
VU Research Portal

Analysis of Lamarckian Evolution in Morphologically Evolving Robots

Jelisavcic, Milan; Kiesel, Rafael; Glette, Kyrre; Haasdijk, Evert; Eiben, A.E.

published in
Proceedings of the European Conference on Artificial Life 2017, ECAL 2017
2017

DOI (link to publisher)
10.7551/ecal_a_038

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Jelisavcic, M., Kiesel, R., Glette, K., Haasdijk, E., & Eiben, A. E. (2017). Analysis of Lamarckian Evolution in
Morphologically Evolving Robots. In Proceedings of the European Conference on Artificial Life 2017, ECAL 2017
(Vol. 14, pp. 214-221). MIT Press. https://doi.org/10.7551/ecal_a_038

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 13. Sep. 2021

https://doi.org/10.7551/ecal_a_038
https://research.vu.nl/en/publications/c73d2657-8132-4f01-8ec4-fb6f4c08da5c
https://doi.org/10.7551/ecal_a_038

Analysis of Lamarckian Evolution in
Morphologically Evolving Robots

Milan Jelisavcic1, Rafael Kiesel1, Kyrre Glette2, Evert Haasdijk1 and A. E. Eiben1

1Vrije Universiteit Amsterdam, Dept. of Computer Science, Amsterdam, The Netherlands
2University of Oslo, Department of Informatics, Oslo, Norway

m.j.jelisavcic@vu.nl

Abstract

Evolving robot morphologies implies the need for lifetime
learning so that newborn robots can learn to manipulate their
bodies. An individual’s morphology will obviously combine
traits of all its parents; it must adapt its own controller to suit
its morphology, and cannot rely on the controller of any one
parent to perform well without adaptation. This paper investi-
gates the practicability and benefits of Lamarckian evolution
in this setting. Implementing lifetime learning by means of
on-line evolution, we first establish the suitability of an in-
direct encoding scheme that combines Compositional Pattern
Producing Networks (CPPNs) and Central Pattern Generators
(CPGs) as a relevant learner and controller for open-loop gait
controllers. We then analyze a Lamarckian set-up and the ef-
fect of the parental genetic material on the early convergence
to good locomotion performance.

Introduction
A robot’s behaviour is the result of the interaction between
its morphology, controller, and environment (Pfeifer and
Iida, 2004). Evolutionary robotics offers a methodology to
consider the development and adaptation of robot morphol-
ogy and control holistically (Eiben and Smith, 2015). Si-
multaneous evolution of morphology and control was intro-
duced with Sims’ simulated virtual creatures (Sims, 1994)
and has been investigated without regards to physically pro-
ducible results many times since then (Lehman and Stanley,
2011; Cheney et al., 2013, among others). Lipson and Pol-
lack (2000) first demonstrated that this approach is also ap-
plicable in systems where the final (i.e., after evolution has
run its course) results are realised and evaluated as actual
physical robots, with substantial research revisiting this ap-
proach (e.g., Hornby et al., 2003; Auerbach et al., 2014).

The simultaneous development of robot morphologies
and control systems is a difficult task, and we have only seen
relatively simple results so far, as noted by Cheney et al.
(2016). Some of the difficulty is due to the increased dimen-
sionality of the search, but a more pernicious aspect may be
the increased ruggedness of the search space: a small muta-
tion in the morphology can easily offset the performance of
the controller-body combination found earlier. Cheney et al.

(2016) illustrate this by casting the morphology as a physical
interface between controller and environment; the variation
operators that generate a new individual can then be seen as
“scrambling” this interface. An obvious remedy would be
to allow the controller to adjust to the new morphology, on
a different timescale from the morphological changes—i.e.,
to enable lifetime learning for new robot bodies.

There are two principal options for evolution to exploit
lifetime learning: Baldwinian and Lamarckian evolution.
The former does not directly store the results of lifetime
learning phase, only the resulting fitness values. Lamar-
ckian evolution, by contrast, does explicitly store the lo-
cally learned improvements in the individual genomes, so
that lifetime learning can directly accelerate the evolutionary
process and vice versa (Ackley and Littman, 1994). While
this mechanism has largely not been seen as a correct de-
scription of biological evolution, some recent research has
reported a Lamarckian type of evolution in nature (Dias and
Ressler, 2014).

