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Abstract

The very precise combined HERA data provides a testing ground in which the relevance of
novel QCD regimes, other than the successful linear DGLAP evolution, in small–x inclu-
sive DIS data can be ascertained. We present a study of the dependence of the AAMQS
fits, based on the running coupling BK non-linear evolution equations (rcBK), on the fitted
dataset. This allows for the identification of the kinematical region where rcBK accurately
describes the data, and thus for the determination of its applicability boundary. We com-
pare the rcBK results with NNLO DGLAP fits, obtained with the NNPDF methodology
with analogous kinematical cuts. Further, we explore the impact on LHC phenomenology of
applying stringent kinematical cuts to the low–x HERA data in a DGLAP fit.
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1. Introduction

The knowledge of the partonic structure of the proton at all relevant observation scales
plays a crucial role in the analysis of data from present high-energy hadronic colliders, most
notably at the LHC. In practice such information is provided by phenomenological parton
fits to previously existing data based on the use of perturbative QCD renormalization group
equations and, in the framework of factorization theorems, it is used as input for establishing
the theoretical expectations and uncertainties for the production rates of any process of
interest.

The different QCD approaches for the description of the scale dependence of parton dis-
tribution functions – analogously, for gauge invariant operators encoding the parton flux into
the collision – share a similar strategy in resumming to all orders radiative terms enhanced
by large logarithms. The most widely used framework are the DGLAP equations [1–3], that
is, the renormalization group equations that describe the scale dependence of parton distri-
bution functions through a resummation of large logarithms ∼ αs lnQ2/Q2

0 with Q0 some
initial scale. The DGLAP equations have been successfully and intensively tested against
experimental data and, together with asymptotic freedom and factorization theorems, pro-
vide a fundamental tool for establishing controlled predictions at the LHC. Successful as they
are, the DGLAP equations are also expected to break down in some kinematic regimes. In
particular, at small values of Bjorken-x, large logarithms ∼ αs ln(x0/x) emerge and need to
be resummed to all orders.

In turn, analogous resummation schemes aimed at describing the small-x evolution of
hadron structure have also been developed. In this direction in the kinematic plane, orthog-
onal to DGLAP evolution, the relevant logarithms are ∼ αs ln(x0/x), resummed to all orders
in the BFKL approach [4, 5]. Let us recall that although a consistent formulation of DGLAP
evolution which also accounts for small-x resummation has been formulated [6–9] in the re-
cent years, its phenomenological consequences have not yet been fully explored. Additionally,
the enhancement of gluon emission at small-x naturally leads to the – empirically observed –
presence of large gluon densities and to the need of non-linear recombination terms in order
to stabilize the diffusion towards the infrared characteristic of BFKL evolution. Most impor-
tantly, the presence of non-linear terms is ultimately related to the preservation of unitarity
of the theory.

Both the resummation of small-x logarithms and the inclusion of non-linear density de-
pendent corrections are consistently accounted for by the B-JIMWLK [10–14] equations. The
presence of non-linear terms in the small-x evolution equations limits the growth rate of gluon
number densities for modes of transverse momentum smaller than the saturation scale Qs

(see section 2 for a precise definition). This novel, semi-hard dynamical scale marks the onset
of non-linear corrections in QCD evolution and leads to distinctive dynamical effects such as
the generation of geometric scaling [15].

An important improvement in devising a phenomenological tool for the empiric study
of the saturation phenomenon based on first principles QCD was brought by the recent
determination of higher order corrections to the B-JIMWLK equations [16–19]. In particular,
it was shown in [20] that the BK equation [10, 11] – the large-Nc limit of the full B-JIMWLK
hierarchy – including running coupling corrections as calculated in [16–18] was compatible
with experimental data from different collision systems. This expectation was confirmed by
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the AAMQS collaboration in [21], where global fits to e+p data based on the use of the
running coupling BK equation (referred to as rcBK equation henceforth) were performed for
the first time, providing a good description of data. This result was then updated in [22] to
include in the fitted data set the combined H1+ZEUS data [23] on the reduced cross section
and also include the contribution of heavy quarks. The AAMQS data set covers the region
x < 0.01 and Q2 < 50 GeV2, including data in the photoproduction region where Q2 � 1
GeV2. A similar strategy was followed in [24], where data on the diffractive cross section was
also fitted consistently. Overall, a very good description of data is provided in those three
studies. Although the rcBK fitting technology has not yet reached the level of sophistication
and accuracy of DGLAP based approaches, it shares a similar strategy and methodology,
thus allowing for systematic comparison to DGLAP studies, as we intend to do in this work.

