
VU Research Portal

Specification of Dynamics for Knowledge-Based Systems

van Eck, Pascal; Engelfriet, Joeri; Fensel, Dieter; van Harmelen, F.A.H.; Venema, Yde;
Willems, Mark

published in
Transactions and Change in Logic Databases
1998

DOI (link to publisher)
10.1007%2FBFb0055495

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
van Eck, P., Engelfriet, J., Fensel, D., van Harmelen, F. A. H., Venema, Y., & Willems, M. (1998). Specification
of Dynamics for Knowledge-Based Systems. In B. Freitag (Ed.), Transactions and Change in Logic Databases:
Invited Surveys and Selected Papers (pp. 37-68). (Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 1472). Springer.
https://doi.org/10.1007%2FBFb0055495

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 13. Sep. 2021

https://doi.org/10.1007%2FBFb0055495
https://research.vu.nl/en/publications/6ab2f726-0ef1-493f-81a6-44c5346238e4
https://doi.org/10.1007%2FBFb0055495

Specification of Dynamics for Knowledge-Based
Systems

Pascal van Eck 1, Joeri Engelfriet 1, Dieter Fensel 2, Frank van Harmelen 1,
Yde Venema 3, and Mark Willems 4

1 Vrije Universiteit Amsterdam, Faculty of Mathematics and Computer Science,
De Boetelaan 1081a, 1081 HV Amsterdam, The Netherlands. Tel: +31 20 4447730,

fax: +31 20 4447653. {patveck,joeri ,frankh}@cs.vu.nl
2 Institut AIFB, University of Karlsruhe, D-76128 Karlsruhe, Germany.

dfe@aifb, uni-karlsruhe, de

3 Institute for Logic, Language and Computation, University of Amsterdam,
Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands.

yde@wins, uva. nl
4 Bolesian B.V., Steenovenweg 19, 5708 HN Helmond, The Netherlands.

mark@bolesian, nl

Abstrac t . During the last years, a number of formal specification lan-
guages for knowledge-based systems have been developed. Character-
istic for knowledge-based systems are a complex knowledge base and
an inference engine which uses this knowledge to solve a given prob-
lem. Specification languages for knowledge-based systems have to cover
both aspects: they have to provide means to specify a complex and large
amount of knowledge and they have to provide means to specify the
dynamic reasoning behaviour of a knowledge-based system. This paper
will focus on the second aspect, which is an issue considered to be un-
solved. For this purpose, we have surveyed existing approaches in related
areas of research. We have taken approaches for the specification of infor-
mation systems (i.e., Language for Conceptual Modelling and TROLL),
approaches for the specification of database updates and the dynamics
of logic programs (Transaction Logic and Dynamic Database Logic), and
the approach of Abstract State Machines.

1 Introduct ion

Over the last years a number of formal specification languages have been de-
veloped for describing knowledge-based systems (KBSs). Examples are DESIRE
[19]; KARL [8]; K B s S F [27];. (ML) 2 [15]; MLPM [9] and TFL [24]. In these
specification languages one can describe both knowledge about the domain and
knowledge about how to use this domain-knowledge in order to solve the task
which is assigned to the system. On the one hand, these languages enable a speci-
fication which abstracts from implementation details: they are not programming
languages. On the other hand, they enable a detailed and precise specification

B. Freitag et al. (Eds.): Transactions and Change in Logic DBs, LNCS 1472, pp. 37-68, 1998.
(~) Springer-Verlag Berlin Heidelberg 1998

38 Pascal van Eck et al.

of a KBS at a level of precision which is beyond the scope of specifications in
natural languages. Surveys on these languages can be found in [31,11,7]. 1

A characteristic property of these specification languages results from the
fact that they do not aim at a purely functional specification. In general, most
problems tackled with KBSs are inherently complex and intractable (see e.g.
[23]). A specification has to describe not just a realization of the functionality,
but one which takes into account the constraints of the reasoning process and the
complexity of the task. The constraints have to do with the fact that one does
not want to achieve the functionality in theory but rather in practice. In fact, a
large part of expert knowledge is concerned exactly with efficient reasoning given
these constraints: it is knowledge about how to achieve the desired functionality.
Therefore, specification languages for KBSs also have to specify control over the
use of the knowledge during the reasoning process. A language must therefore
combine non-functional and functional specification techniques: on the one hand,
it must be possible to express algorithmic control over the execution of substeps.
On the other hand, it must be possible to characterize substeps only functionally
without making commitments to their algorithmic realization.

The languages mentioned are an important step in the direction of providing
means for specifying the reasoning of KBSs. Still, there is a number of open
questions in this area. The most important problem is the specification of the
dynamic behaviour of a reasoning system. The specification of knowledge about
the domain seems to be well-understood. Most approaches use some variant
of first-order logic to describe this knowledge. Proof systems exist which can
be used for verification and validation. The central question is how to formu-
late knowledge about how to use this knowledge in order to solve a task (the
dynamics of the system). It is well-agreed that this knowledge should be de-
scribed in a declarative fashion (i.e. not by writing a separate program in a
conventional programming language for every different task). At the moment,
the afore-mentioned languages use a number of formalisms to describe the dy-
namics of a KBS: DESIRE uses a meta-logic to specify control of inferences of
the object logic, (ML) 2 and MLPM apply dynamic logic ([14]), KARL integrates
ideas of logic programming with dynamic logic, and TFL uses process algebra
in the style of [1]. With the exception of TFL, the semantics of these languages
are based on states and transitions between these states. (ML) 2, MLPM and
KARL use dynamic logic Kripke style models, and DESIRE uses temporal logic
to represent a reasoning process as a linear sequence of states. On the whole,
however, these semantics are not worked out in precise detail, and it is unclear
whether these formalisms provide apt description methods for the dynamics of
KBSs. Another shortcoming of most approaches is that they do not provide an
explicit proof system for supporting (semi-) automatic proofs for verification.

These shortcomings motivate our effort to investigate specification forma-
lisms from related research areas to see whether they can provide insight in the
specification of (in particular the dynamic part of) KBSs. We have analyzed
related work in information system development, databases and software engi-

1 See also ftp://swi.psy.uva.nl/pub/keml/keml.html at the World Wide Web.

Specification of Dynamics 39

neering. Approaches have been selected that enable the user to specify control
and dynamics. The approaches we have chosen are:

- Language for Conceptual Modelling (LCM, [32]) and TROLL ([17]) as exam-
pies from the information systems area. Both languages provide means to
express the dynamics of complex systems.

- Transaction Logic ([3]), (Propositional) Dynamic Database Logic (PDDL,
[30] and DDL [29]) as examples for database update languages provide means
to express dynamic changes of databases.

- Abstract State Machines ([13]) from the theoretical computer science and
software engineering areas. It offers a framework in which changes between
(complex) states can be specified.

The informed reader probably misses some well-established specification ap-
proaches from software engineering: algebraic specification techniques (see e.g.
[33]), which provide means for a functional specification of a system, and model-
based approaches like Z [28] and the Vienna Development Method - Standard
Language (~VDM-SL) [16], which describe a system in terms of states and oper-
ations working on these states. Two main reasons guided our selection process.
First, we have looked for novel approaches on specifying the dynamic reasoning
process of a system. Traditional algebraic techniques are means for a functional
specification of a software system that abstracts from the way the functionality
is achieved. However, we are precisely concerned with how a KBS performs its
inference process. Although approaches like VDM and Z incorporate the notion
of a state in their specification approaches, their main goal is a specification
of the functionality and their means to specify control over state transitions is
rather limited. In Z, only sequence can be expressed and in VDM procedural
control over state transitions is a language element introduced during the design
phase of a system. We were also not so much looking for full-fledged specification
approaches but we were searching for extensions of logical languages adapted for
the purpose of specifying dynamics. A second and more practical reason is the
circumstance that a comparison with abstract data types, VDM, Z and lan-
guages for KBSs is already provided in [7]. Finally, one may miss specification
approaches like LOTOS [2] that are designed for the specification of interactive,
distributed and concurrent systems with real-time aspects. Because most devel-
opment methods and specification languages for KBSs (a prominent exception is
DESIRE) assume one monolithic sequential reasoner, such an approach is out-
side the scope of the current specification concerns for KBSs. However, future
work on distributed problem solving for KBSs may raise the necessity for such
a comparison.

The paper is organized as follows. First, in Section 2 we introduce two di-
mensions we distinguish to structure our analysis. In Section 3, we introduce the
different approaches we have studied. A comparison based on an example worked
out in all approaches has been carried out. Section 4 sketches this example and
presents the most important issues of the formalization of the example in all
approaches. The interested reader is referred to the long version [6] for a de-
tailed presentation of the example and the formalization of it in all approaches.

40 Pascal van Eck et al.

Section 5 provides a short comparison between the formalisms according to our
dimensions of analysis, and conclusions.

