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Abstrac t .  During the last years, a number of formal specification lan- 
guages for knowledge-based systems have been developed. Character- 
istic for knowledge-based systems are a complex knowledge base and 
an inference engine which uses this knowledge to solve a given prob- 
lem. Specification languages for knowledge-based systems have to cover 
both aspects: they have to provide means to specify a complex and large 
amount of knowledge and they have to provide means to specify the 
dynamic reasoning behaviour of a knowledge-based system. This paper 
will focus on the second aspect, which is an issue considered to be un- 
solved. For this purpose, we have surveyed existing approaches in related 
areas of research. We have taken approaches for the specification of infor- 
mation systems (i.e., Language for Conceptual Modelling and TROLL), 
approaches for the specification of database updates and the dynamics 
of logic programs (Transaction Logic and Dynamic Database Logic), and 
the approach of Abstract State Machines. 

1 Introduct ion 

Over the last years a number of formal specification languages have been de- 
veloped for describing knowledge-based systems (KBSs). Examples are DESIRE 
[19]; KARL [8]; K B s S F  [27];. (ML) 2 [15]; MLPM [9] and TFL [24]. In these 
specification languages one can describe both knowledge about the domain and 
knowledge about how to use this domain-knowledge in order to solve the task 
which is assigned to the system. On the one hand, these languages enable a speci- 
fication which abstracts from implementation details: they are not programming 
languages. On the other hand, they enable a detailed and precise specification 

B. Freitag et al. (Eds.): Transactions and Change in Logic DBs, LNCS 1472, pp. 37-68, 1998. 
(~) Springer-Verlag Berlin Heidelberg 1998 



38 Pascal van Eck et al. 

of a KBS at a level of precision which is beyond the scope of specifications in 
natural languages. Surveys on these languages can be found in [31,11,7]. 1 

A characteristic property of these specification languages results from the 
fact that they do not aim at a purely functional specification. In general, most 
problems tackled with KBSs are inherently complex and intractable (see e.g. 
[23]). A specification has to describe not just a realization of the functionality, 
but one which takes into account the constraints of the reasoning process and the 
complexity of the task. The constraints have to do with the fact that one does 
not want to achieve the functionality in theory but rather in practice. In fact, a 
large part of expert knowledge is concerned exactly with efficient reasoning given 
these constraints: it is knowledge about how to achieve the desired functionality. 
Therefore, specification languages for KBSs also have to specify control over the 
use of the knowledge during the reasoning process. A language must therefore 
combine non-functional and functional specification techniques: on the one hand, 
it must be possible to express algorithmic control over the execution of substeps. 
On the other hand, it must be possible to characterize substeps only functionally 
without making commitments to their algorithmic realization. 

The languages mentioned are an important step in the direction of providing 
means for specifying the reasoning of KBSs. Still, there is a number of open 
questions in this area. The most important problem is the specification of the 
dynamic behaviour of a reasoning system. The specification of knowledge about 
the domain seems to be well-understood. Most approaches use some variant 
of first-order logic to describe this knowledge. Proof systems exist which can 
be used for verification and validation. The central question is how to formu- 
late knowledge about how to use this knowledge in order to solve a task (the 
dynamics of the system). It is well-agreed that this knowledge should be de- 
scribed in a declarative fashion (i.e. not by writing a separate program in a 
conventional programming language for every different task). At the moment, 
the afore-mentioned languages use a number of formalisms to describe the dy- 
namics of a KBS: DESIRE uses a meta-logic to specify control of inferences of 
the object logic, (ML) 2 and MLPM apply dynamic logic ([14]), KARL integrates 
ideas of logic programming with dynamic logic, and TFL uses process algebra 
in the style of [1]. With the exception of TFL, the semantics of these languages 
are based on states and transitions between these states. (ML) 2, MLPM and 
KARL use dynamic logic Kripke style models, and DESIRE uses temporal logic 
to represent a reasoning process as a linear sequence of states. On the whole, 
however, these semantics are not worked out in precise detail, and it is unclear 
whether these formalisms provide apt description methods for the dynamics of 
KBSs. Another shortcoming of most approaches is that they do not provide an 
explicit proof system for supporting (semi-) automatic proofs for verification. 

These shortcomings motivate our effort to investigate specification forma- 
lisms from related research areas to see whether they can provide insight in the 
specification of (in particular the dynamic part of) KBSs. We have analyzed 
related work in information system development, databases and software engi- 

1 See also ftp://swi.psy.uva.nl/pub/keml/keml.html at the World Wide Web. 
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neering. Approaches have been selected that enable the user to specify control 
and dynamics. The approaches we have chosen are: 

- Language for Conceptual Modelling (LCM, [32]) and TROLL ([17]) as exam- 
pies from the information systems area. Both languages provide means to 
express the dynamics of complex systems. 

- Transaction Logic ([3]), (Propositional) Dynamic Database Logic (PDDL, 
[30] and DDL [29]) as examples for database update languages provide means 
to express dynamic changes of databases. 

- Abstract State Machines ([13]) from the theoretical computer science and 
software engineering areas. It offers a framework in which changes between 
(complex) states can be specified. 

The informed reader probably misses some well-established specification ap- 
proaches from software engineering: algebraic specification techniques (see e.g. 
[33]), which provide means for a functional specification of a system, and model- 
based approaches like Z [28] and the Vienna Development Method - Standard 
Language (~VDM-SL) [16], which describe a system in terms of states and oper- 
ations working on these states. Two main reasons guided our selection process. 
First, we have looked for novel approaches on specifying the dynamic reasoning 
process of a system. Traditional algebraic techniques are means for a functional 
specification of a software system that abstracts from the way the functionality 
is achieved. However, we are precisely concerned with how a KBS performs its 
inference process. Although approaches like VDM and Z incorporate the notion 
of a state in their specification approaches, their main goal is a specification 
of the functionality and their means to specify control over state transitions is 
rather limited. In Z, only sequence can be expressed and in VDM procedural 
control over state transitions is a language element introduced during the design 
phase of a system. We were also not so much looking for full-fledged specification 
approaches but we were searching for extensions of logical languages adapted for 
the purpose of specifying dynamics. A second and more practical reason is the 
circumstance that a comparison with abstract data types, VDM, Z and lan- 
guages for KBSs is already provided in [7]. Finally, one may miss specification 
approaches like LOTOS [2] that are designed for the specification of interactive, 
distributed and concurrent systems with real-time aspects. Because most devel- 
opment methods and specification languages for KBSs (a prominent exception is 
DESIRE) assume one monolithic sequential reasoner, such an approach is out- 
side the scope of the current specification concerns for KBSs. However, future 
work on distributed problem solving for KBSs may raise the necessity for such 
a comparison. 

The paper is organized as follows. First, in Section 2 we introduce two di- 
mensions we distinguish to structure our analysis. In Section 3, we introduce the 
different approaches we have studied. A comparison based on an example worked 
out in all approaches has been carried out. Section 4 sketches this example and 
presents the most important issues of the formalization of the example in all 
approaches. The interested reader is referred to the long version [6] for a de- 
tailed presentation of the example and the formalization of it in all approaches. 
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Section 5 provides a short comparison between the formalisms according to our 
dimensions of analysis, and conclusions. 

2 The  Two Dimens ions  of  Our Analys is  

In the analysis of the different frameworks, it will be convenient to distinguish 
two dimensions (see Fig. 1). On the horizontal axis, we list a number of concepts 
which should be represented in a framework. On the vertical axis, we list a 
number of aspects to be looked at for each of the concepts. We will explain these 
dimensions in some more detail. 

The behaviour of a KBS can, from an abstract point of view, be seen as fol- 
lows. It starts in some initial state, and by repeatedly applying some inferences, 
it goes through a sequence of states, and may finally arrive at a terminal state. 
So, the first element in a specification of a KBS concerns these states. What 
are states and how are they described in the various approaches? Second, we 
look at the elementary transitions that take a KBS from one state to the next. 
Third, it should be possible to express control over a sequence of such elementary 
transitions by composing them to form composed transitions. This defines the 
dynamic behaviour of a KBS. We will look at the possibility of specifying how 
the reasoning process achieves its results. This is called the internal specification. 
The description of what the reasoning process has to derive is called the external 
specification. One must be able to relate the internal specification of a reasoning 
process with the goal that should be achieved by it. This introduces two require- 
ments: modelling primitives are required that describe the desired functionality 
of a KBS (i.e., its external specification) and a proof system must be provided 
that enables to relate the internal and external descriptions of a KBS. 