Theoretical arguments alone can only strictly establish the applicability of either DGLAP
or BK in their asymptotic limits of very large Q2 (for DGLAP) or very small x (for BK). On
the phenomenological side, where intermediate (x,Q2) kinematics is probed, the situation
remains unclear. On one hand, DGLAP based approaches have continuously reported good
fits to all available data above some initial scale Q2

0 ∼ 1÷ 4 GeV2 and for x-values as small
as ∼ 10−5. On the other hand, similarly good fits to data in the same kinematic region are
achieved using the rcBK evolution equation, including data points up to Q2 = 50 GeV2.
Moreover, some features identified in data such as geometric scaling or the ratio of total over
diffractive cross sections are naturally explained in a non-linear evolution framework, while
they are difficult to reconcile with the strictly linear approach. Although geometric scaling
has been shown to be fully compatible with the linear DGLAP equations [25], the dynamical
scale generation at its origin in the non-linear context is not viable in a linear framework.

Clearly, the reliability of one or the other approach in the region of moderate (x,Q2)
cannot be determined on a priori theoretical arguments. It is also clear that claims in
favor of one particular approach should not be done solely on the basis of agreement with
experimental data: it is well known that one can obtain an excellent fit to the HERA low–x
data with a very reduced number of free parameters [26]. Such is a necessary but not sufficient
condition. Further, beyond describing existing data, the usefulness of a given approach rests
on its predictive power towards kinematic regions experimentally unexplored so far. This
latter condition rules out phenomenological data descriptions such as the structure function
parametrizations of Refs. [27, 28]. The predictivity requirement is clearly satisfied by both the
BK and DGLAP approaches, both endowed with a well defined QCD dynamical input that
we briefly review in Sect. 2. Their predictive power is, however, oriented towards different
directions in the kinematic plane: small-x and high-Q2 respectively.

A pertinent question to ask is whether corrections to the limit in which both formalisms
are well defined, large-Q2 and small-x respectively, are important in intermediate kinematic
regions and, if so, to what extent this missing dynamical effects could be accommodated in
the boundary conditions for the respective rcBK or DGLAP evolution. Thus, it may be that
the flexibility in the initial conditions for DGLAP evolution is hiding some interesting QCD
dynamics, namely the presence of non-linear behavior or the onset of the regime dominated
by high energy QCD (small–x resummation) not included in DGLAP fits at their present
degree of accuracy. A first attempt to answer this question was carried out in [29, 30].
Also, it is conceivable that higher twist corrections not included in the collinear factorization
framework may be sizable at moderate and small Q2. Analogous concerns arise in relation to
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the applicability of the rcBK approach as it is conceivable that the maximal value x0 = 0.01
considered in the AAMQS fits might not be small enough for the dipole formalism they
rely upon to be fully applicable. In particular, it remains to be understood why data at
Q2 = 50 GeV2 can be described in a rcBK fit, far beyond the naive range of application of
the nonlinear description. In that case, sizable energy conservation corrections, negligible at
very small-x, may influence the values of the fit parameters.

A natural step towards elucidating whether interesting dynamics is hidden or absorbed
in the boundary conditions in either approach is to systematically displace those boundaries
and assess the fit stability under such changes or, alternatively, look for correlations between
fit parameters and the position of the boundary. These boundary conditions are the Parton
Distribution Functions (PDFs) for DGLAP evolution and the Unintegrated Gluon Distribu-
tion (UGD) for BK evolution. Such sensitivity would indicate that the resulting PDFs (in
the case of DGLAP) or UGDs (in the case of rcBK) extracted from the fit are contaminated
with physics effects beyond the dynamical content of the respective evolution equations. In
Sect. 2 we describe the strategy pursued in [29, 30] to search for systematic deviations of
DGLAP fits by imposing selected kinematic cuts to the data set. We shall extend it in an
analogous fashion to the framework of rcBK fits. The results for the updated DGLAP and
rcBK fits to HERA data with kinematic cuts are presented and discussed in Sects. 3 and 4
respectively.

