3.12)

P βs (θ)
def= Qβs

(θ1 + iθ2, θ1 − iθ2) (3.13)

for all θ ∈ R
2 satisfying |θ |2 def=

√
θ2

1 + θ2
2 ≤ ν.

Proof. Proposition 6 yields that, for each s ∈ [0, 1], there exists a unique fixed point a(s) of 
T (βs, ·) in the ball of radius r around ā(s). The operator A is injective since its non-diagonal 
part J is invertible. The latter follows from the fact that, see (3.9),∥∥I2N(N+1) − JDaF

[N ](β0, ā(0))
∥∥

B(X[N],X[N]) ≤ max
1≤j≤4

Z
(j)

0 < 1,

where the final inequality is implied by pj(r) < 0. Here the operator norm on X[N ] ∼=R
2N(N+1)

is induced by the one on X = (�1
ν)

4. Hence the fixed point a(s) of T solves F(βs, a(s)) = 0. By 
construction Qβs is a parameterization of the local stable manifold defined for |θ |∞ ≤ ν, and for 
such θ ,

∣∣Qβs (θ) − Qβs
(θ)

∣∣∞ =
∣∣∣∣∣∣

∞∑
|α|=0

(aα(s) − āα(s)) θα

∣∣∣∣∣∣∞
= max

j=1,...,4

∣∣∣∣∣∣
∞∑ (

a(j)
α (s) − ā(j)

α (s)
)

θα

∣∣∣∣∣∣
|α|=0
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≤ max
j=1,...,4

∞∑
|α|=0

∣∣∣a(j)
α (s) − ā(j)

α (s)

∣∣∣ν|α|

= max
j=1,...,4

∥∥∥a(j)(s) − ā(j)(s)

∥∥∥
1,ν

≤ r. �
In the following section we use these approximations to rigorously prove the existence of 

homoclinic orbits for every parameter β in [0.5, 1.9]. To do so, we will also need control on 
the derivative of the parameterization Pβs , which is provided by the theory of analytic functions. 
Define

hβs (θ)
def= Pβs (θ) − P βs (θ), θ ∈R

2, |θ |2 ≤ ν. (3.14)

For all s ∈ [0, 1], the function ĥβs , defined by (3.11), is analytic. Since hβs (θ) = ĥβs (θ1 + iθ2, θ1 −
iθ2), we can control the derivative of hβs (on a smaller domain) by a bound on ĥβs . This is the 
content of the following lemma, of which the proof can be found in [16].

Lemma 14. Assume that ĥ : D∞,ν(C
2) ⊂ C

2 →C
4 is analytic, where

D∞,ν(C
2)

def=
{
θ ∈ C

2, |θ |∞ ≤ ν
}

,

and δ > 0 is such that

max
θ∈D∞,ν (C2)

∣∣∣ĥ(θ)

∣∣∣∞ ≤ δ. (3.15)

Consider h : D2,ν(R
2) ⊂R

2 →R
4 defined by h(θ) = ĥ(θ1 + iθ2, θ1 − iθ2), where

D2,ν(R
2)

def=
{
θ ∈R

2, |θ |2 ≤ ν
}

.

Then for any ρ < ν we have

max
θ∈D2,ρ (R2)

∣∣∣∣∣∂h(j)

∂θi

(θ)

∣∣∣∣∣∞ ≤ 4π

ν ln( ν
ρ
)
δ for j = 1, . . . ,4, i = 1,2. (3.16)

4. Parameterized families of symmetric homoclinic orbits

In this section, we apply the technique of Section 2 in a Chebyshev series setting to rigorously 
prove existence of parameterized families of symmetric homoclinic orbits. More precisely, we 
present all necessary estimates and bounds in order to demonstrate that solutions of (1.3) exist 
for all β ∈ [0.5, 1.9].
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4.1. A projected boundary value problem formulation

We begin by transforming the symmetric homoclinic orbit problem (1.3) into a projected 
boundary value problem (BVP). In order to set up the projected BVP, we first use the symmetry 
of the orbit to simplify the problem and therefore solve only for “half of the orbit”. The following 
lemma provides a strategy to do this.

Lemma 15. Let u0, u2 and t0 be arbitrary numbers, and let u(t) be the solution of the initial 
value problem {

u′′′′(t) + βu′′(t) + eu(t) − 1 = 0,(
u(t0), u

′(t0), u′′(t0), u′′′(t0)
)= (u0,0, u2,0) .

Then u(−t + 2t0) = u(t) for all t for which the solution u is defined.

Proof. It is straightforward to verify that u(−t + 2t0) is also a solution of the initial value prob-
lem. By the theorem of existence and uniqueness for ODEs, it follows that u(−t + 2t0) = u(t)

for all t in the domain definition of u. �
Using the previous result, we fix a number t0 = L > 0, and it follows that to solve (1.3), it is 

enough to solve ⎧⎪⎨⎪⎩
u′′′′(t) + βu′′(t) + eu(t) − 1 = 0,

u′(−L) = 0, u′′′(−L) = 0,

limt→∞
(
u(t), u′(t), u′′(t), u′′′(t)

)= 0.

(4.1)

The idea now is to modify the boundary value problem (4.1) in a way that the boundary value 
at t = ∞ is removed by a projected boundary value at t = L where we impose at that time 
that 

(
u(L),u′(L),u′′(L),u′′′(L)

) ∈ Ws
loc(0), a local stable manifold at 0. In order to achieve this 

step, we use the theory of Section 3 to obtain a real-valued parameterization Pβ of Ws
loc(0) at the 

parameter value β ∈ [0.5, 1.9]:

Pβ(θ) = Qβ(θ1 + iθ2, θ1 − iθ2) =
∞∑

|α|=0

aα(β)(θ1 + iθ2)
α1(θ1 − iθ2)

α2 ,

which is well-defined for all θ ∈ D2,ν̃ (R
2) =

{
θ ∈R

2 : |θ |2 =
√

θ2
1 + θ2

2 ≤ ν̃

}
, where the size 

ν̃ = ν̃(β) of the domain of Pβ changes as the parameter β ∈ [0.5, 1.9] varies. Using the parame-
terization, we impose that

(u(L),u′(L),u′′(L),u′′′(L))T = Pβ(θ) (4.2)

for some θ ∈ D2,ν̃ (R
2), which implies that the orbit lies in the stable manifold. This introduces 

an indeterminacy that needs to be resolved. Namely, there is a one parameter family of pairs 
(L, θ) solving (4.2) while describing the same orbit. To overcome this, we impose that θ ∈
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∂D2,ρ(R2) =
{
θ ∈R

2 : |θ |2 =
√

θ2
1 + θ2

2 = ρ

}
, for some fixed ρ < ν̃, and we solve for the angle 

ψ . More precisely, we consider θ such that 
√

θ2
1 + θ2

2 = ρ by setting θ1 + iθ2 = ρeiψ for some 
ψ ∈ [0, 2π). In this case, the evaluation of the parameterization of the local stable manifold along 
∂D2,ρ(R2) reduces to

Pβ(ψ) =
∞∑

|α|=0

aα(β)(θ1 + iθ2)
α1(θ1 − iθ2)

α2

=
∞∑

|α|=0

aα(β)ρα1eiα1ψρα2e−iα2ψ

=
∞∑

|α|=0

aα(β)ρ|α|ei(α1−α2)ψ .

We slightly abuse notation by using the same notation Pβ to denote both Pβ(θ) and Pβ(ψ). We 
can therefore define the projected BVP⎧⎪⎨⎪⎩

u′′′′(t) + βu′′(t) + eu(t) − 1 = 0, t ∈ [−L,L],
u′(−L) = 0, u′′′(−L) = 0,

(u(L),u′(L),u′′(L),u′′′(L))T = Pβ(ψ),

(4.3)

where L > 0 and ψ ∈ [0, 2π) are variables. As in Section 1, we make the change of variables

(v(1), v(2), v(3), v(4))
def= (eu1 − 1, u2, u3, u4)

and set v = (v(1), v(2), v(3), v(4)) to obtain that v′ = �β(v), where �β : R4 → R
4 is the vector 

field given by the right-hand side of (1.4). We rescale time via t �→ t/L so that (4.3) becomes⎧⎪⎨⎪⎩
v̇ = L�β(v), t ∈ [−1,1],
v(2)(−1) = 0, v(4)(−1) = 0,

v(1) = Pβ(ψ).

(4.4)

A triplet (L, ψ, v) satisfying (4.4) thus corresponds to a symmetric homoclinic solution of the 
suspension bridge equation. The rest of this section is dedicated to applying the technique of 
Section 2 in a Chebyshev series setting to rigorously prove existence of parameterized families 
of solutions of the projected BVP (4.4) for all β ∈ [0.5, 1.9]. This begins by defining a zero 
finding problem F = 0 whose solutions correspond to symmetric homoclinic solutions of the 
suspension bridge equation.

4.2. Setting up the zero finding problem using Chebyshev series

Now that v(i)(t) is defined on [−1, 1] and needs to solve a boundary value problem, de-
scribing v(i)(t) in terms of a Chebyshev series is a natural choice, see [10,14,24,28]. Denote by 
Tk : [−1, 1] → R the k-th Chebyshev polynomial with k ≥ 0, where T0(t) = 1, T1(t) = t and 
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Tk+1(t) = 2tTk(t) − Tk−1(t) for k ≥ 1. One way to characterize the Chebyshev polynomials is 
through the identity Tk(t) = cos(k arccos t), from which it follows that ‖Tk‖∞ = 1, Tk(1) = 1, 
and Tk(−1) = (−1)k .