The second dimension of our analysis concerns three aspects of each of the 
concepts described above. First of all, we look at the language of each of the 
formalisms (the syntax). Which modelling primitives does the language offer to 
describe a state, elementary transitions, etc? Second, we examine the semantics 
of the language. A formal semantics serves two purposes: it enables the definition 
of a precise meaning of language expressions and it enables proofs of statements 
over language expressions. These proofs can be formalized and semi-automatic 
proof support can be provided if a proof system based on a formal semantics has 
been developed. Therefore, in the third place we look at such proof systems and 
operationalization. Operationalization of the logic is required for prototyping, 
which is based on operational semantics. Prototyping or partial evaluation could 
provide restricted but still very useful support for the validation of specifications. 

In Section 2.1 and Section 2.2, the concepts and aspects introduced here are 
illustrated in more detail. 

2.1 The Three Concepts  Involved in the Reasoning of  KBSs 

As mentioned in the previous subsection, we distinguish two styles for the spec- 
ification of composed transitions: external and internal. The former specifies a 
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Fig. 1. The two dimensions of our analysis 

system as a black box in terms of its externally visible behaviour. It defines what 
should be provided by the system. The latter specifies a system in terms of its 
internal structure and the interaction between parts of its internal structure: 
it describes how the system reaches its goals. Both description styles appear in 
specification languages for KBSs: external descriptions may appear at the lowest 
and at the highest level of specification of a KBS, while internal specifications 
relate the description at the lowest and highest levels. 

The elementary inferences of a KBS as well as its overall functionality should 
be describable in an external style, as the internal details of an elementary in- 
ference are regarded as implementational aspects. (A specification should not 
enforce any commitments to its algorithmic realization.) The overall functional- 
ity of a KBS, that is, the goals it can reach, should be describable independent 
from the way they are achieved. Actually, the equivalence of the functional spec- 
ification of the goals (or task) and the specification of the reasoning process of 
the KBS is a proof obligation for the verification of the KBS. 

Internal specification techniques are necessary to express the dynamic rea- 
soning process of a KBS. A complex reasoning task may be decomposed into 
less complex inferences and control is defined that guides the interaction of the 
elementary inferences in achieving the specified reasoning goals. This also allows 
successive refinement. A complex task should be hierarchically decomposed into 
(easier) subtasks. These subtasks are specified externally and treated as elemen- 
tary inferences. If a subtask defines a computationally hard problem, it can again 
be decomposed into a number of subtasks, along with an internal specification 
of how and when to invoke these subtasks. 

In the following we discuss these different concepts of a specification in more 
detail. 

S t a t e s .  With regard to the representation of the states of the reasoning process 
one can distinguish (1) whether it is possible to specify a state at all; (2) whether 
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a state can be structured (i.e. decomposed into a number of local states) and (3) 
how an individual state is represented; 

Not each specification approach in software or knowledge engineering pro- 
vides the explicit notion of a state (either global or local). An alternative point 
of view would be an event-based philosophy useful to specify parallel processes 
(compare [22]). TFL uses processes as elementary modelling primitives that are 
further characterized by abstract data types in the style of process algebra. No 
explicit representation of the reasoning state is provided. The other approaches 
from knowledge engineering agree on providing 2 the notion of a state but dif- 
fer significantly in the way they model it. (ML) , MLCM and KARL represent 
a global state. Still, it may be decomposed in what is called knowledge roles 
or stores. DESIRE provides decomposition of a global state of the reasoner into 
local states of different reasoning modules (subcomponents of the entire system). 

Semantically, the main descriptions of a state are: as a propositional valuation 
(truth assignments to basic propositions, as used in the propositional variants of 
dynamic logic and temporal logic ([18])), as an assignment to program variables 
(as in the first-order variant of Dynamic Logic), as an algebra (we will see that 
in Abstract State Machines), or as a full-fledged first-order structure (as in the 
first-order variants of temporal logic). 

E l e m e n t a r y  Transi t ions.  Elementary transitions should be describable with- 
out enforcing any commitments to their algorithmic realization. A pure external 
definition is required, as a specification should abstract from implementational 
aspects. Still, 'elementary' does not imply 'simple'. An elementary transition can 
describe a complex inference step, but it is a modelling decision that its inter- 
nal details should not be represented. An important criterion for specification 
approaches for KBSs is therefore the granularity of the elementary transitions 
they provide. 

Composed  Transi t ions.  One can distinguish non-constructive and construc- 
tive manners to specify control over state transitions. A non-constructive or 
constraining specification of control defines constraints obeyed by legal control 
flows. That is, they exclude undesired control flows but do not directly define 
actual ones. Examples for such a specification can be found in the domain of 
information system specifications, e.g., TT~ and TROLL. Constructive specifica- 
tions of control flow define directly the actual control flow of a system and each 
control flow which is not defined is not possible. In general, there is no clear cut- 
ting line between both approaches, as constructive definitions of control could 
allow non-determinism which again leads to several possibilities for the actual 
control. 

Another distinction that can be made is between sequence-based and step- 
based control. In sequence-based control, the control is defined over entire se- 
quences of states. That is, a constraint or constructive definition may refer to 
states anywhere in a sequence. In a step-based control definition, only the begin 
state and the end state of a composed transition are described. For example, in 
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Dynamic Logic, a program is represented by a binary relation between initial 
and terminal states. There is no explicit representation of intermediate states of 
the program execution. Other approaches represent the execution of a program 
by a sequence of states (for example, approaches based on temporal logic). It 
begins with the initial state and after a sequence of intermediate states, the final 
state is reached, if there is a final state (a program may also run forever, as in 
process monitoring systems). 

For the representation of the reasoning process of KBSs this distinction has 
two important consequences: (1) in a state-pair oriented representation, a con- 
trol decision can only be made on the basis of the actual state. A state-sequence 
oriented representation provides the history of the reasoning process. Not only 
the current state but also the reasoning process that leads to this state is rep- 
resented. Therefore, strategic reasoning on the basis of this history information 
becomes possible. For example, a problem-solving process that leads to a dead- 
end can reflect on the reasoning sequence that led to it and can modify earlier 
control decisions (by backtracking); (2) with a representation as a sequence of 
states it becomes possible to define dynamic constraints that do not only re- 
strict valid initial and final states but that restrict also the valid intermediate 
states. Such constraints are often used in specifications of information systems 
or database systems. 

2.2 The  Three  A s p e c t s  of  a Specif icat ion of  the  R e a s o n i n g  of  K B S s  

Perpendicular to the three specification concepts are the three aspects syntax, 
semantics and proof systems/operationalization. For each of the concepts, these 
three aspects together determine how and to which extent a concept can be used 
in a specification: they constitute the practical materialization of the concepts 
state and (elementary and composed) transition. 

Syntax .  Each of the three concepts of a specification is represented by a part 
of the syntax of a specification framework. A spectrum of flavours of syntax can 
be distinguished. At one end of this spectrum, specification languages with an 
extensive syntax can be found, resembling (conventional) programming language 
syntax. Usually, such a language is specified by EBNF grammar rules, and op- 
erators and other syntactic elements are represented by keywords easily handled 
by software tools that support the specification process. At the other end of the 
spectrum, languages can be given by defining a notion of well-formed formulae 
composed of logical operators and extra-logical symbols, possibly using one or 
two grammar rules. 

Semant ics .  Semantics of specification elements can be viewed as a function that 
interprets well-formed formulae or syntactic expressions in some semantical do- 
main, usually a mathematical structure. To support rigid proofs of specification 
properties, such a semantics should be formal. The semantics should be intuitive 
and relatively easy to understand so users are able to precisely comprehend what 
a specification means. 
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P r o o f  S y s t e m s  and Opera t iona l iza t ion .  One of the main reasons for devel- 
oping formal specifications of a system is to be able to rigidly prove properties 
of the system specified. To support such proofs, specification frameworks should 
include a formal proof system, which precisely specifies which properties can be 
derived from a given specification. At the very least, such a proof system should 
be sound: it must be impossible to derive statements about properties of a spec- 
ification that are false. Second, a proof system should ideally be complete, which 
means that it is powerful enough to derive all properties that are true. 