2 The Two Dimens ions of Our Analys is

In the analysis of the different frameworks, it will be convenient to distinguish
two dimensions (see Fig. 1). On the horizontal axis, we list a number of concepts
which should be represented in a framework. On the vertical axis, we list a
number of aspects to be looked at for each of the concepts. We will explain these
dimensions in some more detail.

The behaviour of a KBS can, from an abstract point of view, be seen as fol-
lows. It starts in some initial state, and by repeatedly applying some inferences,
it goes through a sequence of states, and may finally arrive at a terminal state.
So, the first element in a specification of a KBS concerns these states. What
are states and how are they described in the various approaches? Second, we
look at the elementary transitions that take a KBS from one state to the next.
Third, it should be possible to express control over a sequence of such elementary
transitions by composing them to form composed transitions. This defines the
dynamic behaviour of a KBS. We will look at the possibility of specifying how
the reasoning process achieves its results. This is called the internal specification.
The description of what the reasoning process has to derive is called the external
specification. One must be able to relate the internal specification of a reasoning
process with the goal that should be achieved by it. This introduces two require-
ments: modelling primitives are required that describe the desired functionality
of a KBS (i.e., its external specification) and a proof system must be provided
that enables to relate the internal and external descriptions of a KBS.

The second dimension of our analysis concerns three aspects of each of the
concepts described above. First of all, we look at the language of each of the
formalisms (the syntax). Which modelling primitives does the language offer to
describe a state, elementary transitions, etc? Second, we examine the semantics
of the language. A formal semantics serves two purposes: it enables the definition
of a precise meaning of language expressions and it enables proofs of statements
over language expressions. These proofs can be formalized and semi-automatic
proof support can be provided if a proof system based on a formal semantics has
been developed. Therefore, in the third place we look at such proof systems and
operationalization. Operationalization of the logic is required for prototyping,
which is based on operational semantics. Prototyping or partial evaluation could
provide restricted but still very useful support for the validation of specifications.

In Section 2.1 and Section 2.2, the concepts and aspects introduced here are
illustrated in more detail.

2.1 The Three Concepts Involved in the Reasoning of KBSs

As mentioned in the previous subsection, we distinguish two styles for the spec-
ification of composed transitions: external and internal. The former specifies a

Specification of Dynamics 41

proof systems &
operationalization

semantics

syntax

A
. I

I

I

I

I

I

I

. L I

I I

I I

I I

I I

I I

I I

I I

I I

state elementary composed
tramition transition

Fig. 1. The two dimensions of our analysis

system as a black box in terms of its externally visible behaviour. It defines what
should be provided by the system. The latter specifies a system in terms of its
internal structure and the interaction between parts of its internal structure:
it describes how the system reaches its goals. Both description styles appear in
specification languages for KBSs: external descriptions may appear at the lowest
and at the highest level of specification of a KBS, while internal specifications
relate the description at the lowest and highest levels.

The elementary inferences of a KBS as well as its overall functionality should
be describable in an external style, as the internal details of an elementary in-
ference are regarded as implementational aspects. (A specification should not
enforce any commitments to its algorithmic realization.) The overall functional-
ity of a KBS, that is, the goals it can reach, should be describable independent
from the way they are achieved. Actually, the equivalence of the functional spec-
ification of the goals (or task) and the specification of the reasoning process of
the KBS is a proof obligation for the verification of the KBS.

Internal specification techniques are necessary to express the dynamic rea-
soning process of a KBS. A complex reasoning task may be decomposed into
less complex inferences and control is defined that guides the interaction of the
elementary inferences in achieving the specified reasoning goals. This also allows
successive refinement. A complex task should be hierarchically decomposed into
(easier) subtasks. These subtasks are specified externally and treated as elemen-
tary inferences. If a subtask defines a computationally hard problem, it can again
be decomposed into a number of subtasks, along with an internal specification
of how and when to invoke these subtasks.

In the following we discuss these different concepts of a specification in more
detail.

S t a t e s . With regard to the representation of the states of the reasoning process
one can distinguish (1) whether it is possible to specify a state at all; (2) whether

42 Pascal van Eck et al.

a state can be structured (i.e. decomposed into a number of local states) and (3)
how an individual state is represented;

Not each specification approach in software or knowledge engineering pro-
vides the explicit notion of a state (either global or local). An alternative point
of view would be an event-based philosophy useful to specify parallel processes
(compare [22]). TFL uses processes as elementary modelling primitives that are
further characterized by abstract data types in the style of process algebra. No
explicit representation of the reasoning state is provided. The other approaches
from knowledge engineering agree on providing 2 the notion of a state but dif-
fer significantly in the way they model it. (ML) , MLCM and KARL represent
a global state. Still, it may be decomposed in what is called knowledge roles
or stores. DESIRE provides decomposition of a global state of the reasoner into
local states of different reasoning modules (subcomponents of the entire system).

Semantically, the main descriptions of a state are: as a propositional valuation
(truth assignments to basic propositions, as used in the propositional variants of
dynamic logic and temporal logic ([18])), as an assignment to program variables
(as in the first-order variant of Dynamic Logic), as an algebra (we will see that
in Abstract State Machines), or as a full-fledged first-order structure (as in the
first-order variants of temporal logic).

E l e m e n t a r y Transi t ions. Elementary transitions should be describable with-
out enforcing any commitments to their algorithmic realization. A pure external
definition is required, as a specification should abstract from implementational
aspects. Still, 'elementary' does not imply 'simple'. An elementary transition can
describe a complex inference step, but it is a modelling decision that its inter-
nal details should not be represented. An important criterion for specification
approaches for KBSs is therefore the granularity of the elementary transitions
they provide.

Composed Transi t ions. One can distinguish non-constructive and construc-
tive manners to specify control over state transitions. A non-constructive or
constraining specification of control defines constraints obeyed by legal control
flows. That is, they exclude undesired control flows but do not directly define
actual ones. Examples for such a specification can be found in the domain of
information system specifications, e.g., TT~ and TROLL. Constructive specifica-
tions of control flow define directly the actual control flow of a system and each
control flow which is not defined is not possible. In general, there is no clear cut-
ting line between both approaches, as constructive definitions of control could
allow non-determinism which again leads to several possibilities for the actual
control.

Another distinction that can be made is between sequence-based and step-
based control. In sequence-based control, the control is defined over entire se-
quences of states. That is, a constraint or constructive definition may refer to
states anywhere in a sequence. In a step-based control definition, only the begin
state and the end state of a composed transition are described. For example, in

Specification of Dynamics 43

Dynamic Logic, a program is represented by a binary relation between initial
and terminal states. There is no explicit representation of intermediate states of
the program execution. Other approaches represent the execution of a program
by a sequence of states (for example, approaches based on temporal logic). It
begins with the initial state and after a sequence of intermediate states, the final
state is reached, if there is a final state (a program may also run forever, as in
process monitoring systems).

For the representation of the reasoning process of KBSs this distinction has
two important consequences: (1) in a state-pair oriented representation, a con-
trol decision can only be made on the basis of the actual state. A state-sequence
oriented representation provides the history of the reasoning process. Not only
the current state but also the reasoning process that leads to this state is rep-
resented. Therefore, strategic reasoning on the basis of this history information
becomes possible. For example, a problem-solving process that leads to a dead-
end can reflect on the reasoning sequence that led to it and can modify earlier
control decisions (by backtracking); (2) with a representation as a sequence of
states it becomes possible to define dynamic constraints that do not only re-
strict valid initial and final states but that restrict also the valid intermediate
states. Such constraints are often used in specifications of information systems
or database systems.

2.2 The Three A s p e c t s of a Specif icat ion of the R e a s o n i n g of K B S s

Perpendicular to the three specification concepts are the three aspects syntax,
semantics and proof systems/operationalization. For each of the concepts, these
three aspects together determine how and to which extent a concept can be used
in a specification: they constitute the practical materialization of the concepts
state and (elementary and composed) transition.

Syntax . Each of the three concepts of a specification is represented by a part
of the syntax of a specification framework. A spectrum of flavours of syntax can
be distinguished. At one end of this spectrum, specification languages with an
extensive syntax can be found, resembling (conventional) programming language
syntax. Usually, such a language is specified by EBNF grammar rules, and op-
erators and other syntactic elements are represented by keywords easily handled
by software tools that support the specification process. At the other end of the
spectrum, languages can be given by defining a notion of well-formed formulae
composed of logical operators and extra-logical symbols, possibly using one or
two grammar rules.

Semant ics . Semantics of specification elements can be viewed as a function that
interprets well-formed formulae or syntactic expressions in some semantical do-
main, usually a mathematical structure. To support rigid proofs of specification
properties, such a semantics should be formal. The semantics should be intuitive
and relatively easy to understand so users are able to precisely comprehend what
a specification means.

