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a b s t r a c t 

Background: Cyber-foraging architectural tactics are used to build mobile applications that leverage prox- 

imate, intermediate cloud surrogates for computation offload and data staging. Compared to direct ac- 

cess to cloud resources, the use of intermediate surrogates improves system qualities such as response 

time, energy efficiency, and resilience. However, the state-of-the-art mostly focuses on introducing new 

architectural tactics rather than quantitatively comparing the existing tactics, which can help software 

architects and software engineers with new insights on each tactic. 

Aim: Our work aims at empirically evaluating the architectural tactics for surrogate provisioning, specif- 

ically with respect to resilience and energy efficiency. 

Method: We follow a systematic experimentation framework to collect relevant data on Static Surrogate 

Provisioning and Dynamic Surrogate Provisioning tactics. Our experimentation approach can be reused 

for validation of other cyber-foraging tactics. We perform statistical analysis to support our hypotheses, 

as compared to baseline measurements with no cyber-foraging tactics deployed. 

Results: Our findings show that Static Surrogate Provisioning tactics provide higher resilience than Dy- 

namic Surrogate Provisioning tactics for runtime environmental changes. Both surrogate provisioning tac- 

tics perform with no significant difference with respect to their energy efficiency. We observe that the 

overhead of the runtime optimization algorithm is similar for both tactic types. 

Conclusions: The presented quantitative evidence on the impact of different tactics empowers software 

architects and software engineers with the ability to make more conscious design decisions. This contri- 

bution, as a starting point, emphasizes the use of quantifiable metrics to make better-informed trade-offs 

between desired quality attributes. Our next step is to focus on the impact of runtime programmable 

infrastructure on the quality of cyber-foraging systems. 

© 2017 Elsevier Inc. All rights reserved. 
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. Introduction 

In 2014, the number of mobile users exceeded the num-

er of desktop users globally, which was about 1.7 billion users

 Bosomworth, 2015 ). Consequently, many computation tasks are

igrated to handheld devices as mobile apps. Statistics provided

y “The Statistics Portal” forecast approximately 269 billion mobile

pp downloads for 2017, which is around 20% more than the pre-

ious year ( Statistica., 2013 ). Although handheld devices are often

elected as the main target for consumers and app developers, they
∗ Corresponding author at: De Boelelaan 1081a, Vrije Universiteit Amsterdam, The 
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re still limited in resources in terms of computational power and

attery life. 

The importance of extended device battery life has motivated

oftware architects to introduce Mobile Cloud Computing solutions,

n which the cloud takes charge of compute- and data-intensive

asks. Although these solutions significantly help to address re-

ource limitations, a number of prerequisites need to be met. For

xample, a reliable Internet connection must exist between the

andheld device and the cloud, which is not necessarily guar-

nteed in resource-scarce environments. Resource-scarce environ-

ents usually lack stable environmental conditions. Cyber-foraging

as been introduced to enable resource-limited devices to benefit

rom available external resources in such environments with dy-

amic conditions. 

A number of cyber-foraging tactics have been identified and

ategorized in Lewis et al. (2014; 2016) to help software archi-

ects select the best tactics to meet system requirements. In this

https://doi.org/10.1016/j.jss.2017.11.047
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work we particularly focus on the “Surrogate Provisioning” tac-

tics from an experimentation point of view. We study to what

extent the cyber-foraging architectural tactics for surrogate provi-

sioning impact system resilience and energy efficiency. Our find-

ings guide software architects and software engineers to trace the

impact of their design decisions with scientific insights concluded

from quantifiable metrics. Our main contributions are: 

• we provide a detailed description of cyber-foraging tactics for

surrogate provisioning; 
• we present a runtime optimization algorithm to support surro-

gate provisioning tactics and describe a proof-of-concept imple-

mentation; 
• we show the systematic design and execution of our experi-

mentation approach applied to surrogate provisioning, which

can be reused for validating other cyber-foraging architectural

tactics; 
• we report on the execution and the results of our empirical

experimentation aimed at quantifying the impact of the cyber-

foraging tactics for surrogate provisioning on resilience and en-

ergy efficiency in a controlled environment; 
• we provide an evaluation of the cyber-foraging tactics for sur-

rogate provisioning, emphasizing trade-offs with respect to dif-

ferent system qualities. 

This paper is organized as follows: Section 2 presents an

overview of the cyber-foraging architectural tactics. Section 3 fo-

cuses on the surrogate provisioning tactics and how online opti-

mization algorithms play a role in the system. In Section 4 we de-

scribe the scope of the experimentation using the goal, research

questions, and metrics. Section 5 provides details of the planning

steps from different perspectives such as context selection, variable

selection, hypothesis formulation, subject selection, experiment de-

sign, and instrumentation. The steps taken to execute the experi-

ments are explained in Section 6 . In Sections 7 and 8 we present

and discuss our results. Section 9 discusses the implications of our

findings for software architecture. In Section 10 we describe the

possible threats to validity and their mitigation. Section 11 dis-

cusses related work. Finally, Section 12 concludes the paper and

outlines the research direction for our future work. 

2. Background 

Cyber-foraging is a mechanism that leverages cloud servers, or

local servers called surrogates, to augment the computation and

storage capabilities of resource-limited mobile devices while ex-

tending their battery life ( Satyanarayanan, 2001 ). There are two

main forms of cyber-foraging ( Flinn, 2012; Lewis and Lago, 2015a;

Sharifi et al., 2012 ). One is computation offload, which is the of-

fload of expensive computation in order to extend battery life and

increase computational power. The second is data staging to im-

prove data transfers between mobile devices and the cloud by tem-

porarily staging data in transit on intermediate, proximate nodes.

While cyber-foraging can take place between mobile devices and

cloud resources, our focus is on systems that use intermediate,

proximate surrogates. 

The software architecture of a system is the set of structures

needed to reason about the system, which comprise software ele-

ments, relations among them, and properties of both ( Bass et al.,

2012 ). Software architectures are created because a system’s quali-

ties, expressed as functional and non-functional requirements, can

be analyzed and predicted by studying its architecture. 

One of the main challenges of building cyber-foraging systems

is the dynamic nature of the environments that they operate in.

For example, the connection to an external resource may not be

available when needed or may become unavailable during a com-

putation offload or data staging operation. As another example,
ultiple external resources may be available for a cyber-foraging

ystem but not all have the required capabilities. Adding capabili-

ies to deal with the dynamicity of the environment has to be bal-

nced against resource consumption on the mobile device so as

o not defeat the benefits of cyber-foraging. Being able to reason

bout the behavior of a cyber-foraging system in light of this un-

ertainty is key to meeting all its desired qualities, which is why

oftware architectures are especially important for cyber-foraging

ystems. 