Formal specification frameworks can enable the automatic development of 
prototypes of the system being specified. Such prototypes can then be evaluated 
to assess soundness and completeness of the "specification with respect to the 
intended functionality of the system being specified. The 'operationalization' of 
a specification framework is meant to refer to the possibilities and techniques 
for such automatic prototype generation. 

3 Languages 

In this section, we will give a very brief description of all of the frameworks we 
have studied. The reader interested in more detail can either consult the original 
works, or read the longer version of this paper [6]. In the longer version, we 
describe an example of a knowledge-based system which has a non-trivial control 
of reasoning. This example was taken from the Sisyphus project ([20]), which 
was an extensive comparative exercise in the KBS community. This example has 
been (partly) specified in all frameworks, in order to make a realistic comparison 
between the languages. A specification of the top-level of the system is given, 
together with a refined version of one of the parts of the system (to test the 
possibility of external and internal specifications). The results in this paper are 
partly based on our experience with the example, and again, the interested reader 
should consult the longer version. We will now list and describe the frameworks 
studied. 

D y n a m i c  D a t a b a s e  Logic ( ( P ) D D L )  

PDDL is a propositional logic for describing state and state change in deductive 
databases. It is based on Dynamic Logic, with both passive and active updates. 
In a passive update 2:p or :Dp, a single proposition p is inserted into or deleted 
from the database. In active updates 27/~p or :Dgp, after insertion or deletion 
of p, the database is closed under the rules of the (definite) logic program H, 
leading to further insert or delete operations on the database. The propositions 
in a database are divided into base-predicates and derived predicates. The base- 
predicates can be directly inserted into or deleted from the database. The value 
of the derived predicates follows from the rules of the given logic program. These 
predicates cannot occur as arguments to update operations. Complex transitions 
can be formed from these elementary transitions using the Dynamic Logic oper- 
ators for sequence, choice, iteration and test. 
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The first-order variant (DDL) allows conditional (bulk) insertion and dele- 
tion. Conditional insertion is written &{xl , . . .  xn}27p(tl,.., tn) where r which 
means that p(t l , . . . ,  tn) is set to true for all values of x l , . . ,  xn that make r true, 
and similarly for conditional deletion. Complex transitions are again formed from 
primitive transitions by sequence, test, iteration and choice, plus an additional 
operator called conditional choice: +(xl , . . .  ,xn)a where r executes (~ for one 
of the possible value assignments to (Xl , . . . ,  xn) which makes r true. 

The semantics are like those of Dynamic Logic (Kripke models with relations 
for the programs), with special interpretations for the operators (the 27 oper- 
ator should cause insertion for example). A proof system and an operational 
semantics is provided. The proof systems of DDL and PDDL are only complete 
for full Kripke structures (i.e., structures that contain a world for all possible 
valuations). 

Transac t ion  Logic (T'/~) 

:TT~ , like (P)DDL, is also a logic of state and state change in databases. In 
contrast to DDL, the atomic actions are a parameter of the logic: they are to be 
described in a transition oracle which sanctions the transition from a state to 
another for each elementary transition. The only dynamic operator is sequence 
(| A formula like r 1 7 4 1 6 2  intuitively means that first r must hold, and after that 
r must hold. Other dynamic operators are defined in terms of this operator. 
An example of such an operator, which will be used in the example, is ~ .  The 
formula r ~ r means that whenever r is true, r must be true immediately 
thereafter. Formally r ~ r - 7(r | 7r  

Semantically, formulae are interpreted over sequences of database states, 
called paths (in contrast to DDL, where the meaning of a program is a binary 
relation on states). Atomic statements representing updates and database facts 
are evaluated by the transition oracle, respectively the data oracle. The usual 
first-order connectives and quantifiers have their standard interpretation. A for~ 
mula r | r is true on a path if that path can be split into two paths such that r 
is true on the first, and r is true on the second. The behaviour of the database is 
described by formulae which constrain the allowed sequences of states. Together, 
these formulae are called a program. Often, they are in the form of Prolog-like 
rules. Entailment allows the deduction of properties of the program, given an 
initial state. These properties can describe the final state of the path (the state 
the database is in after execution of the program in the initial state), but are 
not limited to this: one can express properties of entire paths (starting at the 
initial state). 

A proof system for a Horn-like fragment of the language is provided. By 
placing further restrictions on the proofs in this system, a form of executional 
entailment is obtained. Proving a query corresponds to the execution of the 
program. 
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Abstract State Machines (ASM) 

The Abstract State Machine (ASM, previously called Evolving Algebras) ap- 
proach originally was an attempt to provide operational semantics to programs 
and programming languages by improving on Turing's Thesis (Turing Machines 
are too low-level). With ASMs, it is possible to specify algorithms at any level 
of abstraction, and use successive refinement to investigate properties of the 
algorithm (like correctness) at any of these levels. 

The basic concept of ASMs is simple: an ASM specification consists of rules 
for updating algebras. An algebra consists of a set together with functions on 
that set. The rules are (basically) of the form i f  r then  R, where r is a 
condition on algebras, and R is a set of updates of the form f ( t )  :-- s. The 
intuitive meaning is that if the current algebra satisfies r then it can be updated 
to a new algebra, where the value of the function f in the argument t is s (and 
the other updates in R have been performed as well). A run of an ASM is a 
sequence of algebras generated by repeatedly firing all the rules in the current 
algebra. 

There are many extensions of this simple form of rules, including bulk up- 
dates and indeterministic choice. However, there are no further constructs for 
determining the flow of control (dynamics), like loops or temporal operators. It 
is possible to use (nullary) functions as control variables. External functions are 
functions in the algebra which can not be updated by the ASM (but can be 
'read') but which can change during a run. These functions are used to model 
for example the input to an ASM. 

The ASM approach does not come equipped with a (fixed) proof system. 
Properties of evolving algebras can be proved informally, using standard mathe- 
matical techniques. Mathematical proofs can of course always be verified (should 
one desire) by any proof checker for first-order logic. Operationalization of ASMs 
is relatively straightforward. Basically, one just needs a mechanism that contin- 
ually fires the applicable rules. 

T ro l l /OSL 

TROLL is a language for the specification of object-oriented information systems. 
It provides a very rich syntax, aimed at a user-friendly way of specification. 
The basic structuring mechanism in TROLL is the template, which is a generic 
description of possible objects in terms of attributes and events of these objects. 
A template is not the same as a class. A class is regarded as a collection of objects 
described by the same template together with an identification mechanism for 
instances. For the specification of attributes and events, four basic languages are 
defined: a data language, consisting of terms in a sorted first-order logic, a state 
formulae language, which uses the terms from the data language, a temporal 
language for describing temporal constraints over state formulae and a pattern 
language for ordering events using process algebra operators. The state formulae 
language contains, for each event term e from the data language, a predicate 
occurs(e), which is true in a state where e is about to happen. 
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A template thus defines an object's local signature (consisting of the at- 
tributes) and local life cycle (admissible behaviour in terms of commitments, 
constraints, obligations and event effects). A TROLL specification consists of a 
number of such definitions of local object aspects together with a number of 
relationship definitions at a global level, such as specialization and interactions. 

The semantics of TROLL are obtained via a translation into Object Specifi- 
cation Logic (OSL, [26]), a temporal logic for reasoning about objects. Also in 
OSL, there is a local logic for reasoning about local object aspects and there 
is a global logic (incorporating the local logic) for reasoning about object inter- 
actions. OSL is equipped with a proof system, which enables reasoning about 
TROLL specifications by first translating them into OSL. An execution mecha- 
nism is provided for a fragment of TROLL (lacking the temporal language), called 
TROLLlight. 

Language for Conceptual Modeling (LCM) 
LCM is developed as a tool for the conceptual analysis of object-oriented data- 
bases. The aim is to develop a theory of dynamic objects, and to provide a logic 
for specifying such objects and for reasoning about them. The basic language of 
LCM is equational logic (for specifying abstract data types). 

