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Subarctic Front migration at the Reykjanes Ridge during the mid- to late
Holocene: evidence from planktic foraminifera

KERSTIN PERNER , MATTHIAS MOROS, EYSTEIN JANSEN, ANTOON KUIJPERS, SIMON R. TROELSTRA AND
MAARTIN A. PRINS

Perner, K., Moros, M., Jansen, E., Kuijpers, A., Troelstra, S. R. & Prins, M. A. 2018 (January): Subarctic Front
migration at the Reykjanes Ridge during the mid- to late Holocene: evidence from planktic foraminifera. Boreas,
Vol. 47, pp. 175–188. https://doi.org/10.1111/bor.12263. ISSN 0300-9483.

Expansion of fresh and sea-ice loaded surface waters from the Arctic Ocean into the sub-polar North Atlantic is
suggested tomodulate the northward heat transportwithin theNorthAtlanticCurrent (NAC).TheReykjanesRidge
south of Iceland is a suitable area to reconstruct changes in themid- to lateHolocene fresh and sea-ice loaded surface
water expansion,which ismarkedby theSubarcticFront (SAF).Here, shifts in the locationof theSAFresult from the
interaction of freshwater expansion and inflow of warmer and saline (NAC) waters to the Ridge. Using planktic
foraminiferal assemblage and concentration data from a marine sediment core on the eastern Reykjanes Ridge
elucidates SAF location changes and thus, changes in the water-mass composition (upper ~200 m) during the last
c. 5.8 ka BP. Our foraminifer data highlight a late Holocene shift (at c. 3.0 ka BP) in water-mass composition at the
Reykjanes Ridge, which reflects the occurrence of cooler and fresher surface waters when compared to the mid-
Holocene.Wedocument twophasesofSAFpresenceat the studysite: from(i)c. 5.5 to5.0kaBPand(ii) c. 2.7 to1.5ka
BP. Both phases are characterized by marked increases in the planktic foraminiferal concentration, which coincides
with freshwater expansions andwarm subsurface water conditionswithin the sub-polar North Atlantic. We link the
SAFchanges, from c. 2.7 to1.5kaBP, toa strengtheningof theEastGreenlandCurrentandawarming in theNAC,as
identified by various studies underlying these two currents. From c. 1.5 ka BP onwards, we record a prominent
subsurface cooling and continued occurrence of fresh and sea-ice loaded surfacewaters at the study site. This implies
that the SAFmigrated to the southeast of our core site during the last millennium.

Kerstin Perner (kerstin.perner@io-warnemuende.de) and Matthias Moros, Department of Marine Geology, Leibniz
Institute for Baltic SeaResearch, See Str. 15,18109Rostock, Germany; Kerstin Perner andEystein Jansen,Department
of Earth Science and Bjerknes Centre for Climate Research, University of Bergen, All�egaten 41, Bergen 5055, Norway;
Antoon Kuijpers, Geological Survey of Denmark and Greenland,Øster Voldgade 10, Copenhagen DK-1350, Denmark;
Simon R. Troelstra and Maartin A. Prins, Faculty of Earth and Life Sciences, Vrije Universiteit, de Boelelaan 1085,
Amsterdam 1081HV, The Netherlands; received 26th August 2016, accepted 11th April 2017.

The mid- to late Holocene (last c. 6000 years) North
Atlantic region experienceddistinct climatic andoceanic
changes, which have been attributed to various external
and internal forcing mechanisms, including solar vari-
ability, freshwater fluxes andvariations in the strengthof
ocean circulation (e.g. Bond et al. 2001; Andersen et al.
2004a; Kaufman et al. 2004; Mayewski et al. 2004;
Hald et al. 2007; Jansen et al. 2008; Wanner et al. 2008;
Andersson et al. 2010). Changes in the northward heat
flow by the North Atlantic Current (NAC) and its
extensions (Fig. 1) playan important role, as this current
draws warm and saline waters from the subtropics and
forms the surface limb of the Atlantic Meridional
Overturning Circulation (AMOC). The dynamics of
the Subpolar Gyre influence the NAC’s properties
(Fig. 1). During times of a strong and contracted (weak
and expanded) circulation, the gyre contributes more
(less) warm and salinewaters to theNAC (e.g. Hansen&
Østerhus 2000; H€akkinen & Rhines 2004; H�at�un et al.
2005; Born et al. 2013). Observational studies show that
freshwater advection around the gyre, originating in the
East Greenland Current (EGC) and the Labrador
Current (LC), influence gyre dynamics (Fig. 1A; e.g.
H�at�un et al. 2005; H€akkinen et al. 2011). A prominent
example of this influence are the mid- to late 20th

CenturyGreat Salinity Anomalies (GSAs; Dooley et al.
1984; Dickson et al. 1988; Belkin et al. 1998; Otter�a &
Drange 2004; Bersch et al. 2007; Sundby &Drinkwater
2007;Thornalleyet al.2009).Furthermore,Bersch et al.
(2007) documented that increased freshwater advection
from the Arctic Ocean accompanies enhanced contribu-
tion of subtropical waters into the sub-polar North
Atlantic.However, there is still limited knowledge on the
freshwater expansion beyond the instrumental data
period and its influence on millennial-scale regional
changes of oceanic conditions during the mid- to late
Holocene.

A suitable location to investigate the spatial extent of
freshwaters from theEGCroute,which circulate around
the gyre, is the Reykjanes Ridge area, south of Iceland.
Here, the locationof theSubarcticFront (SAF) separates
warmand saline surfacewaters (NAC-fed) of the Iceland
Basin from the cooler and fresher waters of the Irminger
Basin (EGC-fed; Fig. 1B, C). Observational studies
reveal that the location of the front is determined by the
EGC’s freshwater input and marks the maximum
southward extent of sea-ice drift in the central North
Atlantic Ocean. A large contrast between water-mass
properties of the Iceland (warm/saline) and Irminger Sea
(cold/fresh) leads to the development of a distinct SAFat
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the Reykjanes Ridge (Belkin & Levitus 1996; Bersch
et al. 2007). In order to identify mid- to late Holocene
changes in the location and characteristics of the SAF,
assemblage studies of planktic foraminifer provide a
suitable tool, as certain species show a close affinity to
specific water-masses and environmental conditions
(Phleger 1960; B�e 1977; Hemleben et al. 1989; Murray
1991). Changes in species abundances allow the identi-
fication of variations in the influence of water-masses
from Icelandvs. Irminger Sea that link to SAFmigration
at the Ridge, which are expressed as changes in relative
temperature and water column stratification. Further-
more, the calculation of species concentration (number
g�1 sediment) provides additional information on pro-
ductivity changes in surface (upper 200 m) and subsur-
facewaters that link to the influenceofoceanic fronts, i.e.
development of a marked SAF at the Reykjanes Ridge.

Here, we present a new planktic foraminifer record
from the eastern flank of the Reykjanes Ridge, near the
present-day location of the SAF that spans the mid- to

late Holocene (Fig. 1, cores GS06-144-04-MC and
DS97-02P). This record complements published data
fromcoreDS97-02P (Moros et al.2012) including stable
oxygen (d18O) records based on three planktic forami-
nifer species, Globigerina bulloides, Neogloboquadrina
incompta andGloborotalia inflata, which covers the time
from c. 5.8 to 0.7 ka BP. We extend this record towards
the present, by providing d18O measurements on these
three species from core GS06-144-04-MC. The com-
bined foraminifer and stable isotope records allow a
more in-depth view of oceanic conditions at the eastern
Reykjanes Ridge. We compare our data with selected
sites along the Arctic Ocean freshwater route, i.e. EGC,
to improve our knowledge on the regional impact of
freshwater expansion during the last c. 6000 years.

Oceanographic setting

The studyarea (latitude58°N, longitude30°W)is located
on the eastern flank of the Reykjanes Ridge, an oceano-
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Fig. 1. A.Schematicmapofoceancirculation in theNorthAtlantic regionand locationof the coresGS06-144-04 (shortmulti core)andDS97-02P
(long piston core) at the eastern flank of the Reykjanes Ridge. EGC = East Greenland Current; EIC = East Icelandic Current; WGC = West
Greenland Current; LC = Labrador Current; IC = Irminger Current; NAC = North Atlantic Current; NwAC = Norwegian Atlantic Current;
WSC = West SpitzbergenCurrent.Numbers 1–10 indicate locations of core sites discussedwithin the text: 1 = Moros et al. (2006a)/Cabedo-Sanz
et al. (2016); 2 = Perner et al. (2015); 3 = Andrews et al. 1997; 4 = Thornalley et al. (2009); 5 = Hall et al. (2004); 6 = Balestra et al. (2010)/
Solignac et al. (2009); 7 = Rasmussen&Thomsen (2010); 8 = Risebrobakken et al. (2003); 9 = Sarnthein et al. (2003); 10 = M€uller et al. (2012)/
Werneret al. (2013).B.Winter (January toMarch) sea surface temperatureobtained fromtheWorldOceanDataAtlas (WOA13) for the studyarea
(www.odv.de). The black dot marks our core location at the Reykjanes Ridge. [Colour figure can be viewed at www.boreas.dk]
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graphically dynamic area south of Iceland near the SAF
(Fig. 1). South of Iceland, the northeast–southwest
trending SAF is well developed at ~53°N and separates
the colder Irminger Sea from thewarmerAtlanticwaters
in the Iceland Sea. The upper 800 m above the eastern
side of the Ridge consists of SubpolarModeWater with
temperature exceeding 6 to 7 °C and salinity of ~35.1
PSU (Gudfinnson et al. 2008). Between 53°Nand 60°N,
the IC, a westward deflection of the NAC, crosses the
ReykjanesRidgeandseparates southwestof Iceland into
two branches. The major branch flows westwards and is
incorporated into theEGC, forming theWestGreenland
Current (WGC), while the eastern branch forms the
North Icelandic IrmingerCurrent (NIIC) that continues
northeastwards around Iceland (Fig. 1; Hurdle 1986;
Krauss 1986). The EGC carries cold and fresh, ice-
loaded waters from the Arctic Ocean via the Fram and
DenmarkStrait into the sub-polarNorthAtlanticOcean
(e.g. Malmberg 1985). These waters influence surface
water conditions in the Irminger Basin and deep
convection in the Labrador Sea (e.g. Hansen&Østerhus
2000; H€akkinen & Rhines 2004; H�at�un et al. 2005).
Average summer sea-surface temperature (SST) in the
study area ranges from 9 to 12 °C, butmay vary between
5 and 15 °C depending on the EGC transport regime
(e.g. Levitus & Boyer 1994; Belkin & Levitus 1996;
Yashayaev et al. 2007).

Ecological preferencesofplanktic foraminifers in
the sub-polar North Atlantic

The opportunistic near-surface dwelling (upper 50 m)
Globigerina bulloides (d’Orbigny, 1826) lives in the
surface mixed layer and is most abundant during the
spring to early summer blooms (Chapman et al. 2000;
Ganssen & Kroon 2000; Schiebel & Hemleben 2000).