For each i = 1, 2, 3, 4, we expand v(i) using a Chebyshev series expansion, that is

v(i)(t) = x
(i)
0 + 2

∞∑
k=1

x
(i)
k Tk(t). (4.5)

For each i = 1, 2, 3, 4, denote by x(i) def= {x(i)
k }k≥0 the infinite dimensional vector of Chebyshev 

coefficients of v(i). The vector field is analytic (polynomial) and therefore the solutions (if they 
exist) of the projected BVP (4.4) are analytic. By the Paley-Wiener theorem, this implies that the 
Chebyshev coefficients of each component of v decay geometrically to zero. Hence, there exists 
a number ν > 1 such that x(i) ∈ �1

ν for each i = 1, 2, 3, 4, where

�1
ν =

{
a = (ak)k≥0 : ‖a‖1,ν

def= |a0| + 2
∞∑

k=1

|ak|νk < ∞
}

.

We remark that throughout this section ν ≥ 1.

Remark 16 (Notation). The decay rate ν in the definition of the Banach space �1
ν appears both 

in the current section and in Section 3. Both values need not to be the same. Therefore, to avoid 
confusion, we denote by ν̃ the value from Section 3. Moreover, although the sequence space �1

ν

as considered above is slightly different from the one used in Section 3, we nevertheless use the 
same notation, since the spaces and norms are completely analogous to those used in Section 3.2.

The dual space can be characterized as follows.

Lemma 17. The dual space (�1
ν)

∗ is isomorphic to

�∞
ν−1 =

{
c = (ck)k≥0 : ‖c‖∞,ν−1

def= max

(
|c0|, 1

2 sup
k≥1

|ck|ν−k

)
< ∞

}
.

For all a ∈ �1
ν and c ∈ �∞

ν−1 we have∣∣∣∑
k≥0

ckak

∣∣∣≤ ‖c‖∞,ν−1‖a‖1,ν . (4.6)

The following lemma is analogous to Lemma 11.

Lemma 18. Let � ∈ B(�1
ν), the space of bounded linear operators from �1

ν to itself, acting as 
(�a)i =∑

j≥0 �i,j aj . Define the weights ω = (ωk)k≥0 by ω0 = 1 and ωk = 2νk for k ≥ 1. Then

‖�‖B(�1
ν) = sup

j≥0

1

ωj

∑
i≥0

|�i,j |ωi.
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The Banach space of unknowns x def= (L, ψ, x(1), x(2), x(3), x(4)) is

X
def= R

2 × (�1
ν)

4, (4.7)

endowed with the norm

‖x‖X
def= max

{
|L|, |ψ |,‖x(1)‖1,ν ,‖x(2)‖1,ν ,‖x(3)‖1,ν ,‖x(4)‖1,ν

}
.

In terms of Chebyshev coefficients the differential equation v̇ = L�β(v) becomes (see 
e.g. [14]) ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f
(1)
k (β, x)

def= 2kx
(1)
k + L[x(2)

k±1 + (x(1) ∗ x(2))k±1] = 0,

f
(2)
k (β, x)

def= 2kx
(2)
k + Lx

(3)
k±1 = 0,

f
(3)
k (β, x)

def= 2kx
(3)
k + Lx

(4)
k±1 = 0,

f
(4)
k (β, x)

def= 2kx
(4)
k + L[−x

(1)
k±1 − βx

(3)
k±1] = 0,

(4.8)

for all k ≥ 1. Here x(i)
k±1

def= x
(i)
k+1 − x

(i)
k−1, and ∗ denotes the discrete convolution product

∗ : �1
ν × �1

ν → �1
ν defined as follows. Let a, b ∈ �1

ν , then for all k ≥ 0 the k-th entry of the convo-
lution product a ∗ b is given by

(a ∗ b)k =
∑

k1+k2=k
k1,k2∈Z

a|k1|b|k2|.

The choice of norm and convolution product is justified by the fact �1
ν is a Banach algebra, that 

is ‖a ∗ b‖1,ν ≤ ‖a‖1,ν ‖b‖1,ν , for all a, b ∈ �1
ν .

The symmetry conditions v(2)(−1) = v(4)(−1) = 0 reduce to

η(1)(β, x)
def= x

(2)
0 + 2

∞∑
k=1

x
(2)
k (−1)k = 0, (4.9)

η(2)(β, x)
def= x

(4)
0 + 2

∞∑
k=1

x
(4)
k (−1)k = 0, (4.10)

and the boundary conditions v(1) = Pβ(ψ) become

f
(i)
0 (β, x)

def= x
(i)
0 + 2

∞∑
k=1

x
(i)
k − P

(i)
β (ψ) = 0 for i = 1,2,3,4. (4.11)

The full set of equations that we want to solve is thus F(β, x) = 0, where

F
def=

(
η(1), η(2),F (1),F (2),F (3),F (4)

)
, with F (i) def=

{
f

(i)
k

}
. (4.12)
k≥0
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In order to solve rigorously the problem F(β, x) = 0 in the Banach space X, for all β ∈ [0.5, 1.9], 
we apply the radii polynomial approach of Section 2.

4.3. The finite dimensional reduction of the zero finding problem

Having identified the operator F given in (4.12) whose zeros correspond to symmetric 
homoclinic orbits of (1.2), the next step is to compute numerical approximations, which re-
quires considering a finite dimensional projection of the Banach space X given in (4.7). Given 
a sequence a = (ak)k≥0 ∈ �1

ν , denote by a[m] = (a0, . . . , am−1) ∈ R
m the Galerkin projec-

tion of a onto the first m Chebyshev coefficients. Given an infinite dimensional vector x =
(L, ψ, x(1), x(2), x(3), x(4)) ∈ X, denote

x[m] def= (
L,ψ, (x(1))[m], (x(2))[m], (x(3))[m], (x(4))[m]) ∈ R

2 × (Rm)4 ∼=R
4m+2. (4.13)

In this context, the finite dimensional Banach space R4m+2 is the finite dimensional projection 
of X = R

2 × (�1
ν)

4, and x[m] is the finite dimensional projection of x. We slightly abuse the 
notation by denoting x[m] ∈ X as the vector built from x[m] ∈ R

4m+2 by padding each entry 
(x(i))[m] (i = 1, 2, 3, 4) with infinitely many zeros. The finite dimensional projection of F given 
in (4.12) is defined as

F [m] :R×R
4m+2 → R

4m+2

(β, x[m]) �→ F [m](β, x[m]) def= (
F(β,x[m])

)[m]
.

We want to compute on F [m], but it depends on the parameterization Pβs , which itself depends 
on infinitely many Taylor coefficients. To remedy this, we consider a finite dimensional reduction 
of Pβs . Recalling (3.13), for every s, denote by Pβs the computable approximation of the stable 
manifold given by

P βs (ψ) =
∑

|α|<N

(ā0,α + s(ā1,α − ā0,α))ρ|α|eiψ(α1−α2)

=
∑

|α|<N

(ā0,α + s
āα)ρ|α|eiψ(α1−α2)

=
∑

|α|<N

ā0,αρ|α|eiψ(α1−α2) + s
∑

|α|<N


āαρ|α|eiψ(α1−α2)

= P β0(ψ) + s
P (ψ), (4.14)

where ā0,α and ā1,α are the numerical approximations of the coefficients of the stable manifold 
for β0 and β1 respectively.

Finally, let F(β, x[m]) denote the finite dimensional projection of the operator using a Galerkin 
projection on the last four components and using the finite dimensional approximation Pβ for 
the parameterization of the stable manifold. More explicitly,

F(β,x[m]) def=
(
η(1)(β, x[m]), η(2)(β, x[m]),F (1)

(β, x[m]), . . . ,F (4)
(β, x[m])

)
, (4.15)
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with F
(i)

(β, x[m]) def=
{
f

(i)

k (β, x[m])
}m−1

k=0
for i = 1, 2, 3, 4, and

η(1)(β, x[m]) def= x
(2)
0 + 2

m−1∑
k=1

x
(2)
k (−1)k, η(2)(β, x[m]) def= x

(4)
0 + 2

m−1∑
k=1

x
(4)
k (−1)k

f
(i)

0 (β, x[m]) def= x
(i)
0 + 2

m−1∑
k=1

x
(i)
k − P

(i)

β (ψ) = 0 for i = 1,2,3,4,

while f
(i)

k (β, x[m]) = f
(i)
k (β, x[m]) for all k = 1, . . . , m − 1, see (4.8). Having identified F : R ×

R
4m+2 → R

4m+2 : (β, x[m]) �→ F(β, x[m]) defined in (4.15) as the finite dimensional reduction 
of F given in (4.12), we can apply the finite dimensional Newton’s method to find numerical 
approximations. The next step is to define an infinite dimensional Newton-like operator T : R ×
X → X on which we apply the uniform contraction principle (via the radii polynomial approach 
of Section 2).

4.4. The Newton-like operator for the homoclinic orbit

Let β0 < β1 be two different parameter values, and consider two numerical approximations x̄0
and x̄1 such that F(β0, x̄0) ≈ 0 and F(β1, x̄1) ≈ 0. In practice we find x̄i by solving F(βi, ·) = 0
numerically. For every s ∈ [0, 1], set

x̄s = x̄0 + s
x̄, 
x̄
def= x̄1 − x̄0

and

βs = β0 + s
β, 
β
def= β1 − β0.