The signature of the equational language has separate parts for value types, 
classes and events. The event-signature must contain at least one sort EVENTS 
referring to actions that can be performed on states. The particular set of oper- 
ations for this signature is not fixed, but one should have some kind of process 
algebra in mind, like ACP [1] or CCS [21]. There is one minimum condition on 
the event-signature, namely that the sort EVENTS has a binary communica- 
tion operator. This communication operator can be used to indicate which local 
events (pertaining to one object only) may be composed to one global event. 

To specify the system's behavior, one may use axioms written in a basic 
version of dynamic logic. The attributes of the class objects can be subject to 
static integrity constraints to be expressed in the form of (conditional) equations 
(the machinery of dynamic logic is not yet used here). Second, effect axioms 
are of the form r ~ [e]r where r and r are finite conjunctions of equations, 
and e is a term of sort EVENTS. The third and last type of axiom is that of a 
precondition axiom. Such an axiom must be of the form (e)true -~ r where e 
and r are as in the previous case. The meaning of this axiom is that if we are in 
a state where there is a possible execution of e that terminates, then currently, 
r is true. 

LCM has a proof system. In order to capture the intended models in which 
the effects of the events is minimal, one needs to write down frame axioms 
explicitly. 

4 The Running Example 

In a longer version of this paper [6], we have applied the various languages to a 
single example, thus facilitating comparison with respect to specification of the 
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dynamics of knowledge-based systems. In particular, we have used the example to 
examine the representation of states of the reasoning process, the representation 
of elementary transitions between states and the representation of control over 
the execution of transitions. A full description of this example would take up too 
much space, so we will give a rather informal description. Also, we will not fully 
specify this example for all formalisms; rather we will focus on the interesting 
parts. 

During the discussion of the example, we use stores to represent the state of 
the reasoning process. A store can be thought of as a placeholder for information 
(or knowledge). A transition takes information from a store, reasons with it, 
and outputs the result to another store. We use tasks to represent complex 
transitions. A procedural language will be used for defining control over the 
execution of transitions. 

Our example consists of solving a design problem (of artifacts, but also for 
example of schedules). The design problem is viewed as a parametric design 
problem, i.e., the design artifact is described by a set of parameters. A design is 
an assignment of values to parameters. If some parameters do not have a value 
yet, the design is called partial. Otherwise it is called complete. The central task 
is to find values for parameters, fulfilling certain constraints on the values of 
the parameters. The user is allowed to give some parameters already a value 
from the start. An informal functional specification of this task, which is called 
Parametric Design and which serves as the running example in this paper, is 
given by the following three requirements: (i) the initial values given by the user 
may not be modified; (ii) the final design must be complete and (iii) in the final 
design, no constraint is violated. 

This functional specification of the task Parametric Design does not provide 
any information on how to implement this task. Moreover, Parametric Design 
is in principle an intractable task, so we will generally want to further refine 
such tasks in the sense that additional, possibly heuristic knowledge is applied 
to arrive at an acceptable and efficient approximation of the original task [10]. 
Therefore, a problem solving method, which provides information on how to 
implement an efficient approximation, has to be chosen. The problem solving 
method chosen in this paper is Propose and Revise. The central idea behind 
Propose and Revise is that repeatedly, values are proposed for parameters, treat- 
ing each parameter in succession. After a value has been proposed, the partial 
design is tested to see whether any constraint is already violated. If not, then a 
vahm for another parameter is proposed and again tested. If a constraint is vio- 
lated, we try to revise the current (partial) design by changing some values for 
parameters that were already assigned a value, in such a way that no constraint 
is violated. After this, we again propose a value for a parameter, until the design 
is complete. According to the Propose and Revise method, the task Parametric 
Design can be decomposed into six subtasks (see Fig. 2): 

- In i t :  this task initializes the design, based on parameter values that are 
possibly given by the user in the Input store. 
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I 
Fig. 2. Knowledge flow diagram of Propose and Revise. Boxes with round cor- 
ners represent tasks, rectangles represent information stores 

- Propose: this task proposes a value for a parameter that has not been as- 
signed a value before. It updates accordingly the current design in the store 
Design. 

- Test: this task checks whether the current design (in the store Design) 
violates any constraints (from the input store Cons t ra in ts )  and outputs 
any such violated constraints to the store Viola t ions .  

- Revise: this task corrects the partial design in Design if the previous task 
stored any violated constraints in Viola t ions .  Revise is not allowed to alter 
any parameter values that were specified by the user in the Input store. 

- Evaluate: this task checks if the current design in the store Design is com- 
plete. 

- Copy: this task copies the design from Design to the Output store. 

It remains to define the control between the subtasks of parametr ic  design. 
One possibility is as follows: 

II~it; 
!repeat 

Propose; 
Test; 
if ( Violations 

until  Evaluate; 
Copy 

0)  t h e n  R e v i s e  e n d i i  
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After the initialization, a loop of Propose, Test, (and if necessary) Revise is 
entered until a complete, correct design has been found. In this case it is copied 
to Output. 

Parametric design based on (variants of) the Propose and Revise method 
has been studied extensively. The interested reader is directed to [4] and [25] for 
complete formal models of parametric design using DESIRE and KARL, respec- 
tively. In the rest of this section, some interesting ideas used in the formalizations 
of the running example in the long version ([6]) are presented. In particular, for 
each approach a formalization of the functional specification (if possible) and of 
the problem solving method will be given. Some conventions and principles are 
used in more than one formalization. Therefore, the presentations of the formal- 
izations are grouped. Moreover, the conventions used in the T ~  formalization of 
Propose and Revise will also be adopted in the other formalizations, whenever 
appropriate. 

4.1 T'R~ and  (P )DDL 

The basic idea of the specifications using TT~ and (P)DDL (actually, DDL is 
used) is to treat all input and output roles of an inference action as predicates. 
Thus, for every store, we will define a predicate: 

iNput(P, y), 
output(P, V), and 

constraint ( C, V1, . . . , Vn ) , 

where P is a parameter name, V and V1, ..., Vn are values and C is a constraint 
name. The meaning of constraint(C, V1 , . . . ,  Vn) is that assigning V1,..., Vn to 
the parameters P l , . . .  ,Pn is not allowed, and this is part of the constraint C. 

To simplify the presentation of the running example in TT~ and DDL, we treat 
these logics as if they were typed. This can be simply encoded by introducing 
unary predicates for all the types in the standard fashion. We will leave these 
types implicit in the variable names. Thus, a formula like 

V P 3 V  : output(P, V)  

should be read as 

V P 3 V  : parameter (P)  --~ value(V)  A output(P, V),  

in order to include all the required type-restrictions. 
The Parametric Design task will be specified in :TT~ by a complex transaction 

which we will call parametric_design. First we will give the functional require- 
ments for this task, which will be specified as transaction formulas in the pro- 
gram. Please note that apart form parametric_design, all predicates are meant to 
be state predicates (predicates that are only true on paths of length one), which 
means that in all formulas we write, we should use e.g. output(P, V) A state,  
where s ta te  is a special predicate that is only true on paths of length one. To 
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avoid cluttering up the presentation with occurrences of s ta te ,  we omit them, 
but the reader should insert them for all static predicates. 

The Parametric Design task is specified as follows. First of all, the input may 
not be modified by parametric_design (Requirement (i)): 

n 

A [(VV)[(input(pi, V) | parametric_design) ~ output(pi, V)]] 
i~-1 

This means that if a parameter has some input value (in some state) and we 
perform parametric_design, then afterwards the parameter should have the same 
value in the output. 

Requirement (ii) is that the design must be complete: 

parametric_design ~ A -~output(pi, unde]) 
i-~ l 

To complete the specification, we should add requirement (iii), stating that 
after parametric design no constraint is violated: 

n 

parametric_design =~ (VV1,..., Vn)( A output(pi, Vi) --+ 

-~3C constraint( C, VI , . . . , Vn ) ) 

In TT~, the problem solving method Propose and Revise, which implements 
the specification given above, can be given in two ways: within TT~, as treated 
below, or outside TT~, using the oracles. Such an outside implementation will 
define a state oracle, which defines a state for each instantiation of input and 
constraint without output, as well as corresponding states with the output com- 
puted. The transition oracle will implement this correspondence by stating: 

parametric_design E (.0t (D, D')  

for all pairs D~ D '  that 'do' parametric_design. We could then prove that this 
implementation satisfies the functional requirements. Conceptually, what we are 
doing above is to implement parametric_design outside the program (in the or- 
acles). It is a feature of TT~ that it allows such external implementation, while 
at the same time allowing the functionality thereof to be verified. 