In this paper, we research the benefits of Lamarckian evo-
lution for control when the morphology of robots evolves
without central oversight. This means that we are principally
interested in a setting where the robots evolve and learn on-
line as proposed by Eiben and Smith (2015), without any
central oversight in a physical habitat where a population of
robots operates. For these initial investigations, we focus
on the development of locomotion, although we think that
lifetime learning is particularly important to achieve more
complex behaviours.

Robotic locomotion requires the creation of rhythmic pat-
terns which satisfy multiple constraints: generating sta-
ble and energy efficient forward motion, and coping with
changes in the environment or the organism (Sproewitz
et al., 2008). In evolutionary robotics, simple but efficient
control methods can be found in tables of control sequences
(Bongard et al., 2006) and spline-based cyclical patterns
(Kober and Peters, 2009). A more nature-inspired approach
exploits central pattern generators (CPG), which model neu-
ral circuitry that outputs cyclic patterns as found in verte-
brates (Sproewitz et al., 2008). In this case, robot actua-

tors are controlled by the signal generated by coupled syn-
chronised CPGs, allowing synchronised movement. Clune
et al. (2011) used controllers based on more general artificial
neural networks to develop controllers for efficient locomo-
tion. They used the HyperNEAT indirect encoding which is
based on evolving a Compositional Pattern Producing Net-
work (CPPN) that encodes a function to determine connec-
tion weights in the substrate artificial neural net that actually
controls the robot (Stanley et al., 2009).

Most of the mentioned research considers the off-line de-
velopment of locomotive controllers, i.e., controller optimi-
sation as a separate phase before deployment with a view
to developing controllers that remain fixed once deployed.
Weel et al. (2017) considered on-line gait learning, where
the controller is adapted to the robot’s task environment dur-
ing deployment. Weel et al. showed that spline-based con-
trollers with the RL PoWER algorithm provide efficient au-
tonomous on-line gait learning capabilities. Jelisavcic et al.
(2016) showed that RL PoWER is very similar to an on-line
(µ+ 1) evolutionary strategy ((µ+ 1) ES).

Note, that the methods for gait development mentioned
above are all evolutionary. This may cause some confusion,
as we consider them in the role of lifetime learning in an
overarching evolutionary process where the morphologies
evolve. Thus, we consider systems comprising of two adap-
tive processes. At the highest level, the robot morphologies
evolve: a new individual implies a unique body that is the re-
sult of applying variation operators to its parents’ genomes.
We have argued that this necessitates a second adaptive pro-
cess of lifetime learning that operates at a different time-
scale to optimise the individual’s controller to suit its body
and environment. We consider on-line evolution as a rele-
vant technique for this second phase—it can be seen as an
instance of reinforcement learning (Haasdijk et al., 2012).
So, reiterating: there are two interleaved evolutionary pro-
cesses: one that adapts morphologies and another that adapts
controllers, and the latter implements lifetime learning for
the former.

To implement Lamarckian evolution of morphology and
control, the robot’s genome must encode the robot’s con-
troller as well as its morphology. Lifetime learning schemes
that directly encode parameters for particular actuators make
less sense than indirect encodings: it is difficult or even
impossible–e.g., when expression of the morphology is non-
deterministic or depends on the environment (e.g., Liu and
Winfield, 2011)–to identify the mapping of controller pa-
rameters to actuators in a new morphology where some ac-
tuators may no longer occur and new ones have appeared.
An indirect encoding scheme such as HyperNEAT would
not be hampered in this way: a different layout of actua-
tors would merely imply a change in input values when ex-
pressing the genome. Implementations that do encode the
robot controllers directly exclude recombination operators
and have deterministic morphogenesis and therefore are less

susceptible to this issue (Lipson and Pollack, 2000). Several
approaches to co-evolution of morphology and control with
indirect and coupled body-brain encodings exist, e.g., based
on graphs or L-systems (Sims, 1994; Hornby et al., 2003),
where the control components are generated along with the
morphology.

Until recently, there has been little research into the effect
of Lamarckian set-ups combining morphological evolution
and lifetime learning of control. Jelisavcic et al. (2017) re-
port preliminary findings that indicate that such a Lamarck-
ian set-up with CPG-based controllers and an indirect en-
coding using CPPNs can improve performance. This paper
builds on these encouraging findings in two directions.

First, we investigate whether an indirect encoding scheme
based on CPPNs and CPGs can provide efficient on-line
gait learning. As a benchmark, we use the directly encoded
(µ+ 1) ES approach that Jelisavcic et al. (2016) showed to
be a successful technique for the on-line evolution of gaits.
We test both learning approaches on two controller architec-
tures: one based on splines, and the other based on CPGs.

Next, with the indirect encoding scheme enabling Lamar-
ckian evolution, we compare the performance of lifetime
learning in a Lamarckian and a non-Lamarckian set-up and
analyse the results in terms of performance and the persist-
ing amount of parental genetic material.

Method
The first set of experiments1 in this paper establishes an indi-
rect encoding scheme for on-line development of good gaits.
As a baseline, we consider a (µ+1) ES with a spline-based
control scheme. Jelisavcic et al. (2016) showed that this is
a suitable scheme for developing open-loop controllers for
locomotion. We compare its performance to a scheme that
evolves CPPNs to configure controllers based on CPGs or
on splines. We also compare an implementation of (µ + 1)
ES to configure CPGs to ensure that any difference in per-
formance can be accounted for. These methods are tested on
a number of hand-designed shapes.

The second set of experiments investigates the effect of
Lamarckian evolution with the CPPN-CPG scheme. We
generate offspring from the hand-designed shapes consid-
ered in the first set of experiments (using random selec-
tion). We then run CPPN-CPG on each offspring with the
population initialised randomly (the non-Lamarckian case)
or seeded with CPPNs from both parents (the Lamarckian
case). This experimental set-up allows us to thoroughly
study the effects on the lifetime learning process without
confounding effects of selection or stochasticity in the mor-
phological evolution. Implementation details are provided
in the following subsections.

1Code for the experiments and supplementary material is avail-
able on-line at http://tinyurl.com/y9cbbytm

xy out

wxy

wyx

wxo

Figure 1: A differential oscillator with output node as used
in the CPG controller.

Controller Schemes
We compare two different controller schemes in this paper:
CPG-based and spline-based controllers. Both controller
schemes are open-loop and produce control signals which
are converted to angular positions for each joint.

CPG-based Controller The main components of the CPG
controllers are differential oscillators. Each oscillator is
defined by two neurons that are recursively connected as
shown in Fig. 1. These generate oscillatory patterns by
calculating their activation levels x and y according to the
following differential equation:

ẋ = wyxy + biasx
ẏ = wxyx+ biasy

with wxy and wyx denoting the weights of the connections
between the neurons; biasx and biasy are parameters of the
neurons. If wyx and wxy have different signs the activation
of the neurons x and y is periodic and bounded. An oscil-
lator’s x node is connected to a linear output neuron that in
turn connects to the robot’s active hinge. Output neurons use
the following activation function:

f(x) = (wxo · x− bias) · gain.

with x the activation level from the oscillator,wxo the weight
of the connection between oscillator and output node and
bias and gain parameters. Each active joint in the robot body
is associated with an oscillator and connected to it through
an output neuron that determines the joint’s angle.

The oscillators of neighbouring hinges (i.e., hinges sepa-
rated by a single component) are interconnected by means of
weighted connections between their x neurons. This results
in a chain-like neural network of differential oscillators that
extends across the robot body, as illustrated in Fig. 2. The
learning algorithm then optimises the connection weights,
the node biases, and the gain levels of the output nodes.

Spline-based Controller These controllers are based on
cyclical splines that describe the joint control output at any
point in time. A cyclic spline is an interpolation function
that is defined using a set of n control points. Each control
point is defined by (ti, αi) where ti represents time and αi

Figure 2: Schematic view of the CPG network generated for
the body shown in the top-left panel of Fig. 3. The rect-
angular shapes indicate passive body parts, the circles show
active hinges, each with their own differential oscillator, and
the arrows indicate the connections between the oscillators.

the corresponding value. ti ∈ [0, 1] is defined as

ti =
i

n
, ∀i = 0, . . . , (n− 1)

and αi ∈ [0, 1]. An additional control point (tn, αn) is de-
fined to enforce that the last value is equal to the first, i.e.,
α0 = αn, and so enforce cyclic splines. A spline-based
controller defines one such spline for each active joint in the
robot body, and the learning algorithm operates on the con-
trol points for each spline. As in Shen et al. (2012), we fol-
low a scheme of incremental complexification of the spline
by initializing the number of control points, n, to 4 and in-
crementing by 1 every 100 evaluations of the learning algo-
rithm. New control points are inserted such a way that the
spline shape does not change.