Given the potential complexity of cyber-foraging systems, it

ould be of great value for software architects to have a set of

eusable software architectures and design decisions that can guide

he development of these types of systems, the rationale behind

hese decisions, and the external context/environment in which

hey were made; this is called architectural knowledge ( Kruchten

t al., 2006; Lago and Avgeriou, 2006 ). One way to capture archi-

ectural knowledge is in the form of software architecture strategies .

We define a software architecture strategy as the set of architec-

ural design decisions that are made in a particular external con-

ext/environment to achieve particular system qualities. Software

rchitecture strategies are codified as architectural tactics that can

e reused in the development of software systems. We define ar-

hitectural tactics as design decisions that influence the achieve-

ent of a system quality (i.e., quality attribute) ( Bass et al., 2012 ). 

Software architecture strategies for cyber-foraging systems are

herefore the set of architectural design decisions, codified as

eusable tactics, that can be used in the development of cyber-

oraging systems to achieve particular system qualities such as re-

ource optimization, fault tolerance, scalability and security, while

onserving resources on the mobile device ( Lewis, 2016 ). 

In previous work we conducted a systematic literature re-

iew (SLR) on architectures for cyber-foraging systems ( Lewis

t al., 2014; Lewis and Lago, 2015a ). The common design deci-

ions present in the cyber-foraging systems identified in the SLR

ere codified into functional and non-functional architectural tac-

ics ( Lewis and Lago, 2015a; 2015b ). Functional tactics are broad

nd basic in nature and correspond to the architectural elements

hat are necessary to meet cyber-foraging functional requirements.

on-functional tactics are more specific and correspond to archi-

ecture decisions made to promote certain quality attributes. Non-

unctional tactics have to be used in conjunction with functional

actics. 

A cyber-foraging system must have at a minimum the following

ombination of functional tactics: 

• Computation Offload and/or Data Staging tactics to provide

cyber-foraging functionality. 
• A Surrogate Provisioning tactic to provision a surrogate with the

offloaded computation or data staging capabilities. 
• A Surrogate Discovery tactic so that the mobile device can lo-

cate a surrogate at runtime. 

Then, based on additional functional and non-functional re-

uirements, such as fault tolerance, resource optimization, scala-

ility/elasticity, and security, complementary tactics are selected. 

The work in this paper focuses on surrogate provisioning tac-

ics. We compare the different surrogate provisioning tactics from

n architectural point of view with respect to their resilience and

nergy efficiency. 

. Surrogate provisioning tactics 

.1. Tactics description 

To be able to use a surrogate for cyber-foraging, it has to be

rovisioned with the offloaded computation and/or the computa-

ional elements that implement the offloaded computation or en-
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Fig. 1. The sequence diagram for Static Surrogate Provisioning in case of computa- 

tion offloading. 
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ble data staging. There are two main types of tactics for surrogate

rovisioning ( Lewis and Lago, 2015a ): 

• Static Surrogate Provisioning : Surrogates are pre-provisioned

with the capabilities that are requested by mobile clients. Fig. 1

shows the sequence diagram of how a pre-provisioned surro-

gate interacts with the mobile device. The mobile app decides

whether to request remote execution or execute the computa-

tion locally. To make that decision it first collects data on the

network connection and the surrogate status through a moni-

toring service . A runtime optimization algorithm outlines the op-

timum offloading plan based on the input data. If the plan is

not to offload, the computation will be executed locally in the

mobile device. If the plan is to offload, a provisioning request

service is called that starts a JVM in the surrogate and notifies

the mobile app with the resulting status. The mobile app waits

for a specific period and then requests the results of the com-

putation through a provisioning result service . 
• Dynamic Surrogate Provisioning : Surrogates are provisioned at

runtime with the computation capabilities. Surrogates can re-

ceive the offloaded computation from either the mobile device

or the cloud. Fig. 2 shows the steps that take place in Dynamic

Surrogate Provisioning. Similar to Static Surrogate Provisioning,

the mobile app must first collect data through a monitoring ser-

vice but the monitoring is more complex as the status data of

the cloud repository is also required. A runtime optimization

algorithm can suggest either different provisioning sources (the

cloud or the mobile device) or local execution. If the plan is to

offload, the mobile app calls a provisioning request service . In the

case of provisioning from the mobile device, the mobile device

sends the computation capability to the surrogate itself while in

provisioning from the cloud, the mobile device only informs the

surrogate with the location of the offloaded computation in the

form of a URL. Therefore, the surrogate will be able to down-
load the computation from a cloud repository and install the

computation inside an execution container (JVM as shown in

the figure). Again, the mobile app can retrieve the results by

calling a provisioning result service . 

In our previous study, we propose a decision model to se-

ect the best fitted architectural tactics according to functional and

on-functional requirements in cyber-foraging ( Lewis et al., 2016 ).

ig. 3 shows the decision model specified for surrogate provision-

ng tactics. As the figure shows, there are pros and cons for each

urrogate provisioning tactic. For instance, Static Surrogate Provi-

ioning simplifies the deployment process . Therefore, it is a good

atch for applications with a small set of computations or data

rocessing operations that can be pre-loaded on the surrogate.

tatic Surrogate Provisioning performs the best in cyber-foraging

pplications, in which multiple surrogates offer the same capabil-

ties. This reduces flexibility because surrogates are limited by the

re-installed capabilities. Another disadvantage with Static Surro-

ate Provisioning is a reduction on maintainability because changes

o capabilities must be propagated to all surrogates. Differently,

ynamic Surrogate Provisioning offers greater flexibility because ca-

abilities are not limited by what is already installed, making it a

ood match for when there is a large set of capabilities that can

xecute on a surrogate. Various capabilities that reside on the mo-

ile device can be offloaded to a surrogate at runtime. However,

ynamic Surrogate Provisioning has a negative impact on provi-

ioning time compared to Static Surrogate Provisioning because ca-

abilities have to be downloaded first from either a cloud repos-

tory or the mobile device. In the case of provisioning from the

loud, the capabilities must exist in a repository in the cloud, and

onnectivity between the surrogate and the repository is required

o download the capabilities, which affects availability negatively.

his improves maintainability because changes to capabilities only

eed to be propagated to the cloud repository. In contrast, in the

ase of provisioning from the mobile device, maintainability is re-

uced because changes to offloadable capabilities must be propa-

ated to all mobile devices. Depending on the size of the capabil-

ty to be transferred, bandwidth efficiency could be negatively af-

ected. Consequently, energy efficiency is decreased on the mobile

evice because of the battery power required on the mobile device

o send the capability to the designated surrogate. 

.2. Runtime optimization algorithm for surrogate provisioning 

In this paper, we propose an algorithm for runtime selection

f a task execution environment aided by surrogate provisioning

actics. The objective of our optimization algorithm is to minimize

esponse time, which is the period of time it takes for the mobile

evice to receive the results, either by offloading or by local exe-

ution. To do so, response time (RT) is estimated for different sce-

arios using Eqs. (1) and ( 2 ), which are adopted from Chang and

ung (2011) . RT offload is used for both types of surrogate provision-

ng (Static and Dynamic). However, data size differs for different

actics. 

T local = T local (1) 

T offload =T surrogate + 

data size 

BW network 

+ T delay ∗
(

1 + 

data size 

TCP window size 

)

(2) 

T local and T surrogate show the time it takes for the mobile de-

ice and the surrogate to execute the computation task. The lo-

al execution time is known in advance. The surrogate execution

ime is calculated in the algorithm at runtime. We calculate the
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Fig. 2. The sequence diagram for Dynamic Surrogate Provisioning in case of computation offloading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 Runtime optimization algorithm for Static Surrogate 

Provisioning. 

while T RUE do 

if newComputationRequest not Null then 

RT local ← estimate the local execution time ( T local ) 

Calculate RT of f load (the output of equation 2): 

T surrogate ← estimate the remote execution time 

BW network ← estimate the bandwidth of the connection be- 

tween the mobile device and the surrogate 

T delay ← measure the network delay of the connection be- 

tween the mobile device and the surrogate 

if RT local < RT of f load then 

Execute the computation locally and update RT local 

based on the execution results 

else 

Start the offloading process and update the RT of f load 

variables based on the execution results 

end if 

end if 

end while 
network connection overhead using BW network , which is the wire-

less network bandwidth between the mobile device and the surro-

gate, and T delay , which shows the network delay. BW network is ob-

tained offline using the iperf 1 application and then hard-coded on

the mobile device. T delay is measured at runtime using ping mes-

sages. We use the default value of TCP window size 2 on Android,

which is 65,536 bytes (64KB). 

The pseudo-code in Algorithms 1 and 2 specifies the steps

taken by our algorithm in cases of static and Dynamic Surrogate

Provisioning. The algorithm relies on Eqs. (1) and ( 2 ) to calculate

the response time values. As shown in the pseudo-code, the opti-

mization algorithm for Dynamic Surrogate Provisioning performs a

number of extra steps, in which it calculates the time-overhead to

install the computation on the surrogate. 

4. Experiment definition 

With our experimentation we aim to empirically evaluate

the surrogate provisioning tactics, and provide software archi-

tects and software engineers with reproducible scientific insights.

The systematic design of our experimentation can be adopted by

other researchers as a viable, reusable approach. Our experimen-

tation process follows the well-known framework introduced by
1 It is a known tool to measure network performance: https://iperf.fr/ . 
2 The Transmission Control Protocol (TCP) is one of the main standard network 

protocols that complements the Internet Protocol (IP). 

B  

n  

w

 

i  
asili et al. (1986) . It consists of four phases: 1) Definition, 2) Plan-

ing, 3) Execution, and 4) Analysis. For the first phase (Definition),

e selected the Goal-Question-Metric (GQM) paradigm. 

The GQM is a top-down conceptual decomposition of the goal

nto questions and metrics, that provides the traceability of mea-

https://iperf.fr/
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Fig. 3. The decision model for surrogate provisioning tactics adapted from our previous study ( Lewis et al., 2016 ). 

Algorithm 2 Runtime optimization algorithm for Dynamic Surro- 

gate Provisioning. 

while T RUE do 

if newComputationRequest not Null then 

RT local ← estimate the local execution time ( T local ) 

Calculate two values of RT of f load for two data sources (the 

output of equation 2): 

T surrogate ← estimate the remote execution time 

BW network ← estimate the bandwidth of the connection be- 

tween the mobile device and the surrogate 

BW network −cloud ← estimate the bandwidth of the connec- 

tion between the surrogate and the designated cloud server 

T delay ← measure the network delay of the connection be- 

tween the mobile device and the surrogate 

T del ay −cl oud ← measure the network delay of the connection 

between the surrogate and the designated cloud server 

if Min ( RT local , RT of f load from the mobile, RT of f load from the 

cloud) == RT local then 

Execute the computation locally and update RT local 

based on the execution results 

else 

Start the offloading process and update the RT of f load 

variables based on the execution results 

end if 

end if 

end while 
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urement data in the goal achievement ( Basili, 1992 ). Our goal is

ormulated as follows: 

“Analyze architectural tactics for surrogate provisioning for

he purpose of evaluation with respect to resilience and energy

fficiency from the viewpoint of software architects and software

ngineers in the context of cyber-foraging applications ”

Our objects are surrogate provisioning tactics. We focus on two

uality attributes: resilience and energy efficiency. We evaluate

hese tactics from the point of view of a software architect or soft-

are engineer: this means that our results will be helpful when

aking design decisions related to these quality attributes and

heir possible trade-offs. Our results apply to the general field of

yber-foraging applications, although they might provide useful in-

ights for a broader range of software systems. 

We compare the tactics based on a number of predefined met-

ics. To proceed, we define the following questions, which elabo-

ate our goal in a quantifiable way. 

RQ1: What is the difference in terms of resilience between the

urrogate provisioning tactics? 

Cyber-foraging tactics are known to provide systems with dy-

amic behavior to account for unavailable resources. However, the

xtent to which systems can benefit from this dynamicity has

ot been studied. We answer this question by quantifying the re-

ilience of a system ( Almeida and Vieira, 2011 ). Before and during

he execution of the mobile applications we introduce a change to

he system, which requires an online decision. The changes vary

rom low battery level to bad network connection. Fig. 4 shows

he phases that a resilient system goes through when a change
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Fig. 4. The states of a resilient system when introducing a system or environmental change. 

Fig. 5. The GQM graph summarizing the relation between the goal of our experiment, the research questions, and the metrics. 
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occurs. At first the system is in its “Initial steady state” until the

time of the change. With change, a two-phase transition state

starts, which includes the “Reaction” and “Adaptation” phases. At

the end of the adaptation phase, the system returns to a steady

state. The faster that the system passes through the transition

phase to the steady state, the higher resilience the system provides

( Almeida and Vieira, 2011 ). We compare the resilience of the sys-

tem when using different surrogate provisioning tactics by analyz-

ing the reaction and the adaptation times. 

RQ2: What is the difference in terms of energy efficiency be-

tween the surrogate provisioning tactics? 

We analyze the energy efficiency of the surrogate provision-

ing tactics at runtime. We calculate the energy consumption of

the mobile device using the measured average power consumption

during the execution of a synthetic application. Basically, the syn-

thetic application consists of a computation task, which can either

be performed locally or offloaded to a surrogate. 

We use the following metrics to quantitatively answer our

questions: 

• Mobile energy consumption : the number of joules consumed

to execute the computation task. 
• Reaction time : the time the system takes to detect a change

and decide on a suitable setup. 
• Adaptation time : the time the system takes to adapt to the

new setup. 

The directed GQM graph in Fig. 5 indicates how our goal is

covered by providing quantified answers to the questions using

the metrics. RQ1 is dependent on the metrics “Reaction time” and

“Adaptation time” which enable us to quantify resilience of a sys-
em. RQ2 requires the metric “Mobile energy consumption” to in-

estigate how the surrogate provisioning tactics impact the energy

onsumption of the mobile application. 

. Experiment planning 

In this section we describe our experimentation in terms of 1)

ariable selection, 2) Hypothesis formulation, 3) Subject selection,

) Experiment design and 5) Instrumentation. 

.1. Variable selection 

The metrics identified in the GQM tree (See Fig. 5 ) are our de-

endent variables : Mobile energy consumption, Reaction time, and

daptation time. We use the dependent variables to answer the re-

earch questions and draw conclusions. We also consider two ad-

itional dependent variables, which help to calculate the mobile

nergy consumption metric: 

• Average power consumption: The power consumption of the

mobile device is measured at runtime in 1 s intervals using a

system profiler. We calculate the average value of the power

consumption values for each trial. 
• Response time: It specifies the duration from the moment that

the computation is requested until the results are collected on

the mobile device. It includes the time to execute the compu-

tation task and the time to offload the task to the surrogate if

offloading is decided. 

In contrast, the independent variables are those that are control-

able in the experiment. In our case, the deployment of a surrogate
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Fig. 6. Our mobile application, providing three execution scenarios: No surrogate 

provisioning, Static Surrogate Provisioning, and Dynamic Surrogate Provisioning. 
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rovisioning tactic is the main independent variable that we select

s a factor. We define two distinct treatments: 

• Treatment 1: Static Surrogate Provisioning : In this treatment,

the surrogate is pre-provisioned with the offloaded computa-

tion. 
• Treatment 2: Dynamic Surrogate Provisioning : In this treat-

ment, the surrogate is provisioned at runtime. Depending on

environmental conditions such as the quality of the network

connection, the capabilities can be downloaded from the mo-

bile device itself or from a remote host in the cloud. 

The runtime optimization algorithm implemented for the treat-

ents decides at runtime whether the computation should be ex-

cuted locally or remotely. In addition, we performed a number of

aseline measurements to provide a reference set of values for our

etrics. These measurements were performed on the same mobile

evice used for our experiment, running the computation task lo-

ally . 

Other independent variables, such as hardware and software

onfigurations are related to the execution environment. These

ariables have been kept constant in our experimentation (see

ection 5.5 ) to avoid confounding factors. Another independent

ariable we considered is the network connection because in

yber-foraging scenarios these connections might not always be

vailable and reliable. For this reason, in our experimentation we

ntroduced a 10% probability of having a faulty connection, in

hich case our adaptation algorithm has to select local computa-

ion. 

.2. Hypotheses formulation 

In this section, we formulate the aforementioned research ques-

ions into Null and Alternative hypotheses. 

• RQ1: What is the difference in terms of resilience between surro-

gate provisioning tactics? 

As explained earlier, the resilience of the system is depen-

dent on the duration of the transition phase when introducing

a change. We observe the difference in resilience of the two

cyber-foraging systems based on Eq. (3) . 

�T = T d − T s (3) 

T s , in seconds, is the sum of the reaction and adaptation time

of the system using a static provisioning tactic, and T d shows

the same for a dynamic provisioning tactic. 

The null hypothesis in Eq. (4) suggests that both surrogate pro-

visioning tactics provide the same level of resilience. In con-

trast, the alternate hypothesis in Eq. (5) states that the re-

silience of the cyber-foraging system with Dynamic Surrogate

Provisioning is lower (i.e. the transition time is higher) com-

pared to the Static Surrogate Provisioning. 

H1 0 : �T ≈ 0 (4) 

H1 a : �T > 0 (5)

• RQ2: What is the difference in terms of energy efficiency between

surrogate provisioning tactics? 

Eq. (6) shows the difference in energy efficiency of the surro-

gate provisioning tactics. Energy efficiency is measured as the

energy consumed (in Joules) when performing a task. EE d is the

energy efficiency of the system with Dynamic Surrogate Pro-

visioning and EE s is the energy efficiency of the system with

Static Surrogate Provisioning. The null hypothesis in Eq. (7) in-

dicates that both surrogate provisioning tactics have the same

level of energy efficiency. In contrast, the alternate hypothesis
in Eq. (8) implies that energy efficiency differs between the sur-

rogate provisioning tactics. 

�E E = E E d − E E s (6)

H2 0 : �EE ≈ 0 (7) 

H2 a : �EE � = 0 (8)

.3. Subject selection 

The main objects of our experiments are the architectural tac-

ics for surrogate provisioning. We select a synthetic application

s our subject, using convenience sampling. This defines our study

s a quasi-experiment as our sample is not randomly selected.

herefore, we can not guarantee that our sample is representative

f all mobile applications. However, we mitigate this concern by

mplementing the typical behavior for a real mobile application in

esource-scarce environments (i.e., low coverage and hostile envi-

onments ( Lewis and Lago, 2015c )). We further discuss this concern

n Section 10 . 

Our mobile application executes a specific computation-

ntensive task. It converts input colored images to grayscale. It im-

tates the real life resource-hungry computations that utilize the

vailable resources in the mobile device notably. Hence, our exper-

mentation still provides valuable information with regards to the

yber-foraging applications. 

We implemented our Android mobile application to support

hree different scenarios, as shown in Fig. 6 . Despite the architec-

ural differences in each scenario, they all perform a specific com-

utation task, known as our subject: 

• In the baseline scenario, the computation task can only be exe-

cuted on the mobile device. The mobile app will not have the

flexibility to offload the computation task to external devices.