44 Pascal van Eck et al.

P r o o f S y s t e m s and Opera t iona l iza t ion . One of the main reasons for devel-
oping formal specifications of a system is to be able to rigidly prove properties
of the system specified. To support such proofs, specification frameworks should
include a formal proof system, which precisely specifies which properties can be
derived from a given specification. At the very least, such a proof system should
be sound: it must be impossible to derive statements about properties of a spec-
ification that are false. Second, a proof system should ideally be complete, which
means that it is powerful enough to derive all properties that are true.

Formal specification frameworks can enable the automatic development of
prototypes of the system being specified. Such prototypes can then be evaluated
to assess soundness and completeness of the "specification with respect to the
intended functionality of the system being specified. The 'operationalization' of
a specification framework is meant to refer to the possibilities and techniques
for such automatic prototype generation.

3 Languages

In this section, we will give a very brief description of all of the frameworks we
have studied. The reader interested in more detail can either consult the original
works, or read the longer version of this paper [6]. In the longer version, we
describe an example of a knowledge-based system which has a non-trivial control
of reasoning. This example was taken from the Sisyphus project ([20]), which
was an extensive comparative exercise in the KBS community. This example has
been (partly) specified in all frameworks, in order to make a realistic comparison
between the languages. A specification of the top-level of the system is given,
together with a refined version of one of the parts of the system (to test the
possibility of external and internal specifications). The results in this paper are
partly based on our experience with the example, and again, the interested reader
should consult the longer version. We will now list and describe the frameworks
studied.

D y n a m i c D a t a b a s e Logic ((P) D D L)

PDDL is a propositional logic for describing state and state change in deductive
databases. It is based on Dynamic Logic, with both passive and active updates.
In a passive update 2:p or :Dp, a single proposition p is inserted into or deleted
from the database. In active updates 27/~p or :Dgp, after insertion or deletion
of p, the database is closed under the rules of the (definite) logic program H,
leading to further insert or delete operations on the database. The propositions
in a database are divided into base-predicates and derived predicates. The base-
predicates can be directly inserted into or deleted from the database. The value
of the derived predicates follows from the rules of the given logic program. These
predicates cannot occur as arguments to update operations. Complex transitions
can be formed from these elementary transitions using the Dynamic Logic oper-
ators for sequence, choice, iteration and test.

Specification of Dynamics 45

The first-order variant (DDL) allows conditional (bulk) insertion and dele-
tion. Conditional insertion is written &{xl , . . . xn}27p(tl,.., tn) where r which
means that p(t l , . . . , tn) is set to true for all values of x l , . . , xn that make r true,
and similarly for conditional deletion. Complex transitions are again formed from
primitive transitions by sequence, test, iteration and choice, plus an additional
operator called conditional choice: +(xl , . . . ,xn)a where r executes (~ for one
of the possible value assignments to (Xl , . . . , xn) which makes r true.

The semantics are like those of Dynamic Logic (Kripke models with relations
for the programs), with special interpretations for the operators (the 27 oper-
ator should cause insertion for example). A proof system and an operational
semantics is provided. The proof systems of DDL and PDDL are only complete
for full Kripke structures (i.e., structures that contain a world for all possible
valuations).

Transac t ion Logic (T'/~)

:TT~ , like (P)DDL, is also a logic of state and state change in databases. In
contrast to DDL, the atomic actions are a parameter of the logic: they are to be
described in a transition oracle which sanctions the transition from a state to
another for each elementary transition. The only dynamic operator is sequence
(| A formula like r 1 7 4 1 6 2 intuitively means that first r must hold, and after that
r must hold. Other dynamic operators are defined in terms of this operator.
An example of such an operator, which will be used in the example, is ~ . The
formula r ~ r means that whenever r is true, r must be true immediately
thereafter. Formally r ~ r - 7(r | 7r

Semantically, formulae are interpreted over sequences of database states,
called paths (in contrast to DDL, where the meaning of a program is a binary
relation on states). Atomic statements representing updates and database facts
are evaluated by the transition oracle, respectively the data oracle. The usual
first-order connectives and quantifiers have their standard interpretation. A for~
mula r | r is true on a path if that path can be split into two paths such that r
is true on the first, and r is true on the second. The behaviour of the database is
described by formulae which constrain the allowed sequences of states. Together,
these formulae are called a program. Often, they are in the form of Prolog-like
rules. Entailment allows the deduction of properties of the program, given an
initial state. These properties can describe the final state of the path (the state
the database is in after execution of the program in the initial state), but are
not limited to this: one can express properties of entire paths (starting at the
initial state).

A proof system for a Horn-like fragment of the language is provided. By
placing further restrictions on the proofs in this system, a form of executional
entailment is obtained. Proving a query corresponds to the execution of the
program.

46 Pascal van Eck et al.

Abstract State Machines (ASM)

The Abstract State Machine (ASM, previously called Evolving Algebras) ap-
proach originally was an attempt to provide operational semantics to programs
and programming languages by improving on Turing's Thesis (Turing Machines
are too low-level). With ASMs, it is possible to specify algorithms at any level
of abstraction, and use successive refinement to investigate properties of the
algorithm (like correctness) at any of these levels.

The basic concept of ASMs is simple: an ASM specification consists of rules
for updating algebras. An algebra consists of a set together with functions on
that set. The rules are (basically) of the form i f r then R, where r is a
condition on algebras, and R is a set of updates of the form f (t) :-- s. The
intuitive meaning is that if the current algebra satisfies r then it can be updated
to a new algebra, where the value of the function f in the argument t is s (and
the other updates in R have been performed as well). A run of an ASM is a
sequence of algebras generated by repeatedly firing all the rules in the current
algebra.

There are many extensions of this simple form of rules, including bulk up-
dates and indeterministic choice. However, there are no further constructs for
determining the flow of control (dynamics), like loops or temporal operators. It
is possible to use (nullary) functions as control variables. External functions are
functions in the algebra which can not be updated by the ASM (but can be
'read') but which can change during a run. These functions are used to model
for example the input to an ASM.

The ASM approach does not come equipped with a (fixed) proof system.
Properties of evolving algebras can be proved informally, using standard mathe-
matical techniques. Mathematical proofs can of course always be verified (should
one desire) by any proof checker for first-order logic. Operationalization of ASMs
is relatively straightforward. Basically, one just needs a mechanism that contin-
ually fires the applicable rules.

T ro l l /OSL

TROLL is a language for the specification of object-oriented information systems.
It provides a very rich syntax, aimed at a user-friendly way of specification.
The basic structuring mechanism in TROLL is the template, which is a generic
description of possible objects in terms of attributes and events of these objects.
A template is not the same as a class. A class is regarded as a collection of objects
described by the same template together with an identification mechanism for
instances. For the specification of attributes and events, four basic languages are
defined: a data language, consisting of terms in a sorted first-order logic, a state
formulae language, which uses the terms from the data language, a temporal
language for describing temporal constraints over state formulae and a pattern
language for ordering events using process algebra operators. The state formulae
language contains, for each event term e from the data language, a predicate
occurs(e), which is true in a state where e is about to happen.

Specification of Dynamics 47

A template thus defines an object's local signature (consisting of the at-
tributes) and local life cycle (admissible behaviour in terms of commitments,
constraints, obligations and event effects). A TROLL specification consists of a
number of such definitions of local object aspects together with a number of
relationship definitions at a global level, such as specialization and interactions.

The semantics of TROLL are obtained via a translation into Object Specifi-
cation Logic (OSL, [26]), a temporal logic for reasoning about objects. Also in
OSL, there is a local logic for reasoning about local object aspects and there
is a global logic (incorporating the local logic) for reasoning about object inter-
actions. OSL is equipped with a proof system, which enables reasoning about
TROLL specifications by first translating them into OSL. An execution mecha-
nism is provided for a fragment of TROLL (lacking the temporal language), called
TROLLlight.

Language for Conceptual Modeling (LCM)
LCM is developed as a tool for the conceptual analysis of object-oriented data-
bases. The aim is to develop a theory of dynamic objects, and to provide a logic
for specifying such objects and for reasoning about them. The basic language of
LCM is equational logic (for specifying abstract data types).

The signature of the equational language has separate parts for value types,
classes and events. The event-signature must contain at least one sort EVENTS
referring to actions that can be performed on states. The particular set of oper-
ations for this signature is not fixed, but one should have some kind of process
algebra in mind, like ACP [1] or CCS [21]. There is one minimum condition on
the event-signature, namely that the sort EVENTS has a binary communica-
tion operator. This communication operator can be used to indicate which local
events (pertaining to one object only) may be composed to one global event.

To specify the system's behavior, one may use axioms written in a basic
version of dynamic logic. The attributes of the class objects can be subject to
static integrity constraints to be expressed in the form of (conditional) equations
(the machinery of dynamic logic is not yet used here). Second, effect axioms
are of the form r ~ [e]r where r and r are finite conjunctions of equations,
and e is a term of sort EVENTS. The third and last type of axiom is that of a
precondition axiom. Such an axiom must be of the form (e)true -~ r where e
and r are as in the previous case. The meaning of this axiom is that if we are in
a state where there is a possible execution of e that terminates, then currently,
r is true.