The presence of any systematic deviations from fixed order DGLAP evolution will have
direct implications for LHC phenomenology: indeed, parton distributions extracted from a
DGLAP analysis which includes HERA data in the small-(x,Q2) region are then evolved
upwards in Q2 to predict any LHC processes. In Sect. 5 we shall quantify and explore
how this potential source of theoretical uncertainty propagates towards high Q2 scales by
computing benchmark LHC cross sections with PDF sets both with and without the small–x
kinematical cuts. Conclusions and outlook are presented in Sect. 6.

2. rcBK and DGLAP evolution

In order to frame the discussion and facilitate the interpretation of the results presented
in the next sections, and before describing the strategy adopted to chart the small-(x,Q2)
kinematic territory, we first review very succinctly the main features of both BK and DGLAP
approaches. Using rather compact notation1 the BK (for the dipole scattering amplitude
N (x, r)) and DGLAP evolution equations (for vector PDFs f(x,Q2)) can be written as
follows:

BK:
∂N (r, x)

∂ ln(x0/x)
=

∫
d2r1K(r, r1, r2) [N (r1, x)+N (r2, x)−N (r, x)−N (r1, x)N (r2, x)] ; (1)

DGLAP:
∂f(x,Q2)

∂ ln(Q2/Q2
0)

=

∫ 1

x

dy

y
P
(
αs(Q

2), x/y
)
f(y,Q2) . (2)

The object evolved by the BK equation is the (imaginary part of the) quark-antiquark
color dipole amplitude to scatter off a hadronic target, N (r, x), where r is the transverse

1The BK equation written here assumes translational invariance of the dipole amplitude N . Also, some
constant factors have been absorbed in the evolution kernel K, see e.g. [22] for precise definitions.
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coordinate and x is the usual Bjorken scaling variable in deep–inelastic scattering. The
onset of the black-disk limit is given by the condition N (rs = 1/Qs(x), x) = κ ∼ 1, which
can also be used to define the saturation scale, Qs(x). The amplitude N (r, x) is the main
dynamical ingredient of the dipole formulation of deep inelastic scattering, extensively used
in the phenomenological searches of non-linear dynamics in data, including the AAMQS
global fits. In this framework the virtual photon-proton cross section for transverse (T ) and
longitudinal (L) polarization of the virtual photon reads

σT,L(x,Q2) = 2σ0
∑
f

∫ 1

0

dz

∫
dr |Ψf

T,L(ef ,mf , z, Q
2, r)|2N (r, x) , (3)

where Ψf
T,L is the light-cone wave function for a virtual photon to fluctuate into a quark-

antiquark dipole of quark flavor f . Other observables of interest, such as structure func-
tions F2, FL, are straightforwardly related to σT,L in Eq. (3). A clearer physical inter-
pretation of the dipole amplitude is obtained by recalling that its Fourier transform yields

the unintegrated gluon distribution (UGD) of the target: φ(x, kt) =
∫
d2r ei~r·

~ktN (r, x). In
turn, to LO accuracy the UGD is related to the standard integrated gluon distribution:

xg(x,Q2) =
∫ Q2

d2kt φ(x, kT ). Thus, the dipole amplitude provides direct information on the
gluon content of the hadron. The kernel K of the BK equation is obtained via perturbative
QCD calculations for small-x gluon emission, in a fashion analogous to that employed for
the calculation of the DGLAP splitting functions, P (x, αs) in Eq. (2). The evolution kernel
has been calculated up to NLO accuracy in the resummation variable αs ln(x0/x) [19]. Al-
ternatively, a partial subset of NLO corrections can be resummed to all orders to obtain the
running coupling BK equation used later in this work.

Three main distinctive features of the BK equation deserve to be highlighted. First, it
is an evolution equation in Bjorken-x, i.e. it provides the change of hadron structure when
smaller values of x are probed. As such, it has no predictive power in the orthogonal Q2-
direction, with all the Q2 dependence of structure functions computed with rcBK fixed by
the wave function in Eq. (3). Second, it is a non-linear equation. The presence of non-linear
terms is required by preservation of unitarity2, and can be interpreted, in the appropriate
gauge and frame, as due to gluon recombination processes. Third, it resums all twists or
multiple scatterings, and thus is applicable also for small values of Q2.

In contrast, the DGLAP equation, Eq. (2), provides the Q2 evolution of proton struc-
ture. The matrix of splitting functions that govern the evolution are known up to O (α2

s)
in pQCD [31, 32]. It has no predictive power in the orthogonal x-direction: in a DGLAP
analysis, for values of x ≤ xmin, with xmin the smallest value of x of the data included,
the DGLAP predictions become unreliable. Also, it is a linear, leading twist equation, two
conditions that are expected to break down for sufficiently small values of Q2, where gluon
densities are higher and the contribution from higher twists may be important.

