VRIJE
UNIVERSITEIT
° AMSTERDAM

VU Research Portal

How organisation of architecture documentation affects architectural knowledge
retrieval

de Graaf, K.A.; Liang, P.; Tang, A.; Vliet, J.C.

published in
Science of Computer Programming

2016

DOI (link to publisher)
10.1016/j.scic0.2015.10.014

document version
Peer reviewed version

document license
CC BY-SA

Link to publication in VU Research Portal

citation for published version (APA)

de Graaf, K. A., Liang, P., Tang, A., & Vliet, J. C. (2016). How organisation of architecture documentation affects
architectural knowledge retrieval. Science of Computer Programming, 121, 75-99.
https://doi.org/10.1016/j.scico.2015.10.014

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 26. May. 2021

https://doi.org/10.1016/j.scico.2015.10.014
https://research.vu.nl/en/publications/283d4b8e-f23a-46bb-9ecc-246cfc723196
https://doi.org/10.1016/j.scico.2015.10.014

How Organisation of Architecture Documentation Affects Architectural Knowledge
Retrieval

K.A. De Graaf?®, P. Liang"™, A. Tang®, H. van Vliet*

VU University Amsterdam, Amsterdam, The Netherlands
bWuhan University, Wuhan, China
“Swinburne University of Technology, Melbourne, Australia

Abstract

A common approach to software architecture documentation in industry projects is the use of file-based documents. This approach
offers a single-dimensional arrangement of the architectural knowledge. Knowledge retrieval from file-based architecture docu-
mentation is efficient if the organisation of knowledge supports the needs of the readers; otherwise it can be difficult. In this paper,
we compare the organisation and retrieval of architectural knowledge in a file-based documentation approach and an ontology-
based documentation approach. The ontology-based approach offers a multi-dimensional organisation of architectural knowledge
by means of a software ontology and semantic wiki, whereas file-based documentation typically uses hierarchical organisation by
directory structure and table of content. We conducted case studies in two companies to study the efficiency and effectiveness
of retrieving architectural knowledge from the different organisations of knowledge. We found that the use of better knowledge
organisation correlates with the efficiency and effectiveness of AK retrieval. Professionals who used the knowledge organisation
found this beneficial.

Keywords: Software architecture documentation, software architectural knowledge, architectural knowledge retrieval, software

ontologies, semantic wiki, ontology-based documentation.

1. Introduction

It is recognized by Bass et al. in [1]] and Clements et al. in [2]]
that even a perfect software architecture is essentially useless if
it is not understood; proper documentation should have enough
detail, no ambiguity, and it must be organised such that users
can quickly find information and answer their questions [3].
Documentation of software architecture serves three important
purposes: it is used for education, system analysis, and it is the
primary vehicle for stakeholder communication [2]]. Kruchten
suggests that if an architecture is not documented, it does not
exist [4]].

Architectural Knowledge (AK) is contained in Software Ar-
chitecture (SA) documentation. AK can be defined as “the inte-
grated representation of the software architecture of a software-
intensive system (or a family of systems), the architectural de-
sign decisions, and the external context/environment” [5]].

In software industry, it is common practice to capture AK
using file-based documents. This documentation approach has
not changed for decades, however, it has various issues when
retrieving AK:

e The AK that is searched for is often complex, covering
different parts of a system and different stages of develop-

*Corresponding author - liangp@whu.edu.cn
Email addresses: kadegraaf@gmail.com (K.A. De Graaf),
liangp@whu.edu.cn (P. Liang), atang@swin.edu. au (A. Tang),
hans@cs.vu.nl (H. van Vliet)

Preprint submitted to Science of Computer Programming

ment. The AK needed to answer a question is often not
found in one part of a document.

e The way architects organise the contents of a document is
reflected in its table of contents, which provides an index
on the AK. If a search for AK is not supported by this table
of contents, then the AK may not be easily found.

e If structuring of document content is not done properly,
AK can become redundant and scattered across architec-
ture views, sections, and documents. This is hard to pre-
vent when there are many stakeholders with different AK
needs.

e Cross-references between different sections and docu-
ments, e.g., in a traceability matrix, can help searching for
scattered AK, however, they are hard to maintain when AK
evolves.

These issues occur because file-based documents have a lin-
ear organisation of contents. This organisation limits the sup-
port for indexing contents. It results in documents that provide
a single-dimensional arrangement of AK and that arrangement
may not fit the needs of all AK users. Documentation that is
not fitting for its users is not cost-effective [2, 6], yet documen-
tation in industry is often ’one-size-fits-all’ and does not serve
specific users and their tasks well [[7].

We evaluate an approach that addresses the issues with the
linear organisation of AK in file-based documentation. We
use a lightweight software ontology and a semantic wiki tool

October 27, 2015

to document software architecture, as proposed in [8]. This
ontology-based approach provides multiple ways for users to
retrieve AK using the relationships and knowledge defined in
the ontology.

We used two controlled industry experiments to compare the
ontology-based approach to the file-based approach to inves-
tigate how the organisation of AK influences the effectiveness
and efficiency of AK retrieval. We measured the time-efficiency
and effectiveness (in terms of precision and recall) of software
professionals answering questions representative of their daily
work. Both approaches were configured for the experiment us-
ing available technologies and materials.

We investigated the reasons why software professionals re-
trieved AK efficiently and effectively. For example, whether
certain information in the AK organisations provided clues
about the navigation path to relevant types of AK and relation-
ships between AK.

We identified which file-based and ontology-based AK or-
ganisation supported software professionals when searching for
the AK necessary to answer their questions. The usage of
supporting AK organisation was measured from the individual
search actions of the software professionals. We then tested
whether the use of AK organisation that supports a question has
a correlation with the efficiency and effectiveness of answering
that question.

Ontology-based documentation can improve AK retrieval by
providing a more fitting AK organisation with more diverse
possibilities to use the fitting AK organisation via multiple
paths, however, it also incurs costs. These costs may not out-
weigh its benefits in certain projects. We estimated the costs,
benefits, and return on investment of adopting ontology-based
documentation in the two studied industry projects.

This work makes the following contributions:

e Compare AK retrieval from multi-dimensional ontology-
based AK organisation and single-dimensional file-based
AK organisation in two industrial experiments.

o Identify how and why AK organisation results in efficient
and effective AK retrieval.

e Introduce an ontology-based documentation approach that
addresses issues with AK organisation and retrieval in file-
based documentation.

In Section 2] we provide the background on SA documentation
and its issues and challenges. Section[3|describes our ontology-
based approach. Section [4] details on the experiment setup and
findings. Section [5] describes how AK retrieval is influenced
by AK organisation. Section [6]reports a qualitative evaluation
of the documentation approaches and experiment. Section
reports a cost-benefit analysis of adopting ontology-based doc-
umentation. Threats to validity are discussed in Section [§] and
implications of this work are described in Section [9] Related
work is discussed in Section[I0] Section[IT|reports our conclu-
sions and future work.

Replication of the experiment, a questionnaire on experiment
results, and an analysis on the use of AK organisation are the
major extensions to the work reported in [9].

2. Background

2.1. File-Based Documentation and Its Issues

In their highly influential paper on multi-dimensional software
decomposition [[10]], Tarr et al. describe how traditional for-
malisms in software engineering can only provide a single
“dominant” dimension when achieving separation of concerns.
Single-dimensional software decomposition causes problems
with reuse, traceability, comprehension, evolution, and main-
tenance. These problems not only apply to the software itself,
but also to its documentation.

Parnas and Clements argue [11] that documents should be
designed and structured with separation of concerns in mind;
each aspect of a system is described in one section. File-based
documentation can achieve this separation by using, for exam-
ple, a view-based structure [[1, 2, [12]].

Each view provides a ‘cross-section’ of AK. Views are useful
to stakeholders who are interested in different cross-sections of
AK. Cross-referencing of AK between views can help to make
interrelated AK traceable and retrievable.

The separation of concerns achieved through a particular set
of architecture views makes the retrieval of certain knowledge
— knowledge contained in one view — relatively easy, but at the
same time it makes the retrieval of knowledge scattered across
views difficult. This is a wicked problem: choosing a differ-
ent set of views does not solve the issue, but simply moves it
elsewhere. This problem is recognized by Rozanski and Woods
in [13]], where the notion of perspectives is introduced next to
that of views. Perspectives serve to organise specific types of
knowledge across views.

As the number of different stakeholders and their unique
needs for AK increase in large and complex projects, there is
also an increase in misalignment between the AK needed by
stakeholders and how they may retrieve this AK from file-based
documentation. In practice, most stakeholder concerns are ad-
dressed by a small documentation subset that is different for
each concern [14]. Moreover, existing approaches for docu-
menting decisions only frame part of the stakeholders concerns
related to decisions [[15]]. Extensive use of cross-references be-
tween scattered AK or (alternatively) redundant recording of
AK in file-based documents makes AK retrieval and mainte-
nance impractical and error-prone.

The questions about AK that documentation users may ask
based on their concerns are illustrated in the right-hand side of
Figure[I] The questions are about certain types of AK, e.g., de-
cisions and requirements, and relationships between AK, e.g.,
impacts’ and ’realized by’. Relationships between AK show
how an architectural element is connected to or associated with
the rest of the architectural design. For example, a developer
may want to find all requirements realized by a component s/he
has to build, whilst an architect may want to find all decisions
that impact the same component during impact analysis.

The left-hand side of FigureI]illustrates how a linear organi-
sation of AK in a table of contents supports file-based document
users in finding a limited set of relationships between AK. As
a result, only one out of three questions asked by the document
users is supported in this AK organisation.

Document organisation
- Table of Contents -

Supported AK
relationship

Required AK
relationship

Questions of
document users

1. Functional requirements .-

1.1 Requirement 1 -Login Requirement - subsystem

1.1.1 Subsystem FrontEnd

[] subsystem - decisions

1.1.1.5 Decision D5

decision - design alternatives "I need to find all alternatives and

decision - (related) decisions

(-]

2. Performance considerations . . .
quality attribute - decisions

2.5 Decisions

"I need to find all decisions

quality attribute - decisions | .
that impact performance

3. Architecture design description

3.5 Subsystem FrontEnd
3.5.2 Component GUI

subsystem - component

"I need to find all requirements that
are realized by component GUI"

3.8 Maintenance

s uality attribute - decisions
3.8.3 decision quality

1
|

]

1

I .

| component - requirements
L)

I

I

|

[-]

For instance, the organisation does not detail where every
type of AK can be found, e.g., design alternatives. Moreover,
the relationship between components and requirements, neces-
sary to answer the question about component GUI, is missing
in this organisation. Extending the AK organisation to support
this question would introduce redundant and scattered descrip-
tions of either requirements or components.

Indexing additional relationships (or ’cross-sections’) be-
tween AK in a file-based document organisation introduces re-
dundant and scattered AK descriptions. Relationships between
AK that are not indexed by the document organisation have to
be searched inside document contents. It is however difficult to
make document content unambiguous [3] and organise the AK
therein such that it is successfully communicated to users with
different backgrounds [16].

Explicitly describing relationships between AK makes the
AK traceable. Empirical evidence is given by Shahin et al.
in [17] and Javed and Zdun in [18] that improved traceability
leads to better architectural understanding. Lack of traceability
in SA documentation is considered a major problem in industry
practice [7].

In [19]] Jansen et al. identify AK retrieval challenges that
partially stem from above issues with organising AK. We de-

scribe in |Appendix Alhow the challenges can be alleviated by
the ontology-based approach.

1. Architecture documentation understanding
Document understandability becomes more challenging
when documentation size increases in large and complex
systems [2]]. The original intention of the authors is often
lost.

2. Locating relevant architectural knowledge
Knowledge is often spread over multiple documents [20]]
which makes it hard to locate AK, especially if documents
lack finer details.

3. Support for traceability between different entities
Providing traceability between documentation sources is

Figure 1: Mismatch between supported and required Ak relationships in file-based document organisation

difficult [21]. Text and tables are limited in communicat-
ing different relationships.

4. Support for change impact analysis
Because decisions, requirements, and their relationships
are usually not explicit, it is often very hard to reliably an-
alyze and predict the impact of changes to the architecture.

5. Assessment of design maturity
Architecture design is difficult to evaluate if there is no sta-
tus overview of the conceptual integrity, correctness, com-
pleteness, and buildability of the architecture [22] [1]].

6. Credibility of information
AK often changes in large and complex systems and the
cost to update is sometimes prohibitive [19]]. Documenta-
tion is quickly outdated and its users lose confidence in its
credibility [23].

Problems related to the above issues and challenges are re-
ported by Rost ef al. in a recent survey [7] on SA documenta-
tion among practitioners working in 33 companies around the
world. The top three reported problems with the representation
of AK in the documentation that 109 of these practitioners work
with are 1) inconsistent and missing structure, 2) scattered in-
formation, and 3) missing traceability.

2.2. Hypertext Documentation and Its Issues

Hypertext and wiki systems have been used for SA documenta-
tion. The use of tags and categories can help to organise knowl-
edge. However tags quickly lose meaning when used arbitrar-
ily. Hypertext is also known as nonlinear text [24]], yet its or-
ganisation remains linear with the use of categories.

Hyperlinks provide cross-referencing by pointing to informa-
tion, however, the pointers do not specify the meaning of rela-
tionships. Without explicit semantics, not all AK users will be
able to understand an organisation of AK by means of hyper-
links.

decisions that are related to decision D5"

Several researchers [25| 24} [26] report that users of hypertext
documents feel ’lost’ and have difficulty gaining an overview
of the material being read and how this material is interrelated
[27]. Likewise, users of wiki-systems may also experience a
lack of structure when navigating and finding relevant informa-
tion [28].

Hypertext systems address AK retrieval challenges 2 and 3
(in Section to some extent using hyperlinks and challenge
6 using version control, e.g., in wikis. However, because hyper-
links do not have specific semantics, they are not practical for
filtering and querying AK based on the properties of relation-
ships between AK. This is necessary for effectively addressing
AK retrieval challenges 1, 4, and 5.

Semantics can be conveyed by named hyperlinks in hyper-
media systems [29]], hyperlinks in knowledge-based hypertext
[30], and labelled links in spatial hypertext systems. Solis et
al. describe a spatial hypertext systems for AK retrieval in [31]
and its qualitative evaluation in [32]], which is the only study on
using spatial hypertext for AK retrieval that we know of.

3. Ontology-Based Documentation

The goal of this study is to investigate and compare the use
of file-based and ontology-based AK organisation to retrieve
documented AK. This section describes our ontology-based ap-
proach, how it is used to organise AK, and how it addresses AK
retrieval challenges. Our approach, which is evaluated in Sec-
tions 4 through 7, consists of the semantic wiki described in
[33] and ontologies described in [8l [34].

3.1. Software Architecture Ontologies

“An ontology” explicitly specifies the conceptualization of a do-
main [33], i.e. “an ontology” refers to a formal domain model
in which concepts and relationships among concepts are de-
scribed [36]. Ontologies enable a hierarchical classification of
interrelated domain concepts and can be represented using an
Resource Description Framework (RDF) Schema or the Web
Ontology Language (OWL). The use of RDF makes ontologies
human readable and machine-interpretable, allowing querying
of, and inference over knowledge.

Ontologies, RDF, and OWL are part of the semantic web
paradigm which aims to support advanced knowledge manage-
ment systems in which knowledge can be retrieved via query
answering and presented in a human-friendly way [37]]. Several
ontologies have been recently proposed to express, share, and
manage AK. For example, to share architectural design deci-
sions explicitly [38]], provide a precise and common vocabulary
for making architecture decisions [39}40], and to reuse SA doc-
uments [41]].

In this study we use the lightweight software ontology from
[8] to annotate knowledge in SA documents. The lightweight
software ontology is a general-purpose ontology; it contains
AK concepts that are commonly documented in a software
project [I8]. This ontology was built to support use cases around
typical activities of architects [42]. The lightweight ontology
is designed to be flexible so that it can be adapted for specific

application domains. We chose to use the lightweight software
ontology instead of other ontologies because it provides dif-
ferent ways to support AK storage and retrieval, yet is not too
costly and time-consuming to enact.

Other general-purpose ontologies for describing commonly
documented AK concepts have been proposed in [43] |41} 44}
39, 45]. Many AK concepts in the lightweight software on-
tology are also described in these other general-purpose on-
tologies, e.g., requirements in [43]], architecture elements such
as components, subsystems, and interfaces in [41l 44], and
all aforementioned AK concepts together with decisions in
[391145].

Figure depicts the classes and relationships in the
lightweight software ontologyﬂ together with classes (ap-
pended with “(Océ)”) that were added to support the AK con-
cepts used in one of the experiment domains (Section 4.3.2] de-
tails on this extension). We illustrate the full ontology with
a software development scenario (classes are marked boldface
and relationships are marked italic):

A software architect makes a decision that non-functional
requirement ‘configurability’ is realized by the architecture.
The decision results in behaviour ‘user preferences’ which sat-
isfies the non-functional requirement ‘configurability’ and a
new functional requirement ‘set user preference’. When a
software engineer implements behaviour ‘user preferences’,
s/he needs to know which settings can be changed by and stored
by this behaviour. S/he also needs to know the interfaces
that are necessary to realize the behaviour and details on the
components or subsystems that offer the interfaces. The be-
haviour can be tested using the requirements that it satisfies
and the settings that impact it. Wikipages contain knowledge
about the aforementioned AK.

The relationships and classes in the ontology are used for or-
ganising AK. Relationships between classes support the docu-
mentation users in finding relationships between AK. Each dis-
tinct ontology class and relationship has properties and descrip-
tions that explicitly define their meaning, allowing different AK
users to interpret them consistently and unambiguously. We re-
fer to the relationships in the ontology as ’semantic relation-
ships’, because their names and properties convey their mean-
ing.

3.2. ArchiMind Semantic Wiki

A semantic wiki allows for navigation of ontology classes and
semantic relationships. We used OntoWiki as our semantic wiki
tool [46]. OntoWiki is similar to existing wiki systems (e.g.,
Wikipedia), and additionally offers web-based visualization and
management of (ontology and its instances in) knowledge bases
and semantic-enhanced search facilities.

We based our choice for OntoWiki on the evaluation of se-
mantic wikis in [47, 48]. In [48] Tamburri used a literature
study to identify requirements for a semantic wiki for software

ISee http://www.archimind.nl/oce-ontology.owl.xml for OWL
source file of this ontology.

http://www.archimind.nl/oce-ontology.owl.xml

| and other QAs

Legend:

Wikipage
| - cis
Usability . i . . .
knowledge is located in <wikipage> | <wikipage> contains knowledge about Inheri
Performance |—————————————— N ————- 1 _D = 1n efltenc'e
| | | | relationship
1 | | . . AW | .
| | is modeled in I _ _> _ Semantic
| | =TT~ Diagram | relationship
| I I
- . |
Non-functional Requirement | I______de_pgngs_oﬂ__ljl__/:\ _____________ | |l ________ ;
| |
[_ Lol . Lo | I |
| qual_is_related_to \/ \/ realized by \V | decision is about __\l/ N Z
[N
N Requirement tisfi Architecture @ K————————— Decision Design Alternative (Océ)
satisties
,_> Functional Requirement ! —
|

I__ _! req_is_related_to

results in -)
| has alternative |
e e e —

comprises of

_________________ impacts
Subsystem part of Component interface offered by Interface (Océ) Behavior (Océ) < ————— Setting (Océ)
——————————————— T X !
/:\ /: !_ /D I realized by | impacts I
I . T T T | T T T changed by |
ff terf
| orersintertace _ _ _ ___ A interface offered by _| stored by !

Figure 2: Software ontology extended for the Océ experiment domain

knowledge management. OntoWiki satisfied most of these re-
quirements compared to other semantic wikis, most notably re-
quirements for faceted ontology browsing, different views, se-
mantic inference, and social collaboration. Hoenderboom and
Liang show in [47] that OntoWiki provides many useful fea-
tures for requirements engineering, especially semantic search
and text annotation.

Version 0.9.5 of OntoWiki was adapted to optimize it for
storage and retrieval of SA documentation. The adapted version
was named ‘ArchiMind’ [33]. See http://www.archimind.
nl/archimind/|for a demonstration. See for a
detailed description of ArchiMind and how it addresses the AK
retrieval challenges described in Section [2.1]

4. AK Retrieval Efficiency and Effectiveness

4.1. Experiment Goal

We conjecture that the organisation of AK in file-based docu-
mentation causes certain issues with AK retrieval and that the
AK organisation in an ontology-based documentation approach
does not cause these issues. Given these two documentation
approaches, we test their efficiency and effectiveness when re-
trieving AK. This allows us to investigate how the file-based
and ontology-based AK organisation affects the efficiency and
effectiveness of retrieving documented AK. The experimental
goals are:

e (A) evaluate the AK retrieval efficiency of the file-based
documentation approach and the ontology-based docu-
mentation approach.

e (B) evaluate the AK retrieval effectiveness of the file-
based documentation approach and the ontology-based
documentation approach.

The experiment was conducted in a software project at the R&D
department of Océ technologies in the Netherlands and in a
software project at LaiAn in China. Océ is an international
leader in digital document management and a Canon Group
company. LaiAn is a software company that provides infor-
mation system development and integration services for small
and medium enterprises and local government. Table [1|details
the variations between the experiment domains and the SA doc-
umentation used in the experiment.

The Océ professionals need to retrieve AK specified in the
reference architecture for a product-line of printing machines
which also details on the variations and configuration of spe-
cific products. With the help of an Océ professional we esti-
mated that in 7 months time at least 49 out of 145 product-line
architecture documents were actively used in multiple projects.

A waterfall development approach is used at LaiAn, which
requires the use of detailled upfront design documentation.
Many parts of the information systems built at LaiAn are
reusable in subsequent projects, and this reuse requires AK re-
trieval from SA documentation as well.

4.2. Experiment Participants

Océ participants were recruited by circulating a voluntary sign-
up list during a presentation about ArchiMind (advertised using
a mailing list and posters). At the end of each experiment ses-
sion we asked participants to recommend interested colleagues.
This is a form of snowball sampling. At LaiAn we asked tech-
nical employees that use the experiment documentation to par-
ticipate and most agreed to this.

Twenty-six and twenty-two software professionals partici-
pated in the experiment at Océ and LaiAn, respectively. These
professionals work in various roles, including software engi-
neer, software architect, domain architect, workflow architect,

http://www.archimind.nl/archimind/
http://www.archimind.nl/archimind/

Table 1: Variations between experiment domains

Items

Océ

LaiAn

Development process

Agile development in which business re-
sults delivery takes precedence over exces-
sive documentation.

Waterfall development that stresses docu-
mentation in each development phase.

Scope of studied project and software docu-

Software used in a series of document print-

Web-based information system for petition

ments ing machines

case administration of local government

Number of experiment document users 50~75 22~25
Language of experiment documents English Chinese
Number of experiment documents 8 1

Total size of experiment documents

79 pages, 3 diagrams, 1,794 paragraphs,
and 3,183 lines, 13,962 words

46 pages, 20 diagrams, 348 paragraphs, 645
lines, and 8,538 words

software designer, product- and system test engineer, software
project manager, and configuration manager. Table [C.3]in[Ap]

gives more details on the demographics of the exper-
iment participants at the two companies.

4.3. Experiment Materials

The materials used at both Océ and LaiAn consist, per ex-
periment, of an SA documentation corpus, an ontology, and
questions about the AK in the documentation corpus that are
to be answered by experiment participants. Figure [3] gives an
illustrated overview of how the experiment materials were con-
structed and used in the experiment.

File-based documents from Océ and LaiAn were used as in-
put to construct ontology-based documentation. Software pro-
fessionals at Océ provided examples of the types of AK con-
cepts and relationships in the Océ domain, which were in-
cluded in the Océ ontology. The experiment questions were
constructed from documentation content by researchers. These
questions were evaluated, and some rephrased or rejected, in a
pilot study by software professionals. The software profession-
als in the pilot study did not participate in the experiment.

4.3.1. File-based Documentation
File-based documents used in the Océ experiment are:

e Two Software Architecture Documents (SAD) of 3 and 9
pages. SADs detail the design of functionality, behaviour,
and components. One SAD gives an overview of the AK
in the other SAD.

e Four Software Behaviour Documents (SBD), ranging in
size from 8 to 18 pages. SBDs describe the behaviour
of software together with all requirements and settings for
that behaviour.

e One System Reference Document (Sysref) of 19 pages.
The Sysref details on the high level system design, its de-
composition in terms of subsystems, components, and in-
terfaces, and decisions and rationale on the system design.

e One Design Document containing three UML diagrams
that detail on the design of subsystems, components, and
interfaces. The design document is often more up to date
than the Sysref document that partially details on the same
AK.

These documents follow a company-specific format and do
not mention usage of certain architecture description standards,
e.g.,1SO 42010 [12]. The documents are stored in 3 directories.
A directory ’Sysref’ contains the Sysref and the design docu-
ment in UML. A directory 'SBD’ contains SBDs. A directory
SAD contains the overview SAD and one subdirectory with the
other SAD. Three Océ software professionals confirmed that
the documents are representative of their usual practice. Ques-
tion 6 of a questionnaire among experiment participants in Ta-
ble[D.4lalso confirms this.

The LaiAn experiment uses one file-based document:

e One Software Architecture Document (SAD) of 46 pages.
This single SAD contains all system goals, detailed re-
quirements, system design, architecture design, design
principles, subsystem, and components in a project at La-
iAn. The document is mainly composed of text descrip-
tions and UML activity and box-and-line diagrams. The
document has an implicit view-based organisation. Views
are not formally specified but the document sections and
contents correspond to a logical, process, and use case
view.

All participants used Microsoft Word for reading and key-
word searching in the file-based experiment documents. Océ
participants used Windows file explorer for navigating direc-
tories, keyword searching across documentation, and opening
documents in the experiment. In addition to the searchable
text that specifies the architectural design, Océ participants used
MagicDraw (a UML modelling tool) for viewing, tracing, and
keyword searching in the architectural diagrams, whereas La-
iAn professionals viewed the architectural diagrams as embed-
ded static pictures in the file-based document. Use of the above
tools is representative of the actual practice of Océ and LaiAn
professionals.

4.3.2. Ontology
The lightweight software ontology from [8]] was directly used
in the LaiAn experiment. At Océ, we extended the lightweight
software ontology to include Océ concepts and relationships
types. We used an ontology engineering approach described
in [34] for the ontology extension.

To do so, we asked Océ professionals to provide examples of
the AK concepts and relationships they needed to retrieve from

Legend

Software professionals

Input/ > Output/ . Output/
source result action ™| target
LaiAn software LaiAn Lightweight
documentation experiment Software Ontology
SAD -

LaiAn software
professionals
\ / Yy
« = 2y
SAD | |

answer evaluate
\/ Ontology-based
File-based ‘ Experiment questions documentation

documentation (in semantic wiki)

g

Océ software Océ Lightweight
documentation experiment Software Ontology
Océ concepts and =, __ ’ _ |
relationship types ==
Sysref - A ' -
SAD |
SBD |

| provide

" Océ

Océ software specific
\ / professionals ontology

y

use use
Sysref T |~ >
SAD
SBD answer evaluate
\J Ontology-based
File-based ‘ Experiment questions ‘ documentation
documentation (in semantic wiki)

Figure 3: Construction and use of materials in experiments.

file-based architecture documentation in their daily work. Two
examples of these AK needs are:

e "What is the rationale behind this requirement?
whom can we ask?)”

(And

o “Which subsystem is responsible for fixing the XX defaults
based on the device configuration?”

We collected AK needs from 7 Océ professionals, among
which software engineers, a software architect, and software
project manager. These professionals work in multiple projects
and printer product-lines, and the Océ ontology (see Figure
can be used as a general-purpose ontology in multiple projects.

From the information given by the Océ professionals we
identified AK concepts and relationship types that were added
to the lightweight ontology. The additional AK concepts
(marked boldface) and their relationships (marked italic be-
tween parentheses) are; Behaviour (realized by); Design Alter-
native (has alternative); Setting (impacts, changed by, stored
by); Interface (offers interface, interface offered by).

We did not include identified AK concepts and relationship
types that were not also recorded in the file-based documenta-
tion subset used in the Océ experiment. AK concepts ’testcase’,
“interface method’, ’action’, ’ stakeholder’, and their associated
relationships, were not included. The accuracy and effort to
construct the ontology are described in [34]].

4.3.3. Document Annotation

The Océ and LaiAn documents were entered in separate in-
stallations of ArchiMind. We identified and annotated 214
AK instances using the Océ ontology presented in Figure

namely; 27 wikipages and 3 diagrams; 45 functional and 0 non-
functional requirementsﬂ 22 decisions; 3 alternative decisions;
19 subsystems; 66 interfaces; 15 components; 8 settings; 6 be-
haviours.

We identified and annotated 141 AK instances in the La-
iAn documents using the lightweight ontology [8]], namely; 1
wikipageE]; 20 diagrams; 65 functional and 2 non-functional
requirements (1 system goal was annotated as a requirement);
7 decisions; 21 components; 7 subsystems; 18 architecture ele-
ments other than subsystems and components.

The annotations were verified by two software professionals
at Océ and one software professional at LaiAn during a pilot
study. We asked them whether specific AK instances were cor-
rectly classified (corresponding to an ontology class) and cor-
rectly interrelated by semantic relationships such as “require-
ment X is realized by component Y and “decision X is about
subsystem Y.

After annotation, the ontology-based documentation con-
tained the same AK as the file-based documentation. An on-
tology does provide extra information to organise AK. We want
to test if this AK organisation helps professionals to retrieve

2Two non-functional requirements, performance and security, are explicitly
and comprehensively described in the reference architecture documents, but not
in the subset of these documents that was used in the Océ experiment. Other
non-functional requirements are explicit in company-wide technical standards,
and satisfied via the mechanisms, behaviour, and functional requirements spec-
ified in the reference architecture documents.

3 Document content at LaiAn was stored as a property of the AK instances
that this content described. This one wikipage provides an integrated overview
of the AK instances using semantic annotations. As such, the use of wikipages
in the LaiAn experiment is different from the Océ experiment.

AK.

4.3.4. Experiment Questions

Experiment questions were constructed at Océ and LaiAn from
the content of experiment documentation. Researchers pro-
posed experiment questions which were evaluated, and some
rephrased or rejected, by two Océ professionals and one LaiAn
professional in a pilot study. The experiment questions were
constructed and evaluated in the pilot study based on four selec-
tion criteria that aim for a fair comparison between file-based
documentation and ontology-based documentation. These se-
lection criteria also ensure that we measure retrieval of docu-
mented AK, that is retrieval of AK which is explicitly present
in the documentation, as opposed to retrieval of AK using mem-
ory, colleagues, specific expertise, other sources, or qualitative
evaluation or understanding of AK. The selection criteria are:

1) The question is representative of the questions that docu-
mentation users ask during their job.

Criterion 1 is evaluated by the pilot participants to ascertain that
the experiment questions are not ’artificial’ and represent ques-
tions that professionals normally try to answer from documen-
tation. Pilot study participants also ascertained that proposed
questions were relevant for the tasks of Océ and LaiAn profes-
sionals in different software roles.

2) The answers can be found using the available AK and AK
organisation in the documentation.

Criterion 2 is used to ensure that questions are supported by
the available AK organisation in the experiment. For example,
one of the selected questions is about settings and behaviour,
which can be easily answered using the AK organisation in a
file-based document about settings and less easily using another
document about behaviour. In ontology-based documentation
the classes ’Behaviour’ and ’Setting’ can be used to find an-
swers, however, only one semantic relationship between these
classes is defined, which makes it harder to find answers when
starting to search from class ’Behaviour’.

Criterion 2 is also used to ensure that the answers can be
quantitatively assessed, i.e., that evaluators do not have to sub-
jectively judge whether debatable answers to an open-ended
question are either correct or incorrect. Because the informa-
tion required to answer a question is available in documenta-
tion, the correctness of answers is not open for debate and sub-
ject to different interpretations. This criterion prevents that cor-
rect answers can only be found by participants with specific
background knowledge that is not recorded in documentation.
For example, answering a question about architectural trade-
offs may require background knowledge that not all testers and
software engineers have.

Pilot study participants answered the proposed experiment
questions and this ascertained that answers could be found us-
ing the available AK and AK organisation. The pilot partici-
pants also ascertained that answers were not open for debate or
different interpretations, and could be quantitatively assessed.

3) The description of the AK that has to be found is consistent
with similar descriptions of AK in the documentation.

Criterion 3 is used to ensure that the AK that has to be found
does not have an atypical description and is recognizable for
participants. Because the pilot participants had to find answers,
they could ascertain whether the description of the answer was
normal or atypical. For example, a pilot participant commented
that it was normal that the answer to Océ question 1A has two
descriptions in two documents.

4) The question has a similar interpretation between different
participants.

We ascertained that software professionals had a similar inter-
pretation of the proposed questions based on the comments,
search actions, and answers of the pilot participants.

Based on the feedback of the pilot participants we replaced
or rephrased the initially proposed experiment questions. For
example, the proposed experiment question "Based on which
requirements has decision XX been made?” has the following
evaluation by a pilot participant: "Answer [to this question] is
not clear in documentation and open for discussion. Question
is relevant though.”. We subsequently rejected this experiment
question because it violated selection criteria 2, and we pro-
posed a different question.

At Océ 13 experiment questions were proposed of which 6
were rejected and 3 were rephrased based on the evaluation by
the two pilot participants. At LaiAn 8 experiment questions
were proposed of which 4 questions were rejected in the pilot
study. The following questions were used in the end:

Océ questions

Seven questions were accepted in the Océ experiment. The
questions have been obfuscated for non-disclosure reasons:
XX, YY’, ‘ZZ’, and ‘QQ’ replace an actual software entity
or concept.

1A: Which settings have an impact on behaviour “XX”?
1B: Which settings have an impact on behaviour “YY”?

2: Which requirements for behaviour “ZZ” should be satis-
fied (realized) by component “XX”?

3A: Which decisions have been made about component “YY”?

3B: Which decisions have been made on the configuration of
behaviour “XX”, “YY”, “ZZ”, and “QQ"?

4A: Which subsystem is interface “XX” part of?

4B: Which other interfaces are offered by this subsystem?

LaiAn questions
For the LaiAn experiment we used 4 questions.

1: Which requirements are realized by architecture design el-
ement “XX”?

2: Which requirements are related to requirement “YY”?
3: Which requirements does decision “ZZ” depend on?

4: Which architecture design elements are caused by decision

“QQO”?

“Architecture design element” refers to an implementable soft-
ware artifact, e.g., a component or subsystem, in the LaiAn doc-
umentation.

The type of experiment questions proposed at LaiAn is sim-
ilar to the type of questions at Océ to align the two experi-
ments. The experiment questions involve relationships between
AK and this is representative of the type of complex questions
that Océ and LaiAn professionals ask in their daily job.

These types of questions are asked in multiple scenarios of
SA documentation usage. For example, all questions can be
asked during architecture refactoring and change impact anal-
ysis. Océ question 2 and LaiAn questions 1, 2, and 3 can be
asked during architecture trade-off analysis and requirements
verification.

4.4. Experiment Hypothesis

We formulate the following alternative hypotheses for experi-
mental goal A and B presented in Section 4.1}

Hy A = The use of the ontology-based approach for answering
experiment questions results in better time-efficiency than the
use of the file-based approach.

Hyg = The use of the ontology-based approach for answering
experiment questions results in higher effectiveness than the use
of the file-based approach.

The null hypotheses state that there is no difference in efficiency
and effectiveness between the approaches.

Two independent variables (or ‘predictor variables’) are used
in the experiment, namely the file-based and the ontology-based
approach to SA documentation. Two dependent variables (or
‘response variables’) are used in the experiment. Time is used
as a measure of efficiency. The harmonic mean of precision and
recall, the F1 score, introduced by van Rijsbergen in [49], is
used for measuring effectiveness:

Precision * Recall

Flscore =2+ Precision + Recall

where recall is the proportion of relevant items retrieved from
the total set of relevant items in a system and precision is the
proportion of retrieved items that is relevant in a result set. The
relevancy of items, or ‘ground truth’, was verified with two Océ
professionals and one LaiAn professional who did not partici-
pate in the experiment. Recall represents the completeness of
AK retrieval and precision represents the correctness of AK re-
trieval. The use of precision and recall to measure search ef-
fectiveness is widely accepted in information retrieval research
[S0].

4.5. Experiment Procedure

We asked experiment participants to answer each of the ques-
tions using either the ontology-based approach or the file-based
approach. We designed our experiment to be executed in two
versions. Consecutive participants in the experiment were al-
ternated between the two versions.

Both experiment versions 1 and 2 included an introduction
and procedure (or ‘protocol’) at the start and a questionnaire at
the end. Version 1 starts with an ArchiMind tutorial, questions

1 and 2 to be answered with the ontology-based approach, and
questions 3 and 4 to be answered with the file-based approach.
Version 2 starts with questions 1 and 2 to be answered with
the file-based approach, the ArchiMind tutorial, and questions
3 and 4 to be answered with the ontology-based approach.

The experiment was designed to minimize biases when as-
signing participants to a treatment group and a control group.
Each participant used both documentation approaches to re-
trieve AK and answer questions in the experiment. This design
minimizes the chance that participants’ familiarity and prefer-
ence for either approach could interfere with the results.

We chose to execute the experiment with each participant in-
dividually in a meeting room to avoid distraction for them and
entropy in the experiment. We informed participants that their
individual results were confidential to anyone other than the ex-
periment supervisors.

Océ participants were asked to think aloud, verbally state
their answers, and their satisfaction with answers. LaiAn par-
ticipants wrote down answers instead of verbalizing them. We
asked all participants to stop searching when they were satisfied
with the time spent on an answer and its perceived correctness
and completeness. Participants were instructed that this sat-
isfaction and the way they searched should reflect their daily
practice.

4.6. Experiment Test Results

Using the Shapiro-Wilk and Kolmogorov-Smirnov tests, we
found that the experiment measurements are not normally dis-
tributed. Therefore we applied the non-parametric Mann-
Whitney-Wilcoxon test. Table reports measurements and
resultd’] of one-tailed tests.

4.6.1. Knowledge Retrieval Efficiency

The difference in time efficiency between the two approaches
was statistically significant at the p=0.05 level for all Océ exper-
iment questions, except for question 4A. This is shown in Table
in column ‘p-value test results’, for rows with ’Seconds’ in
column "measure’. Consequently, we reject the null hypothe-
sis Hyp and accept the alternative hypothesis Hy p for all Océ
questions except question 4A. Question 4A was very quickly
answered with the file-based approach because AK about sub-
systems and interfaces is easily found in the AK organisation of
multiple documents.

The difference in time efficiency between the two approaches
was statistically significant for all LaiAn experiment questions,
except for question 1, as shown in Table[B.2] Consequently, we
reject the null hypothesis Hyp and accept the alternative hy-
pothesis Hy 5 for all questions except question 1. The failure to
reject the null hypothesis for LaiAn question 1 is explained by
the short duration (5 minutes) of the ArchiMind tutorial given
to participants. We observed that LaiAn participants took more
time to use ArchiMind’s features during the first question com-
pared to subsequent questions.

4 Measurements for LaiAn question 1, answered by participant 1, were ex-
cluded as we unintentionally asked a slightly different question.

4.6.2. Knowledge Retrieval Effectiveness
The difference in AK retrieval effectiveness between the two
approaches was statistically significant for all Océ experiment
questions, except for question 1A, as shown in Table[B.2] Con-
sequently, we reject the null hypothesis Hgpg and accept the
alternative Hypg for all Océ questions, except question 1A.
The difference in effectiveness between the two approaches
was statistically significant for all LaiAn experiment questions,
except for question 4, as shown in Table Consequently,
we reject the null hypothesis Hyg and accept the alternative
Hyp for all LaiAn questions except question 4. Hyp was not
accepted for LaiAn question 4 and Océ question 1A because
the file-based AK organisation provided much support for these
questions (see end of Section [5.1.2]for more details).

5. How AK Organisation Affects AK Retrieval

The use of the ontology-based approach resulted in more effi-
cient and effective AK retrieval than the use of the file-based
approach in the experiment. The ontology-based AK organisa-
tion addresses the issues of file-based AK organisation, how-
ever, this does not explain how and why the organisation of AK
affects AK retrieval efficiency and effectiveness, which is anal-
ysed in detail in this section.

One of the objectives of this work is to identify how AK or-
ganisation may fit the AK retrieval needs of document users.
We analyse how AK organisation supported participants in find-
ing the types of AK and relationships between AK in each ex-
periment question. We then compare how much of the file-
based and ontology-based AK organisation gave support for the
questions and we identify the usage of AK organisation by an-
alyzing video recordings in the experiment. Next, we verify
whether the use of supporting AK organisation results in effi-
cient and effective AK retrieval. We then report how the AK
organisation affected the search behaviour of participants.

5.1. AK Organisation

5.1.1. Fitting AK Organisation

The file-based documentation that was used in the experiments
is organised by sections at LaiAn and by directories, docu-
ments, and sections at Océ. Ontology-based documentation is
organised by ontology classes and by semantic relationships be-
tween classes. Figures [4| and [5| depict the AK organisation that
provides one or more paths to the answers for each experiment
question, i.e., the directories, documents, sections, ontology
classes, and semantic relationships that allowed participants to
navigate towards answers or which contained answers.

Some of the nodes on a path to the answer explicitly relate
to the question asked. For example, question 1A talks about
settings and behaviour. The file-based documentation has a di-
rectory with software behaviour documents, which in turn has
a document “behaviour print settings” with a section “’system
settings” and a subsection “settings” with text that makes it ex-
plicit where behaviour is described (see Figure [)). Here, the
path to the answer has intermediate nodes which all fit the ques-
tion. Or, in other words, the AK organisation fits the question.

10

Conversely, when answering question 3A using the file-based
documentation, the user has to go through various intermediate
nodes that do not explicitly contain a reference to the question
asked.

We term the nodes that explicitly refer to the question asked
“fitting AK organisation”. Shaded elements in Figure 4] and [3]
denote fitting AK organisation.

“Fitting AK organisation” is identified as AK organisation
that supports the questions in the experiment. We adopt the spe-
cific term fitting AK organisation” and its definition because
there may be other forms of support that an AK organisation
provides for questions about AK. In the remainder of the paper
we use “fitting AK organisation” to refer to the supporting AK
organisation that is identified and further investigated.

5.1.2. Influence of Fitting AK Organisation on AK Retrieval Ef-
ficiency and Effectiveness

The AK organisation was largely fitting for experiment ques-
tions in ontology-based documentation. The ontology-based
AK organisation was overspecified for LaiAn question 3, which
is about requirements whilst the ontology-based AK organ-
isation provides a subdivision between functional and non-
functional requirements. LaiAn question 4 is underspecified
for the AK organisation in the ontology, as participants did
not know exactly which architecture design elements had to be
found.

The file-based AK organisation was only partially fitting for
most the experiment questions. These questions were answered
less efficiently and effectively in the file-based approach as
compared to the ontology-based approach. Figuredand [5|show
the average measured efficiency (in seconds) and effectiveness
(in F1 score) per question as a means for comparison.

For example, the average time spent by participants answer-
ing Océ question 3A in file-based documentation was double
that of participants using ontology-based documentation and
they still retrieved less correct and complete answers. Simi-
larly, the file-based AK organisation was not very fitting for
LaiAn question 2, resulting in less efficient and effective AK
retrieval as compared to ontology-based documentation.

Some questions are relatively well supported in file-based
AK organisation, e.g., Océ question 1A and LaiAn question 4.
The questions are often answered with similar efficiency and
effectiveness in file-based and ontology-based documentation.
This explains why there is no significant difference in effective-
ness between the documentation approaches for these questions
(also see Section |4.6.2)).

The file-based organisation however provided less paths to
answers for Océ questions 2 and 3 and all LaiAn questions.
Moreover, not all intermediate nodes on the path to answers
were fitting. This provided less opportunity for participants to
use fitting AK organisation when answering these questions.
The semantic relationships in the ontology-based organisation
allowed participants to find AK using multiple paths. For exam-
ple, when answering Océ question 1A they could find answers
by relating all settings to behaviour XX or vice versa, relating
behaviour XX to all settings via semantic relationship *impacts’.

Legend:

= AK organisation that provides paths to answers

- = fitting AK organisation that provides paths to answers

= average efficiency (seconds)
and effectiveness (F1 score)

“Dir” = directory

“Doc” = document

Question 1A: Which settings have an impact on behaviour XX?
Question 1B: Which settings have an impact on behaviour YY?

: Q1A: 394 seconds, 0.99 F1 :
1 Q1B: 212 seconds, 0.65 F1 |

File-based

1 Q1B: 157 seconds, 0.85 F1 :

Ontology-based

Section - Section -

configuration requirements

EER T [o

: Q1A: 161 seconds, 0.97 F1 | =

Question 2: Which requirements for behaviour ZZ
(should be) satisfied (realized) by component YY?

File-based

Ontology-based

Components in
text

Question 3A: Which decisions have been made about
component XX?

S
=t
)
=
o
g
<
o
o
@
(¢}
ol

| Doc - System reference |

| Subsection - subsystem |

|component XX in text|

Question 3B: Which decisions have been made on the

configuration of behaviour XX, YY, ZZ and QQ?

197 seconds, 0.92 F1 !

| |
_____________] [Bptiidbubnhugic S|

Section - "discussion
around behaviour"

Question 4A: Which subsystem is interface XX part of? and 4B:

| Q4A: 78 seconds, 0.74 F1 |

File-based

Which other interfaces are offered by this subsystem?

| