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HERA data and DGLAP evolution:
theory and phenomenology

Fabrizio Caola, Stefano Forte and Juan Rojo,

Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano,

Via Celoria 16, I-20133 Milano, Italy

Abstract:

We examine critically the evidence for deviations from next-to-leading order perturbative
DGLAP evolution in HERA data. We briefly review the status of perturbative small-x
resummation and of global determinations of parton distributions. We then show that the
geometric scaling properties of HERA data are consistent with DGLAP evolution, which
is also strongly supported by the double asymptotic scaling properties of the data. We
finally show that backwards evolution of parton distributions into the low x, low Q2 region
shows evidence of deviations between the observed behaviour and the next-to-leading order
predictions. These deviations cannot be explained by missing next-to-next-to-leading order
perturbative terms, but are consistent with perturbative small-x resummation.

1 DGLAP evolution in the LHC era

Perturbative QCD is a quantitatively tested theory which describes in a very accurate way
a vast body of data, and it is at the basis of physics at colliders such as the LHC [1]. The
DGLAP equations, i.e. the renormalization-group equations which govern the scale de-
pendence of parton distributions are, together with asymptotic freedom and factorization,
a cornerstone of the theory, both in terms of phenomenological success and theoretical
foundation. Specifically, they are the tool which allows us to combine information on
nucleon structure from a variety of data, and use it for predictions at the LHC.

The current frontier in perturbative QCD is systematically going from the second
to the third perturbative order, namely from next-to-leading (NLO) to next-to-next-to-
leading order (NNLO). In view of this, it is of utmost importance for both theory and
phenomenology to understand whether in any given kinematic region an order-by-order
perturbative approach is sufficient. There is now considerable theoretical evidence that
at sufficiently high center-of-mass energies this approach may break down, and thus as
this region is approached one should resum to all orders perturbative corrections which
are logarithmically enhanced in the ratio x of the hard scale to center-of-mass energy —
the so–called small-x resummation. However, conclusive experimental evidence for such
resummation effects in the data is lacking, partly due to the fact that the relevant effects
are difficult to disentangle from model and theoretical assumptions.

It is the purpose of this contribution to review, update and put in context a recent
attempt to provide some such evidence. The outline of this contribution is as follows.
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In Sect. 2 we briefly review the status of linear small-x resummation. Then in Sect. 3
we present the state of the art of fixed-order DGLAP and global PDF analysis and its
implications for the LHC. Finally in Sect. 4 we present a technique designed to identify
deviations from NLO DGLAP evolution in the data, and apply it to recent global parton
fit. We will specifically see that previous evidence of deviations from NLO DGLAP is
considerably strengthened by the recent precise combined HERA-I determination of deep-
inelastic structure functions.

2 Small-x resummation

As well known, deep–inelastic partonic cross sections and parton splitting functions receive
large corrections in the small-x limit due to the presence of powers of αs log x to all orders
in the perturbative expansion [2,3]. This suggests dramatic effects from yet higher orders,
so the success of NLO perturbation theory at HERA has been for a long time very hard
to explain. In the last several years this situation has been clarified [4–9], showing that,
once the full resummation procedure accounts for running coupling effects, gluon exchange
symmetry and other physical constraints, the effect of the resummation of terms which are
enhanced at small-x is perceptible but moderate — comparable in size to typical NNLO
fixed order corrections in the HERA region.

Figure 1: Ratio of the resummed and NNLO prediction to the NLO fixed order for the singlet F2

deep–inelastic structure function. The curves are: fixed order perturbation theory NNLO (green,
dashed); resummed NLO in Q0MS scheme (red, solid), resummed NLO in the MS scheme (blue,
dot-dashed). In each case, the three curves shown correspond to fixed x = 10−2, x = 10−4,
x = 10−6, with the smallest x value showing the largest deviations.

For phenomenology, it is necessary to resum not only evolution equations, but also hard
partonic coefficient functions. The relevant all–order coefficients have been computed for
DIS [2,3], and more recently for several LHC processes such as heavy quark production [10],
Higgs production [11,12], Drell-Yan [13,14] and prompt photon production [15,16]. These
coefficients can be used for a full resummation of physical observables, by suitably combin-
ing them with resummed DGLAP evolution and accounting for running–coupling effects,
so as to maintain perturbative independence of physical observables of the choice of fac-
torization scheme [17].
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This program has been carried out for the first time for deep–inelastic scattering in
Ref. [6], and more recently for prompt photon production [18], which makes resummed
phenomenology for these processes possible. In particular in Ref. [6] results have been pre-
sented for the ratio of resummed to unresummed NLO deep–inelastic structure functions.
These ratios are shown in Fig. 1 for two choices of the resummed factorization scheme
discussed in Ref. [6], and compared to analogous ratio of the fixed order NNLO to NLO.
They were determined under the hypothesis that the structure functions F2 and FL are
kept fixed for all x at Q0 = 2 GeV: this models the situation in which parton distributions
are determined at the scale Q0, and one then sees the change in prediction when going
from NLO to NNLO, or from NLO to unresummed. In Sect. 4 we will present evidence
for departures from the NLO which appear to be consistent with this figure.

3 Fixed order DGLAP: from HERA to LHC

Fixed–order DGLAP evolution is an integral ingredient of any PDF determination. Cur-
rently, the most comprehensive PDF sets are obtained from a global analysis of hard-
scattering data from a variety of processes like deep–inelastic scattering, Drell-Yan and
weak vector boson production and collider jet production. In such global analysis, QCD
factorization and DGLAP evolution are used to relate experimental data to a common
set of PDFs. Three groups produce such global analysis and provide regular updates of
these: NNPDF [19], CTEQ [20,21] and MSTW [22]. The typical dataset included in one
of such global analysis is shown in Fig. 2. We also show in Fig. 2 the kinematic range
which is available at the LHC as compared to that covered by present experimental data:
extrapolation to larger Q2 from the current data region is possible thanks to DGLAP
evolution.
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Figure 2: Left: Experimental data used in the NNPDF2.0 global analysis; the series of Acut

kinematic cuts is discussed in Sect. 4. Right: LHC kinematical region.

A significant advance in global PDF analysis in the recent years has been the develop-
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Fit 2.0 DIS 2.0 DIS+JET NNPDF2.0

χ2
tot 1.20 1.18 1.21

NMC-pd 0.85 0.86 0.99

NMC 1.69 1.66 1.69

SLAC 1.37 1.31 1.34

BCDMS 1.26 1.27 1.27

HERAI 1.13 1.13 1.14

CHORUS 1.13 1.11 1.18

NTVDMN 0.71 0.75 0.67

ZEUS-H2 1.50 1.49 1.51

DYE605 7.32 10.35 0.88

DYE866 2.24 2.59 1.28

CDFWASY 13.06 14.13 1.85

CDFZRAP 3.12 3.31 2.02

D0ZRAP 0.65 0.68 0.47

CDFR2KT 0.91 0.79 0.80

D0R2CON 1.00 0.93 0.93

Table 1: The χ2 for individual experiments included in NNPDF2.0 fits with DIS data only, DIS
and jet data only, and the full DIS, jet and Drell-Yan data set. For each fit, values of the χ2 for
data not included in the fit are shown in italic. The value of χ2

tot
in the first line does not include

these data.

ment of the NNPDF methodology [19,23–29]. NNPDF provides a determination of PDFs
and their uncertainty which is independent of the choice of data set, and which has been
shown in benchmark studies [30] to behave in a statistically consistent way when data are
added or removed to the fit. Also, because of the use of a Monte Carlo approach, the
NNPDF methodology is easily amenable to the use of standard statistical analysis tools.
The most updated NNPDF analysis is NNPDF2.0 [19], a global fit to all relevant DIS and
hadronic hard scattering data.

Comparing the effect of individual datasets on a global fit such as NNPDF2.0 allows
detailed studies of QCD factorization, DGLAP evolution, and the compatibility between
DIS and hadronic data. A very stringent test is obtained by comparing the results of
a fit to DIS data only to that of DIS+jet data (Table 1). Indeed, it turns out that
jet data, which are at much higher scale, are well predicted by PDFs determined from
lower scale DIS data. Furthermore, the gluon extracted from the DIS–only fit, which is
essentially determined from DGLAP scaling violations, turns out to agree very well with
that determined when jet data are also included (see Fig. 3): upon inclusion of the jet
data, the uncertainty decreases without a significant change in central value.

Further consistency checks are obtained by comparing the effect of the inclusion of a
specific dataset (such as Drell-Yan) to different datasets (such as DIS, or DIS+jets). If
there was any inconsistency between different sets, the impact of the new data would be
different according to whether they are added to data they are or are not consistent with.
No such differences are observed (see Fig. 4). Because the various sets are at different scales
and related through DGLAP evolution this also provides a strong check of its accuracy.

4 Deviations from DGLAP in HERA data

We have seen that NLO DGLAP is extremely successful in describing in a consistent
way all relevant hard scattering data. On the other hand, there are several theoretical
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Figure 3: Impact on the gluon distribution of the inclusion of jet data in a fit with DIS data.

indications that at small x and/or at small Q2 the NLO DGLAP might undergo sizable
corrections due to leading–twist small-x perturbative resummation, or non linear evolution,
parton saturation and other higher twist effects. Even if it is unclear in which kinematical
regime these effects should become relevant, it is likely that eventually they should become
relevant, specifically in order to prevent violations of unitarity.

When trying to trace these effects, one should beware of the possibility that putative
signals of deviation might in fact be explained using standard NLO theory. An example
of this situation is the so–called geometric scaling [31] , which is often thought to provide
unequivocal evidence for saturation. This is the prediction, common to many saturation
models, that DIS cross sections, at small-x depend only on the single variable

τ(x,Q2) =
(

Q2/Q2
0

)

· (x/x0)
λ, (1)

rather than on x and Q2 separately. However, it turns out that geometric scaling Eq. (1) is
also generated by linear DGLAP evolution [32]: fixed order DGLAP evolution evolves any
(reasonable) boundary condition into a geometric scaling form. Furthermore, the scaling
exponent λ Eq. (1) obtained in such way agrees very well with the experimental value.

Following Ref. [32], in Fig. 5 we compare the scaling behaviour of the HERA data and
the LO small-x DGLAP evolution of a flat boundary condition: the DGLAP prediction
scales even better than data. Note that the accurate combined HERA-I dataset [33] are
used here, and that the scaling behaviour persists also at larger x ∼< 0.1, where it is unlikely
that it is related to saturation. Clearly, this shows that geometric scaling is not sufficient
to conclude that fixed–order DGLAP fails. However, one may wonder whether small-x
LO DGLAP is phenomenologically relevant.

To answer this, in Fig. 5 we also show a comparison of the data to the so–called
double asymptotic scaling (DAS) [34] form, obtained from the small-x limit of the LO
DGLAP solution. The agreement between data and theory is so good that one can see the
change in DAS slope when the number of active flavours goes from nf = 4 to nf = 5: so,
while on the one hand geometric scaling cannot discriminate between pure DGLAP and
saturation, double asymptotic scaling provide evidence that the data follow the predicted
DGLAP behavior in most of the HERA region.

However, deviations from DGLAP evolution can be investigated exploiting the more
discriminating and sensitive framework of global PDF fits. The key idea in this kind of
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include data with 10 GeV2 ≥ Q2 ≥ 25 GeV2 and x < 0.01 (nf = 4) or Q2 ≥ 25 GeV2 and x < 0.07
(nf = 5).

analysis is to perform global fits only in the large-x, large-Q2 region, where NLO DGLAP
is certainly reliable. This way one can determine “safe” parton distributions which are
not contaminated by possible non-DGLAP effects. These “safe” PDFs are then evolved
backwards into the potentially “unsafe” low-x and low-Q2 kinematic region, and used to
compute physical observables, which are compared with data. A deviation between the
predicted and observed behaviour in this region can then provide a signal for effects beyond
NLO DGLAP. Since possible deviations are small, this kind of studies is meaningful only on
statistical grounds, hence a reliable estimate of PDFs uncertainties and theoretical biases
is mandatory. The NNPDF framework provides useful tools for this kind of investigations.

In [35] such an analysis was performed using the NNPDF1.2 PDF set [28], and it
did provide some evidence for deviations from NLO DGLAP. Here, we update this anal-
ysis using the NNPDF2.0 PDF set discussed in Sect. 3. In comparison to NNPDF1.2,
NNPDF2.0 also includes hadronic data (fixed target Drell-Yan production, collider weak
boson production and collider inclusive jets), and the combined HERA-I dataset [33] re-
places previously less accurate data from ZEUS and H1. The inclusion of the very accurate
combined HERA-I dataset has the potential to increase the significance of the observed
deviations from DGLAP, while the presence of hadronic data allows stringent tests of the
global compatibility of the NLO DGLAP framework, as discussed in Sect. 3. A further
difference between NNPDF1.2 and NNPDF2.0 is an improved treatment of normaliza-
tion uncertainties based on the so–called t0 method [29], which avoids the biases of other
commonly used methods to deal with normalization uncertainties.