We denote x̄s = (L̄s, ψ̄s, x̄
(1)
s , x̄(2)

s , x̄(3)
s , x̄(4)

s ) ∈ X for s ∈ [0, 1], and we recall that each 
x̄

(j)
s is obtained from (x̄

(j)
s )[m] ∈ R

m by padding with zeros. Similarly, we denote 
x̄ =
(
L̄, 
ψ̄, 
x̄(1), 
x̄(2), 
x̄(3), 
x̄(4)).

We now construct a fixed point operator T (β, x) = x − AF(β, x) so that it is a uniform 
contraction over the interval of parameters [β0, β1], whose fixed points x = x(β) correspond 
to zeros of F(β, ·) at a given parameter value β ∈ [β0, β1]. The operator A is constructed 
as an approximate inverse of DF(β0, x̄0). Let x̄0 be such that F(β0, x̄0) ≈ 0 and let A[m] ≈
(DF(β0, x̄0))

−1 be a numerical approximation of the inverse of the Jacobian matrix. We decom-
pose the (4m + 2) × (4m + 2) matrix A[m], into 36 blocks as

A[m] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A
[m]
1,1 A

[m]
1,2 A

[m]
1,3 · · · A

[m]
1,6

A
[m]
2,1 A

[m]
2,2 A

[m]
2,3 · · · A

[m]
2,6

A
[m]
3,1 A

[m]
3,2 A

[m]
3,3 · · · A

[m]
3,6

...
...

...
. . .

...

A
[m]

A
[m]

A
[m] · · · A

[m]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.16)
6,1 6,2 6,3 6,6
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Here A[m]
i,j is scalar for 1 ≤ i, j ≤ 2, A[m]

i,j is a row vector of length m for 1 ≤ i ≤ 2, 3 ≤ j ≤ 6, 

A
[m]
i,j is a column vector of length m for 3 ≤ i ≤ 6, 1 ≤ j ≤ 2, and A[m]

i,j is a m × m matrix for 
3 ≤ i, j ≤ 6.

Definition 19 (Definition of A). We extend this finite dimensional operator A[m] = {A[m]
i,j |1 ≤

i, j ≤ 6} to an operator A = {Ai,j |1 ≤ i, j ≤ 6} on X defined block-wise as

• Ai,j ∈R for 1 ≤ i, j ≤ 2, where Ai,j = A
[m]
i,j ;

• Ai,j ∈ (�1
ν)

∗ for 1 ≤ i ≤ 2 and 3 ≤ j ≤ 6, where Ai,j is A[m]
i,j padded with zeros;

• Ai,j ∈ �1
ν for 3 ≤ i ≤ 6 and 1 ≤ j ≤ 2, where Ai,j is A[m]

i,j padded with zeros;

• Ai,j ∈ B(�1
ν, �

1
ν) for 3 ≤ i, j ≤ 6, where

(Ai,j x
(j−2))k =

⎧⎨⎩
(
A

[m]
i,j (x(j−2))[m]

)
k

if 0 ≤ k ≤ m − 1,

δi,j

2k
x

(j−2)
k if k ≥ m,

(4.17)

with δi,j the usual Kronecker delta.

Here (�1
ν)

∗ is the dual of �1
ν . As an example, for 1 ≤ i ≤ 2, 3 ≤ j ≤ 6, we have Ai,ja = A

[m]
i,j a[m]. 

The action of A on x = (L, ψ, x(1), x(2), x(3), x(4)) ∈ X is thus

(Ax)(i) = Ai,1L + Ai,2ψ +
6∑

j=3

Ai,j x
(j−2), for 1 ≤ i ≤ 6,

where (Ax)(i) ∈R for i = 1, 2 and (Ax)(i) ∈ �1
ν for i = 3, 4, 5, 6.

We consider the Newton-like operator

T (βs, x) = x − AF(βs, x) (4.18)

where s ∈ [0, 1] and A is as in Definition 19.

Lemma 20. Given the operator A as in Definition 19. Then T : R × X → X.

Proof. Consider x ∈ X = R
2 × (�1

ν)
4 and β ∈ R. By construction of A, in particular the infinite 

diagonal tail chosen in (4.17), it is straightforward to verify that (AF(β,x))(i) ∈ R for i = 1, 2
and (AF(β,x))(i) ∈ �1

ν for 3 ≤ i ≤ 6. �
Showing the existence of parameterized fixed points of T defined in (4.18) is done by applying 

the general technique of Section 2. This requires computing the bounds Y (j) satisfying (2.2)
and the bounds Z(j) satisfying (2.3) for j = 1, . . . , 6. We recall that since X = ∏6

j=1 Xj =
R

2 × (�1
ν)

4, we have that ‖ · ‖Xj
denotes the absolute value for j = 1, 2 and the �1

ν norm for 
j = 3, 4, 5, 6.



J.B. van den Berg et al. / J. Differential Equations 264 (2018) 3086–3130 3111
4.5. The Y bound for the homoclinic orbit problem

We recall the definition of the bounds Y (j) in (2.2). In our context, Y (j) is a bound satisfying

sup
s∈[0,1]

‖(AF(βs, x̄s))
(j)‖Xj

≤ Y (j).

We begin by expanding each component of

F(βs, x̄s) =
(
η(1)(βs, x̄s), η

(2)(βs, x̄s),F
(1)(βs, x̄s), . . . ,F

(4)(βs, x̄s)
)

as a polynomial in s. Given s ∈ [0, 1] and j = 1, 2, 3, 4, denote x̄(j)
s =

(
x̄

(j)
s,k

)
k≥0

.

First, η(1)(βs, x̄s) = S
(1)
0 + sS

(1)
1 and η(2)(βs, x̄s) = S

(2)
0 + sS

(2)
1 , where

S
(1)
0

def= x̄
(2)
0,0 + 2

m−1∑
k=1

(−1)kx̄
(2)
0,k, S

(1)
1

def= 
x̄
(2)
0 + 2

m−1∑
k=1

(−1)k
x̄
(2)
k , (4.19)

S
(2)
0

def= x̄
(4)
0,0 + 2

m−1∑
k=1

(−1)kx̄
(4)
0,k, S

(2)
1

def= 
x̄
(4)
0 + 2

m−1∑
k=1

(−1)k
x̄
(4)
k . (4.20)

Let us now expand F (1)(βs, x̄s), . . . , F (4)(βs, x̄s) as polynomials in s, and recall that their first 
component depend on the exact parameterization of the stable manifold Pβs which involves in-
finitely many Taylor coefficients. The work from Section 3 provides the existence of a function 
hs : D2,ν̃ (R

2) → R
4, see (3.14), such that

Pβs (θ) = P βs (θ) + hs(θ).

As before, we slightly abuse notation by denoting Pβs (ψ) = P βs (ψ) + hs(ψ), where θ1 + iθ2 =
ρeiψ for a fixed ρ < ν̃. We then split the operator as

F(βs, x̄s) = F (N)(βs, x̄s) + Hs(ψs),

where F (N) denotes the full infinite dimensional F operator but evaluated using the (finitely 
computable) approximation of the parameterization Pβs of order N , and where

Hs(ψ)
def=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0

(h
(1)
s (ψ),0,0, . . .)

(h
(2)
s (ψ),0,0, . . .)

(h
(3)
s (ψ),0,0, . . .)

(h
(4)
s (ψ),0,0, . . .)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The size of h(i)
s (ψ) can be estimated by rm using Proposition 13, where rm is the validation 

radius for the manifold for β0 ≤ β ≤ β1. In addition, since we know that the zeroth order term in 
h

(i)
s vanishes, i.e. a0(s) = ā0(s) = 0, we obtain a slightly sharper bound for any ρ < ν̃:
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|h(i)
s (ψ)| =

∣∣∣∣ ∞∑
|α|=0

(
a(i)
α (s) − ā(i)

α (s)
)
ρ|α|eiψ(α1−α2)

∣∣∣∣≤ ∞∑
|α|=1

∣∣a(i)
α (s) − ā(i)

α (s)
∣∣ (ρ

ν̃

)|α|
ν̃|α|

≤ ρ

ν̃

∞∑
|α|=1

∣∣a(i)
α (s) − ā(i)

α (s)
∣∣ν̃|α| = ρ

ν̃

∥∥a(i)(s) − ā(i)(s)
∥∥

1,ν̃
≤ ρ

ν̃
rm.

Hence, we can estimate Hs(ψ̄s) elementwise by

|Hs(ψ̄s)| ≤ μ
def=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0

(
ρ
ν̃
rm,0,0, . . .)

(
ρ
ν̃
rm,0,0, . . .)

(
ρ
ν̃
rm,0,0, . . .)

