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We consider the expectation value of a chromo-magnetic flux loop in the immediate forward light
cone of collisions of heavy nuclei at high energies. Such collisions are characterized by a non-linear
scale Qs where color fields become strong. We find that loops of area greater than ∼ 1.5/Q2

s exhibit
area law behavior, which determines the scale of elementary flux excitations (“vortices”). We also
estimate the magnetic string tension, σM ' 0.12Q2

s. By the time t ∼ 1/Qs even small loops satisfy
area law scaling. We describe corrections to the propagator of semi-hard particles at very early
times in the background of fluctuating magnetic fields.

Collisions of heavy ions at high energies provide oppor-
tunity to study non-linear dynamics of strong QCD color
fields [1]. The field of a very dense system of color charges
at rapidities far from the source is determined by the clas-
sical Yang-Mills equations with a recoilless current along
the light cone [2]. It consists of gluons characterized by a
transverse momentum pT on the order of the density of
valence charges per unit transverse area Q2

s [3]; this satu-
ration momentum scale separates the regime of non-linear
color field interactions at pT <∼ Qs or distances r >∼ 1/Qs
from the perturbative regime at pT � Qs. Near the cen-
ter of a large nucleus this scale is expected to exceed
∼ 1.5 GeV at BNL-RHIC or CERN-LHC collider en-
ergies, for a probe in the adjoint representation of the
color gauge group. The classical field solution provides
the leading contribution to an expansion in terms of the
coupling and of the inverse saturation momentum.

The soft field produced in a collision of two nuclei is
then a solution of the Yang-Mills equations satisfying ap-
propriate matching conditions on the light cone [4]. Most
interestingly, right after the impact strong longitudinal
chromo-magnetic fields Bz ∼ 1/g develop due to the fact
that the individual projectile and target fields do not
commute [5, 6]. They fluctuate according to the random
local color charge densities of the valence sources. In this
Letter we show that magnetic loops WM exhibit area
law behavior, and we compute the magnetic string ten-
sion. Furthermore, we argue that at length scales ∼ 1/Qs
the field configurations might be viewed as uncorrelated
Z(N) vortices. At finite times ∼ 1/Qs after the colli-
sion area law behavior is observed even for rather small
Wilson loops. Finally, we sketch how the background of
magnetic fields affects propagation of semi-hard particles
with transverse momenta somewhat above Qs.

Consider a spatial Wilson loop with radius R in the

plane transverse to the beams,

M(R) = P exp

ig π∫
−π

dθ
∂xi

∂θ
Ai


WM (R) =

1

Nc
〈trM(R)〉 , (1)

where x = R(cos θ, sin θ), and path ordering is with re-
spect to the angle θ; in numerical lattice simulations it
is more convenient to employ a square loop. We com-
pare, also, to the expectation value of the Z(Nc) part of
the loop; for a magnetic field configuration correspond-
ing simply to a superposition of independent vortices the
loop should equal exp(2πi n/Nc), with n the total vor-
tex charge piercing the loop. Thus, for two colors we
compute

W
Z(2)
M (R) = 〈sgn trM(R)〉 (2)

where sgn() denotes the sign function. Comparing (1)
to (2) tests the interpretation that the drop-off of WM (R)
is due to Z(Nc) vortices, without requiring gauge fixing
of the SU(Nc) links [7].

The field in the forward light cone immediately after a
collision [4], at proper time τ ≡

√
t2 − z2 → 0, is given

in light cone gauge by Ai = αi1 + αi2. In turn, before the
collision the individual fields of projectile and target are
2d pure gauges,

αim =
i

g
Um ∂

iU†m , ∂iαim = gρm , (3)

where m = 1, 2 labels projectile and target, respectively,
and Um are SU(N) gauge fields. Eqs. (3) can be solved
either analytically in an expansion in the field strength [4]
or numerically on a lattice [8].
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FIG. 1: Expectation value of the magnetic flux loop right after
a collision of two nuclei (time τ = +0) as a function of its area
A′ ≡ AQ2

s. We define Q2
s = (CF /2π) g4µ2. Symbols show

numerical results for SU(2) Yang-Mills on a 40962 lattice;
the lattice spacing is set by g2µL = 0.0661. The solid and
dashed lines represent fits over the range 4 ≥ A′ ≥ 2. The
short dotted line shows cos 2A′ for A′ < 0.3.

The large-x valence charge density ρ is a random
variable[16]. For a large nucleus, the effective action de-
scribing color charge fluctuations is quadratic,

Seff [ρa] =
ρa(x)ρa(x)

2µ2
, 〈ρa(x) ρb(y)〉 = µ2δabδ(x−y) ,

(4)
with µ2 proportional to the thickness of a given nu-
cleus [2]. The variance of color charge fluctuations de-
termines the saturation scale Q2

s ∼ g4µ2 [3]. The coarse-
grained effective action (4) applies to (transverse) area
elements containing a large number of large-x “valence”
charges, ∆A⊥ µ

2 ∼ ∆A⊥Q
2
s/g

4 � 1. The densities
ρa(x) at two different points are independent so that
their correlation length within the effective theory is zero.
However, this is not so for the gauge fields Ai which do
exhibit a finite screening length [9].

In fig. 1 we show numerical results for WM immedi-
ately after a collision. It exhibits area law behavior for
loops larger than A >∼ 2/Q2

s. The corresponding “mag-
netic string tension” is σM/Q

2
s = 0.12(1). The area law

indicates uncorrelated magnetic flux fluctuations through
the Wilson loop and that the area of magnetic vor-
tices is rather small, their radius being on the order of
Rvtx ∼ 0.8/Qs. We do not observe a breakdown of the
area law up to A ∼ 4/Q2

s, implying that vortex correla-
tions are small at such distance scales. Also, restricting
to the Z(2) part reduces the magnetic flux through small
loops but σM is comparable to the full SU(2) result, if
somewhat smaller.

The numerically small vortex size that we find is para-
metrically consistent with the classical Gaussian approx-
imation at weak coupling which, as already mentioned
above, applies for areas ∆A⊥ � g4/Q2

s. Corrections to

Seff of higher order in ρ [10] as well as due to quantum
fluctuations [11] of the fields should be investigated in
the future.

Since the field αim of a single nucleus is a pure gauge

it follows that W sngl
M (αim) = 1. However, beyond linear

order the field in the forward light cone, Ai = αi1 + αi2 is
not a pure gauge and so WM (Ai) 6= 1. As discussed in
the appendix, for small loops the correction

WM (αi1 + αi2)− 1 ∼ −A2 (5)

is proportional to the square of the area of the loop.
There is no contribution at order ∼ A, hence no area
law behavior and no vortices, even though there is, of
course, a non-zero longitudinal magnetic field even at the
“naive” perturbative level:

g2

Nc
〈trBz(r)Bz(r

′)〉 = 4
N2
c

N2
c − 1

Q2
s1Q

2
s2 log2 1

|r− r′|Λ
.

(6)
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FIG. 2: Same as fig. 1 for asymmetric projectile and target
saturation momenta.

Eq. (5) applies for small AQ2
s � 1 while the non-

perturbative lattice result exhibits area law behavior at
τ = +0 for AQ2

s
>∼ 1. It indicates the presence of re-

summed screening corrections for magnetic fields [9]. To
see this more explicitly it is useful to notice that σM ∼ Q2

s

is in fact σM ∼ Qs1Qs2, proportional to the product of
single powers of the respective saturation scales of pro-
jectile and target. We have verified this numerically in
fig. 2. Naive perturbation theory can only produce even
powers of the two-point function ∼ Q2

s.
To estimate the density of vortices one can consider a

simple combinatorial model whereby the area A of the
loop is covered by patches of size 1/Q2

s containing a Z(2)
vortex with probability p. Averaging over random, un-
correlated vortex fluctuations leads to [12]

WM (A) ∼ exp

(
−π

2

4
p(1− p)AQ2

s

)
, (7)
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or σM = (π2/4) p(1 − p)Q2
s. From this relation we esti-

mate that the probability of finding a vortex within an
area 1/Q2

s is p ' 1/20.
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FIG. 3: Time evolution of the magnetic flux loop after a colli-
sion of two nuclei (40962 lattice, g2µL = 0.05). From bottom
to top, the curves correspond to time τ × g2µ = 0, 1, 2, 3,
where g2µ ' 3Qs so that τ = 3/(g2µ) corresponds to about
τ ' 1/Qs in physical units.

In fig. 3 we show the time evolution of the magnetic
flux loop after a collision. The magnetic field strength
decreases due to longitudinal expansion and so WM ap-
proaches unity. On the other hand, the onset of area
law behavior is pushed to smaller loops, implying that
the size of elementary flux excitations or “vortices” de-
creases; by the time τ ∼ 1/Qs area law behavior is
satisfied even for rather small loops. Since long wave-
length magnetic fields remain even at times ∼ 1/Qs, it
will be important in the future to understand the transi-
tion of WM to behavior expected in thermal QCD where
σM ∼ (g2T )2 [13]. In the context of late-time behavior
much beyond t ∼ 1/Qs we refer to ref. [14] where area
law scaling of spatial loops has been observed for clas-
sical field configurations emerging from unstable plasma
evolution.

We have also investigated the dependence of the mag-
netic flux loop in the adjoint representation on its area,

W adj
M =

1

N2
c − 1

〈
|trM |2 − 1

〉
, (8)

and found behavior similar to fig. 3. The adjoint mag-
netic string tension is about two times larger, as expected
from (8).

The third color component of the longitudinal mag-
netic field is shown in fig. 4, using a random residual
gauge for Ai. Domain-like structures where the magnetic
field is either positive or negative are clearly visible; they
lead to the above-mentioned area law of the Wilson loop.
Also, one can see that in time the magnetic fields become
weaker and smoother.

FIG. 4: Color-3 component of the magnetic field F 3
xy(x, y) in

the transverse plane at time τ = +0 (top) and 1/g2µ ∼ 1/3Qs

(bottom) for a single configuration of color charge sources ρ.

Thus far we have not addressed the longitudinal struc-
ture of the initial fields. Our solution of eqs. (3) is boost
invariant and so, naively, the two-dimensional vortex
structures mentioned above would form boost invariant
strings. However, this simple picture could be modified
by longitudinal smearing of the valence charge distribu-
tions [15] and therefore requires more detailed consider-
ation.
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FIG. 5: Area enclosed by a quantum mechanical path shifted
by about one de Broglie wavelength from the extremal classi-
cal path.

The magnetic fields modify the propagation of semi-
hard modes with pT not too far above Qs. Quantum me-
chanically, the transition amplitude from a state |xi, ti〉
to |xf , tf 〉 is given by a Feynman sum over paths,

∫ ∞
0

ds

∫
Dxµ

〈
exp i

s∫
0

dτ
(
mẋ2 + gAµẋ

µ
)〉
∼

∫ ∞
0

ds

∫
Dxµ exp

i s∫
0

dτ mẋ2

 exp(−σMA) ,(9)

where xµ(τ) is a parametrization of the path with the
given boundary conditions and length s; and ẋµ =
dxµ/dτ . Here, the area A is that enclosed by a quan-
tum mechanical path from the initial to the final point
returning to xi via the classical path; see fig. 5. The
classical path is obtained by extremizing the action but
a single path is a set of measure zero. Semi-classical
paths can dominate the integral only if there is construc-
tive interference among neighboring paths from within a
de Broglie distance. On the other hand, destructive in-
terference of such paths leads to Anderson localization of
the wave function.

Hence, up to a numerical factor, the area in eq. (9)
should be given by A ∼ s/pT . Integrating over the
Schwinger parameter then leads to the propagator

i

p2 + iσM
m
pT

, (10)

where σM = 0.12Q2
s from above and m is the mass (time-

like virtuality) of the particle. This expression accounts
for corrections to free propagation and could be useful
for studies of the dynamics of the very early stage of a
heavy-ion collision.

We obtain a rather interesting picture of the very early
stage of ultrarelativistic heavy-ion collisions. Magnetic
Wilson loops of area >∼ 2/Q2

s effectively exhibit area
law behavior which implies uncorrelated magnetic Z(N)
vortex-like flux beyond the scale Rvtx ∼ 0.8/Qs. We do
expect that corrections to this picture appear at much
larger distance scales and we intend to study these in
detail in the future. The vortex structure of the longitu-
dinal magnetic field modifies propagation of particle-like
modes with de Broglie wavelength somewhat larger than
Qs.

We thank A. Kovner, L. McLerran, P. Orland and
R. Pisarski for helpful comments. A.D. and E.P. grate-
fully acknowledge support by the DOE Office of Nuclear
Physics through Grant No. DE-FG02-09ER41620; and
from The City University of New York through the PSC-
CUNY Research grant 66514-00 44.

Appendix: Perturbative limit of the magnetic
Wilson loop at τ = 0

In this appendix we outline the “naive” perturbative
expansion of the loop with the Gaussian contractions.
We stress that since magnetic fields at τ = 0 are screened
over distances ∼ 1/(5Qs) [9], that this naive expansion
can not be applied in the regime of interest in the present
paper.

To determine WM (Ai) we need to determine the “cor-
rection” in Ai = αi1 + αi2 from a pure gauge. From the
Baker-Campbell-Hausdorff relation,

WM (Ai) ' 1

Nc
tr exp

(
−1

2
[X1, X2]

)
, (11)

where terms of third order in the fields have been dropped
from the exponent; and Xm is αim integrated along the
loop.

In the weak field limit [4]

αim = −∂iΦm +
ig

2

(
δij − ∂i 1

∇2
⊥
∂j
)[

Φm, ∂
jΦm

]
+ · · ·

(12)
The first term on the rhs of eq. (12) does not contribute
to the integral of αim over a closed loop.

We can express the square of the exponent on the r.h.s.
of (11) as

h2 ≡ 1

16
fabcfdecXa

1X
d
1X

b
2X

e
2 , (13)

so that for two colors

WM (Ai) ' 〈cosh〉ρ1,ρ2 ' 1− 1

2
〈h2〉 . (14)
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Eq. (13) contains four integrations over the periphery of
the loop, two of which will be removed by the 〈·〉ρ1 and
〈·〉ρ2 contractions; c.f. eq. (4). Hence 〈h2〉 ∼ A2µ4 is
proportional to the square of the area of the loop. Fig. 1
shows that by matching to the lattice data at A′ � 1 we
estimate h ≈ 2A′.
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