LCM has a proof system. In order to capture the intended models in which
the effects of the events is minimal, one needs to write down frame axioms
explicitly.

4 The Running Example

In a longer version of this paper [6], we have applied the various languages to a
single example, thus facilitating comparison with respect to specification of the

48 Pascal van Eck et al.

dynamics of knowledge-based systems. In particular, we have used the example to
examine the representation of states of the reasoning process, the representation
of elementary transitions between states and the representation of control over
the execution of transitions. A full description of this example would take up too
much space, so we will give a rather informal description. Also, we will not fully
specify this example for all formalisms; rather we will focus on the interesting
parts.

During the discussion of the example, we use stores to represent the state of
the reasoning process. A store can be thought of as a placeholder for information
(or knowledge). A transition takes information from a store, reasons with it,
and outputs the result to another store. We use tasks to represent complex
transitions. A procedural language will be used for defining control over the
execution of transitions.

Our example consists of solving a design problem (of artifacts, but also for
example of schedules). The design problem is viewed as a parametric design
problem, i.e., the design artifact is described by a set of parameters. A design is
an assignment of values to parameters. If some parameters do not have a value
yet, the design is called partial. Otherwise it is called complete. The central task
is to find values for parameters, fulfilling certain constraints on the values of
the parameters. The user is allowed to give some parameters already a value
from the start. An informal functional specification of this task, which is called
Parametric Design and which serves as the running example in this paper, is
given by the following three requirements: (i) the initial values given by the user
may not be modified; (ii) the final design must be complete and (iii) in the final
design, no constraint is violated.

This functional specification of the task Parametric Design does not provide
any information on how to implement this task. Moreover, Parametric Design
is in principle an intractable task, so we will generally want to further refine
such tasks in the sense that additional, possibly heuristic knowledge is applied
to arrive at an acceptable and efficient approximation of the original task [10].
Therefore, a problem solving method, which provides information on how to
implement an efficient approximation, has to be chosen. The problem solving
method chosen in this paper is Propose and Revise. The central idea behind
Propose and Revise is that repeatedly, values are proposed for parameters, treat-
ing each parameter in succession. After a value has been proposed, the partial
design is tested to see whether any constraint is already violated. If not, then a
vahm for another parameter is proposed and again tested. If a constraint is vio-
lated, we try to revise the current (partial) design by changing some values for
parameters that were already assigned a value, in such a way that no constraint
is violated. After this, we again propose a value for a parameter, until the design
is complete. According to the Propose and Revise method, the task Parametric
Design can be decomposed into six subtasks (see Fig. 2):

- In i t : this task initializes the design, based on parameter values that are
possibly given by the user in the Input store.

Specification of Dynamics 49

I
Fig. 2. Knowledge flow diagram of Propose and Revise. Boxes with round cor-
ners represent tasks, rectangles represent information stores

- Propose: this task proposes a value for a parameter that has not been as-
signed a value before. It updates accordingly the current design in the store
Design.

- Test: this task checks whether the current design (in the store Design)
violates any constraints (from the input store Cons t ra in ts) and outputs
any such violated constraints to the store Viola t ions .

- Revise: this task corrects the partial design in Design if the previous task
stored any violated constraints in Viola t ions . Revise is not allowed to alter
any parameter values that were specified by the user in the Input store.

- Evaluate: this task checks if the current design in the store Design is com-
plete.

- Copy: this task copies the design from Design to the Output store.

It remains to define the control between the subtasks of parametr ic design.
One possibility is as follows:

II~it;
!repeat

Propose;
Test;
if (Violations

until Evaluate;
Copy

0) t h e n R e v i s e e n d i i

50 Pascal van Eck et al.

After the initialization, a loop of Propose, Test, (and if necessary) Revise is
entered until a complete, correct design has been found. In this case it is copied
to Output.

Parametric design based on (variants of) the Propose and Revise method
has been studied extensively. The interested reader is directed to [4] and [25] for
complete formal models of parametric design using DESIRE and KARL, respec-
tively. In the rest of this section, some interesting ideas used in the formalizations
of the running example in the long version ([6]) are presented. In particular, for
each approach a formalization of the functional specification (if possible) and of
the problem solving method will be given. Some conventions and principles are
used in more than one formalization. Therefore, the presentations of the formal-
izations are grouped. Moreover, the conventions used in the T ~ formalization of
Propose and Revise will also be adopted in the other formalizations, whenever
appropriate.

4.1 T'R~ and (P)DDL

The basic idea of the specifications using TT~ and (P)DDL (actually, DDL is
used) is to treat all input and output roles of an inference action as predicates.
Thus, for every store, we will define a predicate:

iNput(P, y),
output(P, V), and

constraint (C, V1, . . . , Vn) ,

where P is a parameter name, V and V1, ..., Vn are values and C is a constraint
name. The meaning of constraint(C, V1 , . . . , Vn) is that assigning V1,..., Vn to
the parameters P l , . . . ,Pn is not allowed, and this is part of the constraint C.

To simplify the presentation of the running example in TT~ and DDL, we treat
these logics as if they were typed. This can be simply encoded by introducing
unary predicates for all the types in the standard fashion. We will leave these
types implicit in the variable names. Thus, a formula like

V P 3 V : output(P, V)

should be read as

V P 3 V : parameter (P) --~ value(V) A output(P, V),

in order to include all the required type-restrictions.
The Parametric Design task will be specified in :TT~ by a complex transaction

which we will call parametric_design. First we will give the functional require-
ments for this task, which will be specified as transaction formulas in the pro-
gram. Please note that apart form parametric_design, all predicates are meant to
be state predicates (predicates that are only true on paths of length one), which
means that in all formulas we write, we should use e.g. output(P, V) A state,
where s ta te is a special predicate that is only true on paths of length one. To

Specification of Dynamics 51

avoid cluttering up the presentation with occurrences of s ta te , we omit them,
but the reader should insert them for all static predicates.

The Parametric Design task is specified as follows. First of all, the input may
not be modified by parametric_design (Requirement (i)):

n

A [(VV)[(input(pi, V) | parametric_design) ~ output(pi, V)]]
i~-1

This means that if a parameter has some input value (in some state) and we
perform parametric_design, then afterwards the parameter should have the same
value in the output.

Requirement (ii) is that the design must be complete:

parametric_design ~ A -~output(pi, unde])
i-~ l

To complete the specification, we should add requirement (iii), stating that
after parametric design no constraint is violated:

n

parametric_design =~ (VV1,..., Vn)(A output(pi, Vi) --+

-~3C constraint(C, VI , . . . , Vn))

In TT~, the problem solving method Propose and Revise, which implements
the specification given above, can be given in two ways: within TT~, as treated
below, or outside TT~, using the oracles. Such an outside implementation will
define a state oracle, which defines a state for each instantiation of input and
constraint without output, as well as corresponding states with the output com-
puted. The transition oracle will implement this correspondence by stating:

parametric_design E (.0t (D, D')

for all pairs D~ D ' that 'do' parametric_design. We could then prove that this
implementation satisfies the functional requirements. Conceptually, what we are
doing above is to implement parametric_design outside the program (in the or-
acles). It is a feature of TT~ that it allows such external implementation, while
at the same time allowing the functionality thereof to be verified.

An implementation of Propose and Revise within T/~ amounts to imple-
menting different elementary transitions in the transition oracle, namely for init,
propose, test, revise, evaluate, and copy, instead of parametric_design. The rela-
tionship between parametric_design and these elementary transitions, i.e., the
decomposition and control, is then specified by the following transaction pro-
gram.

52 al. Pascal van Eck et

parametric_design ~-

pr-loop *-

init | pr-loop | copy

propose |

test |

(3Cviolated(C) ~ revise) |

(evaluate |

evaluate-complete V (-,evaluate-complete | pr-loop))

The predicates that are used in the program above are all defined either in
other rules of the program or by the oracles.

Instead of specifying tasks and inference actions as transactions as in TT~,
they are formalized in DDL as update programs which make assignments to
their output roles. For the task Parametric Design, both a functional specifi-
cation parametric_design(V1, ..., Vn) and an implementation P&R (an update
program) are given, which we shall discuss now.

The functional specification of the task Parametric Design is expressed in
DDL as follows:

parametric_design(V1,..., Vn)

Ai"=l(output(pi, V~)A 7. gl,...,gn are output parameters

-~3V' : (output(p~, V') A V~ ~ V')A 7. their values are unique,

V~ r undef A
(input(p,, v)v

input(pi, under)))
A -~3Viol :

constraints(Viol, V1, ..., Vn))

7. unequal to under (Req. (i i)) ,
7. and not overriding the
7. user input (Req. (i))
7. no c o n s t r a i n t may be
7. v i o l a t e d (Req. (i i i))

The implementation of Propose and Revise is modelled by the update pro-
gram P&R, which is defined as follows (Note that although constructs like 're-
peat...until' and 'if...then...endif', used in the specification below, are formally
not part of the syntax of DDL, they can easily be defined):

P & R - 7. Clear t h e r o l e s f o r output and i n t e r m e d i a t e d e s i g n s , and
7. initialise the input:

init;
repea t propose;

7. empty the violations before recomputing them:

&{V} :D violations(V);
test
if 3V : violations(V)
t h e n revise
end i f

unt i l evaluate;
7. and finish by copying the results to the output role:

&{P, V} I output(P, V) where design(P, V)

Specification of Dynamics 53

DDL then allows to express the resulting proof obligation that the implemen-
tation P&R satisfies the functional specification parametric_design(V1, ..., Vn).
If V is the conjunction of all given input values i n p u t ~ , Vi), and C is the con-
junction of all given constraints constraint(C, V1,..., Vn), then the following ex-
presses the correctness of the implementation with respect to the functional
specification:

V A C --~ [P&R]parametric_design(V1,..., Vn)

A rather unpleasant feature of the formalization of Propose and Revise in
(P)DDL is the need for explicit emptying and copying of data-stores. One would
perhaps expect to be able to hide such procedural details from a specification.

4.2 ASM

The ASM approach does not allow the specification of the functional require-
ments (i), (ii) and (iii) within an ASM specification. Therefore, in this subsection,
only the implementation of Propose and Revise expressed in the ASM formal-
ism is given. Since there is no notion of subroutine or procedure in ASMs, the
entire example will be one long specification. (In some interpreters, there are
ways to use subroutines.) To structure the presentation of this specification, the
following convention is used: expressions like < I n i t i a l i s e > denote a set of rules
which specifies the behaviour of the ASM when it is initializing. In the final
specification, corresponding rules should be inserted here.

As is the case for Turing Machines, in the ASM approach there are no ex-
plicit programming constructs for loops and subroutines. In the specification of
control one can only use guards in the transition rules to make sure they fire
only when needed. We use constants to keep track of what we are doing, and use
these constants in the guards of transition rules. The first constant is Mode to
keep track of where we are in the main loop of Propose and Revise. Its possible
values are initializing, mainloop, and copying. A second control variable,
Doing, is used for control inside the main loop. Its possible values are proposing,
testing, check_if_revise_needed, and revising. These control variables are
to be used and updated by the rules belonging to Initialise, Propose, Test,
Kevise, and Copy. So, for instance, all rules for <Propose> should be of the form:

if (Mode = mainloop & Doing = proposing ~ conditions)
then updates

endif

One of these rules should set Doing to t e s t i n g if the proposing phase is finished.
The ASM specification of Propose and Revise is as follows:

if S t a r t then
Varv ranges over Is_value

0utput(p_l,v) := false

54 Pascal van Eck et al.

Mode

endif
<Initialise>
<Propose>

<Test>
if

, ~

Output(p_n,v) := false
Design(p_l,v) := false

Design(p_n,v) := false
:= initializing

(Mode = mainloop & Doing = check_if_revise_needed) then
if ((exists v in Is_violation) Violations(v) = true)

Doing := revising
Revise_mode := begin_revise

e l s e

endif
endif

<Revise>
<Evaluate>

<Copy>

then

Doing := evaluating

Of course, sets of rules have to be provided for <Initialise>, <Propose>,
etc

4.3 TROLL and L C M

To specify the running example Propose and Revise in the object-oriented frame-
works TROLL and LCM, the problem has to be modelled as an object-oriented
system first. This can be done in (at least) two ways, depending on which parts
of Propose and Revise are modelled as the most important objects:

I n f e r e n c e a c t i o n s as ac t ive o b j e c t s With this approach, the inference ac-
tions are modelled by separate objects that co-operate with objects or data
structures that model the stores. When using this approach for modelling
Propose and Revise, the main (active) objects would be a Proposer and a
Reviser. Both would operate on a (passive) design object.

S t o r e s as active objects With this approach, stores are modelled by objects
that have methods corresponding to the inference actions that use them as
input or output stores. The inference actions themselves are thus modelled
(only) as methods. When using this approach for modelling Propose and
Revise, the main objects are a design object, which is able to e.g. revise and
evaluate itself, and an active object containing violated constraints.

In this paper, the second approach is taken both in the formalization of the
running example using TROLL and using LCM, because this results in a clearer

Specification of Dynamics 55

specification: there are less objects, parameter passing is minimal, and the spec-
ification has a more object-oriented spirit (data and operations are grouped
together). The main objects are: an (active) design object, which is able to ini-
tialise, propose, revise and evaluate itself, and a violations object. These objects
work together as components of a third object: Parametric_design_task. This
object does not correspond to a store. However, it is necessary to have this object
as a representation of the overall system.

In the formalization of Propose and Revise using TROLL, first some classes
are defined to represent the input, output and constraints stores. Objects of these
classes are then used as components of the composed Parametric_design_task
object defined by the following class definition. The problem solving method Pro-
pose and Revise is modelled as an event in the life of a Parametric_design_task
object itself, subject to the constraints specified in the class definition.

class Parametric_design_task
template

components
Input : Design_model_class;
Output : Design_model_class ;
Constraints: SET(Constraint_class) ;

events
propose_and_revise;

constraints
- - Do not modify user input by des ign in output (Req. (i)) :
An=l ((Pi in Input_ID. Parameters_COVaU_IDs and

Input_ID.Parameters (pi).Value=V and not V=undef and
occum(propose_and_revise)) impmies

(next (0utput_ID. Parameters (P0 �9 Value=V))) ;
- - All parameters in output have a value (Req. (i i)) :
occurs(propose_and_revise) implies (,ext

(An__1 (not 0utput-ID. Parameters (P0 . Value=under))) ;
- - No c o n s t r a i n t i s v i o l a t e d by va lues
- - in output (Req. (i i i)) :
occurs(propose_and_revise) implies (next (not

(exists C: I Cons t ra in t_c lassJ) (C in Constraints_COMP_IDs and
((exists Vx,..., Vn : value_type)

(An=l (0utput_ID. Parameters (Pi) �9 Value=Vi)
and tup le (Vl , . . . ,Vn) in C . V a l u e s))))) ;

e ,d class Parametric_design_task

As is the case with the formalizations of Propose and Revise using TT~ and
(P)DDL, we seek to further specify the behaviour of Propose and Revise by giv-
ing a constructive description of its dynamics. In TROLL, this is done by defining
a new class that represents the store 'design' (this class is a subclass of the class
of which the objects Input and Output are instances). The inference actions Init,

56 Pascal van Eck et al.

Evaluate, Propose, Test and Revise are modelled as events that happen in the
life of a Design object. A new specification of class ParameCric_design_task is
then given, with a Design object as one of its components. The most important
part of this new class definition is the following constructive specification of the
behaviour of a Parametric_design_task object:

patterns
take_inpuZ -> Design.init -> G0_0N;
G0_0N is Design.propose(Input-ID)

-> Design.test (Violations_ID, Constraints_COMP_IDs)
-> select

Violations.violations_empty -> EVALUATE
or Violations.violations_not_empty ->

Design.revise(ViolationsTD, Input_ID) -> EVALUATE
end ~elect

EVALUATE is Design.evaluate
-> select

Design.evaluate_complete -> give_output
or Design.evaluate_partial -> G0_0N
end select;

end class Parametric_design_task

The structure of the LCM specification of Propose and Revise resembles the
structure of the TROLL specification to a great extent. Again, classes are defined
to represent the store Input, Output and Constraints. As an example, consider
the definition of class P A R A M _ S P A C E , which is a collection of parameter
values. This class has an event which enables us to initialise all parameter values
as undefined. We partition this class in two subclasses, one to represent the
input and output stores, and one to represent the current design, on which we
will define the design process.

begin object class P A R A M _ S P A C E
attributes

Pt : V A LUEz

Pn : V A LUEn
events

set _undef
axioms

VP : PARAM_SPACE[se t_unde f (P)] f~=z P.pi = undefi
partitioned by

I N P U T _ O U T P U T , C U R R E N T _ D E S I G N
end object class

We are now in a position to give specification of the Propose and Revise
method solely in terms of the input-output conditions. The following object class

Specification of Dynamics 57

does nothing more than specifying the overall properties that we want to enforce
on the problem solving method, and corresponds directly to requirements (i), (ii)
and (iii). This class has the same function as the class Parametric_design_class
in the TROLL specification.

begin ob jec t class P & R
axioms

/\~=l (input.p~ = v~ ~ [P&R]output.pi = vi) (Req. (i))
A~n__l[P&R]-~(output.pi = undefi) (Req. (ii))
[P&R]constr_viol(output.pl, ..., output.pn) = 0 (Req. (iii))

end ob jec t class

Again, we seek to further specify the behaviour of Propose and Revise by
giving a constructive description of its dynamics. In LCM, for technical reasons
this is done slightly different compared to TROLL. Like in TROLL, a new class is
defined that represents the store 'design', and the inference actions Init, Eval-
uate, Propose, Test and Revise are modelled as events that happen in the life
of a Design object. The dynamics of Propose and Revise are then defined by an
LCM life cycle definition for this new class as follows:

lifecycle
Vd : D E S I G N : D E S I G N (d) =
INPUT_OUTPUT.set_under(output);
set_under(d);
init(d);
repeat

until
copy(d);

propose(d);
violating(d) := false;
test(d);
if violating(d) t hen revise(d) end i f
evaluate;

5 Comparison and Conclusions

In this section we will briefly compare the different formalisms using our two
dimensions of analysis, and then discuss a number of implications for the speci-
fication of (in particular control of) knowledge-based systems.

5.1 A Short Comparison

We will give a brief overview of the frameworks in terms of the concepts and
aspects of specification mentioned in the introduction.

58 Pascal van Eck et al.

S t a t e s . With the exception of PDDL, where a state is a propositional valuation,
a state is either an algebra (ASM and LCM) or a first-order structure (DDL, TTr
and TROLL/OSL). Syntactically, algebras are described in equational logic, while
first-order structures are described in first-order predicate logic. In TROLL and
LCM, the language is sorted, in the other frameworks it is unsorted. In PDDL,
a state is described in propositional logic. DDL and PDDL have an operational
semantics in which a state is a set of first-order structures (DDL) or a set of
propositional valuations (PDDL). One last point is whether the interpretation
of function symbols is fixed over all states, or whether it may vary. In ASM
and LCM (in which there are only functions), functions are of course allowed
to vary over states. In LCM, only the at tr ibute functions and boolean functions
(which play the role of predicates) are allowed to vary; functions specified in the
da ta value block (addition on the integers, for instance) must be the same in all
states. In DDL, there are no function symbols, only constants, which should be
the same in all states. In both TROLL and TT~ functions are not allowed to vary.
Table 1 summarizes syntax and semantics of the specification of states.

T a b l e 1. Overview of state description syntax and semantics

[[ISynta~
(P)DDL PDDL: propositional formulae

TTr
ASM
TROLL

LCM

DDL: first-order predicate formulae

First-order predicate formulae
Equational formulae
Sorted first-order predicate formulae
(used for attribute declaration part of
object templates)

Semantics
PDDL: (set of) propositional valua-
tions
DDL: (set of) first-order structures
First-order structure
Algebra
First-order structure (Templates are
translated into OSL sorted first-order
formulae that denote first-order struc-
tures)

Sorted equational formulae (used for Algebra
Value type and object class declara-
tions)

E l e m e n t a r y T r a n s i t i o n s . With respect to the specification of elementary tran-
sitions, two approaches can be distinguished: user-defined and pre-defined, fixed
elementary transitions. In TROLL and LCM, the user defines a set of elementary
transitions (i.e., specifies their names) and describes their effects using effect and
precondition axioms. For instance, in TROLL, the user defines for each object
class a set of events, which are the elementary transitions from one point in
time of a TROLL model to the next. Associated with each event e is a predicate
occurs(e), which is true in a time point t iff event e occurs in time point t, lead-
ing to a new state at time point t + 1. Using this predicate, the user describes
the intended behaviour of e. In LCM, the user also defines a set of events for
each object class. For each event e, the user can define effect axioms of the form

Specification of Dynamics 59

r --* [e]r and precondition axioms of the form le)true --~ r The events denote
binary relations over states.

Table 2. Overview of syntax and semantics of elementary transitions

IlSyntax
(P)DDL Fixed: database updates Znp and

:Drip (active) and Zp and 7~p (passive)
q'7s

ASM

iTROLL

LCM

User-defined: set of names, possibl~
with effects described in transition or-
acle and program

Semantics
Relation between states (m, n) where
m and n differ at p
Relation between states

Fixed: flmction updates f(t) := s Relation between states (algebras)
(m, n) where m and n only differ at
f(t)

User-defined: user specifies set ofl Axioms are translated to OSL, where
event names and effects using effectlthey denote relations between state~
and precondition axioms at time point t and t + 1
User-defined: user specifies set of'Relation between states (algebras)
event names and effects using effect!
and precondition axioms

On the other hand, in (P)DDL and ASM, there is only a pre-defined, fixed set
of elementary transitions, which resemble the assignment statement in program-
ming languages. In (P)DDL, there are two predefined elementary transitions, and
there is no possibility for the user to define additional ones. These predefined
transitions are zHp (set p to true) and T)Hp (set p to false) and their variants 27p
and ~)p, which just insert p into or delete p from a database state. Semantically,
Zp and 7)p are relations that link pairs of states (m, n) where m = n for all pred-
icates but p. In ASM, there is only one type of elementary transition, namely
function updates expressed as f(t) := s, which links two algebras A and A' that
only differ in the values for f(t). Like DDL, there are parallel updates and choice.
The TTs approach is in-between these two approaches: as in TROLL and LCM,
the user defines a set of elementary transitions, but unlike in TROLL and LCM,
it is possible to constructively define their effect in a transition oracle. Seman-
tically, in 7"7"s an elementary transition is a relation between database states,
where the transition oracle defines which pairs of database states are related. In
7"~ it is also possible to describe the effect of an elementary transition without
explicitly defining that transition in the transition oracle. Table 2 summarizes
syntax and semantics of the specification of elementary transitions.

C o m p o s e d Trans i t ions . In ASM, there are several possibilities to specify
composed transitions, such as adding guards to transition rules, specifying bulk
transitions that fire a number of transitions at the same time and specifying
choice However, there is no possibility to specify sequential composition or itera-
tion. For the other frameworks, two approaches can be distinguished. In TROLL

60 Pascal van Eck et al.

and TT~, elementary transitions can be composed using sequencing, iteration
and choice. In both frameworks, the composed transitions thus formed are inter-
preted over sequences of states. In LCM elementary transitions can be composed
using a syntax derived from process algebra. In (P)DDL this can be done using
sequencing, iteration, bulk updates and choice. However, unlike in TROLL and
TT~, a composed transition is not interpreted over a sequence of states, but as
a relation between pairs of states: the state at the beginning of the composed
transition and the final state of the composed transition, as in Dynamic Logic.
The transition relation associated with a composed transition is of the same
kind as the transition relation associated with an elementary transition in LCM
and (P)DDL, and no intermediate states are accessible in the semantics, so it is
impossible to express constraints on intermediate states.

Table 3. Overview of syntax and semantics of composed transitions

IISyntax
(P)DDL Constructive:

TT~

ASM

TROLL

LCM

sequence (;), iteration
(*) and test (?) as in Dynamic Logic
Constraining: not possible
Constructive and constraining: first-
order formulae with special operator
for sequence (|
Transitions can be guarded, bulk up-
dates and choice between transitions
is expressible. Sequencing or iteration
is not expressible
Constructive: pattern language ex-
pressions with operators from process
algebra
Constraining: temporal language ex-
pressions

~emantics
Relation between begin state and end
state

Formulae are interpreted over se-
quences of states

As for elementary transitions: guard-
ing, choice and bulk updates are not
concerned with sequences of states or
with begin/end states
Pattern language and temporal lan-
guage translated to OSL and interpre-
ted over temporal sequences of states

Constructive: expressions in user-de- Relation between begin'state and end
fined process algebra state
Constraining: not possible

There is another important difference between TROLL and :TT~ on the one
hand, and LCM and (P)DDL on the other hand. In (P)DDL and LCM, specify-
ing control in composed transitions in a constructive way ('programming' with
sequencing, choice and iteration) is the only possibility. However, in TROLL and
=rT~, control can also be specified by constraining the set of possible runs of a
system, e.g., in TROLL control over runs of the system can also be specified
by expressing constraints using temporal logic. Table 3 summarizes syntax and
semantics of the specification of composed transitions.

P r o o f Sys tems and Operat ional izat ion. The third aspect identified in Sec-
tion 2.2, proof systems and operationalization, is summarized in Table 4.

Specification of Dynamics

Table 4. Overview of proof systems and operationalization

61

IIProof system
(P)DDL Hilbert-style proof system

T74

ASM

iTROLL

I cM

Operationalization
Operational semantics in terms of
transition rules

Gentzen-style proof system for the Operational semantics based on 'exe-
'serial-Horn' fragment of TT~ cutional deduction', serial-Horn frag-

ment only
No fixed proof system. General math-:An interpreter for ASMs is straight-
ematical techniques are applicable forward
TROLL is translated to OSL; there is Provided for TROLLlight, a restricted

Hilbert-style proof system for OSL version lacking the temporal language
Equational logic

5.2 Conclusions

In this second part of the concluding section we will make a number of observa-
tions that are relevant for future users of the specification languages discussed
above, and for future designers of KBS specification languages, in particular as
far as the choice of specification language features for control is concerned.

Cons t ruc t i ve or Cons t ra in ing Specifications. In all of the languages dis-
cussed in this paper, the constructive style of specification is supported. Exam-
ples of this are the program expressions in DDL, or the communicating algebra
expressions in LCM. In contrast with the widely supported constructive style
of specification, only TROLL and q-7~ support the constraining style of specifi-
cation. We think that for the specification of control of the reasoning process
of a KBS, both styles are valuable. It would be especially useful to be able to
combine both styles in one specification, as is possible in TT~ and TROLL.

Modula r i ty . The languages differ in the extent to which control must be speci-
fied globally, for an entire system, or locally, separately for individual modules of
a system. In particular, DDL and TT~ only allow a single, global control specifi-
cation, while TROLL and LCM allow the specification of control that is local for
individual modules. Because the arguments in favor of either approach resemble
very much the arguments in favor or against object-oriented programming, we
will not go into any detail here, but refer to that discussion, with the proviso
that we are concerned here with notions of modularity and encapsulation, and
not so much with inheritance and message passing. Besides such general soft-
ware engineering arguments in favor of object-oriented techniques, knowledge
modelling has particular use for such techniques: frames have a long tradition
in knowledge representation, and are a precursor of object-oriented techniques.
Dealing with mutually inconsistent subsets of knowledge is a particular example
of the use of localized specifications.

62 Pascal van Eck et al.

Cont ro l Vocabulary. With 'control vocabulary' we mean the possibilities (in
a technical sense) that the language gives us to construct composed transitions
from more primitive ones. Here, the news seems to be that there is relatively
little news: there is a standard repertoire of dynamic type constructors that
every language designer has been choosing from. This repertoire usually contains
sequential compositions, and often one or more from the following: iteration,
choice, parallelism (with or without communication).

Two languages take a rather different approach however, namely LCM and
ASM. The designers of LCM suggest the use of some form of process algebra
for their dynamic signature, but make no strong commitment to any particular
choice, and LCM should perhaps be viewed as parameterized over this choice. In
the case of ASM it seems that there is no possibility at all to include any control
vocabulary in the language: ASM provides only its elementary transitions (the
algebra updates). It provides neither a fixed vocabulary for building composed
transitions, nor does it seem parameterized over any choice for such a vocabulary.

The languages differ in their treatment of intermediate states that might
occur during a transition from an initial to a terminal state. In DDL, as in
dynamic logic on which DDL is based, there is no representation of any inter-
mediate states of a program execution: any execution is represented as a pair of
initial and terminal states (step-based control specification). Similar properties
hold for the other languages, with the exception of TROLL and TTr In these
languages, the execution of a program is represented as a sequence of interme-
diate states (sequence-based control specification). As explained in Section 2.1,
this has important consequences for the representation of the reasoning process
in a KBS.

A final point concerns the treatment of non-terminating processes. Such non-
terminating processes might occur in the specification of knowledge-based sys-
tems for process control and monitoring. TROLL, LCM and ASM can all deal
with such non-terminating processes. Although it is of course possible to specify
non-terminating processes in (P)DDL and T ~ , it is not possible to derive any
useful properties of such programs because in (P)DDL and TTr non-terminating
processes have trivial (empty) semantics.

Ref inement . It is commonly accepted in Software Engineering that a desirable
feature of any specification language is to have the possibility of refinement.
By this we mean the ability to specify program components in terms of their
external properties (i.e., a functional specification, sometimes called a "black
box" specification), and only later unfold this black box specification into more
detailed components, and so on recursively.

In the context of specification languages, a necessary condition for the pos-
sibility of refining is the presence of names for actions: one needs to be able to
name a transition which is atomic on the current level (i.e., a "black box" speci-
fication), but which is perhaps a complex of transitions on a finer level. Without
such names for actions, one cannot give an abstract characterization of transi-
tions. Of course, such an abstract characterization (in terms of preconditions,

Specification of Dynamics 63

postconditions etc.) should be possible in the framework to allow refinement
later on.

It is not immediately clear how the languages discussed above behave in this
respect. DDL clearly does not allow refinement (names referring to composed
actions simply do not exist in DDL), while LCM does (at least, if we choose
the signature of the process algebra sort rich enough). The external functions
of ASM give us the means to make black box specifications. However, it is not
possible within the ASM framework to specify the behaviour of such black boxes,
which by implication also precludes the possibility of proving within the ASM
framework that a given implementation (refinement) of a black box satisfies the
specifications. The designers of the ASM framework prefer to use general math-
ematical techniques for treating refinement. The simple mathematical structure
of the ASM framework makes this feasible.

Although the transaction base from 7"7s resembles the external functions of
ASM, 7"7s is stronger than ASM in this respect: the transaction base can be
used to model black-box transitions, but unlike the external functions in ASM
the transitions of T7s can be specified by means of pre- and post-conditions
within 7-7s itself. Furthermore, it is possible to later provide an implementation
of a transaction in 7-7s and to prove that this implementation is indeed a correct
refinement of the functional specification.

In TROLL it seems that there is almost the possibility to say that one specifi-
cation refines the other. TROLL enables both constraining specification (based on
atomic transition), but also constructive specification of composed transitions (in
terms of more detailed atomic transitions). What is lacking is syntactic support
to relate such a constructive specification to an atomic transition, so it cannot
be expressed that this more detailed specification is a refinement of the atomic
transition. Semantical considerations of the relationship between transactions
and their refinement are investigated in detail in [5].

Finally, desirable as the presence of names for composed actions may be, there
is a price to be paid for having the option of black box specifications. A black
box specification of a transition usually only states which things change, with
the assumption that all other things remain the same. It should not be necessary
for the user to explicitly specify what is left unaffected by the transition. The
problem of how to avoid statements of what remains the same (the frame axioms)
has proven to be very difficult. This so-called frame problem is the price that
has to be paid.

In languages with only pre-defined transactions (like in DDL), the designers
of the language have specified the required frame-axioms. For languages with
user-defined atomic transactions there is no way out for the user but to write
down the frame axioms explicitly (although they can sometimes be generated
automatically). For the purposes of execution, the frame problem can be cir-
cumvented by an implementation of the primitive transactions outside the logic.
However, the languages we are dealing with are meant to specify systems, and the
price for such externally implemented primitive transactions has to be paid at

64 Pascal van Eck et al.

verification time. For verification purposes, we would want the primitive trans-
actions to be specified in the logic, which then brings back the frame problem.

Proofs . Since the languages discussed in this paper are intended as tools to
formally specify software systems, we would expect them to be equipped with
proof systems which enables us to prove that a specification exhibits certain
properties. Of the languages discussed, only TT/ and (P)DDL pay extensive
attention to a proof system. TROLL has to rely on its translation to OSL in
order to use the proof system of OSL, while ASM relies on general mathematical
reasoning, without a formal proof system. LCM has a proof system based on
equational logic.

Syntactic Variety. There is a large variety in the amount of syntactic distinc-
tions which are made by the various languages. On the one hand languages like
TROLL and LCM provide a rich variety of syntactic distinctions, presumably to
improve ease of use by human users, while on the other hand approaches like
(P)DDL, ASM and TT~ provide a much more terse and uniform syntax. This
issue is related with the different goals which the different proposals are aiming
at. Syntactically rich languages like TROLL and LCM, as well as ASM nowadays
aim at being a full blown specification language, while formalisms like ASM, TT~
and (P)DDL aim instead at providing a framework (a logical framework, in the
case of TT~) that should be used as the foundation of a specification, rather then
being a specification language themselves.

S ta tes as Histories. In three of the languages discussed in this paper (ASM,
LCM and (P)DDL), a composed transition is interpreted as an ordered pair of
states (begin state and end state). However, for the types of properties that we
might want to verify of our systems using the logics discussed in this paper, this
interpretation of composed transitions is not sufficient. For many purposes an
interpretation as a sequence of (intermediate) states is required. For example,
many safety critical applications require proofs of properties such as "action
is never done", or "c~ is never done twice" or "~ is never done twice in a row",
or "action a is never followed by action/~". To prove such properties, we must
consider sequences of intermediate states, and not just an ordered pair of begin-
and end-state of a program. In TT~ and TROLL this is possible using formulae
that constrain the set of possible sequences.