Contact between these two orthogonal approaches can be made in the diagonal limit
of x → 0 and Q2 → ∞, where both BK and DGLAP equations converge to the Double
Logarithmic Approximation (see e.g. [11]). However, no smooth interpolation between the

2It is indeed straightforward to check that the non-linear term in Eq. (1) prevents the dipole scattering
amplitude to grow above unity, provided the initial condition is unitary itself, i.e N ≤ 1.
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two is known to date in the more interesting phenomenological region of moderate x and Q2.
Both the DGLAP or the BK equations are initial value problems, i.e. they are well defined

only after initial conditions at the initial evolution scale have been provided. This introduces
free parameters, ultimately of non-perturbative origin, to be fitted to data. In the case of
BK, initial conditions for the dipole amplitude (the UGD) should be specified at the initial
evolution scale x = x0 and for all values of the the dipole size r (equivalently, for all values
of3 Q2). In the AAMQS rcBK fits to HERA data the initial conditions are taken in the form

N (r, x = x0) = 1− exp

(
−(r2Q2

s0)
γ

4
ln

(
1

rΛQCD

+ e

))
, (4)

where Qs0 and γ are free parameters to be determined from the data. For DGLAP, initial
conditions for the PDFs have to be provided at some low initial scale Q2

0 and for all values of
x: xf(Q2 = Q2

0, x). Within the NNPDF approach, these initial conditions are parametrized
with artificial neural networks, which provide universal interpolants and avoid any theoretical
bias arising from the choice of a particular functional form for the input PDFs. Note that, in
principle, this technology could also be applied for the initial conditions of the rcBK analysis.

Lacking any better quantitative criterion, the choice of initial scale – x0 for BK or Q2
0

for DGLAP – that limits the fitting the data set in global fits is commonly determined a
posteriori: if good quality fits to data can be obtained with a given choice of the initial scale,
then the validity of the applied evolution scheme down to such scale is accepted. However,
this empirical, self-consistent criterion can be a misleading one. It is perfectly conceivable
that the adjustable parameters entering the initial conditions in either evolution scheme may
absorb some relevant dynamics not properly described by the physics content comprised in
the equations themselves.

Thus, one needs to define some suitable strategy to identify the regimes of validity of
each formalism and quantify the potential deviation from these. Such a strategy to search
for statistically significant deviations from DGLAP evolution was laid down in Refs. [29, 30].
There, subsets of data on the reduced lepton–proton DIS cross section σr(x,Q

2) measured
at HERA [23], below some given kinematic cuts,

Q2 ≤ Q2
cut ≡ Acut x

−λ (5)

with λ ∼ 0.3 and different values of Acut, were excluded from the data set, so that the PDFs
were fitted excluding the potentially dangerous region. The cuts were motivated by the
generic expectation that possible deviations from fixed order DGLAP are larger at small–x
and Q2. Then, backwards DGLAP evolution was used to compare with the excluded data,
thus providing a direct test of fit stability under changes in the boundary conditions.

The analysis of [29, 30], carried at NLO in the massless scheme for structure functions,
found a systematic discrepancy, albeit with not large enough statistical significance for a
decisive statement to be made. The observed discrepancy indicated that the parton evolution
in the unfitted kinematic region may not be fully accounted for by the physics encoded in
NLO DGLAP equations. Rather, additional dynamics should be responsible for it. Such

3The photon wave function Ψf
T,L in Eq. (3) peaks at r ∼ 2/Q.
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Figure 1: Sketch of the kinematic plane with cuts for DGLAP and rcBK fits. The arrows indicate
backwards evolution in either formalism to the unfitted test region.

deviations are qualitatively consistent with the behavior predicted by small-x perturbative
resummation [7], but incompatible with next-to-next-to-leading order corrections. Also, it
was suggested that an improved treatment of the heavy quark masses may have a sizable
impact for the relatively low Q2 values in the region excluded by the saturation inspired
kinematical cuts mentioned above.

In this work, we shall study the stability of the AAMQS fits with respect to the choice
of dataset following an analogous procedure. The AAMQS fits to HERA data, based on the
rcBK non–linear evolution equations included data in the region x < x0 = 0.01 and Q2 < 50
GeV2. We shall perform fits to data using the AAMQS set up for the case of only three active
flavors (the lightest ones) with 4 free parameters (Q2

0, γ, σ0 and C) as described in detail
in [22]. We shall systematically reduce the largest experimental value of x included in the fit,
which we denote by xcut, and then use the parametrization for the dipole scattering amplitude
resulting from the fit to predict the value of the reduced cross section in the unfitted region
xcut < x < x0.

The rcBK equation at the basis of the AAMQS approach is a non-linear equation and,
therefore, extremely unstable under backwards evolution. Equivalently, as it is well known,
the solutions of the BK equation at asymptotically small-x are universal, i.e independent
of the initial conditions. This immediately implies that backward BK evolution is not well
defined. Thus, even for fits with a cut in the Bjorken variable at xcut, we shall start the
evolution, and hence determine the boundary conditions, at 0.01 = x0 > xcut. This will allow
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us to know the dipole scattering amplitude corresponding to fits with cuts in all the unfitted
region, i.e. xcut < x < x0. The fitting strategy for the DGLAP and rcBK analysis with
kinematical cuts is summarized in Fig. 1.

3. NNLO DGLAP analysis with kinematical cuts

Before presenting the results for the rcBK fits with cuts, we present an updated DGLAP
fit with kinematic cuts, along the lines of those presented in Refs. [29, 30], but now based
on the NNPDF2.1 NNLO set [33]. NNPDF2.1 NNLO is based on the FONLL-C GM-VFN
scheme [34] for an accurate treatment of heavy quarks in DIS, while the original studies [29,
30] where based on PDFs sets extracted in the ZM-VFN scheme [35–37]. Although we
will refrain from a detailed discussion of the NNPDF2.1 NNLO cut fits that were produced
for comparison with the rcBK fit with cuts presented below, we briefly explain our modus
operandi and highlight some of its features.

The reference DGLAP fit is NNPDF2.1, a NNLO fit to all data (Acut = 0) above Q2 > 3
GeV2, including O(3500) experimental points from DIS, DY, W/Z production and inclusive
jet data. Then, based on that fit, the χ2 per number of data points4 is calculated for different
subsets of interest. Of relevance to this work is the neutral current positron subset, HERA-I
NCp, since these are the only data included in the rcBK analysis, and also the only data
affected by the kinematic cuts. We have then performed a new NNLO DGLAP fit including
only those data points which survive the cut Acut = 1.5. The NNLO PDFs with Acut = 1.5,
see Eq. (5), are compared to the reference NNPDF2.1 NNLO PDFs (with Acut = 0) in Fig. 2,
where the two PDFs that are mostly affected by the applied kinematical cuts – the singlet
and the gluon – are shown, both at the initial scale and at Q2 = 104 GeV2, a typical value
for LHC phenomenology. In the latter case we show the ratios with respect to the reference
uncut fit. This comparison shows that while PDF uncertainties increase substantially when
the low–x, low–Q2 HERA data are removed, the two PDF sets are always consistent at the
one-sigma level. The differences remain when DGLAP evolution is used to determine the
PDFs at a typical LHC scale of Q2 = 104 GeV2 where both the gluon and the singlet are
larger at small-x as compared to the uncut fit.

It is known that in the small–x and large Q2 limit, the trajectories dictated by DGLAP
evolution become independent of the initial condition. To quantify if this asymptotic regime
is reached for realistic kinematics, we show the distances between PDFs5 as the scale is
raised in Fig. 3. This comparison allows us to quantify how DGLAP evolution modifies the
differences in the initial scale PDFs as the scale is raised. Let us recall that once the initial
conditions are fixed at some low scale Q2

0, the PDFs at any other scale Q2 ≥ Q2
0 are completely

determined by the DGLAP evolution equations. As one can see, DGLAP evolution modifies
the PDFs but does not wash up the initial differences, even for scales as large as Q2 = 108

4In the NNPDF analysis the full information on the correlated systematics is taken into account into the
definition of the χ2, and the normalization uncertainties are included following the t0 prescription [38]. Let
us recall that non negligible differences are expected if the systematic uncertainties are added in quadrature
to the statistical error, and that the χ2 will be artificially about 15% lower in this latter approximation [23].

5The distances defined to compare PDFs in the NNPDF framework are defined in the Appendix B of
Ref. [37]. They should not be confused with the relative and statistical distances, eqs. (6) and (7), introduced
later in this work.
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GeV2, shifting these differences towards smaller–x values, as clearly seen for example in the
gluon PDF.