The “safe” region, where non–DGLAP effects are likely to be negligible, is defined as

Q2 ≥ Acut · x
λ, (2)

with λ = 0.3. This definition has the feature of only considering unsafe small-x data if
their scale is low enough, with the relevant scale raised as x is lowered; its detailed shape
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2) computed using NNPDF1.2 (left) or NNPDF2.0

(right) PDFs obtained from fits with different values of Acut.

is inspired by saturation and resummation studies. We have performed fits with only data
which pass the cut Eq. (2) included, with a variety of choices for Acut, shown in Fig. 2.
Results depend smoothly on Acut.

As a first test, we have computed the proton structure function F2 and compared it
with data (see Fig. 6) at Q2 = 3.5 GeV2, where a significant x range falls below the cut
(compare with Fig. 2). Clearly, the prediction obtained from backward evolution of the
data above the cut exhibits a systematic downward trend. This deviation, which becomes
more and more apparent as Acut is raised, is visible but marginal when the NNPDF1.2
set based on old HERA data is used, but it becomes rather more significant when using
NNPDF2.0 and new HERA data. Interestingly, with old HERA data the uncut fit agrees
well with the data, showing that whatever the possible deviation between data and theory,
it is absorbed by the PDFs. This is no longer possible when the more precise combined
HERA data are used: in such case, even when no cut is applied, the theory cannot
reproduce the data fully. This suggests that low-x and Q2 NLO DGLAP evolution is
stronger than the scale dependence seen in the data.

In order to quantify this observed deviation from NLO DGLAP, we introduce the
statistical distance

dstat(x,Q
2) ≡

Fdata − Ffit
√

σ2
data + σ2

fit

, (3)

i.e. the difference between the observable Fdata and the NLO DGLAP prediction Ffit in
unit of their combined uncertainties σfit, σdata. Note that dstat ∼ 1 corresponds to a
1–sigma effect.

In Fig. 7 we plot the statistical distance Eq. (3) between small-x HERA data and
the NNPDF1.2 and NNPDF2.0 fits without cuts (i.e. with Acut = 0) and with the cut
Acut = 1.5. Again, we see that with NNPDF1.2 if all data are included the fit manages
to compensate for the deviation by readjusting the PDFs: the fit lies both above and
below the data and the mean distances is compatible with zero: from the points plotted
in Fig. 7 we obtain 〈dstat〉 = 0.06 ± 0.56. On the other hand using NNPDF2.0, based on
the combined HERA-I data, we get 〈dstat〉 = 1.1 ± 0.7, which shows a systematic tension
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Figure 7: Statistical distance, Eq. (3), between small-x HERA data and NLO DGLAP prediction
for fits without kinematical cuts (top row) and fits with the cut at Acut = 1.5 (bottom row). Both
results obtained using NNPDF1.2 with separate HERA data (left) and NNPDF2.0 with combined
HERA data (right) are shown.

at the one-σ level between data and theory. When the cut is applied, the discrepancy is
apparent: using NNPDF1.2 〈dstat〉 = 0.95±0.45, while with NNPDF2.0 〈dstat〉 = 2.0±0.7,
i.e. a systematic deviation between data and prediction now at the three-σ level.

It is interesting to note that the significance of the effect is considerably weakened if
one instead of performing the cut Eq. (2) were to simply cut out the small-x region at
all Q2. For example, if we consider the region x ≤ 0.01 we obtain (from HERA-I data
only) 〈dstat〉 = 1.1 ± 0.9 from the global fit (Acut = 0) and 〈dstat〉 = 1.2 ± 1.0 from the
fit with maximum cut (Acut = 1.5): this shows that indeed it is only at low Q2 that
deviations appear, as one would expect of an effect driven by perturbative evolution. A
recent study [36] did find that in the low-x region the distance fluctuations are larger than
expected, consistent with our conclusions, but no significant deviation of 〈d〉 from zero
was found in this less sensitive x ≤ 0.01 region for an uncut fit, also consistent with our
conclusion.

Evidence for a systematic deviation between data and theory is also provided by study-
ing the behaviour of the

〈

d2stat
〉

in different kinematic slices, both without cuts and with
Acut = 1.5. The results, displayed in Fig. 8, show that data and theory increasingly deviate
as one moves towards the small-x, small-Q2 region. This deviation is already present when
all data are fitted, but it becomes significantly stronger when the cut is applied. However,
the discrepancy is concentrated in the region which is affected by the cuts. Indeed, in
Tab. 2 we compare the χ2 of various datasets for the cut and uncut fits: the quality of the
fit to high–scale hadronic data, unaffected by the cuts, is the same in the two fits.