An implementation of Propose and Revise within T/~ amounts to imple- 
menting different elementary transitions in the transition oracle, namely for init, 
propose, test, revise, evaluate, and copy, instead of parametric_design. The rela- 
tionship between parametric_design and these elementary transitions, i.e., the 
decomposition and control, is then specified by the following transaction pro- 
gram. 
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parametric_design ~- 

pr-loop *- 

init | pr-loop | copy 

propose | 

test | 

(3Cviolated( C) ~ revise) | 

(evaluate | 

evaluate-complete V (-,evaluate-complete | pr-loop) ) 

The predicates that are used in the program above are all defined either in 
other rules of the program or by the oracles. 

Instead of specifying tasks and inference actions as transactions as in TT~, 
they are formalized in DDL as update programs which make assignments to 
their output roles. For the task Parametric Design, both a functional specifi- 
cation parametric_design(V1, ..., Vn) and an implementation P&R (an update 
program) are given, which we shall discuss now. 

The functional specification of the task Parametric Design is expressed in 
DDL as follows: 

parametric_design(V1,..., Vn ) 

Ai"=l( output(pi, V~)A 7. gl,...,gn are output parameters 

-~3V' : (output(p~, V') A V~ ~ V')A 7. their values are unique, 

V~ r undef A 
( input(p,, v )v 

input(pi, under))) 
A -~3Viol : 

constraints(Viol, V1, ..., Vn) ) 

7. unequal to under (Req. ( i i ) ) ,  
7. and not  overriding the 
7. user input (Req. (i)) 
7. no c o n s t r a i n t  may be 
7. v i o l a t e d  (Req. ( i i i ) )  

The implementation of Propose and Revise is modelled by the update pro- 
gram P&R, which is defined as follows (Note that although constructs like 're- 
peat...until' and 'if...then...endif', used in the specification below, are formally 
not part of the syntax of DDL, they can easily be defined): 

P & R -  7. Clear  t h e  r o l e s  f o r  output  and i n t e r m e d i a t e  d e s i g n s ,  and 
7. initialise the input: 

init; 
repea t  propose; 

7. empty the violations before recomputing them: 

&{V} :D violations(V); 
test 
if 3V : violations(V) 
t h e n  revise 
end i f  

unt i l  evaluate; 
7. and finish by copying the results to the output role: 

&{P, V} I output(P, V) where  design(P, V) 
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DDL then allows to express the resulting proof obligation that the implemen- 
tation P&R satisfies the functional specification parametric_design(V1, ..., Vn). 
If V is the conjunction of all given input values i n p u t ~ ,  Vi), and C is the con- 
junction of all given constraints constraint(C, V1,..., Vn), then the following ex- 
presses the correctness of the implementation with respect to the functional 
specification: 

V A C --~ [P&R]parametric_design(V1,..., Vn) 

A rather unpleasant feature of the formalization of Propose and Revise in 
(P)DDL is the need for explicit emptying and copying of data-stores. One would 
perhaps expect to be able to hide such procedural details from a specification. 

4.2 ASM 

The ASM approach does not allow the specification of the functional require- 
ments (i), (ii) and (iii) within an ASM specification. Therefore, in this subsection, 
only the implementation of Propose and Revise expressed in the ASM formal- 
ism is given. Since there is no notion of subroutine or procedure in ASMs, the 
entire example will be one long specification. (In some interpreters, there are 
ways to use subroutines.) To structure the presentation of this specification, the 
following convention is used: expressions like < I n i t i a l i s e >  denote a set of rules 
which specifies the behaviour of the ASM when it is initializing. In the final 
specification, corresponding rules should be inserted here. 

As is the case for Turing Machines, in the ASM approach there are no ex- 
plicit programming constructs for loops and subroutines. In the specification of 
control one can only use guards in the transition rules to make sure they fire 
only when needed. We use constants to keep track of what we are doing, and use 
these constants in the guards of transition rules. The first constant is Mode to 
keep track of where we are in the main loop of Propose and Revise. Its possible 
values are initializing, mainloop, and copying. A second control variable, 
Doing, is used for control inside the main loop. Its possible values are proposing, 
testing, check_if_revise_needed, and revising. These control variables are 
to be used and updated by the rules belonging to Initialise, Propose, Test, 
Kevise, and Copy. So, for instance, all rules for <Propose> should be of the form: 

if (Mode = mainloop & Doing = proposing ~ conditions) 
then updates 

endif 

One of these rules should set Doing to t e s t i n g  if the proposing phase is finished. 
The ASM specification of Propose and Revise is as follows: 

if S t a r t  then 
Varv ranges over Is_value 

0utput(p_l,v) := false 
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Mode 

endif 
<Initialise> 
<Propose> 

<Test> 
if 

, ~  

Output(p_n,v) := false 
Design(p_l,v) := false 

Design(p_n,v) := false 
:= initializing 

(Mode = mainloop & Doing = check_if_revise_needed) then 
if ((exists v in Is_violation) Violations(v) = true) 

Doing := revising 
Revise_mode := begin_revise 

e l s e  

endif 
endif 

<Revise> 
<Evaluate> 

<Copy> 

then  

Doing := evaluating 

Of course, sets of rules have to be provided for <Initialise>, <Propose>, 
etc 

4.3 TROLL and L C M  

To specify the running example Propose and Revise in the object-oriented frame- 
works TROLL and LCM, the problem has to be modelled as an object-oriented 
system first. This can be done in (at least) two ways, depending on which parts 
of Propose and Revise are modelled as the most important objects: 

I n f e r e n c e  a c t i o n s  as  ac t ive  o b j e c t s  With this approach, the inference ac- 
tions are modelled by separate objects that co-operate with objects or data 
structures that model the stores. When using this approach for modelling 
Propose and Revise, the main (active) objects would be a Proposer and a 
Reviser. Both would operate on a (passive) design object. 

S t o r e s  as active objects  With this approach, stores are modelled by objects 
that have methods corresponding to the inference actions that use them as 
input or output stores. The inference actions themselves are thus modelled 
(only) as methods. When using this approach for modelling Propose and 
Revise, the main objects are a design object, which is able to e.g. revise and 
evaluate itself, and an active object containing violated constraints. 

In this paper, the second approach is taken both in the formalization of the 
running example using TROLL and using LCM, because this results in a clearer 
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specification: there are less objects, parameter passing is minimal, and the spec- 
ification has a more object-oriented spirit (data and operations are grouped 
together). The main objects are: an (active) design object, which is able to ini- 
tialise, propose, revise and evaluate itself, and a violations object. These objects 
work together as components of a third object: Parametric_design_task. This 
object does not correspond to a store. However, it is necessary to have this object 
as a representation of the overall system. 