It might, however, be possible to overcome the apparent shortcoming of the
interpretation of composed transitions as ordered pairs of states suggested here.
States can be seen as an abstraction mechanism that define equivalence classes
of sequences of states, or histories. For example, in (P)DDL, any two histories
that have the same begin- and end-state are equivalent. Other possibilities are
to regard two histories as equivalent when they are composed of the same sets
of states, but perhaps in a different order, or only to regard them as equiv-
alent when they are identical sequences of states (this is the option taken in

Specification of Dynamics 65

TTs For example, if we are interested in the values that a particular variable v
takes during the course of a computation (as is often the case in safety-critical
applications):

- if we are only interested in the final value of v, then all histories can be
identified with their final state;

- if we are interested in all intermediate values of v, but not in their sequence,
then histories can be treated as sets of states

- if we are interested in the sequence of values for v, then histories must be
treated as sequences of states

It is an open point whether the grain size of such distinctions between different
histories should be a fixed aspect of the logic (with (P)DDL and TT~ representing
opposite choices in this respect), or whether such a grain size should be definable
in the language of the logic, for instance by expressing equality axioms among
histories.

Transi t ions as Semant ica l Concepts . In most languages, transitions are
available in the language (e.g. a procedure in (P)DDL corresponds to a transition,
as does an event in LCM), but semantically they are derivates of states. In such
languages, a transition is an ordered pair of states, and no semantically separate
category exists for transitions per se. Furthermore, transitions do not occur in
the languages as first-class objects over which we can express predicates.

In the words of Gabbay [12, Ch.4]: "The modelling given so far may eventu-
ally prove not radical enough. After all, if logical dynamics is of equal importance
to logical statics, then the two ought to be accorded equal ontological status.
This means that transitions would come to be viewed, not as ordered pairs of
states, but rather as independent basic objects in their own right."

Again, it remains an open and very interesting question how approaches
in which transitions are first-class objects relate to the approaches discussed
in this paper, in particular with respect to the representation of histories and
equivalence of histories.

5 . 3 F i n a l R e m a r k s

The original motivation of the research reported in this paper was the lack of
consensus among KBS specification frameworks concerning the specification of
control for KBSs. We had hoped that neighboring areas might have solved this
problem, or at least have established more stable notions than what had been
achieved in the KBS area.

Our investigations among non-KBS specification languages have revealed a
number of constructions that could certainly be of interest for the KBS speci-
fication language community. Examples of these are the notions of constructive
and constraining control specification (and in particular the idea to combine
both of these in a single language), the idea to define transitions in terms of
sequences of intermediate states instead of just the initial and terminal state of

66 Pascal van Eck et al.

the transition, and the rich variety of semantic characterizations of the notion of
state. Furthermore, these constructions are not just initial ideas, but have often
reached a state of formal and conceptual matur i ty which make them ready to
be used by other fields such as the specification of KBSs.

However, this wide variety of well worked out proposals, is at the same time a
sign of much unfinished work. As in the field of KBS specification languages, the
neighboring fields have not yet reached any sort of consensus on the specification
of control, neither in the form of a single ideal approach, nor in the form of
guidelines on when to use which type of specification.

Acknowledgments

We are grateful to E. BSrger, M. Kifer, G. Saake and R. Wieringa for their
comments on an earlier version of this paper.

References

1. J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstrac-
tion. Theoretical Computer Science, 37:77-121, 1985.

2. T. Bolognesi and E. Brinksma. Introduction to the ISO specification language
LOTOS. Computer Networks and ISDN Systems, 14, 1987.

3. A.J. Bonner and M. Kifer. Transaction logic programming. In Proceedings of the
Tenth International Conference on Logic Programming (ICLP), pages 257-279,
Budapest, Hungary, 1993. MIT Press.

4. F. Brazier, P. van Langen, J. Treur, N. Wijngaards, and M. Willems. Modelling
an elevator design task in DESIRE: the VT example. International Journal of
Human-Computer Studies, Special Issue on Sisyphus-VT (A. Th. Schreiber and
W.P. Birmingham, Eds.), 44(3-4):469-520, 1996.

5. G. Denker, J. Ramos, C. Caleiro, and A. Sernadas. A linear temporal logic approach
to objects with transactions. In Michael Johnson, editor, Algebraic Methodology
and Software Technology: 6th International Conference, AMAST '97, volume 1349
of Lecture Notes in Computer Science, pages 170-184. Springer-Verlag, 1997.

6. P. van Eck, J. Engelfriet, D. Fensel, F. van Harmelen, Y. Venema, and M. Witlems.
A survey of languages for specifying dynamics: A knowledge engineering perspec-
tive. Technical Report IR-447, Vrije Universiteit Amsterdam, Faculty of Mathe-
matics and Computer Science, 1998.

7. D. Fensel. Formal specification languages in knowledge and software engineering.
The Knowledge Engineering Review, 10(4), 1995.

8. D. Fensel. The Knowledge Acquisition and Representation Language KARL.
Kluwer Academic Publ., Boston, 1995.

9. D. Fensel and R. Groenboom. MLPM: Defing a semantics and axiomatization for
specifying the reasoning process of knowledge-based systems. In Proceedings of the
12th European Conference on Artificial Intelligence (ECAI-96), Budapest, August
1996.
D. Fensel and R. Straatman. The essense of problem-solving-methods: Making
assumptions for gaining efficiency. Journal of Human Computer Studies, 1998. (to
appear).

10.

Specification of Dynamics 67

11. D. Fensel and F. van Harmelen. A comparison of languages which operationalize
and formalize KADS models of expertise. The Knowledge Engineering Review,
9(2), 1994.

12. D. Gabbay. What is a Logical System?, volume 4 of Studies in Logic and Compu-
tation. Oxford University Clarendon Press, 1994.

13. Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. BSrger, editor, Specifica-
tion and Validation Methods. Oxford University Press, 1994.

14. D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, Vol. II: extensions of Classical Logic, pages 497-604. Reidel,
Dordrecht, The Netherlands, 1984.

15. F. van Harmelen and J. Balder. (ML)~: A formal language for KADS conceptual
models. Knowledge Acquisition, 4(1), 1992.

16. C. B. Jones. Systematic Software Development Using VDM. Prentice Hall, 2nd
edition, 1990.

17. R. Jungclaus, G. Saake, Th. Hartmann, and C. Sernadas. TROLL--a language
for object-oriented specification of information systems. ACM Transactions on
Information Systems, 14(2):175-211, April 1996.

18. F. Kroeger. Temporal Logic of Programs. Springer-Verlag, Berlin, 1987.
19. I. van Langevelde, A. Philipsen, and J. Treur. Formal specification of composi-

tional architectures. In Proceedings of the l Oth European Conference on Artificial
Intelligence (ECAI-92), Vienna, Austria, August 1992.

20. M. Linster (ed.). Special issue on the Sisyphus 91/92 models. International Journal
of Man-Machine Studies 40:2, 1994.

21. R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, 1980.

22. R. Milner. Communication and Concurrency. Prentice Hall Int., New York, 1989.
23. B. Nebel. Artificial intelligence: A computational perspective. In G. Brewka,

editor, Principals of Knowledge Representation, Studies in Logic, Language and
Information, pages 237-266. CSLI Publications, 1996.

24. C. Pierret-Golbreich and X. Talon. TFL: An algebraic language to specify the dy-
namic behaviour of knowledge-based systems. The Knowledge Engineering Review,
11(3):253-280, 1996.

25. K. Poeck, D. Fensel, D. Landes, and J. Angele. Combining KARL and CRLM
for designing vertical transportation systems. International Journal of Human-
Computer Studies, Special Issue on Sisyphus-VT (A. Th. Schreiber and W.P. Birm-
ingham, Eds.), 44(3-4):435-467, 1996.

26. A. Sernadas, C. Sernadas, and J.F. Costa. Object specification logic. Journal of
Logic and Computation, 5(5):603-630, October 1995.

27. J .W. Spee and L. in 't Veld. The semantics of KBsSF: A language for KBS design.
Knowledge Acquisition, 6, 1994.

28. J. M. Spivey. The Z Notation. A Reference Manual. Prentice Hall, New York, 2nd
edition edition, 1992.

29. P. Spruit, R. Wieringa, and J.-J. Meyer. Dynamic database logic: the first-order
case. In V.W. Lipeck and B. Thalheim, editors, Fourth International Workshop
on Foundations of Models and Languages for Data and Objects, pages 102-120.
Springer-Verlag, 1993.

30. P. Spruit, R. Wieringa, and J.-J. Meyer. Axiomatization, declarative semantics and
operational semantics of passive and active updates in logic databases. Journal of
Logic and Computation, 5(1), 1995.

31. J. Treur and Th. Wetter, editors. Formal Specification of Complex Reasoning
Systems. Ellis Horwood, New York, 1993.

68 Pascal van Eck et al.

32. R. J. Wieringa. LCM and MCM: Specification of a control system using dynamic
logic and process algebra. In C. Lewerentz and T. Lindner, editors, Formal Devel-
opment of Reactive Systems: Case Study Production Cell, volume 891 of Lecture
Notes Computer Science, pages 333-355. Springer-Verlag, 1995.

33. M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of The-
oretical Computer Science. Elsevier Science Publishers, 1990.