Other PDF fitting groups have investigated the same topic, with inconclusive results so
far. In the CT collaboration study [39], based on the CT10 NLO analysis, the dependence
of the fit quality to the HERA–I data with the same kinematical cuts as in Refs. [29, 30]
was studied. It was found that some deviation for the smallest x and Q2 was obtained only
for given choices of PDF parametrizations, while for other parametrizations the results were
consistent with NLO QCD. This is not in contradiction with the NNPDF analysis, which
instead probe simultaneously a wide range of possible initial conditions. A full clarification
would require, within the CT framework, the exploration of a larger variety of initial PDF
conditions in order to statistically quantify the significance of the possible deviations with
respect to fixed order DGLAP evolution.

The HERAPDF collaboration has also studied the impact of raising the kinematical cuts
and assessed the variation of fit quality when going from NLO to NNLO. In Ref. [40] a NLO
QCD analysis was performed on the combined HERA-I data supplemented by HERA–II
taken at lower beam energies. When the kinematical cut was raised to Q2 ≥ 5 GeV2 the
resulting small-x singlet and gluon were found to be outside the reference PDF uncertainty
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Figure 3: Distances between PDF central values as a function of the scale Q2 of the PDFs. We show
the results for the quark singlet PDF (left plot) and for the gluon PDF (right plot).

band. Also, HERAPDF1.0 NNLO fits lead to a worse fit quality (by more that 50 units
in χ2 for about 500 data points) than the corresponding NLO results. Similar conclusions
are found in the updated HERAPDF1.5 NLO and NNLO analysis [41]. There a larger PDF
uncertainty on the gluon distribution is found at NNLO as compared to NLO.

4. rcBK analysis with kinematical cuts

We now present the rcBK results with various kinematical cuts as described in Sect. 2, and
compare them with the DGLAP cut fits presented in Sect. 3. Fig. 4 shows the comparison
of the theoretical results stemming from fits to data with different x-cuts (xcut = 10−2, 3 ·
10−3, 10−3, 3 ·10−4 and 10−4) to experimental data on the reduced cross section for x < 10−2

and Q2 < 50 GeV2. Several comments are in order. First, fits to data with different cuts
yield comparably good χ2/d.o.f.6, despite the decreasing number of points with decreasing
xcut. Also, the extrapolations of the results for the reduced cross section from fits with cuts
to the unfitted region , i.e to x > xcut, yield a good description of the data. This illustrates
the stability of the AAMQS fits under changes in the boundary conditions and lends support
to the idea that the non-linear small-x dynamics comprised in the running coupling BK
equation describes well the scale dependence of the proton structure in this test region of
moderate values of x . 0.01 and Q2 . 50 GeV2. This result is in contrast with the DGLAP
cut fits presented in the previous section, where systematic deviations among fits with and
without cuts were observed.

Fig. 5 shows our results corresponding to the rcBK fit with the most stringent cut xcut =
10−4 together with experimental data and the analogous results from the DGLAP fit with
cut Acut = 1.5. While the DGLAP extrapolations to the unfitted, test region are compatible
with data within the uncertainty bands, the central values of the predictions show significant

6In the AAMQS approach the χ2 is calculated as χ2 =
∑
i

(σr,th−σr,exp)2

∆σ2
r,exp

, where ∆σ2
r,exp is the total

experimental error obtained adding in quadrature all experimental uncertainties, and thus neglects the effects
of correlations.
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35 GeV2.

deviations from data in the region of small-x. Also, the PDF error bands blow up at small-x.
This can be understood as a consequence of the fact that there is no data in the DGLAP
fitting set causally connected to small values of x or, equivalently, the DGLAP predictions
at small values of x are not empirically constrained by data. This explains the large error
bars in this region.