Having strengthened our previous [35] conclusion that there is evidence for deviations
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Fit All dataset Only fitted points

χ2
tot 1.78 1.14

NMC-pd 0.98 0.98

NMC 1.75 1.75

SLAC 1.42 1.42

BCDMS 1.22 1.22

HERAI 4.54 1.04

CHORUS 1.14 1.14

NTVDMN 0.70 0.70

ZEUS-H2 1.23 1.23

DYE605 0.82 0.82
DYE866 1.25 1.25

CDFWASY 1.86 1.86

CDFZRAP 1.85 1.82

D0ZRAP 0.56 0.56

CDFR2KT 0.66 0.66

D0R2CON 0.82 0.82

Table 2: The χ2 of the individual experiments included in NNPDF2.0 for the Acut = 1.5 fit. Col.
2 shows χ2 computed on all NNPDF2.0 dataset, while Col. 3 the χ2 computed only on data which
pass the cut.
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from NLO DGLAP evolution in small-x and Q2 HERA data one may ask what are possible
theoretical explanations for the observed effect. Because NLO DGLAP overestimates the
amount of evolution required to reproduce experimental data, NNLO corrections as a
possible explanation are ruled out, as they would lead to yet stronger evolution in this
region thus making the discrepancy larger. This conclusion was recently confirmed by
the HERAPDF group, which finds that the description of small-x and Q2 HERA-I data
worsens when NNLO corrections are included [37]. Charm mass effects, not included in
NNPDF2.0, could be partly responsible, but they seem [35] too small to account for the
data. This conclusion is borne out by preliminary studies based on the NNPDF2.1 set [18]
which does include charm mass effects using the FONLL [38, 39] framework, and which
confirm the conclusions of the present study.

Interestingly, the small-x resummation corrections shown in Fig. 1 and discussed in
Sect. 2 go in the right direction, and appear to be roughly of the size which is needed to
explain the data. A quantitative confirmation that this is actually the case could come
from a fully resummed PDF fit, which is doable using current knowledge and it would
only require implementation of the resummation in a PDF fitting code. An alternative
interesting possibility is that the observed slow-down of perturbative evolution may be
due to saturation effects related to parton recombination. However, it is more difficult to
single out a clear signature for these effects, given that saturation models usually yield
predictions for the x dependence of structure functions, rather than their scale dependence
which is relevant in this context.

Finally, one may ask whether these deviations, if real, might bias LHC phenomenology.
A first observation is that these deviations might explain the well–known fact [1] that the
αs value obtained from deep–inelastic scattering tends to be lower that the global average:
if the observed evolution is weaker than the predicted one, the value of the coupling is
biased downwards: the value of αs from a fully resummed fit would be higher. A more
direct impact on HERA phenomenology can be assessed by comparing predictions for LHC
standard candles obtained from cut and uncut fits: their difference provides a conservative
upper bound for the phenomenological impact of these deviations. In Table 3 we show
results for W , Z, Higgs and tt̄ inclusive production at the LHC at 7 TeV center of mass
energies, computed with the MCFM code [40]. Even with the largest kinematical cuts,
Acut = 1.5, the corrections are moderate, below the 1–sigma level (except for tt̄), of
similar size of other comparable effects at the precision level, such as αs uncertainties [41]
or variations of the charm mass.

The impact of the effect we discovered is moderate at present but it might become
significant as the accuracy of PDF determination improves. It will be interesting to see
whether further confirmation of the effect comes from other groups. Its full understanding
might lead to a deeper grasp of perturbative QCD.

The NNPDF2.0 PDFs (sets of Nrep = 100 and 1000 replicas) and the PDF sets based on
NNPDF2.0 with various Acut kinematical cuts are available at the NNPDF web site,

11



Observable NNPDF2.0 without cuts NNPDF2.0 with Acut = 1.5

σ(W+)Bl+ν [nb] 5.80 ± 0.09 5.87 ± 0.13
σ(W−)Bl−ν̄ [nb] 3.97 ± 0.06 4.01 ± 0.07
σ(Z)Bl+l− [nb] 2.97 ± 0.04 2.98 ± 0.05

σ(tt̄) [pb] 169 ± 5 160 ± 7
σ(H,mH = 120 GeV) [pb] 11.60 ± 0.15 11.53 ± 0.25

Table 3: LHC observables at 7 TeV computed from the default NNPDF2.0 set and with the fit
with kinematical cut Acut = 1.5 using MCFM [40]. All PDF uncertainties are 1–sigma.

http://sophia.ecm.ub.es/nnpdf .

NNPDF2.0 is also available through the LHAPDF interface [42].
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