In the formalization of Propose and Revise using TROLL, first some classes 
are defined to represent the input, output and constraints stores. Objects of these 
classes are then used as components of the composed Parametric_design_task 
object defined by the following class definition. The problem solving method Pro- 
pose and Revise is modelled as an event in the life of a Parametric_design_task 
object itself, subject to the constraints specified in the class definition. 

class Parametric_design_task 
template 

components 
Input : Design_model_class; 
Output : Design_model_class ; 
Constraints: SET(Constraint_class) ; 

events 
propose_and_revise; 

constraints 
- -  Do not  modify user  input  by des ign in output  (Req. ( i ) ) :  
An=l ( (Pi in Input_ID. Parameters_COVaU_IDs and 

Input_ID.Parameters (pi).Value=V and not V=undef and 
occum(propose_and_revise)) impmies 

(next (0utput_ID. Parameters  (P0 �9 Value=V) ) ) ; 
- -  All  parameters  in output  have a value  (Req. ( i i ) ) :  
occurs(propose_and_revise) implies (,ext 

(An__1 (not 0utput-ID. Parameters  (P0 .  Value=under) ) ) ; 
- -  No c o n s t r a i n t  i s  v i o l a t e d  by va lues  
- -  in  output  (Req. ( i i i ) ) :  
occurs(propose_and_revise) implies (next (not 

(exists C: I Cons t ra in t_c lassJ )  (C in Constraints_COMP_IDs and 
((exists Vx,...,  Vn : value_type) 

(An=l (0utput_ID. Parameters (Pi) �9 Value=Vi) 
and tup le (Vl , . . . ,Vn)  in C . V a l u e s ) ) ) ) ) ;  

e ,d  class Parametric_design_task 

As is the case with the formalizations of Propose and Revise using TT~ and 
(P)DDL, we seek to further specify the behaviour of Propose and Revise by giv- 
ing a constructive description of its dynamics. In TROLL, this is done by defining 
a new class that represents the store 'design' (this class is a subclass of the class 
of which the objects Input and Output are instances). The inference actions Init, 
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Evaluate, Propose, Test and Revise are modelled as events that happen in the 
life of a Design object. A new specification of class ParameCric_design_task is 
then given, with a Design object as one of its components. The most important 
part of this new class definition is the following constructive specification of the 
behaviour of a Parametric_design_task object: 

patterns 
take_inpuZ -> Design.init -> G0_0N; 
G0_0N is Design.propose(Input-ID) 

-> Design.test (Violations_ID, Constraints_COMP_IDs) 
-> select 

Violations.violations_empty -> EVALUATE 
or Violations.violations_not_empty -> 

Design.revise(ViolationsTD, Input_ID) -> EVALUATE 
end ~elect 

EVALUATE is Design.evaluate 
-> select 

Design.evaluate_complete -> give_output 
or Design.evaluate_partial -> G0_0N 
end select; 

end class Parametric_design_task 

The structure of the LCM specification of Propose and Revise resembles the 
structure of the TROLL specification to a great extent. Again, classes are defined 
to represent the store Input, Output and Constraints. As an example, consider 
the definition of class P A R A M _ S P A C E ,  which is a collection of parameter 
values. This class has an event which enables us to initialise all parameter values 
as undefined. We partition this class in two subclasses, one to represent the 
input and output stores, and one to represent the current design, on which we 
will define the design process. 

begin object class P A R A M _ S P A C E  
attributes 

Pt : V A LUEz  

Pn : V A LUEn  
events 

set _undef 
axioms 

VP : PARAM_SPACE[se t_unde f (P)]  f~=z P.pi = undefi  
partitioned by 

I N P U T _ O U T P U T ,  C U R R E N T _ D E S I G N  
end object class 

We are now in a position to give specification of the Propose and Revise 
method solely in terms of the input-output conditions. The following object class 
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does nothing more than specifying the overall properties that we want to enforce 
on the problem solving method, and corresponds directly to requirements (i), (ii) 
and (iii). This class has the same function as the class Parametric_design_class 
in the TROLL specification. 

begin ob jec t  class P & R  
axioms 

/\~=l (input.p~ = v~ ~ [P&R]output.pi = vi) (Req. (i)) 
A~n__l[P&R]-~(output.pi = undefi) (Req. (ii)) 
[P&R]constr_viol(output.pl, ..., output.pn) = 0 (Req. (iii)) 

end  ob jec t  class 

Again, we seek to further specify the behaviour of Propose and Revise by 
giving a constructive description of its dynamics. In LCM, for technical reasons 
this is done slightly different compared to TROLL. Like in TROLL, a new class is 
defined that represents the store 'design', and the inference actions Init, Eval- 
uate, Propose, Test and Revise are modelled as events that happen in the life 
of a Design object. The dynamics of Propose and Revise are then defined by an 
LCM life cycle definition for this new class as follows: 

lifecycle 
Vd : D E S I G N  : D E S I G N ( d )  = 
INPUT_OUTPUT.set_under(output);  
set_under(d); 
init(d); 
repeat 

until 
copy(d); 

propose(d); 
violating(d) := false; 
test(d); 
if violating(d) t hen  revise(d) end i f  
evaluate; 

5 Comparison and Conclusions 

In this section we will briefly compare the different formalisms using our two 
dimensions of analysis, and then discuss a number of implications for the speci- 
fication of (in particular control of) knowledge-based systems. 

5.1 A Short Comparison 

We will give a brief overview of the frameworks in terms of the concepts and 
aspects of specification mentioned in the introduction. 
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S t a t e s .  With the exception of PDDL, where a state is a propositional valuation, 
a state is either an algebra (ASM and LCM) or a first-order structure (DDL, TTr 
and TROLL/OSL). Syntactically, algebras are described in equational logic, while 
first-order structures are described in first-order predicate logic. In TROLL and 
LCM, the language is sorted, in the other frameworks it is unsorted. In PDDL, 
a state is described in propositional logic. DDL and PDDL have an operational 
semantics in which a state is a set of first-order structures (DDL) or a set of 
propositional valuations (PDDL). One last point is whether the interpretation 
of function symbols is fixed over all states, or whether it may vary. In ASM 
and LCM (in which there are only functions), functions are of course allowed 
to vary over states. In LCM, only the at tr ibute functions and boolean functions 
(which play the role of predicates) are allowed to vary; functions specified in the 
da ta  value block (addition on the integers, for instance) must be the same in all 
states. In DDL, there are no function symbols, only constants, which should be 
the same in all states. In both TROLL and TT~ functions are not allowed to vary. 
Table 1 summarizes syntax and semantics of the specification of states. 

T a b l e  1. Overview of state description syntax and semantics 

[ [ISynta~ 
(P)DDL PDDL: propositional formulae 

TTr 
ASM 
TROLL 

LCM 

DDL: first-order predicate formulae 

First-order predicate formulae 
Equational formulae 
Sorted first-order predicate formulae 
(used for attribute declaration part of 
object templates) 

Semantics 
PDDL: (set of) propositional valua- 
tions 
DDL: (set of) first-order structures 
First-order structure 
Algebra 
First-order structure (Templates are 
translated into OSL sorted first-order 
formulae that denote first-order struc- 
tures) 

Sorted equational formulae (used for Algebra 
Value type and object class declara- 
tions) 

E l e m e n t a r y  T r a n s i t i o n s .  With respect to the specification of elementary tran- 
sitions, two approaches can be distinguished: user-defined and pre-defined, fixed 
elementary transitions. In TROLL and LCM, the user defines a set of elementary 
transitions (i.e., specifies their names) and describes their effects using effect and 
precondition axioms. For instance, in TROLL, the user defines for each object 
class a set of events, which are the elementary transitions from one point in 
time of a TROLL model to the next. Associated with each event e is a predicate 
occurs(e), which is true in a time point t iff event e occurs in time point t, lead- 
ing to a new state at time point t + 1. Using this predicate, the user describes 
the intended behaviour of e. In LCM, the user also defines a set of events for 
each object class. For each event e, the user can define effect axioms of the form 
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r --* [e]r and precondition axioms of the form le)true --~ r The events denote 
binary relations over states. 

Table  2. Overview of syntax and semantics of elementary transitions 

IlSyntax 
(P)DDL Fixed: database updates Znp and 

:Drip (active) and Zp and 7~p (passive) 
q'7s 

ASM 

iTROLL 

LCM 

User-defined: set of names, possibl~ 
with effects described in transition or- 
acle and program 

Semantics 
Relation between states (m, n) where 
m and n differ at p 
Relation between states 

Fixed: flmction updates f(t)  := s Relation between states (algebras) 
(m, n) where m and n only differ at 
f(t) 

User-defined: user specifies set ofl Axioms are translated to OSL, where 
event names and effects using effectlthey denote relations between state~ 
and precondition axioms at time point t and t + 1 
User-defined: user specifies set of'Relation between states (algebras) 
event names and effects using effect! 
and precondition axioms 

On the other hand, in (P)DDL and ASM, there is only a pre-defined, fixed set 
of elementary transitions, which resemble the assignment statement in program- 
ming languages. In (P)DDL, there are two predefined elementary transitions, and 
there is no possibility for the user to define additional ones. These predefined 
transitions are zHp (set p to true) and T)Hp (set p to false) and their variants 27p 
and ~)p, which just insert p into or delete p from a database state. Semantically, 
Zp and 7)p are relations that  link pairs of states (m, n) where m = n for all pred- 
icates but p. In ASM, there is only one type of elementary transition, namely 
function updates expressed as f(t) := s, which links two algebras A and A' that  
only differ in the values for f(t). Like DDL, there are parallel updates and choice. 
The TTs approach is in-between these two approaches: as in TROLL and LCM, 
the user defines a set of elementary transitions, but unlike in TROLL and LCM, 
it is possible to constructively define their effect in a transition oracle. Seman- 
tically, in 7"7"s an elementary transition is a relation between database states, 
where the transition oracle defines which pairs of database states are related. In 
7"~ it is also possible to describe the effect of an elementary transition without 
explicitly defining that  transition in the transition oracle. Table 2 summarizes 
syntax and semantics of the specification of elementary transitions. 

C o m p o s e d  Trans i t ions .  In ASM, there are several possibilities to specify 
composed transitions, such as adding guards to transition rules, specifying bulk 
transitions that  fire a number of transitions at the same time and specifying 
choice However, there is no possibility to specify sequential composition or itera- 
tion. For the other frameworks, two approaches can be distinguished. In TROLL 
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and TT~, elementary transitions can be composed using sequencing, iteration 
and choice. In both frameworks, the composed transitions thus formed are inter- 
preted over sequences of states. In LCM elementary transitions can be composed 
using a syntax derived from process algebra. In (P)DDL this can be done using 
sequencing, iteration, bulk updates and choice. However, unlike in TROLL and 
TT~, a composed transition is not interpreted over a sequence of states, but as 
a relation between pairs of states: the state at the beginning of the composed 
transition and the final state of the composed transition, as in Dynamic Logic. 
The transition relation associated with a composed transition is of the same 
kind as the transition relation associated with an elementary transition in LCM 
and (P)DDL, and no intermediate states are accessible in the semantics, so it is 
impossible to express constraints on intermediate states. 

Table 3. Overview of syntax and semantics of composed transitions 

IISyntax 
(P)DDL Constructive: 

TT~ 

ASM 

TROLL 

LCM 

sequence (;), iteration 
(*) and test (?) as in Dynamic Logic 
Constraining: not possible 
Constructive and constraining: first- 
order formulae with special operator 
for sequence (| 
Transitions can be guarded, bulk up- 
dates and choice between transitions 
is expressible. Sequencing or iteration 
is not expressible 
Constructive: pattern language ex- 
pressions with operators from process 
algebra 
Constraining: temporal language ex- 
pressions 

~emantics 
Relation between begin state and end 
state 

Formulae are interpreted over se- 
quences of states 

As for elementary transitions: guard- 
ing, choice and bulk updates are not 
concerned with sequences of states or 
with begin/end states 
Pattern language and temporal lan- 
guage translated to OSL and interpre- 
ted over temporal sequences of states 

Constructive: expressions in user-de- Relation between begin'state and end 
fined process algebra state 
Constraining: not possible 

There is another important difference between TROLL and :TT~ on the one 
hand, and LCM and (P)DDL on the other hand. In (P)DDL and LCM, specify- 
ing control in composed transitions in a constructive way ('programming' with 
sequencing, choice and iteration) is the only possibility. However, in TROLL and 
=rT~, control can also be specified by constraining the set of possible runs of a 
system, e.g., in TROLL control over runs of the system can also be specified 
by expressing constraints using temporal logic. Table 3 summarizes syntax and 
semantics of the specification of composed transitions. 

P r o o f  Sys tems and  Operat ional izat ion.  The third aspect identified in Sec- 
tion 2.2, proof systems and operationalization, is summarized in Table 4. 
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Table  4. Overview of proof systems and operationalization 

61 

IIProof system 
(P)DDL Hilbert-style proof system 

T74 

ASM 

iTROLL 

I cM 

Operationalization 
Operational semantics in terms of 
transition rules 

Gentzen-style proof system for the Operational semantics based on 'exe- 
'serial-Horn' fragment of TT~ cutional deduction', serial-Horn frag- 

ment only 
No fixed proof system. General math-:An interpreter for ASMs is straight- 
ematical techniques are applicable forward 
TROLL is translated to OSL; there is Provided for TROLLlight, a restricted 

Hilbert-style proof system for OSL version lacking the temporal language 
Equational logic 

5.2 Conclusions  

In this second part of the concluding section we will make a number of observa- 
tions that are relevant for future users of the specification languages discussed 
above, and for future designers of KBS specification languages, in particular as 
far as the choice of specification language features for control is concerned. 

Cons t ruc t i ve  or  Cons t ra in ing  Specifications.  In all of the languages dis- 
cussed in this paper, the constructive style of specification is supported. Exam- 
ples of this are the program expressions in DDL, or the communicating algebra 
expressions in LCM. In contrast with the widely supported constructive style 
of specification, only TROLL and q-7~ support the constraining style of specifi- 
cation. We think that for the specification of control of the reasoning process 
of a KBS, both styles are valuable. It would be especially useful to be able to 
combine both styles in one specification, as is possible in TT~ and TROLL. 

Modula r i ty .  The languages differ in the extent to which control must be speci- 
fied globally, for an entire system, or locally, separately for individual modules of 
a system. In particular, DDL and TT~ only allow a single, global control specifi- 
cation, while TROLL and LCM allow the specification of control that is local for 
individual modules. Because the arguments in favor of either approach resemble 
very much the arguments in favor or against object-oriented programming, we 
will not go into any detail here, but refer to that discussion, with the proviso 
that we are concerned here with notions of modularity and encapsulation, and 
not so much with inheritance and message passing. Besides such general soft- 
ware engineering arguments in favor of object-oriented techniques, knowledge 
modelling has particular use for such techniques: frames have a long tradition 
in knowledge representation, and are a precursor of object-oriented techniques. 
Dealing with mutually inconsistent subsets of knowledge is a particular example 
of the use of localized specifications. 
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Cont ro l  Vocabulary.  With 'control vocabulary' we mean the possibilities (in 
a technical sense) that the language gives us to construct composed transitions 
from more primitive ones. Here, the news seems to be that there is relatively 
little news: there is a standard repertoire of dynamic type constructors that 
every language designer has been choosing from. This repertoire usually contains 
sequential compositions, and often one or more from the following: iteration, 
choice, parallelism (with or without communication). 

Two languages take a rather different approach however, namely LCM and 
ASM. The designers of LCM suggest the use of some form of process algebra 
for their dynamic signature, but make no strong commitment to any particular 
choice, and LCM should perhaps be viewed as parameterized over this choice. In 
the case of ASM it seems that there is no possibility at all to include any control 
vocabulary in the language: ASM provides only its elementary transitions (the 
algebra updates). It provides neither a fixed vocabulary for building composed 
transitions, nor does it seem parameterized over any choice for such a vocabulary. 

The languages differ in their treatment of intermediate states that might 
occur during a transition from an initial to a terminal state. In DDL, as in 
dynamic logic on which DDL is based, there is no representation of any inter- 
mediate states of a program execution: any execution is represented as a pair of 
initial and terminal states (step-based control specification). Similar properties 
hold for the other languages, with the exception of TROLL and TTr In these 
languages, the execution of a program is represented as a sequence of interme- 
diate states (sequence-based control specification). As explained in Section 2.1, 
this has important consequences for the representation of the reasoning process 
in a KBS. 

A final point concerns the treatment of non-terminating processes. Such non- 
terminating processes might occur in the specification of knowledge-based sys- 
tems for process control and monitoring. TROLL, LCM and ASM can all deal 
with such non-terminating processes. Although it is of course possible to specify 
non-terminating processes in (P)DDL and T ~ ,  it is not possible to derive any 
useful properties of such programs because in (P)DDL and TTr non-terminating 
processes have trivial (empty) semantics. 

Ref inement .  It is commonly accepted in Software Engineering that a desirable 
feature of any specification language is to have the possibility of refinement. 
By this we mean the ability to specify program components in terms of their 
external properties (i.e., a functional specification, sometimes called a "black 
box" specification), and only later unfold this black box specification into more 
detailed components, and so on recursively. 