High abundances of the common sub-polar and near-
surface (upper 100 m w.d.) dwelling species Turborotal-
ita quinqueloba (Natland, 1938) and Globogerinita uvula
(Ehrenberg, 1861) are often related to the presence of
oceanic fronts and the resulting increased surface-water
productivity (e.g.B�e&Tolderlund1971;Hemleben et al.
1989;Kroonet al.1991; Johannessenet al.1994;Husum
&Hald 2012).

Globogerinita uvula is an opportunistic species, asso-
ciated with increased food supply connected to the
influence of oceanic fronts (Boltovskoy et al. 1996;
Bergami et al.2009). Increasedabundanceof this species
has been previously related to cooling of surface waters
(Rasmussen & Thomsen 2010).

At greater water depth, i.e. just above the thermocline
(~60–150 m), the mixed-layer and cosmopolitan species
Globogerinita glutinata (Egger, 1893) and Neoglobo-
quadrina incompta (Cifelli, 1961; (syn. N. pachyderma
(Ehrenberg1861), dextral)), are found (e.g.Tolderlund&
B�e 1971; Fairbanks et al. 1980; Schiebel & Hemleben
2000; Kuroyanagi et al. 2006).Neogloboquadrina incomp-

ta favours warm and stratified surface waters. In the
northeasternNorthAtlantic, this speciescalcifiesat~50 m
and thus records near-surface water changes (e.g. Nyland
et al.2006;Andersson et al.2010).Within thePolarFront
area offshore north Iceland, N. incompta calcifies at
slightly shallower water depths (30–40 m) throughout
the year (Ostermann et al. 1998).

According to previous studies by B�e & Tolderlund
(1971) and Johannessen et al. (1994), the sub-polar to
polar species Neogloboquadrina pachyderma (sinistral,
Darling et al. 2006 (syn.N. pachyderma; Ehrenberg, 1861))
occurs in relatively high abundances when summer
temperatures remain below 9 °C. This species calcifies
within the EGC in the upper 100 m of the water column
(Kohfeld et al. 1996; Pados& Spielhagen 2014), while in
areas with a deep permanent thermocline due to warm
Atlantic Water influence this species thrives deeper
within the mixed layer (50–200 m; Kohfeld et al. 1996).

South of Iceland, Globorotalia inflata (d’Orbigny,
1839) lives even deeper in the water column, at the base
of the seasonal thermocline (~100–200 m; e.g. Ganssen
& Kroon 2000; Cl�eroux et al. 2007). The occurrence of
warmer waters from theNAC controls the abundance of
this species (e.g. Tolderlund & B�e 1971; Ganssen &
Kroon 2000; Pflaumann et al. 2003). According to
plankton net studies from the eastern sub-polar North
Atlanticwithin theNorwegianAtlanticCurrent (NwAC),
the stable isotope composition of G. inflata records the
physical properties (temperature/salinity) of the ambient
water-masses, which are controlled by deep winter-time
mixing (Ottens 1992b; Chapman 2010). Accordingly,
depleted d18O values of this species reflect the occurrence
of warmer and saltier waters at our study site.

The subtropical species G. scitula Brady, 1882, dwells
near the surface andmigrates during its life cycle into the
mixed layer. The occurrence of this species within the
sub-polarNorth Atlantic is clearly linked to the entrain-
ment of warm and saline waters from the NAC (e.g.
Hemleben et al. 1989).

Material and methods

A36-cm-longmulti core (GS06-144-04-MC;58°54.73N,
30°75.25W) was collected during the GS06-144 cruise
with the RV ‘G.O. Sars’ in 2006, in 1683 m water depth
(Dokken & Ninnemann 2006), near the previously
sampled core site DS97-02P (Troelstra et al. 1997) on
the eastern flank of the Reykjanes Ridge. Core DS97-
02P, a 10.4-m-long piston core, was obtained in 1997
from 1685 m water depth during the Dutch Denmark
Strait expeditiononboard theR/V ‘ProfessorLogachev’
(Troelstra et al. 1997).

For core DS97-02P, we use the age model previously
published (Moros et al. 2012). The uppermost 1.50 m,
whichwill be the focusofour study, covers themid- to late
Holocene (Prins et al. 2001, 2002; Rasmussen et al.
2002; Witak et al. 2005; Moros et al. 2012).
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Core GS06-144-04-MC extends the DS97-02P record
towards the present. Age control of this core is based on
six accelerator mass spectrometry (AMS) radiocarbon
(14C) dates obtained from planktic foraminifera (G. bul-
loides; Table 1) and radionuclide (137Cs) measurements.
In accordance with the age model from DS97-02P, all
AMS 14C dates from GS06-144-04-MC have been
calibrated using the Marine09 calibration curve in
Calib6.01 (Stuiver&Reimer 1993). A standard reservoir
age of 400 years (DR = 0; Table 1) has been applied to
the radiocarbon dates.

Measurements of the radiogenic isotope 137Cs,
performed on GS06-144-04-MC, allow identification
of modern sediment deposition at the core site.
Sediments used for 137Cs analyses were freeze-dried
and ball-milled. Measurements were carried out on a
Germanium Detector (Canberra, BE3830-7500SL-
RDC-6ULB). Atmospheric nuclear weapons tests,
carried out in the late AD 1950s and early AD 1960s,
caused a major release of 137Cs into the atmosphere. In
the Northern Hemisphere, a first wide 137Cs distribu-
tion occurred in AD 1954 and a peak in atmospheric
137Cs fall-out at AD 1963 (Pennington et al. 1973;
Appleby et al. 1991).