In order to measure these deviations, we plot in Fig. 6 the relative distance between the
theoretical results and experimental data both for the rcBK and DGLAP cut fits, the cut
values being xcut = 10−4 and Acut = 1.5 respectively. The relative distance is defined as

drel(x,Q
2) =

σr,th − σr,exp
(σr,th + σr,exp)/2

, (6)

where σr,th are the theoretical predictions for the HERA reduced cross sections and σr,exp the
corresponding experimental data. As shown in Fig. 6, drel(x,Q

2) is on average much smaller
for the rcBK fits than it is for the DGLAP one, the latter also showing a systematic trend to
underestimate data at small-x and to overshoot them at larger x. In turn, the rcBK values
for drel(x,Q

2) alternate in sign in all the unfitted region.
Measurements of the deviations of theoretical predictions from data can be endowed with

a more statistically meaningful measure, the statistical distance defined as

dstat(x,Q
2) =

σr,th − σr,exp√
∆σ2

r,th + ∆σ2
r,exp

. (7)
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While the relative distance Eq. (6) measures in absolute terms the deviation, Eq. (7) gives
the statistical significance of that deviation in units of the standard deviation. The values of
dstat(x,Q

2) for the rcBK fit and the DGLAP ones are shown in Fig. 7. In the case of the rcBK
fits the theoretical error has been estimated as the maximal difference among the theoretical
predictions corresponding to fits with different cuts. The average distances for the rcBK fits
with the most stringent cut, xcut = 10−4, are 〈drel〉 = (5± 41) · 10−3, and 〈dstat〉 = 0.3 ± 9.
For the DGLAP cut fit, the average relative distance in the cut region is 〈drel〉 = 0.1 ± 0.3,
while the statistical distance in the same region is 〈dstat〉 = −0.8 ± 1.1. Both 〈drel〉 and
〈dstat〉 are considerably smaller for rcBK than they are for DGLAP, despite the fact that
theoretical errors are probably underestimated in the rcBK approach. Note however that the
initial conditions in the rcBK analysis are more restrictive than in the DGLAP fit, and that
adopting a more flexible input in the rcBK might affect the above results.

In order to explore the predictive power of the rcBK approach and the sensitivity to
boundary effects encoded in the different initial conditions for the evolution under the in-
clusion/exclusion of subsets of data we extrapolate our results for the total F2(x,Q

2) and
longitudinal FL(x,Q2) structure functions to values of x smaller than those currently avail-
able experimentally. The results of such extrapolation are presented in Figs. 8 and 9. We find
that the predictions stemming from different fits converge, within approximately one percent
accuracy, at values of x ∼ 10−4. The fit which extrapolation deviates the most, ∼ 2 ÷ 3%,
is the one corresponding to xcut = 3 · 10−4, which also yields a larger χ2/d.o.f. to all data.
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Figure 6: The relative distance, drel(x,Q
2) Eq. (6), for DGLAP (left) and rcBK (right) cut fits.

This convergence is due to the fact that rcBK admit asymptotic solutions independent of
initial conditions, as already known in the literature. Importantly, these predictions could
be verified in planned facilities as the Large electron-Hadron Collider (LHeC) [42] or the
Electron Ion Collider [43], where a much extended kinematic reach in x would be available7.

5. Implications for LHC phenomenology

Is follows from the previous discussion that if deviations from fixed order DGLAP were
conclusively found in HERA data, resulting from either the presence of small-x resummation
or non-linear effects, one should either exclude this data from the DGLAP analysis or perform
a new analysis combining for instance fixed order DGLAP with small-x resummation.8 To
quantify the worst-case scenario, in this final section we estimate the theoretical uncertainty
stemming from these potential deviations in DGLAP fits. To do so we proceed along the
lines of Refs. [29, 30] and compute benchmark LHC cross sections with the PDF sets both
with and without the small–x kinematical cuts, that is using the same settings as in Ref. [33].

7In the context of future DIS facilities, the physics that can be probed at low x within the DGLAP
framework has been studied in [44, 45].

8Of course such deviations from fixed order DGLAP might also contaminate extractions of the strong
coupling constant from global PDF analyses, in which the HERA data play an important role [46].
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Figure 7: The statistical distance, dstat(x,Q
2) Eq. (7), for DGLAP (left) and rcBK (right) cut fits.

We have computed, with the NNPDF2.1 NNLO set, the cross sections in NNLO QCD for
electroweak gauge boson production with VRAP [47], top quark production with HATHOR [48]
(based on an approximate NNLO calculation) and Higgs production in gluon fusion with the
code of Ref. [49]. We consider only PDF uncertainties, the strong coupling is kept fixed at
its reference value of αs (MZ) = 0.119 and the renormalization and factorization scales are
not varied.