In the context of specification languages, a necessary condition for the pos- 
sibility of refining is the presence of names for actions: one needs to be able to 
name a transition which is atomic on the current level (i.e., a "black box" speci- 
fication), but which is perhaps a complex of transitions on a finer level. Without 
such names for actions, one cannot give an abstract characterization of transi- 
tions. Of course, such an abstract characterization (in terms of preconditions, 
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postconditions etc.) should be possible in the framework to allow refinement 
later on. 

It is not immediately clear how the languages discussed above behave in this 
respect. DDL clearly does not allow refinement (names referring to composed 
actions simply do not exist in DDL), while LCM does (at least, if we choose 
the signature of the process algebra sort rich enough). The external functions 
of ASM give us the means to make black box specifications. However, it is not 
possible within the ASM framework to specify the behaviour of such black boxes, 
which by implication also precludes the possibility of proving within the ASM 
framework that a given implementation (refinement) of a black box satisfies the 
specifications. The designers of the ASM framework prefer to use general math- 
ematical techniques for treating refinement. The simple mathematical structure 
of the ASM framework makes this feasible. 

Although the transaction base from 7"7s resembles the external functions of 
ASM, 7"7s is stronger than ASM in this respect: the transaction base can be 
used to model black-box transitions, but unlike the external functions in ASM 
the transitions of T7s can be specified by means of pre- and post-conditions 
within 7-7s itself. Furthermore, it is possible to later provide an implementation 
of a transaction in 7-7s and to prove that this implementation is indeed a correct 
refinement of the functional specification. 

In TROLL it seems that there is almost the possibility to say that one specifi- 
cation refines the other. TROLL enables both constraining specification (based on 
atomic transition), but also constructive specification of composed transitions (in 
terms of more detailed atomic transitions). What is lacking is syntactic support 
to relate such a constructive specification to an atomic transition, so it cannot 
be expressed that this more detailed specification is a refinement of the atomic 
transition. Semantical considerations of the relationship between transactions 
and their refinement are investigated in detail in [5]. 

Finally, desirable as the presence of names for composed actions may be, there 
is a price to be paid for having the option of black box specifications. A black 
box specification of a transition usually only states which things change, with 
the assumption that all other things remain the same. It should not be necessary 
for the user to explicitly specify what is left unaffected by the transition. The 
problem of how to avoid statements of what remains the same (the frame axioms) 
has proven to be very difficult. This so-called frame problem is the price that 
has to be paid. 

In languages with only pre-defined transactions (like in DDL), the designers 
of the language have specified the required frame-axioms. For languages with 
user-defined atomic transactions there is no way out for the user but to write 
down the frame axioms explicitly (although they can sometimes be generated 
automatically). For the purposes of execution, the frame problem can be cir- 
cumvented by an implementation of the primitive transactions outside the logic. 
However, the languages we are dealing with are meant to specify systems, and the 
price for such externally implemented primitive transactions has to be paid at 
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verification time. For verification purposes, we would want the primitive trans- 
actions to be specified in the logic, which then brings back the frame problem. 

Proofs .  Since the languages discussed in this paper are intended as tools to 
formally specify software systems, we would expect them to be equipped with 
proof systems which enables us to prove that a specification exhibits certain 
properties. Of the languages discussed, only TT/ and (P)DDL pay extensive 
attention to a proof system. TROLL has to rely on its translation to OSL in 
order to use the proof system of OSL, while ASM relies on general mathematical 
reasoning, without a formal proof system. LCM has a proof system based on 
equational logic. 

Syntactic Variety. There is a large variety in the amount of syntactic distinc- 
tions which are made by the various languages. On the one hand languages like 
TROLL and LCM provide a rich variety of syntactic distinctions, presumably to 
improve ease of use by human users, while on the other hand approaches like 
(P)DDL, ASM and TT~ provide a much more terse and uniform syntax. This 
issue is related with the different goals which the different proposals are aiming 
at. Syntactically rich languages like TROLL and LCM, as well as ASM nowadays 
aim at being a full blown specification language, while formalisms like ASM, TT~ 
and (P)DDL aim instead at providing a framework (a logical framework, in the 
case of TT~) that should be used as the foundation of a specification, rather then 
being a specification language themselves. 

S ta tes  as Histories.  In three of the languages discussed in this paper (ASM, 
LCM and (P)DDL), a composed transition is interpreted as an ordered pair of 
states (begin state and end state). However, for the types of properties that we 
might want to verify of our systems using the logics discussed in this paper, this 
interpretation of composed transitions is not sufficient. For many purposes an 
interpretation as a sequence of (intermediate) states is required. For example, 
many safety critical applications require proofs of properties such as "action 
is never done", or "c~ is never done twice" or "~ is never done twice in a row", 
or "action a is never followed by action/~". To prove such properties, we must 
consider sequences of intermediate states, and not just an ordered pair of begin- 
and end-state of a program. In TT~ and TROLL this is possible using formulae 
that constrain the set of possible sequences. 

It might, however, be possible to overcome the apparent shortcoming of the 
interpretation of composed transitions as ordered pairs of states suggested here. 
States can be seen as an abstraction mechanism that define equivalence classes 
of sequences of states, or histories. For example, in (P)DDL, any two histories 
that have the same begin- and end-state are equivalent. Other possibilities are 
to regard two histories as equivalent when they are composed of the same sets 
of states, but perhaps in a different order, or only to regard them as equiv- 
alent when they are identical sequences of states (this is the option taken in 
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TTs For example, if we are interested in the values that a particular variable v 
takes during the course of a computation (as is often the case in safety-critical 
applications): 

- if we are only interested in the final value of v, then all histories can be 
identified with their final state; 

- if we are interested in all intermediate values of v, but not in their sequence, 
then histories can be treated as sets of states 

- if we are interested in the sequence of values for v, then histories must be 
treated as sequences of states 

It is an open point whether the grain size of such distinctions between different 
histories should be a fixed aspect of the logic (with (P)DDL and TT~ representing 
opposite choices in this respect), or whether such a grain size should be definable 
in the language of the logic, for instance by expressing equality axioms among 
histories. 

Transi t ions  as Semant ica l  Concepts .  In most languages, transitions are 
available in the language (e.g. a procedure in (P)DDL corresponds to a transition, 
as does an event in LCM), but semantically they are derivates of states. In such 
languages, a transition is an ordered pair of states, and no semantically separate 
category exists for transitions per se. Furthermore, transitions do not occur in 
the languages as first-class objects over which we can express predicates. 

In the words of Gabbay [12, Ch.4]: "The modelling given so far may eventu- 
ally prove not radical enough. After all, if logical dynamics is of equal importance 
to logical statics, then the two ought to be accorded equal ontological status. 
This means that transitions would come to be viewed, not as ordered pairs of 
states, but rather as independent basic objects in their own right." 

Again, it remains an open and very interesting question how approaches 
in which transitions are first-class objects relate to the approaches discussed 
in this paper, in particular with respect to the representation of histories and 
equivalence of histories. 

5 . 3  F i n a l  R e m a r k s  

The original motivation of the research reported in this paper was the lack of 
consensus among KBS specification frameworks concerning the specification of 
control for KBSs. We had hoped that neighboring areas might have solved this 
problem, or at least have established more stable notions than what had been 
achieved in the KBS area. 

Our investigations among non-KBS specification languages have revealed a 
number of constructions that could certainly be of interest for the KBS speci- 
fication language community. Examples of these are the notions of constructive 
and constraining control specification (and in particular the idea to combine 
both of these in a single language), the idea to define transitions in terms of 
sequences of intermediate states instead of just the initial and terminal state of 
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the transition, and the rich variety of semantic characterizations of the notion of 
state. Furthermore,  these constructions are not just  initial ideas, but  have often 
reached a state of formal and conceptual matur i ty  which make them ready to 
be used by other fields such as the specification of KBSs. 

However, this wide variety of well worked out proposals, is at the same time a 
sign of much unfinished work. As in the field of KBS specification languages, the 
neighboring fields have not yet reached any sort of consensus on the specification 
of control, neither in the form of a single ideal approach, nor in the form of 
guidelines on when to use which type of specification. 
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