Learning Schemes
We employ two different lifetime learning schemes in this
paper; NEAT to evolve CPPNs, enabling the Lamarckian
experiments, and (µ + 1) ES, which has proved efficient
in our earlier experiments with on-line learning (Jelisav-
cic et al., 2016), and thus serves as a benchmark approach.
Both learning approaches test the individual controllers in a
time-sharing scheme, as is common in on-line evolutionary
robotics, and employ an internal population size of 10. The
target of both learning algorithms is to maximise the forward
locomotive performance of the robots.

Learning with CPPNs Stanley et al. (2009) proposed Hy-
perNEAT, an indirectly encoded evolutionary algorithm for
neural networks. The idea behind HyperNEAT is to as-
sign the nodes in a substrate neural network a location in
an n-dimensional hypercube. The assigned relative posi-
tions should in some way reflect a relationship between the
nodes. allowing the algorithm to exploit the geometry of the

problem. The coordinates of two nodes in the hypercube are
then input values for a CPPN, which outputs a value for the
weight of their connection. The CPPN evolves using NEAT
(Stanley and Miikkulainen, 2002) so that the substrate net-
work’s performance is optimised.

In this paper, the evolution of CPPNs follows (Stanley
et al., 2009), with some modifications: it uses binary tour-
nament selection for two parents within a species if there is
more than one individual in that species. If there is only one
individual in a species, the best individual of a random other
species is selected as the second parent. Finally, the im-
plementation uses elitism, transferring the best 10% of the
individuals to the next population.

The CPG nodes are positioned in a three-dimensional hy-
perspace. Two dimensions are the relative position of the
active hinges in the robot morphology as proposed by Haas-
dijk et al. (2010). Such modular differentiation allows spe-
cialisation of the active hinge’s movements depending on its
relative position in the robot. The hinge coordinates are ob-
tained from a top-down view of the robot body. Thus, two
coordinates of a node in the CPG controller correspond to
the relative position of the active hinge it is associated with.
The value of the third (z) coordinate varies according to the
type of node and the kind of connection: for connections
within an oscillator, X and y nodes have z = 1, respectively
z = −1. For connections between neighbouring oscillators,
z = 0. The CPPNs have six inputs denoting the coordinates
of a connection’s source and target and three outputs: the
weight of the connection and the bias and gain for the tar-
get node. For inter-oscillator connections (when z = 0), the
gain and bias outputs are ignored.

For spline-based controllers, the CPPNs must output the
αi value for a given ti for each spline in the controller. Obvi-
ously, ti must be one of the inputs for the CPPN. As before,
two further inputs correspond with the position of the active
hinge associated with the spline. Thus, CPPNs for splines
have three inputs: the coordinates of the active hinge and ti.
They have one output: αi.

Learning with (µ+ 1) ES Using a straightforward direct
encoding, the genotype is a vector of real values correspond-
ing to all control points for the spline-based controllers, and
to the weights of the connections, the biases and the gain
parameters of the nodes for CPG-based controllers. For the
experiments in this paper, we use binary tournament selec-
tion and a self-adjusting σ value cf. Jelisavcic et al. (2016).
Further details can be found in the source code and accom-
panying documentation.

Lamarckian Set-up
With lifetime learning by means of an on-line evolutionary
algorithm as in this research, each robot carries an internal
population of controllers that evolve during the robot’s life-
time. In such a system, a simple but effective implemen-

Initial generation (“spider”, “gecko”, and “snake”)

Second generation

Third generation

Fourth generation

Figure 3: The morphologies used in this study. The top row
shows the smallest versions of the three hand-designed ini-
tial morphologies. The following rows of robots result from
recombination and mutation of the previous generations.

tation of Lamarckian evolution is to seed an individual’s
population from that of its parents. We test two variants
of seeding an offspring’s population. One option initialises
the NEAT population with the best 5 CPPNs from each par-
ent, this variant is labeled as 5 + 5 in the following sec-
tions. The second option only takes 3 CPPNs from each
parent and randomly initialises the remaining 4 as for stan-
dard NEAT (labeled as 3 + 3 + 4). These randomly initial-
ized networks only contain the input and output neurons and
connections from every input to every output neuron with
randomly initialized weights and neuron parameters.

NEAT requires some bookkeeping of the complexifica-
tion process that occurs by adding and removing nodes and
connections, and this is implemented by means of innova-
tion numbers that uniquely identify inserted material. When
combining individuals from two separate NEAT runs, the
innovation numbers must be updated so that no conflicts oc-
cur. Offsetting the innovation numbers from one of the two
parents proved a convenient method to achieve this, allow-
ing the CPPNs from both parents to be (re)combined in the
offspring’s population.