No cyber-foraging architectural tactics are implemented in this

scenario. 
• The static treatment implements the cyber-foraging architec-

tural tactic for Static Surrogate Provisioning. This tactic gives
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Fig. 7. The architecture of the cyber-foraging mobile application implementing the Static (Treatment 1) and the Dynamic (Treatment 2) Surrogate Provisioning tactics. 
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time and then invoke this service to collect the results. 
more flexibility to the mobile app compared to the baseline

scenario, as follows: depending on the battery level of the mo-

bile device and other availability factors, the mobile app might

decide to offload the computation task to a nearby surrogate.

In this treatment, the surrogate capability is static, i.e., the sur-

rogate is provisioned at design time with the specific compu-

tation task. So, if at runtime the mobile app decides to offload

the computation, it only needs to invoke the execution on the

surrogate. 
• The dynamic treatment implements the cyber-foraging architec-

tural tactic for Dynamic Surrogate Provisioning. This tactic pro-

vides the highest flexibility to the mobile app in terms of the

variation of the offloaded computation. However, the surrogate

must be provisioned with the capability at runtime. The Dy-

namic Surrogate Provisioning can take place from two different

resources, the mobile device itself or a remote cloud server. The

mobile app must decide if the computation should be offloaded

and if so, from which resource the surrogate should be provi-

sioned. 

In order to implement the two treatments, we set up a number

of web services on the surrogate. Fig. 7 shows how the services in-

teract with different com ponents of the mobile app for each treat-

ment. In particular, the Optimizer of the mobile app, which re-

ceives the task execution request from the users, is the component
hat starts the optimization process. It retrieves monitoring data

rom the Monitor component and accordingly selects the task ex-

cution environment, which is either The mobile device or The sur-

ogate , where the Computation Task is executed. For the surrogate

he following describes each web service: 

• Monitoring service : It collects status data such as computation

execution time and remote host network delay, which can be

invoked by the mobile app. 
• Provisioning request service : It receives the offload request from

the mobile app. In the case of the static treatment, the com-

putation task is already installed on the surrogate and the mo-

bile app will only send the necessary execution parameters to

start the computation. Differently, in the dynamic treatment,

the mobile app sends the surrogate provisioning parameters

along with the execution parameters. In the case of surrogate

provisioning from the cloud, the provisioning parameter is a

URL to a cloud-based File Server that provides the computa-

tion capability. However, in case of the surrogate provisioning

from the mobile device, the provisioning parameter is the com-

putation task itself that will be installed on the surrogate. 
• Results service : It provides the results of the computation to the

mobile app. The mobile app will wait for a certain amount of
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Fig. 8. The experiment architecture of different scenarios: the baseline and both treatments. 

Table 1 

The trial set for the experiment. 

Factor: Surrogate provisioning 

Baseline Static Dynamic 

Control (30 trials) Group A (30 trials) Group B (30 trials) 
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A cyber-foraging mobile application that implements the surro-

ate provisioning tactics will follow the steps in Figs. 1 and 2 to

nteract with the web services residing in the surrogate. 

.4. Experiment design 

The experiment factor in our experimentation is the use of

yber-foraging architectural tactics for surrogate provisioning. Our

actor has two treatments—Dynamic and Static—that identify the

wo main experimental groups. In addition, a baseline scenario

ith no cyber-foraging tactics deployed has been evaluated as a

ontrol group. Each group is composed of 30 trials (i.e., experimen-

al runs) ( Table 1 ). 

.5. Instrumentation 

All the experiments were executed in the Green Lab of Vrije

niversiteit Amsterdam. 3 Fig. 8 displays the high-level architecture

f our experimentation for the different scenarios. The number of

omponents for each scenario varies depending on the required
3 http://www.s2group.cs.vu.nl/green-lab/ . 

 

n  
exibility . For our experimentation we used a number of hardware

nd software tools: 

Hardware 

• Test server (HP DL360 G5): Hosts the web services of our surro-

gate and has a LAMP server running on its Ubuntu Server 12.04

operating system. 
• Mobile device (HTC One X): Runs our surrogate client program.

It is based on Android OS 4.2.2. 
• Linksys X20 0 0 wireless-N router: Provides a wireless connec-

tion between the mobile device and the surrogate. 

Software 

• LAMP stack: Hosts the web services provided by the surrogate. 
• JVM: Runs the byte-codes offloaded by the mobile device. The

JVM is needed on both the surrogate for remote execution and

the mobile device for local execution. 
• PowerTutor: Open-source application that logs the power con-

sumption of different system components on a mobile device

( Zhang et al., 2010 ). 

. Experiment execution 

In this section we describe the operational phase of our exper-

mentation. 

.1. Data collection 

For each scenario ( Baseline, Static Surrogate Provisioning, Dy-

amic Surrogate Provisioning ) we performed 30 trials. During each

http://www.s2group.cs.vu.nl/green-lab/
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Table 2 

General overview of the dataset. 

Independent variable Treatment Min Median Mean Max 

Baseline 61.13 94.60 96.05 152.80 

Energy consumption (J) Static 7.73 8.09 12.70 43.69 

Dynamic 7.80 8.16 9.88 38.79 

Baseline 0.424 0.518 0.518 0.604 

Power consumption (W) Static 0.347 0.363 0.364 0.378 

Dynamic 0.348 0.362 0.362 0.381 

Baseline 121.9 181.1 185.7 286.7 

Response time (s) Static 22.04 22.17 34.89 120.70 

Dynamic 22.21 22.37 27.29 107.90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Group means and effect sizes of the transition time values 

of the treatments. 

Median transition time (Static) 0.097 

Median transition time (Dynamic) 0.266 

Hedges’ g 0.634 (medium) 

Cliff’s δ 0.933 (large) 
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trial, we logged the power consumption of the mobile device using

PowerTutor. Also, we recorded the timestamps of different actions

in the mobile application. 

Using the collected power values, we calculate the energy con-

sumption of the mobile device based on Eq. (9) . P avg is the average

power consumption of the mobile device during runtime. T response 

shows the execution time of the task as measured by the mobile

device, including (when applicable) the time required for offload-

ing to the surrogate and receiving the results. 

Energy consumption(J) = P avg ∗ T response (9)

With regards to resilience measurements, we recorded the re-

action time and the adaptation time of the cyber-foraging system

when a change occurs. We do so by mapping the logged times-

tamps to the different execution phases. 