(
ρ
ν̃
rm,0,0, . . .)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Denoting

F (N) =
(
η(1), η(2),F (1,N),F (2,N),F (3,N),F (4,N)

)
with F (j,N) =

{
f

(j,N)

0 , f
(j)

1 , f
(j)

2 , f
(j)

3 , . . .
}

for = 1, 2, 3, 4, we rewrite f (j,N)

0 (βs, x̄s) as a poly-

nomial in s, where we use 
P as defined in (4.14):

f
(j,N)

0 (βs, x̄s) = x̄
(j)

0,0 + s
x̄
(j)

0 + 2
m−1∑
k=1

[
x̄

(j)

0,k + s
x̄
(j)
k

]− P
(j)

βs
(ψ̄s)

=
(

x̄
(j)

0,0 + 2
m−1∑
k=1

x̄
(j)

0,k − P
(j)

β0
(ψ̄s)

)
+ s

(

x̄

(j)

0 + 2
m−1∑
k=1


x̄
(j)
k − 
P

(j)
(ψ̄s)

)

=
(

x̄
(j)

0,0 + 2
m−1∑
k=1

x̄
(j)

0,k − P
(j)

β0
(ψ̄0)

)

+ s

(

x̄

(j)

0 + 2
m−1∑
k=1


x̄
(j)
k − 
P

(j)
(ψ̄0) − 
ψ̄

d

dψ
P

(j)

β0
(ξ)

)

− s2
ψ̄
d

dψ

P

(j)
(ζ )

def= S
(j+2)
0,0 + sS

(j+2)
1,0 + s2S

(j+2)
2,0 , (4.21)

for some ξ, ζ between ψ̄0 and ψ̄1 (using the mean value theorem). To obtain an explicit com-
putable expression for S(j+2) and S(j+2), we determine
1,0 2,0
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Table 1
Coefficients S(j)

i,k
for the splitting of F(βs , ̄xs) as a polynomial in s, as given in (4.24). The coefficients S(j)

i,k
for k = 0

and 3 ≤ j ≤ 6 are provided in (4.21). The coefficients S(j)
i,k

for j = 1, 2 are provided in (4.19) and (4.20).

i Coefficients S
(3)
i,k

for k ≥ 1

0 2kx̄
(1)
0,k

+ L̄0

[
x̄
(2)
0,k±1 + (x̄

(1)
0 ∗ x̄

(2)
0 )k±1

]
1 2k
x̄

(1)
k

+ L̄0

[

x̄

(2)
k±1 + (
x̄(1) ∗ x̄

(2)
0 )k±1 + (x̄

(1)
0 ∗ 
x̄(2))k±1

]
+ 
L̄

[
x̄
(2)
0,k±1 + (x̄

(1)
0 ∗ x̄

(2)
0 )k±1

]
2 L̄0(
x̄(1) ∗ 
x̄(2))k±1 + 
L̄

[

x̄

(2)
k±1 + (
x̄(1) ∗ x̄

(2)
0 )k±1 + (x̄

(1)
0 ∗ 
x̄(2))k±1

]
3 
L̄(
x̄(1) ∗ 
x̄(2))k±1

i Coefficients S
(4)
i,k

for k ≥ 1

0 2kx̄
(2)
0,k

+ L̄0x̄
(3)
0,k±1

1 L̄0
x̄
(3)
k±1 + 2k
x̄

(2)
k

+ 
L̄x̄
(3)
0,k±1

2 
L̄
x̄
(3)
k±1

3 0

i Coefficients S
(5)
i,k

for k ≥ 1

0 2kx̄
(3)
0,k

+ L̄0x̄
(4)
0,k±1

1 L̄0
x̄
(4)
k±1 + 2k
x̄

(3)
k

+ 
L̄x̄
(4)
0,k±1

2 
L̄
x̄
(4)
k±1

3 0

i Coefficients S
(6)
i,k

for k ≥ 1

0 2kx̄
(4)
0,k

− L̄0

[
x̄
(1)
0,k±1 + β0x̄

(3)
0,k±1

]
1 2k
x̄

(4)
k

− 
L̄
[
x̄
(1)
0,k±1 + β0x̄

(3)
0,k±1

]
− L̄0

[

x̄

(1)
k±1 + β0
x̄

(3)
k±1 + 
βx̄

(3)
0,k±1

]
2 −
L̄

[

x̄

(1)
k±1 + β0
x̄

(3)
k±1 + 
βx̄

(3)
0,k±1

]
− L̄0
β
x̄

(3)
k±1

3 −
L̄
β
x̄
(3)
k±1

d

dψ
P

(j)

β0
(ξ) = i

∑
|α|<N

ā0,α(α1 − α2)ρ
|α|eiξ(α1−α2),

d

dψ

P

(j)
(ζ ) = i

∑
|α|<N


āα(α1 − α2)ρ
|α|eiζ(α1−α2), (4.22)

by an interval arithmetic calculation, i.e., replacing ξ and ζ by the interval [ψ̄0, ψ̄1].
For k ≥ 1, we set (j = 1, 2, 3, 4)

f
(j)
k (βs, x̄s) = S

(j+2)

0,k + S
(j+2)

1,k s + S
(j+2)

2,k s2 + S
(j+2)

3,k s3, (4.23)

where the third order term is nonzero for j = 1 and j = 4 only. All terms are collected in Table 1. 
Then, it is possible to write the whole operator as

F(βs, x̄s) = S0 + sS1 + s2S2 + s3S3 + Hs(ψs), (4.24)

where Si = (S
(1)

, S(2)
, {S(3)}k≥0, {S(4)}k≥0, {S(5)}k≥0, {S(6)}k≥0) for i = 0, 1, 2, 3.
i i i,k i,k i,k i,k
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Since we evaluate F using a finite dimensional approximation, F(βs, x̄s) will contain only a 
finite number of nonzero elements. First, we consider the entries not exceeding the dimension of 
the finite dimension approximation. This part gets ‘hit’ by A[m], and is bounded component by 
component:∣∣A[m]F(βs, x̄s)

[m]∣∣≤ V
def= ∣∣A[m]S[m]

0

∣∣+ ∣∣A[m]S[m]
1

∣∣+ ∣∣A[m]S[m]
2

∣∣+ ∣∣A[m]S[m]
3

∣∣+ ∣∣A[m]∣∣μ[m],

where V = (V (1), V (2), {V (3)
k }m−1

k=0 , {V (4)
k }m−1

k=0 , {V (5)
k }m−1

k=0 , {V (6)
k }m−1

k=0 )T . Concerning terms that 
exceed the dimension of the finite dimensional projection, by using the definition of A, one gets 
for j = 3, 4, 5, 6 ∣∣∣(Aj,jF

(j−2)(βs, x̄s)
)
k

∣∣∣= ∣∣∣∣ 1

2k
f

(j−2)
k (βs, x̄s)

∣∣∣∣ for k ≥ m.

The expansion of f (j−2)
k (βs, x̄s) in powers of s is given by (4.23) with the coefficients in Table 1.

We note that all S(j)
i,k vanish for k ≥ 2m. To be precise, S(3)

i,k vanishes for k ≥ 2m, whereas when 

j = 4, 5, 6 then S(j)
i,k vanishes already for k ≥ m + 1. Hence we define the estimates (3 ≤ j ≤ 6, 

m ≤ k ≤ 2m − 1)

1

2k

∣∣∣f (j−2)
k (βs, x̄s)

∣∣∣≤ W
(j)
k

def= 1

2k

(
|S(j)

0,k | + |S(j)
1,k | + |S(j)

2,k | + |S(j)
3,k |

)
.

Having estimated all the terms appearing in the expression ‖(T (βs, x̄s) − x̄s)
(j)‖Xj

, we set

Y (j) def=

⎧⎪⎪⎨⎪⎪⎩
V (j), j = 1,2,

V
(j)
0 + 2

m−1∑
k=1

V
(j)
k νk + 2

2m−1∑
k=m

W
(j)
k νk, j = 3,4,5,6.

By construction, we have∥∥∥(T (βs, x̄s) − x̄s)
(j)
∥∥∥

Xj

≤ Y (j) for all s ∈ [0,1] and j = 1, . . . ,6.

4.6. The Z bound for the homoclinic orbit problem

We recall the definition of the bounds Z(j) in (2.3). In our context, Z(j) is a bound satisfying

sup
b,c∈Br (0)
s∈[0,1]

∥∥∥DxT
(j)(β, x̄s + b)c

∥∥∥
Xj

≤ Z(j)(r).

To simplify the manipulations of the expressions appearing in the bounds, we introduce an op-
erator A† = {A†

i,j |1 ≤ i, j ≤ 6}, where the splitting is explained in Definition 19. This operator 

A† is on the one hand an ‘almost inverse’ of the operator A, and on the other hand it approxi-
mates DxF(β0, x̄0). We define A† piecewise, where we use the decomposition of the Jacobian 
(DxF(β0, x̄0)) = (DxF (β0, x̄0))i,j into 36 blocks as in (4.16):
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• A
†
i,j ∈R for 1 ≤ i, j ≤ 2, where A†

i,j = (DxF (β0, x̄0))i,j ;

• A
†
i,j ∈ (�1

ν)
∗ for 1 ≤ i ≤ 2 and 3 ≤ j ≤ 6, where A†

i,j is (DxF(β0, x̄0))i,j padded with zeros;

• A
†
i,j ∈ �1

ν for 3 ≤ i ≤ 6 and 1 ≤ j ≤ 2, where A†
i,j is (DxF(β0, x̄0))i,j padded with zeros;

• A
†
i,j ∈ B(�1

ν, �
1
ν′) for 3 ≤ i, j ≤ 6, with ν′ < ν, where

(A
†
i,j x

(j−2))k =
⎧⎨⎩
(
(DxF(β0, x̄0))i,j (x

(j−2))[m]
)

k
if 0 ≤ k ≤ m − 1,

δi,j 2kx
(j−2)
k if k ≥ m.