The Robots
The robots and their genetic representation are based on
RoboGen (Auerbach et al., 2014). In this study, we use
a subset of those 3D-printable components: fixed bricks, a
core component, and active hinges. For the experiments in
this paper, the robots are simulated in a custom simulator
based on Gazebo. Each robot’s genotype describes its layout
and consists of a tree structure with the root node represent-

0

25

50

75

100

0 250 500 750 1000
number of evaluations

sc
al

ed
 s

pe
ed

 [%
]

(mu+1)ES−CPG
(mu+1)ES−splines
CPPN−CPG
CPPN−splines

Figure 4: Learner and controller performances for the three
size variations of the “spider” morphology. To adjust for
the higher speeds obtained by the larger robots, the perfor-
mances are normalised and combined into a single plot. The
lines show the averaged best result and the dots indicate the
performance of the separate runs.

ing a core module from which further components branch
out. Similar to genetic programming, recombination is im-
plemented by replacing a sub-tree in one parent with a ran-
domly selected sub-tree from the other parent. There are
some restrictions with which the result must comply, e.g.,
the body cannot intersect with itself. If these restrictions are
violated, the recombination operation fails.

For these experiments, we take three manually de-
signed morphologies as representing an ancestral popula-
tion, shown in the top row of Fig. 3. We also vary the size of
each shape by adding hinge-brick modules at the end of each
extremity, giving us a total of nine ancestors: the ones shown
and six larger variants with one, respectively two modules
added to each extremity. The first set of offspring (“second
generation”) consists of three robots generated by recom-
bining two parents from this ancestral population. A fur-
ther iteration (“third generation”) consists of three offspring
of the second generation robots, and the fourth generation
comprises of three offspring from the third generation.

Results
This section presents the results from the two main exper-
iments: First, learner-controller combinations are tested on
the nine ancestral morphologies, represented by the top row
of Fig. 3. We then test the effect of a Lamarckian approach
using an indirect encoding on the offspring robots, shown
in the three bottom rows of Fig. 3. Further, we analyze the
results from the Lamarckian experiments with respect to ge-
netic material retention and performance increase.

Lifetime Gait Learning Comparison
Each morphology was tested in three sizes, and learning was
performed in ten replicate runs. In order to gain some intu-

Table 1: p-values from Dunn’s test comparing performance
between the different learner and controller combinations.
MPO denotes (µ+ 1) ES, SPL denotes splines.

MPO-SPL MPO-CPG CPPN-SPL

MPO-CPG 0.0890
CPPN-SPL 0.0001 0.0065
CPPN-CPG 0.0102 0.1654 0.0655

Table 2: p-values from Dunn’s test comparing performance
between the baseline and the two Lamarckian scenarios at
two points in the learning process.

Evaluation 5+5 3+3+4 non-parent

250 0.017 0.013 1.00
1000 1.00 1.00 1.00

ition on the four tested learner-controller schemes, perfor-
mances are normalised as a percentage of the overall best
result with all four tested schemes for a given robot mor-
phology and size. The normalised performances are then
averaged over all runs, yielding a combined performance
for a given morphology type. The results from the “spi-
der” morphology are shown in Fig. 4. Plots for the other
morphologies are available in the supplementary material.

A Kruskal-Wallis test shows that there is a statistically
significant difference between the learner-controller combi-
nations in the last evaluation (H(2) = 15.63, p = 0). This
was followed by Dunn’s test to determine which scenarios
differ, and the results are shown in Tab. 1. The CPPN-
splines approach performs worst, while the (µ + 1) ES-
splines approach is better than the CPPN-CPG approach
(with p < 0.05). There is no statistical difference between
the performance of CPPN and (µ + 1) ES when applied to
CPG controllers.

Lamarckian vs. Non-Lamarckian Performance
The results from running new rounds of learning on the mor-
phology offspring are shown in Fig. 5. The Lamarckian ap-
proach is compared to learning based on re-initialized con-
trollers. We also include an approach where we initalize the
learning with a control system not stemming from the parent
morphologies, but instead the remaining morphology of the
previous generation. This comparison is included for control
purposes – to observe whether there is a performance change
in learning based on controllers from parental morphologies
rather than a randomly picked morphology. The plots show
the best performance over time: the individual dots indicate
the results of the separate replicate runs at intervals of 100
evaluations and the lines show the average for each learning
scheme.