• Reaction time : the period of time it takes for the optimization

algorithm to decide on the execution platform, i.e., locally on

the phone or remotely on the surrogate. 
• Adaptation time : if the optimization algorithm decides for lo-

cal execution, then the adaptation time will be 0. Otherwise,

in case of offloaded execution, the adaptation time is measured

from when the decision is made until the receipt of the notifi-

cation from the “Provisioning Request Service.”

6.2. Data analysis 

During our data analysis process, we used the Shapiro–Wilk test

to determine whether the normality assumption holds for our data.

For hypothesis testing, we used the Wilcoxon signed rank test to

determine mean differences between our samples. In addition, we

report the effect sizes for our treatments using Hedges’ g and Cliff’s

δ. We use the significance level of 0.05 in all our tests ( α = 0 . 05 ).

All the R scripts and the plots are available online. 4 

7. Results 

Before we present the results of hypothesis testing, we provide

an overview of our observations of the collected data. The sum-

mary of the data set is shown in Table 2 , which reports descrip-

tive statistics on our response variables: 1) Energy consumption,

2) Power consumption, 3) and Response time. In the table, the

Treatment column indicates the different treatments used ( static vs.

Dynamic Surrogate Provisioning) and the baseline (local execution)

presented as a reference. 

7.1. General observations 

For all three variables, the baseline values follow a normal dis-

tribution (as tested by means of the Shapiro–Wilk test). 
4 http://goo.gl/vcaIyH . 

 

 

With regards to our treatments, the data is normally distributed

or the power consumption variable. However, the response time

alues of both treatments do not have a normal distribution. There

s an evident significant difference in the execution time between

ocal and the remote computation. Therefore, the non-normality of

he values might be caused by the optimization algorithm, which

ecides on alternative platforms to execute the computation task.

owever, we checked the distribution of the data separately for

ach platform and we still detected a non-normal distribution of

he response time values. Only the response time values for each

reatment were normally distributed with respect to the execution

latform. 

The distribution of the energy consumption values is only nor-

al for Static Surrogate Provisioning. Also, it is interesting to note

hat the maximum energy consumed in our treatments (43.69 J

nd 38.79 J) is still lower than the minimum energy consumption

f the baseline (61.13 J). This difference in energy consumption can

e explained by the difference in power consumption and response

ime. Furthermore, Table 2 shows that the local execution when

eploying cyber-foraging techniques (our treatments) has better

erformance than the baseline that does not have the overhead of

he optimization algorithm. 

.2. Hypothesis testing 

1. H1 (Resilience): we compare the resilience of both surro-

gate provisioning tactics based on their transition time (See

Eq. (10) ). The shorter the transition time, the higher the re-

silience of the system. 

Transition time = Reaction time + Adaptation time (10)

We first check the normality of the transition time values for

our treatments. The distribution of the transition data is not

normal for both treatments (Shapiro–Wilk’s p-value for Treat-

ment 1 = . 0 0 06378 and for Treatment 2 = 1 . 995 e − 10 ) 

Given the non-normal distribution of the values, we make use

of the non-parametric Wilcoxon signed rank test. It shows that

there is a significant difference between the median values of

the two treatment samples ( p − value = 5 . 47 e − 10 ). As shown

in the box-plot in Fig. 9 , Static Surrogate Provisioning benefits

from higher resilience compared to Dynamic Surrogate Provi-

sioning. In Table 3 we report the group medians and the effect

size of the treatment. In this case, group median is reported

instead of mean, as it is a more robust indicator of central ten-

dency in presence of non-normally distributed values. 

2. H2 (Energy efficiency) : as explained earlier, we calculate the

energy efficiency of each trial based on the amount of energy

consumed to perform one computation task. The execution of

the computation task is platform independent, and energy con-

sumption measures are done on the mobile device regardless

where the task is executed (i.e., locally or remotely). Because

the energy consumption values for different treatments do not

have a normal distribution, we again use Wilcoxon signed rank .

We cannot reject our null hypothesis ( p − value = . 1646 ) which

indicates there is no significant difference between our treat-

ments. 

http://goo.gl/vcaIyH
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Fig. 9. The box-plot of the transition time values of static and Dynamic Surrogate Provisioning. Outliers are excluded from the plot. 
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Fig. 10. The box-plot of the energy consumption values of static and Dynamic Surrogate Provisioning. Outliers are excluded from the plot. 

Table 4 

Group medians and effect sizes results on the energy con- 

sumption values of the treatments. 

Median energy consumption (Static) 8.087 

Median energy consumption (Dynamic) 8.161 

Hedges’ g −0.296 (small) 

Cliff’s δ 0.21 (small) 
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In the box-plot of Fig. 10 we report the energy consumption

values for static and Dynamic Surrogate Provisioning. In Table 4

we report the group medians and the effect size of the treat-

ment. Also in this case, group median is reported instead of

mean, as it is a more robust indicator of central tendency in

presence of non-normally distributed values. 

. Discussion 

From Table 2 we can already notice that there is a significant

ifference in the energy consumption, power consumption, and re-

ponse time between the baseline and the surrogate provisioning

actics. The box-plots in Fig. 11 clearly show this difference. 
The outliers of Static and Dynamic surrogate provisioning box-

lots in Fig. 11 (b) represent cases when the optimization algorithm

as decided not to offload the computation task to the surrogate.

urprisingly, in those cases the local execution of the task does not

ncrease power consumption in the same way as in the baseline.

he power consumption of the mobile device in presence of cyber-

oraging tactics is significantly lower than a non cyber-foraging

ystem. A possible explanation for this effect is related to the tem-

erature of the mobile device, known to affect the variance of the

attery discharge curve ( Zhang et al., 2010 ). During our baseline

easurements, the computational task was only performed locally.

his resulted in a high CPU load for a longer amount of time,

hich in turn may have raised the temperature of the device and

onsequently its battery usage ( Zhang et al., 2010 ). We tried to col-

ect temperature data from our logs to confirm our analysis, but

nfortunately the amount of data we collected was not sufficient

o draw a final conclusion. For this reason, we are preparing a

eplication of our experiment where we will also collect temper-

ture data. 

As discussed in Section 3 , both Static and Dynamic Surrogate

rovisioning tactics benefit from the increased flexibility that the

untime optimization algorithm introduces. Our expectation was

hat using Dynamic Surrogate Provisioning, the optimization algo-
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Fig. 11. The box-plots of the power consumption values and the response time of the baseline compared with our treatments: “Static Surrogate Provisioning” and “Dynamic 

Surrogate Provisioning”. 
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rithm itself would add an overhead in terms of resource usage.

This overhead would result in a difference in the variable “Reac-

tion Time” which includes the execution time of the algorithm.

However, we found no significant difference (Wilcoxon signed rank

test p-value = . 6349 ) in Reaction Time among different cyber-

foraging architectural tactics. This indicates that in our experimen-

tation scenario, performing the online choice does not introduce a

significant overhead. Although this result cannot be generalized to

all cyber-foraging scenarios, we can conclude that Dynamic Surro-

gate Provisioning increases flexibility while not negatively influenc-

ing performance . 

9. Reflection 

Cyber-foraging architectural tactics offer reusable design deci-

sions to accommodate certain types of functionality (in our case
omputation and data offload) while ensuring required system

ualities (such as energy efficiency and resilience). We specifically

ocus on surrogate provisioning tactics to perform an empirical

valuation. Our work is one of its kind because it measures the

doption of such tactics, and it can lead to a reduction of the

earning curve. Having the reusability requirement of the tactics

n mind, our work, as an initial step, enriches the knowledge on

he tactics with the help of quantitative insights. Therefore, soft-

are architects and software engineers can make more conscious

nd better-informed decisions on selecting the tactics. 

In this study, we adopt a systematic experimentation frame-

ork to objectively collect and analyze data on the impact of sur-

ogate provisioning tactics. As for data collection, we describe the

esign procedure of our experimentation step by step, which can

enefit other researchers to repeat our experimentation approach,

nd carry out similar experimentations to study other types of tac-
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ics. As for data analysis, we perform a series of statistical tests to

xtract insights out of data and to validate our hypotheses. Our

nalysis procedure is meant to be reused by other researchers to

bserve findings from different measurements. 

The quantitative analysis shows that Dynamic and Static Provi-

ioning deliver the promised flexibility with surprisingly negligible

osts in terms of resilience and energy efficiency. We investigate

esilience, a key quality attribute of sustainable systems, from the

ransition time perspective. We introduce a specific change that

oth treatments are resilient to at runtime, namely low battery

evel. We show that a system adopting Static Surrogate Provision-

ng is able to take quick action in the presence of a change in its

untime environment. From another angle, a system with Dynamic

urrogate Provisioning can be responsive to more diverse changes.

or example if the change is an error in the computation capabil-

ty of the surrogate, a system with Dynamic Surrogate Provisioning

an recover seamlessly by downloading the computation capability

rom different resources. In general, Dynamic Surrogate Provision-

ng has a greater self-organizing degree than Static Surrogate Pro-

isioning. Dynamic Static Provisioning has more flexibility in terms

f lower number of pre-assigned configurations. Consequently, it

orresponds to longer transition phases for the system during run-

ime. 

In our study, we report that both surrogate provisioning tac-

ics perform well with no significant difference to fulfill the main

bjective, which is extending the limited resources lifespan. We

easure the energy efficiency from the point of view of the

obile device as an example of resource-scarce environments.

owever, for software architects the energy efficiency of cyber-

oraging systems in its entirety plays an important role as well. The

yber-foraging architectural tactics involve different components,

hich are utilized differently. Increasing the adaptability degree

y adding more operational components, might influence the en-

rgy efficiency of the entire system negatively. Yet, such trade-offs

eed to be systematically evaluated, which is our plan for future

ork. 

While cyber-foraging software is extremely novel (see also dis-

ussion in Section 10 ), its applicability and added value can be

ervasive. As discussed in Lewis and Lago (2015c ), cyber-foraging

rings benefits to many contexts, from healthcare and emergency

anagement to Internet of Things and wearable computing. Ac-

ording to the GeSI: Global e-Sustainability Initiative (2015) , us-

ge of mobile devices already accounts for nearly half of the ICT

ectors emissions, and is expected to steadily grow. Accommodat-

ng needs while balancing system qualities and energy efficiency

ill require smart software solutions such as smart architectural

actics. 

Cyber-foraging was developed with resource-scarce environ-

ents in mind, where battery life and connectivity are critical.

owever, our results offer a glimpse of its potential for environ-

ents where flexibility is necessary because the context continu-

usly changes (such as smart city sensing) or some resources host-

ng data/computation can be charged more economically or effec-

ively than others (thanks to, for example, advances in smart grid

ntegration of renewables, or in micro-grid applications). 

0. Threats to validity 

Our aim is to illustrate the premises and the assumptions be-

ind our experimentation. The classification of the threats follows

hat by Cook and Campbell (1979) . As a general consideration, in

his study we are mainly interested in theory testing , hence we fo-

us on internal and construct validity, i.e., prove that our effects

re representative of the theory and caused by the outcome, rather

han conclusion and external validity. 
0.1. Conclusion validity 

Threats to conclusion validity affect the statistical significance

f the findings. In our experimentation, we identify the following

onclusion validity threats: 

• Reliability of measures. Our measures of energy consumption

were carried out by means of the PowerTutor software tool. We

chose this approach instead of hardware power meters for two

main reasons: first, it was deemed more practical; second, this

allowed us to measure energy and temporal data on the same

device. This removes the problem of multiple data sources with

consequent data synchronization and data handling operations

which are arguably error-prone. Regarding the accuracy of Pow-

erTutor, according to its developers ( Zhang et al., 2010 ) for 10 s

intervals, it is accurate to within 0.8% on average with at most

2.5% error. 
• Low statistical power. As discussed in Section 5 , our sample is

a single, synthetic software application. This small sample size

obviously reduces the statistical power of our test. However,

our target population is also small: cyber-foraging applications

are extremely novel, hence scarce and not easily portable across

multiple platforms. For this reason, our results are valuable in

providing solid evidence on an emerging technique. 

0.2. Internal validity 

Threats to internal validity affect the interpretation of our find-

ngs with regards to the causality link between treatment and out-

ome. 

• Treatment implementation. The effects we measured on the out-

come might be affected by the specific implementation of the

tactics. In order to mitigate this threat, the cyber-foraging tac-

tics were implemented following the guidance of an expert

in cyber-foraging whom worked on several practical applica-

tions of the tactics. In particular, we made sure that the dif-

ference between the Static and Dynamic tactic implementation

was modular enough to isolate its effects with respect to the

rest of the application. 
• Maturation. This threat is related to the effects of time on our

instrumentation during the measurements. Specifically, the bat-

tery of the phone depletes and the temperature of the compo-

nents varies due to physical phenomena. To mitigate this threat,

we performed a randomized application of the treatment, i.e.,

the application was executed in the Static Provisioning or Dy-

namic Provisioning version in a random order. This averaged

out the effects of battery depletion and different temperatures

across our repeated measurements. 

0.3. Construct validity 

Threats to construct validity affect the relationship between

heory and observation. The only threat to construct validity we

dentify is related to the definition of the constructs. As argued pre-

iously, the theory behind cyber-foraging is extremely novel and

he tactics we evaluated have been proposed in a limited amount

f cases. For this reason, we cannot claim our implementation of

he tactics can be taken as a reference for cyber-foraging theory.

e mitigated this threat by involving the expert on cyber-foraging

hat defined and proposed the tactics we evaluated in this study.

his ensures us that our implementation is a correct reification of

he architectural tactics proposed in the theory. 

0.4. External validity 

Threats to external validity affect the generalization of our find-

ngs. We identified the following external validity threats: 
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• Subject selection. As discussed in Section 5 , our study is a quasi-

experiment with no randomized subject selection. This poses

a clear problem of generalization. In fact, we cannot claim our

results would generalize as such to a larger population of cyber-

foraging applications. 
• Experimental setting. Our instrumentation and experimental set-

ting is based on a single mobile device and specific hardware

technologies. Hence, our results might be affected by the spe-

cific experimental setting in which we operated. More evidence

is needed to ensure our findings would also apply to other

technologies and device families. 

11. Related work 

There are many studies on introducing architectural tactics for

cyber-foraging applications e.g. ( Balan et al., 2007; Chun and Ma-

niatis, 2009; Cuervo et al., 2010; Ra et al., 2011; Yang et al.,

2008 ) and presenting reference architectures and frameworks that

can be adopted by software engineers to realize cyber-foraging

functionalities in different systems e.g. ( Kristensen and Bouvin,

2008; Balan et al., 2003; Flinn et al., 2002; Zhang et al., 2011;

Simanta et al., 2012 ). However, in this paper, we focus on stud-

ies that provide insights on existing architectural tactics and eval-

uate their effectiveness on system qualities. In this respect, some

work has been done on the evaluation of tactics in different do-

mains and from a different perspective. For instance, Wu and Kelly

present a qualitative comparison of architectural tactics for system

safety, which as a result can extend software design methodologies

( Wu and Kelly, 2004 ). In another example, Harrison and Avgeriou

model how different tactics can fit in different software architec-

tural patterns from a compatibility perspective ( Harrison and Avge-

riou, 2010 ). Differently, our work assesses the impact of architec-

tural tactics with respect to energy efficiency and resilience. 

In particular, we are interested in architectural tactics in the do-

main of cyber-foraging with an emphasis on the impact on sys-

tem qualities. Related work from this perspective mostly focuses

on a qualitative evaluation of the tactics, which usually results

in design guidelines for cyber-foraging applications. Agrawal and

Prabhakar present Appification, which is a methodological frame-

work to provide guidelines for architectural design, implementa-

tion and deployment of self-adaptive mobile apps ( Agrawal and

Prabhakar, 2015 ). According to the Appification framework, one

should analyze the quality requirements of the application and

choose the best fitting tactics. The framework, however, does not

provide a quantitative evaluation of the tactics in such applications.

Orsini et al. provide design guidelines for mobile-cloud computing

applications and include a qualitative analysis. They classify com-

putation offloading solutions from the literature based on their im-

pact on a number of system quality requirements ( Orsini et al.,

2015 ). Liu et al. review application partitioning algorithms for

mobile-cloud computing ( Liu et al., 2015 ). They qualitatively discuss

the implications of each algorithm in different usage scenarios. La

and Kim present a taxonomy of computation offloading schemes,

in which the schemes are evaluated in a qualitative manner based

on five identified criteria for mobile-cloud applications ( La and

Kim, 2014 ). Their insights help in selecting the optimum offloading

scheme for target apps. Shiraz et al. focus on application offloading

frameworks in mobile-cloud computing ( Shiraz et al., 2013 ). They

introduce a thematic taxonomy to compare the existing frame-

works. Abolfazli et al. survey cloud-based mobile augmentation ap-

proaches ( Abolfazli et al., 2014 ). They introduce a comprehensive

taxonomy and a number of decision-making flowcharts that can be

used to build new approaches. Sharifi et al. review existing cyber-

foraging solutions and present a categorization based on a number

of factors such as the type of surrogate, the overhead of offloading,
he granularity of offloading, and adopted metrics ( Sharifi et al.,

012 ). 

Differently, in our study, we conduct empirical experimenta-

ion to quantitatively evaluate cyber-foraging tactics in terms of

heir impact on system qualities. Our experimentation is an ex-

ension of our previous work on a decision model that helps

oftware architects and software engineers select tactics to meet

unctional and non-functional requirements of cyber-foraging sys-

ems ( Lewis et al., 2016 ). In our decision model, we review cyber-

oraging tactics from several points of view such as quality im-

act, selection trade-offs, and dependencies between tactics. The

ork presented in our study complements the decision model by

erforming quantitative evaluation of tactics for energy efficiency

nd resilience. We place our focus on surrogate provisioning tac-

ics, which are one of the required tactics to build a cyber-foraging

ystem ( Section 2 ). 

2. Conclusion 

This study presents an evaluation of the cyber-foraging tactics

or static and Dynamic Surrogate Provisioning. Such tactics aim

o provide adaptability at runtime. However, the actual impact of

dopting the tactics on energy efficiency and resilience of the sys-

em is not evident in the literature. We performed an empirical

xperiment, following the experimentation framework devised by

asili et al. (1986) , in order to analyze the cyber-foraging architec-

ures systematically. We used the Green Lab of Vrije Universiteit

msterdam to set up and carry out our experimentation. 

Our results show a significantly higher resilience for Static

urrogate Provisioning than Dynamic Surrogate Provisioning. Also

oth architectural tactics improve energy efficiency compared

o non-cyber-foraging architectures (our baseline measurements).

owever, none of the two tactics outperforms the other with re-

pect to energy efficiency, which means that the overhead of the

untime optimization remains similar. 

This paper is a first step toward providing guidance for software

rchitects and software engineers to minimize their learning curve

n the selection of the best fitting cyber-foraging architectural tac-

ics. Our empirical experimentation helps making better-informed

rade-offs between the desired quality attributes, i.e., flexibility, re-

ilience, and energy efficiency. In our future work, we will further

uantitatively evaluate such trade-offs. Also, we will consider other

yber-foraging architectural tactics, emphasizing on runtime pro-

rammable infrastructures. 
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