A low-resolution record (10-cm sample interval) of
planktic foraminiferal assemblage data was previously
published by Rasmussen et al. (2002) from core DS97-
02P, using the >106 lm fraction. Here, we present new
planktic foraminiferal assemblagedataperformedonthe
dry residue of the >100 lm fraction, counted at 2 to
2.5 cm intervals (2-cm-thick slices). About 2 g of dry
sediment was carefully sieved at 100 lm and subse-
quently dried at 45 °C. Planktic foraminifera were
identified down to species level using a stereomicroscope
following the taxonomyof Parker (1962) and Saito et al.
(1981). All specimens were well preserved and no clear
evidence of post-mortem dissolution changes were
recognised. A minimum of 400 specimens was counted
per sample.

Stable oxygen isotope measurements (d18O) were
performed for core GS06-144-04-MC at 2-cm intervals
on three planktic foraminiferal species (Globigerina
bulloides, Neogloboquadrina incompta and Globorotalia

inflata). These new data extend the DS97-02P stable
isotope records from Moros et al. (2012) towards the
present. All isotope analyses were carried out at the
GMS laboratory of the Bjerknes Centre for Climate
Research at the University of Bergen, using a Finni-
gan MAT 251 mass spectrometer equipped with an
automatic ‘Kiel device’ preparation line. Prior to
analyses, about six to 10 specimens of the fraction
>150 lm were crushed and cleaned in an ultrasonic
bath. The reproducibility of isotope measurements is
�0.07& based on replicate measurements of carbon-
ate standards.

Results and interpretation

Age model of GS06-144-04-MC

The combined information from down-core radionu-
clide (137Cs) measurements and AMS 14C dating were
used to develop an age model for core GS06-144-04
(Table 1, Fig. 2). Two AMS 14C dates, obtained within
the first 5 cm of the core, are considered as Bomb 14C
dates as the 14C concentration exceeds 100 pMC
(Table 1). This agrees well with the measured onset of
137Cs deposition in the sediment at ~5 cm core depth,
which we use as a time marker for the onset of
atmospheric weapon testing at AD 1954 (Fig. 2, blue
line). For age model development, we applied a linear
fit between (i) AD 2006 – the year of core retrieval,
(ii) the 137Cs peak onset, and (iii) the calibrated AMS
14C dates (Fig. 2, grey dashed line). Our age model
shows that the sediments from GS06-144-04-MC cover
the last c. 550 years. Accordingly, no overlap occurs

Table 1. AMS radiocarbon ages from the short multi core GS06-144-
04, eastern flank of the Reykjanes Ridge, obtained from the planktic
foraminiferG. bulloides. For the chronologyof the longDS97-02Pcore,
refer to Moros et al. (2012). BP = AD 1950.

Depth
(cm)

Lab. code 14C age (a BP) Calibrated age
(a BP, 1r; DR = 0)

1 Poz-20540 103.74�0.52 pMC n.a.
5.5 Poz-25790 102.53�0.41 pMC n.a.
16 Poz-20541 675�30 277–360
18 ETH-5830 690�50 285–393
30.5 Poz-57334 900�40 481–538
30.5 Poz-25793 880�30 477–520
34.5 Poz-57335 950�30 508–565

Fig. 2. Age vs. depth profile of the short multi coreGS06-144-04 from
the eastern Reykjanes Ridge, based on AMS 14C dates (red) and 137Cs
measurements (light blue curve). The dashed grey line displays the
developed age-depth model using a linear fit. [Colour figure can be
viewed at www.boreas.dk]
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Fig. 3. Planktic foraminiferal assemblage (A) and occurrence per g sediment (B). C. d18O of surface-dweller Globigerina bulloides, mixed-layer
speciesNeogloboquadrina incompta and thermocline dwelling Globorotalia inflata data of cores GS06-144-04 (this study) and DS97-02P (Moros
et al. 2012) for the last c. 5.8 ka BP.
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between GS06-144-04-MC and DS97-02P. Despite the
gap of c. 100 years between the cores, plotting our
proxy data on a combined age scale allows discussion
of longer-term oceanic trends during the last millen-
nium.

Changes in planktic foraminifer during the last c. 5.8 ka

In line with previous results from Rasmussen et al.
(2002),we identified eight planktic foraminiferal species.
The fauna is dominated by T. quinqueloba, G. bulloides,
N. incompta,G. glutinata andG. uvula, which constitute
~80% of the total assemblage (Fig. 3). As accessory
species, G. scitula, G. inflata and N. pachyderma are
present. This diverse assemblage reflects a predominant
influence of warmand salinewaters originating from the
NAC at our core site during the last c. 5.8 ka (Fig. 3A).
In addition, we calculate the concentration of planktic
foraminifer (number of specimens g�1 sediment), which
provides information on changes in productivity at the
site.Wegroupour species into surface (EGC-influenced)
and subsurface (NAC-influenced) productivity groups.
Thereby, we consider the species preferences, i.e. habitat
depths (see section: Ecological preferences of planktic
foraminifers; Fig. 3B). The surface productivity group
consists of G. bulloides, T. quinqueloba and G. uvula,
while the subsurface group comprises G. scitula, N. in-
compta,N. pachyderma, G. glutinata and G. inflata.

Themid-Holocene (c. 5.8 to 3 ka BP). – This interval is
characterized by overall high abundances of the
oceanic front indicator T. quinqueloba (max. 40%),
near-surface dweller G. bulloides (up to 25%), mixed-
layer species N. incompta (max. 30%) and G. glutinata
(average 20%). The faunal composition reflects a high
productivity environment, predominantly influenced
by warm/saline Atlantic waters at the surface and
subsurface and a deep mixed layer and thermocline.
The occurrence of G. scitula, although in low abun-
dances (max. 3%), indicates the entrainment of sub-
tropical waters into our study area (Fig. 3A). We find
a ~20% abundance decrease of T. quinqueloba centred
at c. 5.5 and 4.6 ka BP that probably relates to a
reduced influence of the SAF owing to a northwest-
ward or southeastward shift of the front. During both
periods, we recognise a minor increase in N. pachy-
derma and a decrease in G. scitula (Fig. 3A). The
planktic foraminifera flux reveals increased surface
and subsurface water productivity in the time from
c. 5.5 to 5.0 ka BP (Fig. 3B). This is indicative of a
strengthening of the SAF during this period. From
c. 4.5 to 3.0 ka BP, the abundance of T. quinqueloba
decreases by 20%, paralleling the high abundance of
N. incompta (up to 30%). Maximum abundance (up to
40%) of G. glutinata occurs in the time from c. 3.5 to
3.0 ka BP. An increase in subsurface productivity is
found from c. 3.7 to 3.0 ka BP (Fig. 3B), which might

be linked to the increase in subsurface water temper-
ature during this period (Moros et al. 2012).

The late Holocene (last c. 3.0 ka). – During the interval
from c. 3.0 to 1.0 ka BP, assemblage changes seem to be
largely determined by the prominent increase inG. uvula
abundance, which reaches~30%at c. 1.0 kaBP (Fig. 3A).
This accompaniesa~15%decrease inT. quinquelobaand
N. incompta, a relatively lowabundance (average10%)of
G. bulloides and a drop inG. scitula abundance to below
1% (Fig. 3A). The observed assemblage shift reflects a
pronounced change in surface water composition, indi-
cating a reduction of SST and occurrence of less warm/
saline waters at the core site. We relate this assemblage
feature to an enhanced influence of the SAFand thus of
Irminger Seawaters.

However,wenote in the time from c. 2.7 to 1.5kaBP, a
distinct rise in the planktic foraminifer concentration
and thus an overall marked increase in the surface and
subsurfacewater productivity (Fig. 3B). This is followed
by an overall decrease in planktic foraminiferal concen-
tration from c. 1.5 to 1 ka BP and only the values of
G. uvula remain relatively high (Fig. 3B). We find that
despite the marked decrease from c. 1.5 ka BP towards
the present, the overall occurrence values (number of
specimens g�1 sediment) of T. quinqueloba are higher
than they are in the mid-Holocene period (c. 5.8 to 3 ka
BP; Fig. 3B). The observed changes in the species
foraminiferal concentration support the above assump-
tion of cooler surface waters due to the SAF influence
that is now located closer to the core site. The new d18O
data forG. bulloides and G. inflata (Fig. 3C) illustrate a
trend towards higher values during the last millennium,
compared to the mid- to late Holocene average. Mean-
while, N. incompta data show the highest d18O values
from c. 1.5 to 1.0 ka BP, indicating pronounced subsur-
face/mixed-layer cooling. However, a trend towards
more depleted values, centred at c. 0.5 ka BP, suggests a
briefwarmingof themixed layer,which is in conflictwith
the continued higher values seen in G. bulloides and
G. inflata (Fig. 3C).

Discussion

Regional mid- to late Holocene changes in surface and
subsurface water-mass properties at the Reykjanes Ridge

Our new planktic foraminifer record reveals distinct
shifts in themid- to lateHolocene surface and subsurface
water-mass composition at theReykjanesRidge (Fig. 5).
As previously outlined by Rasmussen et al. (2002) and
Moros et al. (2012), here surface water changes result
from variations in the location of the SAF. These studies
suggest that mid- to late Holocene frontal migration
occurs in response to variations in the inflow of warm/
saline (IC/NAC) and fresh/cold (EGC advection that
circulates around the Subpolar Gyre) waters at the
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Fig. 4. Reconstructed mid- to late Holocene oceanic changes at the eastern Reykjanes Ridge. A. Surface water productivity group g�1; B.
Abundance (%; blue line) and concentration (g�1; grey line) ofT. quinqueloba. C.Abundance (%; light blue line) and concentration (g�1; grey line)
ofG. uvula.D.Abundance(%; redline)andconcentration(g�1; grey line)ofG. scitula.E.Subsurfacewaterproductivitygroupg�1.F.Stableoxygen
(d18O) values of G. inflata (blue line). [Colour figure can be viewed at www.boreas.dk]
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Ridge, which is in accordance with recent observations
(e.g. Yoder et al. 1994; Bersch et al. 2007).

From c. 5.8 to 3.7 ka BP, overall relatively warm
surface and subsurface water conditions prevail, with a
well-developed mixed layer and deep thermocline
(Figs 3, 4B, D, F). However, we note that two marked
minima in the abundance of the oceanic front indicator
T. quinqueloba, centred at c. 5.5 and4.6 kaBP (Fig. 4B),
parallel minima in the NAC indicator G. scitula
(Fig. 4D). Both periods coincide with minor decreases
in SST (Moros et al. 2004) and the occurrence of North
Atlantic Drift (NAD) coccolith species (Solignac et al.
2009; Balestra et al. 2010). Furthermore, the calculated
concentrations of surface and subsurface planktic
foraminifera reveal increased productivity from c. 5.5
to 5.0 ka BP (Fig. 4A, D). This implies an enhanced
influence of the SAF at our core site over a prolonged
period. We speculate, based on the combined planktic
foraminifer, coccolith and alkenone-derived SST
evidence, that at c. 5.5 ka BP the SAF migrated south-
eastwards over the core site. Next, the front migrated
northwest again, but probably remained well developed
at the Reykjanes Ridge in the time at 5.0 ka BP, as a
strong contrast between water-mass properties of the
Iceland and Irminger Sea prevailed. Our reconstruction
is in accordance with numerus studies from the NAC’s
main flow path that report a predominant warm/saline
water influenceon regional surface and subsurfacewater
conditions during this time (e.g. Rasmussen et al. 2002;
Risebrobakken et al. 2003, 2011; Solignac et al. 2004;
Rasmussen&Thomsen 2010; Staines-Ur�ıas et al. 2013).
The same accounts for the NAC’s offshoots, such as the
WSC (M€uller et al. 2012;Werner et al. 2013;Rasmussen
et al. 2014), the IC (e.g. Jennings et al. 2011; Andresen
et al. 2013) and theWGC (e.g.Moros et al. 2006b, 2016;
Erbs-Hansen et al. 2013; Perner et al. 2013; Jennings
et al. 2014; Sha et al. 2014). Even records from the
Greenland Sea (Telesi�nski et al. 2014) and from the
central East Greenland shelf (Fig. 5H; Perner et al.
2015) report the presence of warm subsurface waters.
Simultaneously, studies from the North Iceland shelf
(EGC-influenced; e.g. Moros et al. 2006a), north of
Newfoundland (LC-influenced; e.g. Solignac et al.
2011) and from the southeast sub-polar North Atlantic
(e.g. Bond et al. 2001) report the occurrence of cool and
fresh, ice-bearing surface waters. Henceforth, we infer
that the mid-Holocene strengthening (well developed)
andmigration of the SAFat the Reykjanes Ridge (c. 5.5

to 5.0 ka BP) resulted from a steeper gradient between
water-masses in the Iceland and Irminger Sea. However,
this gradient weakened afterwards, as seen in decreasing
surface and subsurface productivity (Fig. 4B, E). We
postulate that in the time from c. 4.5 to 3.7 ka BP, the
SAFeithermigrated further to the northwest of our core
site and/or weakened, i.e. was less well developed at the
Reykjanes Ridge.

From c. 3.7 to 3.0 kaBP, the abundance of the oceanic
frontindicatorT. quinquelobadecreasesmarkedly(Fig. 4B).
This accompanies a peak in abundance of the NAC
indicator G. scitula (Fig. 4D) and gradual subsurface
warming (Fig. 4F) compared to the preceding interval.
Simultaneously, a 1 °C SSTrise (Moros et al. 2004) and
an increased abundance of NAD coccolith species
(Solignac et al. 2009; Balestra et al. 2010) indicate
enhanced surfacewater productivity. These assumptions
support our planktic foraminiferal concentration data
(Fig. 4A, E). However, our data also indicate an overall
weaker SAF influence on our core site compared to
the c. 5.5 to 5.0 ka BP period. Presumably, the SAF
prevailed northwest and/or simply was less sharply
developed at the Ridge. Concomitantly, recent studies
infer increased ice-loaded surface waters on the East
Greenland and North Iceland shelf, i.e. strong EGC,
from c. 4.5 ka BP onwards (Fig. 5A–C; Andrews et al.
1997, 2010;Moros et al. 2006a; Perner et al. 2015, 2016;
Cabedo-Sanz et al. 2016). Simultaneously, subsurface
temperature records fromthe regiondocument agradual
and/or stepwise warming from c. 3.7 to 3.0 ka BP
(Fig. 5F, G; Hall et al. 2004; Thornalley et al. 2009;
Farmer et al. 2011; Moros et al. 2012). Related to this
subsurface warming, several studies from the SE andW
Greenland shelf report relatively warm surface and
subsurface water conditions alongside increased phyto-
plankton productivity (Moros et al. 2006b, 2016; Jen-
nings et al. 2011; Andresen et al. 2013; Perner et al.
2013, 2016; Sha et al. 2014).

From c. 3.0 ka BP onwards, the sudden increase of
G. uvula reflects a distinct shift in the surface water
composition at the eastern Reykjanes Ridge (Fig. 4D).
We postulate that the sudden appearance of this
opportunistic species (B�e 1977) indicates an overall
enhanced influence of colder and fresher surface water.
This agrees well with the reported increase in drift and
sea ice and freshwater advection through Fram Strait
and a southward shift of the Polar Front in the sub-
polar North Atlantic (e.g. Moros et al. 2006a; Jennings

Fig. 5. Comparison of palaeoceanographic conditions at the Reykjanes Ridge with drift/sea-ice records from the East Greenland and North
Iceland shelfs. A. IRD counts from outer Nansen Trough (BS1191-K15) fromAndrews et al. (1997). North Iceland shelf proxy data (siteMD99-
2269): B. Concentration of sea-ice marker IP25 (lg sed.�1) from Cabedo-Sanz et al. (2016) and C. Quartz content (%) as drift ice indicator from
Moros et al. (2006a). Proxy data from this study: D. Abundance (%) ofG. uvula. E. Total planktic foraminifer productivity (g�1). F. d18O data of
thermocline dweller G. inflata (blue line three-point average; DS97-02P fromMoros et al. 2012). G. d18O data of thermocline dweller G. inflata
from the South IcelandRise, core RAPiD-12-k (blue line three-point average; Thornalley et al. 2009). H. Relative abundance data (%) of benthic
foraminifer AtlanticWater indicator species, documenting subsurface water conditions on the central East Greenland shelf at 73°N (Perner et al.
2015). [Colour figure can be viewed at www.boreas.dk]
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et al. 2011; M€uller et al. 2012; Werner et al. 2013;
Perner et al. 2015; Cabedo-Sanz et al. 2016). Concomi-
tantly, subsurface warming occurs at the Reykjanes
Ridge (Fig. 5F) and in the Iceland Sea (Fig. 5G; Hall
et al. 2004; Thornalley et al. 2009). Moros et al. (2012)
linked this warming to the time of the Roman Warm
Period (RWP). We argue that the pronounced rise in
surface and subsurface water productivity (Fig. 4A, E)
results from a strengthening of the SAF and frontal
migration over our core site. Periods of increased
productivity occur from c. 2.7 to 2.2 ka BP and at c. 1.8
ka BP. This is in line with Rasmussen et al. (2002), who
identified several diatom mats at our core site that they
linked to strong changes in surface water productivity
caused by repeated migrations of the SAF. Alkenone,
coccolith and diatom (-mats) records from nearby core
LO09-14 record a variable influence of NAC- and
EGC-fed water-masses on surface water conditions
(Andersen et al. 2004b; Witak et al. 2005; Solignac
et al. 2009; Balestra et al. 2010).

From c. 1.5 ka BP towards the present, the promi-
nent decrease in surface and subsurface water produc-
tivity suggests that the SAF weakened and/or shifted
further southeastwards at the Reykjanes Ridge. We
postulate that surface water advection of the EGC,
which circulates around the Subpolar Gyre, predomi-
nantly influenced our core site, particularly in the time
from c. 1.5 to 1.0 ka BP. Here, G. uvula dominates the
fauna (abundance and flux wise; Fig. 5D), although
surface water productivity and temperatures markedly
decreasedwithin the area (Fig. 4A; e.g. Hall et al. 2004;
Moros et al. 2004, 2012). We argue that due to its
opportunistic character G. uvula was able to thrive/
compete in the now colder/fresher, EGC-influenced,
surface waters. Our findings of a more southeastward
located SAF agree well with reports of SST cooling and
a markedly reduced abundance of NAD cocccoliths
from site LO-09-14 (Andersen et al. 2004b; Solignac
et al. 2009; Balestra et al. 2010). This is associated with
subsurface (thermocline) cooling as illustrated by
markedly enriched d18O values of G. inflata (Fig. 5F,
G; Hall et al. 2004; Thornalley et al. 2009; Moros et al.
2012). Findings of a reduced contribution of warm and
saline waters from the NAC to our core site may either
result from aweaker IC, which shifted southwards, and/
or a slowdown of ocean currents (e.g. Rasmussen et al.
2002; Hall et al. 2004).

During the last millennium, surface and subsurface
waterproductivity remainsonahigher level (Fig. 4A,E),
which implicates a continuously strong SAF influence
when compared to the mid-Holocene conditions (c. 5.8
to3.0kaBP).We infer fromtherelativelyhighabundance
ofG. uvula andT. quinqueloba (Fig. 4B,C) that the SAF
probably lingered close to, but probably more to the
southeastofourcore siteon theRidge.Thisaccompanies
a further gradual cooling of thermocline waters
(Fig. 4F), which agrees well with previous reports of a

well-mixed upper water column in the wider area (e.g.
Hall et al. 2004).

Regional oceanic implications

Our planktic foraminifer data document a prominent
mid- to late Holocene shift of oceanic conditions at the
Reykjanes Ridge (Fig. 5D). The inferred mid- and late
Holocene frontal migration and/or strengthening pha-
ses, from c. 5.5 to 5.0 and c. 2.7 to 1.5 ka BP, differ
markedly from each other. Thereby, the relative contri-
bution of cold and fresh waters into the sub-polarNorth
Atlantic plays a crucial role.

The first period of a marked SAF developed at the
Reykjanes Ridge (c. 5.5 to 5.0 ka BP) encompasses
distinct changes in the southward export ofArcticOcean
waters via the EGC and, presumably, within the LC,
which circulate around theSubpolarGyre. Palaeoceano-
graphic studies from the Arctic Ocean report increased
sea-ice formation after c. 6.0 ka BP (Bauch et al. 2001;
Stein et al. 2017). This agreeswell with findings from the
Fram Strait and Barents Sea (sensitive to Polar Front
migration) and the East Greenland and North Iceland
shelf that document cooler and more ice-loaded surface
waters around the same time (e.g. Andrews et al. 1997,
2010; Moros et al. 2006a; M€uller et al. 2012; Werner
et al. 2013). Concomitantly, studies from the western
sub-polar North Atlantic report enhanced contribution
of cooler and fresher waters to the LC (e.g. Scott &
Collins 1996; Solignac et al.2011).This favoured surface
cooling and sea-ice growth in the Labrador Sea (e.g.
Reverdin et al. 1997; Deser et al. 2002). Therefore, the
development of a marked SAFand/or frontal migration
in themid-Holoceneseems tobearesponse toan increase
in the freshwater expansion within the sub-polar North
Atlantic.

However,Moros et al. (2012) noted that until c. 3.7 ka
BP the IC subsurface (thermocline) temperature on the
eastern Reykjanes Ridge ran parallel to those recorded
within the main flow path of the NAC (e.g. Rise-
brobakken et al. 2003). The authors linked the following
divergence between these two Atlantic Water branches,
i.e. NAC and IC, to a widespread freshening of the
surfacewater layer in the sub-polarNorthAtlantic. This
supports reports of decreased abundance of the near-
surface dweller G. bulloides (Fig. 3; Rasmussen &
Thomsen 2010; Staines-Ur�ıas et al. 2013) as well as
reduced SSTs along the NAC/NwAC (e.g. Calvo et al.
2002;Marchal et al.2002;Andersen et al.2004a, b).The
observed warming of subsurface (thermocline) waters
within the IC between c. 3.7 and 1.5 ka BP (Hall et al.
2004; Thornalley et al. 2010; Moros et al. 2012) and
along the NAC’s flow path, particularly around the
time of the RWP (e.g. Andrews & Giraudeau 2003;
Risebrobakken et al. 2003; Sarnthein et al. 2003;
Andersen et al. 2004a; Giraudeau et al. 2010; Perner
et al. 2011, 2016; Sejrup et al. 2011; Werner et al. 2013)
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may, therefore, result from various causes. Subsurface
warming may simply be a response to the increased
stratification of the upper ocean layer, and hence, a less
ventilatedsubsurface thatcausedheataccumulation (e.g.
Bauch et al. 2001; Hall et al. 2004; Hald et al. 2007). It
may also be a response to enhanced contribution of
subtropical waters to the NAC (Morley et al. 2014;
Repschl€ager et al. 2015) triggered by the ‘c. 2.7 ka BP
cooling event’ that probably caused an AMOC slow-
down(e.g.Oppoet al.2003)andthuscreated thereaftera
heat overshoot.

The prominent post-RWP weakening of the
SAF (Fig. 5E) and cooling of subsurface (thermocline;
Fig. 5F, G) waters parallel reports of markedly less
warmth (heat) along the NAC’s main route (e.g. Rise-
brobakken et al. 2003; Andersen et al. 2004a; Ras-
mussen & Thomsen 2010; Sejrup et al. 2011; Dylmer
et al. 2013; Staines-Ur�ıas et al. 2013; Dourarin et al.
2016). Upstream, studies from the eastern Fram Strait
(M€uller et al. 2012;Werner et al. 2013; Rasmussen et al.
2014) and from the central East Greenland shelf
(Fig. 5H; Perner et al. 2015) document a marked reduc-
tion in NAC-sourced waters. Similar evidence is found
along the SE andWGreenland shelf areas (e.g. Kuijpers
et al. 2003; Andersen et al. 2004a; Moros et al. 2006b,
2016;Lloydet al.2007; Jennings et al.2011;Perneret al.
2011, 2016; Andresen et al. 2013;Gibb et al. 2015). This
implies a widespread freshening and cooling of subsur-
face waters within the sub-polar North Atlantic region.
However, it remains to be seen if this cooling and
freshening is simply a result of more relaxed (reduced)
ocean current flow and/or reduced contribution of
warmth from the subtropics to the NAC.

Conclusions

The combined planktic foraminifer and d18O data from
the eastern Reykjanes Ridge provide detailed insights
into the expansion of mid- to late Holocene fresh and
sea-ice loaded surface waters within the sub-polar
North Atlantic. Advection of these waters around the
Subpolar Gyre, originating in the EGC, affects the
location of the SAF at the Reykjanes Ridge. A
prominent mid- to late Holocene shift in oceanic
conditions occurs at c. 3.0 ka BP, reflecting an
enhanced freshwater expansion and SAF influence at
our core site. We identify two phases of SAF migration
and strengthening, from c. 5.5 to 5.0 and 2.7 to 1.5 ka
BP. These phases characterize a prominent increase in
productivity of the surface and subsurface waters
(upper ocean layer – ~200 m water depth). From
c. 5.5 to 5.0 ka BP, initial frontal strengthening occurs
in response to enhanced contribution of fresh and ice-
loaded surface waters from the Arctic Ocean along the
EGC route. From c. 3.7 ka BP, the freshwater and SAF
influence increases. We infer the late Holocene maxi-
mum SE location of the front from c. 2.7 to 1.5 ka BP.

A well-developed SAF most likely resulted from the
interaction of opposing water-masses at the Reykjanes
Ridge, i.e. the simultaneous influence of the warm and
saline NAC and cold and fresh EGC. Several palaeo-
proxy studies noted enhanced freshwater and sea-ice
advection along the EGC route, suggesting expansion
of a surface freshwater layer within the sub-polar
North Atlantic. Therefore, the subsurface warming at
the Ridge reflects either enhanced heat accumulation,
i.e. reduced ventilation, in response to a thick freshwater
layer and/or enhanced advection of subtropical waters
into the NAC. However, our data show, in agreement
with previous studies, that from c. 1.5 ka BP onwards,
surface waters remain relatively cool and fresh at the
Ridge. This parallels a prominent subsurface (thermo-
cline) cooling at the Reykjanes Ridge and elsewhere in
the sub-polar North Atlantic along the NAC and its
offshoots. Accordingly, we infer a continuous frontal
influence that implicates a more southeast located SAF
relative to our core site. Assessing the spatial freshwater
extent and location of the SAF during the late Holocene
more accurately requires further similar studies on sites
further south of our core location.
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