The results are summarized in Table 1 and represented graphically in Fig. 10. As can
be seen, the impact of cutting the small-x and small-Q2 HERA data from the fit is rather
moderate at LHC 7 TeV: the uncut results are always within the reference 1–sigma band
and the PDF uncertainties increase less than a factor two. On the other hand, the impact is
much larger at LHC 14 TeV, since the larger center of mass energy leads to smaller values
of x in the PDFs being probed, and these are more affected by the kinematical cut. Indeed,
for the electroweak boson production cross sections the PDF uncertainties increase by up to
a factor five, though the central predictions are still in agreement with the original uncut
results. On the other hand, the cross section for Higgs boson production in gluon fusion is
very stable against the kinematical cuts.

These results suggest that understanding what is the correct dynamics that drives the
small-x and Q2 HERA data is important for precision physics at the LHC specially once the
machine energy is raised up to its design value of 14 TeV.
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LHC 7 TeV

σ(W+)Blν (nb) σ(W−)Blν (nb) σ(Z0)Bll (nb) σ(tt̄) (pb) σ(ggH) (pb)
NNPDF2.1 Acut = 0 6.20± 0.10 4.21± 0.07 0.972± 0.013 167± 5 13.3± 0.3

NNPDF2.1 Acut = 1.5 6.13± 0.17 4.17± 0.10 0.962± 0.021 171± 7 13.3± 0.3

LHC 14 TeV

σ(W+)Blν (nb) σ(W−)Blν (nb) σ(Z0)Bll (nb) σ(tt̄) (pb) σ(ggH) (pb)
NNPDF2.1 Acut = 0 12.45± 0.22 9.14± 0.15 2.08± 0.03 935± 17 44.1± 0.5

NNPDF2.1 Acut = 1.5 12.69± 1.19 9.24± 0.50 2.10± 0.11 920± 30 44.0± 0.7

Table 1: Predictions for LHC cross sections, computed at NNLO QCD with two different PDF
sets: the reference NNPDF2.1 NNLO fit with Acut = 0 and with the NNPDF2.1 NNLO fit with
Acut = 1.5. Upper table: LHC 7 TeV. Lower table: LHC 14 TeV. For Higgs boson production a
mass of mH = 125 GeV has been used, while for top quark production we have used mt = 172.5
GeV.
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Figure 9: Low-x extrapolation analogous to Fig. 8 for the longitudinal structure function FL(x,Q2).
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6. Conclusions and outlook

In summary, we have presented a precision study on the suitability of the rcBK and
DGLAP approaches to describe HERA data in the kinematic region of moderate x and Q2.
Our strategy consists in setting a common test ground through selected kinematic cuts to the
rcBK and DGLAP fitting procedures and perform systematic comparisons between theory
extrapolations and the unfitted data set. Our main findings are:

i) DGLAP fits display sensitivity to the exclusion of small-x data from the fitted sample.
While the deviations found are not statistically significant (below the 1–sigma level),
this might give support to the general idea that novel interesting physics is being
obscured by its encoding in the freedom of choice of initial conditions.

ii) rcBK fits are robust against the exclusion of data for values of x down to x=10−4 and
for data with Q2<50 GeV2.

iii) The exclusion of small-x data from DGLAP fits has consequences for LHC phenomenol-
ogy, in particular in a significant increase on the theoretical uncertainty for standard
production cross sections at a collision energy of 14 TeV.

iv) rcBK evolution yields robust predictions at small x and thus can be decisively con-
fronted with data from proposed facilities like the LHeC or the EIC. Within a DGLAP
analysis uncertainties grow very fast for low x outside the data region, and that renders
the framework non predictive in that domain.

The results of this paper beg for the development of a framework in which both Q2

(DGLAP) evolution and x (rcBK) non-linear evolution are jointly accounted for, just as the
common framework for the DGLAP and BFKL equations has been consistently obtained
by the small–x resummation formalism. Ultimately, one would wish for a resumation of
the non-linear kernel into DGLAP or alternatively to the encoding of Q2 evolution into the
B-JIMWLK framework. Unfortunately, at present no clear pathway in this direction exists.

At a more pragmatic level, the non-linear corrections implied by rcBK evolution could
be encoded in an effective manner as a correction factor or further constrain to the results
obtained within DGLAP. For instance, the paucity of data at small-x could be made up
for by including rcBK generated pseudodata in DGLAP fits. Also, a thorough study of the
impact of the small-x resummed formalism in DGLAP fits would be very useful to delimit
to what extent non-linear corrections embodied in rcBK evolution are actually necessary to
describe present data.
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