We used the Kruskal-Wallis test to determine whether the

Second generation

0

1

2

3

4

5

0 250 500 750 1000
number of evaluations

m
ov

em
en

t s
pe

ed
 [c

m
/s

]

3+3+4
5+5
initial
non−parent 0

1

2

3

4

5

0 250 500 750 1000
number of evaluations

m
ov

em
en

t s
pe

ed
 [c

m
/s

]

0

1

2

3

4

5

0 250 500 750 1000
number of evaluations

m
ov

em
en

t s
pe

ed
 [c

m
/s

]

Third generation

0

1

2

3

4

5

0 250 500 750 1000
number of evaluations

m
ov

em
en

t s
pe

ed
 [c

m
/s

]

0

1

2

3

4

5

0 250 500 750 1000
number of evaluations

m
ov

em
en

t s
pe

ed
 [c

m
/s

]

0

1

2

3

4

5

0 250 500 750 1000
number of evaluations

m
ov

em
en

t s
pe

ed
 [c

m
/s

]

Fourth generation

0

1

2

3

4

5

0 250 500 750 1000
number of evaluations

m
ov

em
en

t s
pe

ed
 [c

m
/s

]

0

1

2

3

4

5

0 250 500 750 1000
number of evaluations

m
ov

em
en

t s
pe

ed
 [c

m
/s

]

0

1

2

3

4

5

0 250 500 750 1000
number of evaluations

m
ov

em
en

t s
pe

ed
 [c

m
/s

]

Figure 5: Results from running lifetime learning on offspring with new morphologies, using either re-initialized CPPNs (initial),
CPPNs from the non-parent robot, 5 CPPNs from each parent (5+5), or a mix between re-initialized and 3 CPPNs from each
parent (3+3+4). All learning methods are run 10 times, lines show the mean and dots show the individual run results. The plots
are arranged coincidentally with the images in Fig. 3.

differences in performance are statistically significant be-
tween the scenarios at evaluations 250 (H(2) = 13.57, p =
0) and 1000 (H(2) = 1.53, p = 0.67). This was followed
by Dunn’s test to determine which scenarios differ, and the
results are shown in Tab. 2. Note that the table does not
show the comparison between the two Lamarckian scenar-
ios, as no significant differences were found between these.
The performance differences between both of the Lamarck-
ian and the non-Lamarckian scenario are significant at eval-
uation 250. After 1000 evaluations a performance difference
seems to persist, but more samples would be needed to sta-
tistically confirm this.

Genetic Material vs. Performance Increase

We further seek to analyse the factors causing the differ-
ences in lifetime learning between the non-Lamarckian and
the Lamarckian set-ups. In order to do this, we investigate
the correlation between the amount of remaining parental
genetic material as lifetime learning progresses and the per-
formance increase of the Lamarckian set-up.

We calculated the percentage of parental genetic material
for the currently best performing CPPNs in the (5+5) ap-
proach, that is, the number of nodes and connections present
from the parental CPPNs with which the population was
seeded as a percentage of the total number of nodes and con-

0

25

50

75

100

0 250 500 750 1000
number of evaluations

ra
tio

 o
f p

ar
en

t g
en

om
es

 [%
]

Figure 6: Percentage of parental genetic material in the best-
performing CPPNs as lifetime learning progresses for the
first depicted robot in the second generation.

�

�

�

�

�

�

�
�

�

�

�

�

����

�

−5

0

5

10

15

350 400 450 500
retention

im
pr

ov
em

en
ts

Figure 7: Correlation between amount of retained genetic
material and the improvement afforded by the Lamarckian
set-up. The blue line shows a linear model with the confi-
dence interval in grey.

nections. One example of such a development of the remain-
ing amount of genetic material is shown in Fig. 6.

We calculate the area under the curve for all of the 9
offspring, such that a higher number means that a higher
amount of genetic material has been retained during the life-
time. Similarly, we calculate the area between the Lamar-
ckian learning curve (5+5) and the non-Lamarckian curve
(initial) from the trials in Fig. 5, such that a higher num-
ber means a larger improvement over the non-Lamarckian
approach. We then plot these value pairs for each of the tri-
als in Fig. 7, together with a fitted linear model (R2=0.363,
p=0.086).

Discussion
From Fig. 4 and Tab. 1 we can confirm that (µ + 1) ES
working on a direct coding is an efficient learning approach,
which is in line with earlier studies (Jelisavcic et al., 2016).
However, while (µ+ 1) ES seems to be the overall most ef-

ficient method for the tested scenarios, the CPPN-based en-
coding delivers competitive performance, especially when
applied to the CPG controllers. We can thus conclude that
CPPN-based lifetime learning is an approach meriting fur-
ther investigation, especially since this enables a Lamarck-
ian evolution paradigm.

Fig. 5 shows that either the Lamarckian approach achieves
slightly better performance after 1 000 evaluations, or that
there are only small differences between the performance
of three approaches. This may indicate that, given enough
time, any of the approaches could reach the practical limits
for a specific morphology. However, the Lamarckian ap-
proaches tend to achieve good performances earlier in the
evolutionary runs. Scenarios, where offspring start their
learning phase with CPPNs inherited from their parents
show high performance from the outset compared to those
where the CPPNs are re-initialised and also compared to the
control case where non-parent CPPNs were inherited. This
would be a major advantage in a set-up where learning is
performed on real robots. Faster convergence would allow
for an earlier termination of the learning process, reducing
the physical wear and tear on the robots and accelerating
the overarching evolutionary process. We also observe that
there are some morphologies where all learning methods
struggle to achieve good performances, which seems related
to the size of the morphologies.

From the example in Fig. 6, we observe that in our Lamar-
ckian set-up there seems to be a rapid replacement of old
genetic material with new in the initial 100 to 200 evalu-
ations, before stabilising on around 50% ancestral genetic
material. Apparently, this ancestral material plays a crucial
role in the behaviour of the controllers, and Fig. 7 suggests
there is indeed a correlation between the improvement over
the re-initialized controllers and the amount of genetic ma-
terial retained from parental controllers. There may be more
complex reasons underlying this observation, which should
be investigated by further experiments and analysis of the
genetic material.

While the employed CPPN-CPG approach may seem
counterintuitive for achieving lifetime learning –due to it
traditionally being used for evolutionary timescales and be-
ing associated with the development phase of a robotic
morphology– we argue that it makes sense here as it al-
lows for Lamarckian evolution and also shows promising
performance compared to a typical directly encoded learn-
ing algorithm. In these experiments, the morphology and
the controller are encoded separately, which helps separate
the evolution and learning components, one could also pic-
ture this approach being possible for indirect encodings that
combine morphology and control genes, such as in Hornby
et al. (2003). It would then be a matter of “freezing” the
morphology genes while allowing for variations of the con-
troller genes on a lifetime learning timescale.

Conclusion
In this paper we have studied a system where both the mor-
phologies and controllers of modular robots can evolve or
be learned. We have shown that evolving CPPNs as an in-
direct encoding for CPG controllers is a viable scheme for
lifetime learning and that this approach effectively enables
a Lamarckian paradigm for the non-trivial case of evolving
morphologies. We have analyzed the approach of transfer-
ring learned knowledge to offspring, showing that the faster
convergence towards good locomotion performance is re-
lated to the genetic material inherited from parents and that
this improvement is correlated with the amount of retained
genetic material.

The results from this paper should be seen as the
first step into more research on lifetime learning-enabled
morphology-control evolution scenarios. For future work,
it would be beneficial to study evolutionary timescale ef-
fects (e.g., of different selection schemes) on lifetime learn-
ing, and to investigate both Lamarckian and Baldwinian ap-
proaches for different scenarios.

References
Ackley, D. H. and Littman, M. L. (1994). A Case for Lamarckian

Evolution. Artificial Life III, pages 3–10.

Auerbach, J., Aydin, D., Maesani, A., Kornatowski, P., Cieslewski,
T., Heitz, G., Fernando, P., Loshchilov, I., Daler, L., and Flo-
reano, D. (2014). Robogen: robot generation through artifi-
cial evolution. In Proceedings of the Artificial Life Confer-
ence (ALIFE XIV), pages 136–137. MIT Press.

Bongard, J., Zykov, V., and Lipson, H. (2006). Resilient machines
through continuous self-modeling. Science, 314(5802):1118–
1121.

Cheney, N., Bongard, J., Sunspiral, V., and Lipson, H. (2016). On
the Difficulty of Co-Optimizing Morphology and Control in
Evolved Virtual Creatures. In Proceedings of the Artificial
Life Conference (ALIFE XV), pages 226–234. MIT Press.

Cheney, N., MacCurdy, R., Clune, J., and Lipson, H. (2013). Un-
shackling Evolution: Evolving Soft Robots with Multiple
Materials and a Powerful Generative Encoding. In Proceed-
ings of the 15th Annual Conference on Genetic and Evolu-
tionary Computation, GECCO ’13, pages 167–174. ACM.

Clune, J., Stanley, K. O., Pennock, R. T., and Ofria, C. (2011). On
the performance of indirect encoding across the continuum of
regularity. IEEE Transactions on Evolutionary Computation,
15(3):346–367.

Dias, B. G. and Ressler, K. J. (2014). Parental olfactory experi-
ence influences behavior and neural structure in subsequent
generations. Nature neuroscience, 17(1):89–96.

Eiben, A. and Smith, J. (2015). From evolutionary computation to
the evolution of things. Nature, 521(7553):476–482.

Haasdijk, E., Rusu, A. A., and Eiben, A. E. (2010). HyperNEAT
for locomotion control in modular robots. In International
Conference on Evolvable Systems, pages 169–180. Springer.

Haasdijk, E., Smit, S. K., and Eiben, A. E. (2012). Exploratory
analysis of an on-line evolutionary algorithm in simulated
robots. Evolutionary Intelligence, 5(4):213–230.

Hornby, G. S., Lipson, H., and Pollack, J. B. (2003). Generative
representations for the automated design of modular physi-
cal robots. IEEE Transactions on Robotics and Automation,
19(4):703–719.

Jelisavcic, M., Carlo, M. D., Haasdijk, E., and Eiben, A. E. (2016).
Improving RL Power for On-Line Evolution of Gaits in Mod-
ular Robots. In 2016 IEEE Symposium Series on Computa-
tional Intelligence (SSCI). IEEE.

Jelisavcic, M., Kiesel, R., Glette, K., Haasdijk, E., and Eiben, A. E.
(2017). Benefits of lamarckian evolution for morphologically
evolving robots. In Proceedings of the 19th annual confer-
ence on Genetic and evolutionary computation. ACM. In
press.

Kober, J. and Peters, J. (2009). Learning motor primitives for
robotics. In Robotics and Automation, 2009. ICRA’09. IEEE
International Conference on, pages 2112–2118. IEEE.

Lehman, J. and Stanley, K. O. (2011). Evolving a diversity of vir-
tual creatures through novelty search and local competition.
In Proceedings of the 13th annual conference on Genetic and
evolutionary computation, pages 211–218. ACM.

Lipson, H. and Pollack, J. (2000). Automatic design and manufac-
ture of robotic lifeforms. Nature, 406(August):974–978.

Liu, W. and Winfield, A. (2011). Autonomous morphogenesis in
self-assembling robots using IR-based sensing and local com-
munications. Swarm Intelligence, pages 107–118.

Pfeifer, R. and Iida, F. (2004). Embodied Artificial Intelligence:
Trends and Challenges. In Iida, F., Pfeifer, R., Steels, L.,
and Kuniyoshi, Y., editors, Embodied Artificial Intelligence,
pages 1–26. Springer Berlin Heidelberg.

Shen, H., Yosinski, J., Kormushev, P., Caldwell, D. G., and Lipson,
H. (2012). Learning Fast Quadruped Robot Gaits with the RL
PoWER Spline Parameterization. Cybernetics and Informa-
tion Technologies, 12(3):66–75.

Sims, K. (1994). Evolving virtual creatures. In Proceedings of the
21st annual conference on computer graphics and interactive
techniques, SIGGRAPH ’94, pages 15–22. ACM.

Sproewitz, A., Moeckel, R., Maye, J., and Ijspeert, A. J. (2008).
Learning to move in modular robots using central pattern gen-
erators and online optimization. The International Journal of
Robotics Research, 27(3-4):423–443.

Stanley, K. O., D’Ambrosio, D. B., and Gauci, J. (2009). A
hypercube-based encoding for evolving large-scale neural
networks. Artificial Life, 15(2):185–212.

Stanley, K. O. and Miikkulainen, R. (2002). Evolving Neural Net-
works through Augmenting Topologies. Evolutionary Com-
putation, 10(2):99–127.

Weel, B., D’Angelo, M., Haasdijk, E., and Eiben, A. (2017). On-
line gait learning for modular robots with arbitrary shapes and
sizes. Artificial Life Journal, 23(1):80–104.