Now, we use A† to perform the splitting

DT (βs, x̄s + b)c = [I − ADF(βs, x̄s + b)]c
= [I − AA†]c − A[DF(βs, x̄s + b)c − A†c]. (4.25)

As in Section 3, the bound on the first term in (4.25) can be directly computed. We set B =
I −AA†, whose nonzero elements are represented by the finite matrix I4m+2 −A[m]DxF(β0, x̄0), 
and we use Lemmas 17 and 18 to derive the bounds

Z
(i)
0

def=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2∑
j=1

|Bi,j | +
6∑

j=3

‖Bi,j‖∞,ν−1 for i = 1,2,

2∑
j=1

‖Bi,j‖1,ν +
6∑

j=3

‖Bi,j‖B(�1
ν) for i = 3,4,5,6,

(4.26)

with the norms introduced in Section 4.2. This provides the desired bound on the first term 
of (4.25). For the second term, we set u, v ∈ B1(0) such that b = ru and c = rv. We denote 
v = (vL, vψ, v(1), v(2), v(3), v(4)), and similarly for u, b and c. First, for i = 1, 2, we have

[DF(βs, x̄s + b)c − A†c](i) =
∣∣∣∣∣c(2i)

0 + 2
∞∑

k=1

(−1)kc
(2i)
k − c

(2i)
0 − 2

m−1∑
k=1

(−1)kc
(2i)
k

∣∣∣∣∣
=
∣∣∣∣∣2

∞∑
k=m

(−1)kc
(2i)
k

∣∣∣∣∣≤ 2
∞∑

k=m

|v(2i)
k |r ≤ 1

νm
r, (4.27)

where the final inequality follows from Lemma 17. Next we consider the k = 0 term of the other 
four components. For i = 1, 2, 3, 4 one finds∣∣∣[DF(βs, x̄s + b)c − A†c](i+2)

0

∣∣∣
=
∣∣∣∣∣∣
[

− dP
(i)
βs

dψ
(ψs + bψ)cψ + c

(i)
0 + 2

∞∑
c
(i)
k

]
−
[

− dP
(i)

β0

dψ
(ψ0)cψ + c

(i)
0 + 2

m−1∑
c
(i)
k

]∣∣∣∣∣∣
k=1 k=1
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≤
∣∣∣∣∣∣dP

(i)

β0

dψ
(ψs + ruψ) − dP

(i)

β0

dψ
(ψs) + dP

(i)

β0

dψ
(ψs) − dP

(i)

β0

dψ
(ψ0) + s

d
P
(i)

dψ
(ψs + bψ)

∣∣∣∣∣∣ r
+
(∣∣∣∣dhs

dψ
(ψs + bψ)

∣∣∣∣+
∣∣∣∣∣2

∞∑
k=m

v
(i)
k

∣∣∣∣∣
)

r

≤
∣∣∣∣∣∣d

2P
(i)

β0

dψ2 (ζs)

∣∣∣∣∣∣ r2 +
⎛⎝∣∣∣∣∣∣d

2P
(i)

β0

dψ2 (ξs)
ψ̄

∣∣∣∣∣∣+
∣∣∣∣∣d
P

(i)

dψ
(ψs + bψ)

∣∣∣∣∣
⎞⎠ sr (4.28)

+
(

ρ

∣∣∣∣∂hs

∂θ1
(ψs + bψ)

∣∣∣∣+ ρ

∣∣∣∣∂hs

∂θ2
(ψs + bψ)

∣∣∣∣+ 1

νm

)
r, (4.29)

where ζs is in [ψ̄s − r, ψ̄s + r], and ξs is in [ψ̄0, ψ̄s]. A direct computation shows that∣∣∣∣∣∣d
2P

(i)

β0

dψ2 (ψ)

∣∣∣∣∣∣=
∣∣∣∣∣∣
∑

|α|<N

−ā
(i)
0,αρ|α|(α1 − α2)

2eiψ(α1−α2)

∣∣∣∣∣∣≤
∑

|α|<N

∣∣∣ā(i)
0,α

∣∣∣ρ|α|(α1 − α2)
2.

Combining this with (4.22) gives us a bound on the terms in (4.28):

�(i) def= |
ψ̄ |
∑

|α|<N

∣∣∣ā(i)
0,α

∣∣∣ρ|α|(α1 − α2)
2 +

∑
|α|<N

∣∣∣
ā
(i)
0,α

∣∣∣ρ|α||α1 − α2|,

�̃(i) def=
∑

|α|<N

∣∣∣ā(i)
0,α

∣∣∣ρ|α|(α1 − α2)
2.

The remaining terms in (4.29) are estimated using Lemma 14. We obtain, for i = 1, 2, 3, 4,∣∣∣[DF(βs, x̄s + b)c − A†c](i+2)
0

∣∣∣≤W(i+2)
1 r + �̃(i)r2, (4.30)

with, for j = 3, 4, 5, 6,

W(j)
1

def=
(

�(j−2) + 8πρrm

ν̃ ln ν̃
ρ

+ 1

νm

)
. (4.31)

For k 
= 0, we consider separately the coefficients of r , r2 and r3:(
DF(βs, x̄s + ru)rv − A†rv

)(i)

k
= z̃

(i)
1,kr + z̃

(i)
2,kr

2 + z̃
(i)
3,kr

3, for i = 3,4,5,6.

The term −A†v contributes to the s-independent part of z̃(i)
1,k only. Since in z̃(i)

1,k some of the terms 
involving (v(j))[m] will cancel, it is useful to introduce ̂v(j) as follows:

v̂
(j)
k

def=
{

0 if k < m,

v
(j) if k ≥ m.
k
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Using this notation, for z̃(3)
1,k and 1 ≤ k ≤ m − 1, one finds

z̃
(3)
1,k = L̄0

[
(x̄

(1)
0 ∗ v̂(2))k±1 + (̂v(1) ∗ x̄

(2)
0 )k±1 + δk,m−1v̂

(2)
k±1

]
+ s

(
vL

[

x̄

(2)
k±1 + (x̄

(1)
0 ∗ 
x̄(2))k±1 + (
x̄(1) ∗ x̄

(2)
0 )k±1

]
+ L̄0

[
(
x̄(1) ∗ v(2))k±1 + (v(1) ∗ 
x̄(2))k±1

]
+ 
L̄

[
v

(2)
k±1 + (x̄

(1)
0 ∗ v(2))k±1 + (v(1) ∗ x̄

(2)
0 )k±1

])
+ s2

(

L̄

[
(
x̄(1) ∗ v(2))k±1 + (v(1) ∗ 
x̄(2))k±1

]+ vL(
x̄(1) ∗ 
x̄(2))k±1

)
.

Clearly δk,m−1v̂
(2)
k±1 = δk,m−1v

(2)
k+1 = v̂

(2)
k±1, for k ≤ m − 1, and the Kronecker δk,m−1 may be 

viewed as superfluous. For k ≥ m we find

z̃
(3)
1,k = L̄0

[
(x̄

(1)
0 ∗ v(2))k±1 + (v(1) ∗ x̄

(2)
0 )k±1 + v

(2)
k±1

]
+ vL

[
(x̄

(1)
0 ∗ x̄

(2)
0 )k±1 + δk,mx̄

(2)
0,k±1

]
+ s

(
vL

[
δk,m
x̄

(2)
k±1 + (x̄

(1)
0 ∗ 
x̄(2))k±1 + (
x̄(1) ∗ x̄

(2)
0 )k±1

]
+ L̄0

[
(
x̄(1) ∗ v(2))k±1 + (v(1) ∗ 
x̄(2))k±1

]
+ 
L̄

[
v

(2)
k±1 + (x̄

(1)
0 ∗ v(2))k±1 + (v(1) ∗ x̄

(2)
0 )k±1

])

+ s2
(


L̄
[
(
x̄(1) ∗ v(2))k±1 + (v(1) ∗ 
x̄(2))k±1

]
+ vL(
x̄(1) ∗ 
x̄(2))k±1

)
.

Once again the Kronecker δk,m may be viewed as superfluous. For z̃(1)
4,k , z̃(1)

5,k and z̃(1)
6,k , one finds

z̃
(4)
1,k =

⎧⎨⎩δk,m−1L̄0v
(3)
k+1 + s

[

L̄v

(3)
k±1 + vL
x̄

(3)
k±1

]
for 1 ≤ k ≤ m − 1

L̄0v
(3)
k±1 + vLδk,mx̄

(3)
0,k±1 + s

[

L̄v

(3)
k±1 + δk,mvL
x̄

(3)
k±1

]
for k ≥ m,

z̃
(5)
1,k =

⎧⎨⎩δk,m−1L̄0v
(4)
k+1 + s

[

L̄v

(4)
k±1 + vL
x̄

(4)
k±1

]
for 1 ≤ k ≤ m − 1

L̄0v
(4)
k±1 + vLδk,mx̄

(4)
0,k±1 + s

[

L̄v

(4)
k±1 + δk,mvL
x̄

(4)
k±1

]
for k ≥ m,

and
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Table 2
Coefficients z̃(i)

2,k
and z̃(i)

3,k
for k 
= 0.

Coefficients in front of r2, for k ≥ 1

z̃
(3)
2,k

vL

(
(x̄

(1)
0 ∗ u(2))k±1 + (u(1) ∗ x̄

(2)
0 )k±1 + s[(
x̄(1) ∗ u(2))k±1 + (u(1) ∗ 
x̄(2))k±1] + u

(2)
k±1

)
+ uL

(
(x̄

(1)
0 ∗ v(2))k±1 + (v(1) ∗ x̄

(2)
0 )k±1 + s[(
x̄(1) ∗ v(2))k±1 + (v(1) ∗ 
x̄(2))k±1] + v

(2)
k±1

)
+ s
L̄

(
(u(1) ∗ v(2))k±1 + (v(1) ∗ u(2))k±1

)+ L̄0
(
(u(1) ∗ v(2))k±1 + (v(1) ∗ u(2))k±1

)
z̃
(4)
2,k

uLv
(3)
k±1 + vLu

(3)
k±1

z̃
(5)
2,k

uLv
(4)
k±1 + vLu

(4)
k±1

z̃
(6)
2,k

−uL

(
βsv

(3)
k±1 + v

(1)
k±1

)− vL

(
βsu

(3)
k±1 + u

(1)
k±1

)
Coefficients in front of r3, for k ≥ 1

z̃
(3)
3,k

uL(u(1) ∗ v(2))k±1 + uL(u(2) ∗ v(1))k±1 + vL(u(1) ∗ u(2))k±1

z̃
(4)
3,k

z̃
(5)
3,k

0

z̃
(6)
3,k

z̃
(6)
1,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−δk,m−1L̄0
[
β0v

(3)
k+1 + v

(1)
k+1

]− s

(
vL

[

βx̄

(3)
0,k±1 + 
x̄

(1)
k±1 + β0
x̄

(3)
k±1

]
+ 
L̄v

(1)
k±1 + [

L̄0
β + 
L̄β0
]
v

(3)
k±1

)
− s2

[

L̄
βv

(3)
k±1 + vL
β
x̄

(3)
k±1

]
for 1 ≤ k ≤ m − 1

−L̄0
[
β0v

(3)
k±1 + v

(1)
k±1

]− δk,mvL

[
β0x̄

(3)
0,k±1 + x̄

(1)
0,k±1

]
− s

(
δk,mvL

[

βx̄

(3)
0,k±1 + 
x̄

(1)
k±1 + β0
x̄

(3)
k±1

]+ 
L̄v
(1)
k±1

+ [
L̄0
β + 
L̄β0

]
v

(3)
k±1

)
− s2

[

L̄
βv

(3)
k±1 + δk,mvL
β
x̄

(3)
k±1

]
for k ≥ m.

The z̃(2)
i,k and z̃(3)

i,k coefficients are still to be determined. For k 
= 0, they are given in Table 2. 

Thus, we set z̃(i)
1 = {z̃(i)

1,k}k≥0, z̃(i)
2 = {z̃(i)

2,k}k≥0 and z̃(i)
3 = {z̃(i)

3,k}k≥0. We note that values of z̃(i)
1,0

and z̃(i)
2,0 are not explicitly given, but (4.30) provides bounds on these terms. We are going to 

abuse notation by referring to these bounds as z̃(i)
1,0 and z̃(i)

2,0, where we will correct for this abuse 

below whenever these terms get involved. We set z̃(i)
3,0 = 0.

For l = 1, 2, one can estimate, using Equation (4.27) and the definition of z̃(i)
j ,∣∣∣∣(A[DF(βs, x̄s + b)c − A†c]

)(l)
∣∣∣∣≤(

2∑
i=1

∣∣Al,i

∣∣
νm

+
6∑

i=3

∣∣∣Al,i z̃
(i)
1

∣∣∣) r +
6∑

i=3

‖Al,i‖∞,ν−1

(
‖z̃(i)

2 ‖1,νr
2 + ‖z̃(i)

3 ‖1,νr
3
)

, (4.32)
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and for l = 3, 4, 5, 6∥∥∥∥(A[DF(βs, x̄s + b)c − A†c]
)(l)

∥∥∥∥
1,ν

≤
(

2∑
i=1

∥∥Al,i

∥∥
1,ν

νm
+

6∑
i=3

∥∥∥Al,i z̃
(i)
1

∥∥∥
1,ν

)
r +

6∑
i=3

∥∥Al,i

∥∥
B(�1

ν )

(
‖z̃(i)

2 ‖1,νr
2 + ‖z̃(i)

3 ‖1,νr
3
)

.

(4.33)

Apart from |Al,i | for l, i = 1, 2, which are scalars, it is not immediately obvious how to com-
pute or estimate the terms in (4.32) and (4.33) explicitly. The norms ‖Al,i‖∞,ν−1 for l = 1, 2, 
i = 3, 4, 5, 6 and ‖Al,i‖1,ν for i = 1, 2, l = 3, 4, 5, 6 can be computed directly, since they are 
represented by row and column vectors of length m. The operator norms 

∥∥Al,i

∥∥
B(�1

ν )
can be 

computed using Lemma 18, since for l 
= i they are represented by finite matrices, whereas for 
l = i they have a decaying diagonal tail (see the analogous Lemma 11).

The norms ‖z̃(i)
2 ‖1,ν and ‖z̃(i)

3 ‖1,ν in the quadratic and cubic terms in r can be estimated 

using the Banach algebra structure. Taking into account the bound on z̃(i)
2,0 in (4.30), this leads to 

bounds

‖z̃(i)
2 ‖1,ν ≤W(i)

2 for i = 3,4,5,6,

with

W(3)
2

def= �̃(1) + 2

(
ν + 1

ν

)
(
‖x̄(1)

0 ‖1,ν + ‖x̄(2)
0 ‖1,ν + ‖
x̄(1)‖1,ν + ‖
x̄(2)‖1,ν + 1 + L̄0 + |
L̄|

)
, (4.34)

W(4)
2

def= �̃(2) + 2

(
ν + 1

ν

)
, (4.35)

W(5)
2

def= �̃(3) + 2

(
ν + 1

ν

)
, (4.36)

W(6)
2

def= �̃(4) + 2

(
ν + 1

ν

)
(β1 + 1) , (4.37)

and

‖z̃(3)
3 ‖1,ν ≤ W(3)

3
def= 3

(
ν + 1

ν

)
. (4.38)

The factor ν + ν−1 in the expressions above is due to the shift in index (to the right and to the 
left) in u(i)

k±1, v(i)
k±1, etc.

This leaves us with estimating |Al,i z̃
(i)
1 | and ‖Al,i z̃

(i)
1 ‖1,ν . Since these appear in the terms that 

are linear in r , a direct triangle inequality bound would be too rough for the method to succeed. 
Hence we estimate these terms more carefully below.
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For the term in front of r in equation (4.32), for l = 1, 2, we have

6∑
i=3

∣∣∣Al,i z̃
(1)
i

∣∣∣≤ 6∑
i=3

∣∣(Al,i)0
∣∣W(i)

1 +
6∑

i=3

∣∣∣∣∣
m−1∑
k=1

(Al,i)kz̃
(i)
1,k

∣∣∣∣∣ .
Here we have corrected for our abuse of notation regarding z̃(i)

1,0 by splitting it off using the 
triangle inequality.

Remark 21. We use the bound (4.6) to estimate the convolution

sup
‖v‖1,ν≤1

|(a ∗ v)k| = sup
‖v‖1,ν≤1

∣∣∣∣∣∑
k′∈Z

v|k′|a|k−k′|

∣∣∣∣∣≤ max

{
|ak|, sup

k′≥1

|a|k−k′|| + |a|k+k′||
2νk′

}
def= Qk(a).

A similar estimate leads to

sup
‖v‖1,ν≤1

|(a ∗ v̂)k| ≤ sup
k′≥m

|a|k−k′|| + |a|k+k′||
2νk′

def= Q̂k(a).

Some of the terms in z̃(i)
1,k are computable directly, while others need to be estimated. To 

present these estimates in a structured way we introduce several computable constants. For the 
convolution terms involving either v or ̂v in z̃(3)

1,k we introduce (for k ≥ 1)

ω
(i)
k

def= Qk−1(x̄
(i)) +Qk+1(x̄

(i)),

ω̂
(i)
k

def= Q̂k−1(x̄
(i)) + Q̂k+1(x̄

(i)),


ω
(i)
k

def= Qk−1(
x̄(i)) +Qk+1(
x̄(i)).

Here Qk(·) and Q̂k(·), defined in Remark 21, can be computed (at least finitely many of 
them) since x̄(i) and 
x̄(i) have only finitely many nonzero components. We now set, for 
k = 1, . . . , m − 1,

z
(3)
k

def= |
L̄|
[ 2

νk−1 + ω
(1)
k + ω

(2)
k

]
+ (

L̄0 + |
L̄|)[
ω
(1)
k + 
ω

(2)
k

]+ L̄0
[
ω̂

(1)
k + ω̂

(2)
k

]
,

z
(4)
k

def= 2
|
L̄|
νk−1 ,

z
(5)
k

def= 2
|
L̄|
νk−1 ,

z
(6)
k

def= 2
|L̄0
β + 
L̄β0| + |
L̄|

νk−1 + 2

∣∣
L̄
β
∣∣

νk−1 ,

as well as
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ẑ
(3)
k

def= 
x̄
(2)
k±1 + (x̄

(1)
0 ∗ 
x̄(2))k±1 + (
x̄(1) ∗ x̄

(2)
0 )k±1,

ẑ
(4)
k

def= 
x̄
(3)
k±1,

ẑ
(5)
k

def= 
x̄
(4)
k±1,

ẑ
(6)
k

def= 
βx̄
(3)
0,k±1 + 
x̄

(1)
k±1 + β0
x̄

(3)
k±1,

and

ˆ̂z(3)
k

def= (
x̄(1) ∗ 
x̄(2))k±1,

ˆ̂z(6)
k

def= 
β
x̄
(3)
k±1.

Recall that |A| denotes the component-wise absolute value. Then we have the computable esti-
mates (l = 1, 2)∣∣∣∣∣

m−1∑
k=1

(Al,3)kz̃
(3)
1,k

∣∣∣∣∣≤ Zl,3
def= (|A|l,3)m−1L̄0

νm
+

m−1∑
k=1

(|A|l,3)kz(3)
k +

∣∣∣∣∣
m−1∑
k=1

(Al,3)kẑ
(3)
k

∣∣∣∣∣
+
∣∣∣∣∣
m−1∑
k=1

(Al,3)k ˆ̂z(3)
k

∣∣∣∣∣ ,∣∣∣∣∣
m−1∑
k=1

(Al,4)kz̃
(4)
1,k

∣∣∣∣∣≤ Zl,4
def= (|A|l,4)m−1L̄0

νm
+

m−1∑
k=1

(|A|l,4)kz(4)
k +

∣∣∣∣∣
m−1∑
k=1

(Al,4)kẑ
(4)
k

∣∣∣∣∣ ,∣∣∣∣∣
m−1∑
k=1

(Al,5)kz̃
(5)
1,k

∣∣∣∣∣≤ Zl,5
def= (|A|l,5)m−1L̄0

νm
+

m−1∑
k=1

(|A|l,5)kz(5)
k +

∣∣∣∣∣
m−1∑
k=1

(Al,5)kẑ
(5)
k

∣∣∣∣∣ ,∣∣∣∣∣
m−1∑
k=1

(Al,6)kz̃
(6)
1,k

∣∣∣∣∣≤ Zl,6
def= (|A|l,6)m−1L̄0(β0 + 1)

νm
+

m−1∑
k=1

(|A|l,6)kz(6)
k +

∣∣∣∣∣
m−1∑
k=1

(Al,6)kẑ
(6)
k

∣∣∣∣∣
+
∣∣∣∣∣
m−1∑
k=1

(Al,6)k ˆ̂z(6)
k

∣∣∣∣∣ .
For l = 3, 4, 5, 6, we split the estimate in three terms because of the way the z̃(1)

i,0 bounds and A
are defined. Using (4.30), we get (i, l = 3, 4, 5, 6)

∥∥∥Al,i z̃
(i)
1

∥∥∥
1,ν

≤ W(i)
1

m−1∑
j=0

∣∣(Al,i)j0
∣∣+ 2

m−1∑
j=1

∣∣∣∣∣
m−1∑
k=1

(Al,i)j,k z̃
(i)
1,k

∣∣∣∣∣νj + 2δl,i

∑
j≥m

1

2j
|z̃(i)

1,j |νj .

(4.39)

Again we have dealt with the z̃(i)
1,0 terms separately to take into account our abuse of notation.

The final two terms in (4.39) still need to be estimated. The first of these can be estimated in 
the same way as above, which we write (for 3 ≤ l, i ≤ 6) compactly as
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m−1∑
j=1

∣∣∣∣∣
m−1∑
k=1

(Al,i)j,k z̃
(3)
1,k

∣∣∣∣∣νj ≤ Zl,i
def=

m−1∑
j=1

(Zl,i )j ,

with

(Zl,i )j
def= (|A|l,i )j,m−1L̄0(δi,6β0 + 1)

νm
+

m−1∑
k=1

(|A|l,i )j,kz(i)
k +

∣∣∣∣∣
m−1∑
k=1

(Al,i)j,k ẑ
(i)
k

∣∣∣∣∣
+
∣∣∣∣∣
m−1∑
k=1

(Al,i)j,k ˆ̂z(i)
k

∣∣∣∣∣ ,
where one should read ˆ̂z(4)

k = ˆ̂z(5)
k = 0.

For the final ‘tail’ terms in (4.39), we bound these as we did for z(i)
2 and z(i)

3 coefficients. We 
obtain

∑
j≥m

|z̃(3)
1,j |
j

νj ≤ Z∞
3

def= 1

2m

(
ν + 1

ν

)(
L̄0 + |
L̄|)(

‖x̄(1)
0 ‖1,ν + ‖x̄(2)

0 ‖1,ν + ‖
x̄(1)‖1,ν + ‖
x̄(2)‖1,ν + 1
)

+
2m−1∑
k=m

νk

k

(∣∣∣(x̄(1)
0 ∗ x̄

(2)
0 )k±1

∣∣∣+ ∣∣∣(x̄(1)
0 ∗ 
x̄(2))k±1

∣∣∣+ ∣∣∣(
x̄(1) ∗ x̄
(2)
0 )k±1

∣∣∣)

+
2m−1∑
k=m

νk

k

∣∣∣(
x̄(1) ∗ 
x̄(2))k±1

∣∣∣+ νm

m

(
|
x̄

(2)
m−1| + |x̄(2)

0,m−1|
)

∑
j≥m

|z̃(4)
1,j |
j

νj ≤Z∞
4

def= 1

2m

(
ν + 1

ν

)(
L̄0 + |
L̄|)+ νm

m

(
|x̄(3)

0,m−1| + |
x̄
(3)
m−1|

)
,

∑
j≥m

|z̃(5)
1,j |
j

νj ≤Z∞
5

def= 1

2m

(
ν + 1

ν

)(
L̄0 + |
L̄|)+ νm

m

(
|x̄(4)

0,m−1| + |
x̄
(4)
m−1|

)
,

∑
j≥m

|z̃(6)
1,j |
j

νj ≤Z∞
6

def= 1

2m

(
ν + 1

ν

)(
L̄0 + |
L̄|) (1 + β1)

+ νm

m

(
β1

(
|x̄(3)

0,m−1| + |
x̄
(3)
m−1|

)
+ |x̄(1)

0,m−1| + |
x̄
(1)
m−1|

)
.

Therefore, recalling (4.31) and (4.34)–(4.38), for l = 1, 2, we set

Z
(l)
1

def=
2∑∣∣Al,i

∣∣
νm

+
6∑∣∣(Al,i)0

∣∣W(i)
1 +

6∑
Zl,i ,
i=1 i=3 i=3



J.B. van den Berg et al. / J. Differential Equations 264 (2018) 3086–3130 3123
Z
(l)
2

def=
6∑

i=3

‖Al,i‖∞,ν−1W(i)
2 ,

Z
(l)
3

def= ‖Al,3‖∞,ν−1W(3)
3 ,

and for l = 3, 4, 5, 6, we set

Z
(l)
1

def=
2∑

i=1

∥∥Al,i

∥∥
1,ν

νm
+

6∑
i=3

W(i)
1

m−1∑
j=1

∣∣(Al,i )j,0
∣∣+ 6∑

i=3

Zl,i +Z∞
l ,

Z
(l)
2

def=
6∑

i=3

‖Al,i‖B(�1
ν )W

(i)
2 ,

Z
(l)
3

def= ∥∥Al,3
∥∥

B(�1
ν )
W(3)

3 .

Finally, by construction,

sup
b,c∈B(r)

∥∥∥(DT (βs, x̄s + b)c)(l)
∥∥∥

X(l)
≤
(
Z

(l)
0 + Z

(l)
1

)
r + Z

(l)
2 r2 + Z

(l)
3 r3,

for all s ∈ [0,1] and l = 1, . . . ,6.

4.7. Use of the uniform contraction principle

Using the computable bounds Y (l) and Z(l) constructed in the previous two sections, we set

p(l)(r)
def= Y (l) +

(
Z

(l)
0 + Z

(l)
1 − 1

)
r + Z

(l)
2 r2 + Z

(l)
3 r3, l = 1, . . . ,6. (4.40)

If we find an r > 0 such that p(l)(r) < 0 for all l = 1, . . . , 6, then according to Proposition 6 we 
have validated the numerical approximation x̄s of solutions to the BVP (4.4), for every s ∈ [0, 1], 
and hence we have proven the existence of symmetric homoclinic orbits for all β ∈ [β0, β1].

Proposition 22. For every s ∈ [0, 1], let

v(i)
s (t) = x̄

(i)
s,0 + 2

m−1∑
k=0

x̄
(i)
s,kTk(t), for i = 1,2,3,4,

be the approximate solution of (4.4) that we have computed for β = βs , L = L̄s and ψ = ψ̄s . 
Assume that there exists an r > 0 such that p(l)(r) < 0 for all l = 1, . . . , 6. Then, for each 
s ∈ [0, 1], there exists a solution of (4.4) for β = βs of the form

v(i)
s (t) = x

(i)
s,0 + 2

∞∑
x

(i)
s,kTk(t), for i = 1,2,3,4,
k=0
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and some L = Ls and ψ = ψs satisfying |Ls − L̄s | ≤ r and |ψs − ψ̄s | ≤ r . This solution corre-
sponds to a (symmetric) homoclinic orbit of (1.3). Furthermore, let

g(i)
s (t) = v(i)

s (t) − v(i)
s (t) for i = 1,2,3,4,

then we have the following uniform error bound on the (central part of) the homoclinic orbit in 
phase space: |g(i)

s (t)| ≤ r for all t ∈ [−1, 1], s ∈ [0, 1] and i = 1, 2, 3, 4.

Proof. Proposition 6 yields that, for each s ∈ [0, 1], there exists a unique fixed point xs of 
T (βs, ·) in the ball of radius r around x̄s . The operator A is injective since its non-diagonal 
part A[m] is invertible. The latter follows from the fact that, see (4.26),∥∥I4m+2 − A[m]DxF(β0, x̄0)

∥∥
B(X[m]) ≤ max

1≤l≤6
Z

(l)
0 < 1,

where the final inequality is implied by p(l)(r) < 0. Here the operator norm on X[m] ∼=R
4m+2 is 

induced by the one on X. Hence the fixed point xs of T solves F(βs, xs) = 0, and by construction 
vs is a solution of (4.4), which through the change of variables from Section 4.1 corresponds to 
a homoclinic solution of (1.3). The error bound follows from

‖v(i)
s (t) − v(i)

s (t)‖∞ =
∥∥∥x(i)

s,0 − x̄
(i)
s,0 + 2

∑
k≥1

(
x

(i)
s,k − x̄

(i)
s,k

)
Tk(t)

∥∥∥∞

≤ ∣∣x(i)
s,0 − x̄

(i)
s,0

∣∣+ 2
∑
k≥1

∣∣x(i)
s,k − x̄

(i)
s,k

∣∣
≤ ∣∣x(i)

s,0 − x̄
(i)
s,0

∣∣+ 2
∑
k≥1

∣∣x(i)
s,k − x̄

(i)
s,k

∣∣νk

= ∥∥x(i)
s − x̄(i)

s

∥∥
1,ν

≤ ‖xs − x̄s‖X ≤ r. �
5. Algorithm and results

In this section we discuss some algorithmic issues. In particular, we explain how certain com-
putational constants are chosen and how the two parts of the problem (the manifold computation 
and the boundary value problem) are joined together to produce the homoclinic orbit. To get 
the continuation started, the first thing to do is to compute the approximation of the manifold 
for a fixed value of β . Since the first coefficients of the parameterization depend on the steady 
state and the eigenvectors, which are known, one can start Newton’s method with these values in 
combination with zeros for all higher order coefficients. If Newton’s method does not converge, 
replacing the starting point with a good approximation for a slightly higher number of Taylor 
coefficients (which can be computed recursively) will work. Once one good approximation has 
been found for a particular value of the parameter β , one can use it as the starting point to find 
another approximation for sufficiently close values of the parameter.

Another important point for the computations is the size of the manifold that we get. Since 
the stable eigenvalues of the Jacobian at 0 are complex conjugates, we know that asymptotically 
the orbit spirals toward the origin. If the manifold we compute is large enough to contain most of 
the spiraling part, then we do not have to compute that part of the orbit using Chebyshev series, 
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which is advantageous. Generally speaking, the larger the manifold is, the easier the remaining 
part with Chebyshev will be. Therefore we use the method developed in [1] to maximize the 
image of the parameterization we compute.

A natural approach to obtain a larger manifold is to try and maximize the ν̃ for which 
we can validate the parameterization (we recall that its domain of definition is D2,ν̃(R

2) ={
θ ∈R2, |θ |2 ≤ ν̃

}
). However, taking ν̃ � 1 or ν̃ � 1 leads to numerical instabilities (see for 

instance the quantities K(i,j) defined in Section 3.4.1). The key observation from [1] to avoid 
this phenomenon is the following. Given a parameterization

P(θ) =
∑
|α|≥0

aαθα,

and, for some γ > 0, a rescaled parameterization (also with rescaled eigenvectors)

P̃ (θ) =
∑
|α|≥0

ãαθα, with ãα = γ |α|aα,

the parameterization P on the domain D2,γ (R2) defines the same manifold as the rescaled pa-
rameterization P̃ on the domain D2,1(R

2). Therefore we can fix ν̃ to be 1 and instead look for 
the largest γ for which we can validate the rescaled parameterization.

Another useful feature of the results of [1] is that they provide the explicit dependence of 
the bounds Y and Z with respect to the rescaling γ , enabling us to recompute bounds for any 
rescaling cheaply. In practice, we use the following process:

• Compute an approximate parameterization P (that is, the coefficient aα).
• Compute the bounds Y and Z for β0, without the continuation (i.e. take 
a = 0 and 
β = 0

in every estimate).
• Find the largest γ for which the proof succeeds (i.e. we find an r > 0 such that p(i)(r) < 0 for 

all i = 1, 2, 3, 4, where the four radii polynomials p(i) are defined in (3.10)) for the rescaled 
coefficients ãα = γ |α|aα , while requiring the coefficients of the linear term (the one front 
of r) in each radii polynomial p(i) to be less than some threshold η ∈ (0, 1), which will be 
discussed below. This step yields a parameterization P̃ with rigorous error bounds on the 
domain D2,1(R

2).
• Use the parameterization P̃ with this γ for the Chebyshev part and for the continuation.

Before describing in more detail the process of continuation, let us explain the role of the thresh-
old η. Finding a positive root of a radii polynomial is impossible if its linear term is not negative, 
because all its other coefficients are always non-negative by construction. If the linear term is 
just negative enough for the proof to work at the single parameter value β0, then 
β has to be 
taken extremely small for it to remain negative for the uniform proof, since all bounds become 
worse monotonically in |
β|. However, we want to take 
β as large as possible to reduce the 
number of steps we have to perform to prove the existence of a symmetric homoclinic orbit for 
all β ∈ [0.5, 1.9]. Hence, the addition of this threshold η is a trade off: we get a manifold that is 
a bit smaller than what we could have had optimally, which makes the proof for the Chebyshev 
part a bit harder, but we can take larger steps in β , making the total process faster overall. In 
practice, we use an η close to 0.5 (the value we use varies slightly with β).
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Fig. 1. The logarithm of the absolute value of the 50 first coefficients of the first component on the left, and the profile of 
the first component of the solution on the right. At the top β = 0.5, in the middle β = 1.2 and at the bottom β = 1.9.

Fig. 2. First three components of the solution (red) and the manifold (green) in the case β = 0.5. The segment in black 
corresponds to the forward orbit of the solution on the local manifold, where the dynamics is obtained via the conjugacy 
relation satisfied by the parameterization (e.g. see [7]). (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Once the approximation for the manifold is maximized and proven for a particular value of β0, 
one can use it as the starting point to find the approximation for β1 > β0 in order to compute an 
approximation for the whole interval [β0, β1]. We use the same rescaling γ for the entire interval 
[β0, β1]. On the other hand, it is possible to use different scalings for consecutive intervals.

The value of 
β = β1 − β0 that we use is not constant, and varies between 2.5 × 10−4 and 
3.9 × 10−6. The smaller values are needed when β0 ≥ 1.8. This is due to the fact that proof of 
the stable manifold becomes harder and harder when β approaches 2. Indeed, when β goes to 
2 the real part of the stable eigenvalues (see (3.1)) goes to zero, and the problem of finding the 
stable manifold becomes singular (this can also be seen in the bounds derived in Section 3). Note 
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Fig. 3. First three components of the solution (red) and the manifold (green) in the case β = 1.2. The segment in black 
corresponds to the forward orbit of the solution on the local manifold, where the dynamics is obtained via the conjugacy 
relation satisfied by the parameterization. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

Fig. 4. First three components of the solution (red) and the manifold (green) in the case β = 1.9. The segment in black 
corresponds to the forward orbit of the solution on the local manifold, where the dynamics is obtained via the conjugacy 
relation satisfied by the parameterization. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

that when the proof fails for a given interval, a smaller 
β needs to be used. Thus, the algorithm 
needs to recompute both the manifold and the orbit for β = β1. However, A† and A need not 
to be computed again for the new proofs since they both only depend on the approximation at 
β = β0.

For the manifold all proofs were done using N = 30 for the dimension of the truncated power 
series. For the orbit, the proof succeeds with m = 350 for [β0, β1] ⊂ [0.5, 1.8], and with m = 400
otherwise. In Fig. 1 one can see the profile of the solution for β = 0.5, β = 1.2 and β = 1.9. The 
left part of the figure shows the decay rate of the solution using the logarithm of the absolute 
value of the first 50 Chebyshev coefficients. Recall that the first component of the system is 
given by v1 = eu1 − 1, where u1 is the first component of the original system, obtained after 
transforming the fourth order equation to a first order system. One can see that the solution for 
β = 0.5 is really close to −1 for a much longer period of time than the other solutions depicted. 
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Fig. 5. The solution profiles of v(1)(t) for β = 0.5 (top), β = 1.2 (middle) and β = 1.9 (bottom). The parts in red 
correspond to the part of the solution which was obtained using Chebyshev series, while the parts in black correspond 
to the part of the solution lying in the local stable manifold computed using Taylor series. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. The solution profiles in the variable u of the suspension bridge equation (1.2) for β = 0.5 (top), β = 1.2 (middle) 
and β = 1.9 (bottom). Notice the different scales of the y-axis for the three solutions.

This behavior has an impact on the decay of the corresponding Chebyshev series. Moreover, 
another value affecting the decay rate of the solution is the time rescaling factor L of the orbit. 
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For β = 0.5 (respectively β = 1.2 and β = 1.9) we have L ≈ 3.1312 (respectively L ≈ 1.7671
and L ≈ 2.6170). The first three components of the solution and the local manifold can be seen 
in Fig. 2, Fig. 3 and Fig. 4 for β = 0.5, β = 1.2 and β = 1.9, respectively. The profiles of the 
first component v(1) of these three solutions can be compared in Fig. 5, where half the symmetric 
homoclinic orbits is depicted. Furthermore, the three corresponding homoclinic solutions of the 
suspension bridge equation (1.2) in the original u-variable are presented in Fig. 6.

Finally, to perform the proof successfully for the entire interval range β ∈ [0.5, 1.9] we had to 
execute the algorithm 7960 times. Each proof took between 7 and 10 seconds on a laptop with 
an Intel Core i7 4500U processor on MATLAB R2016a. The code which was used to perform 
the proofs is available at [23] and uses the interval arithmetic package INTLAB [19].
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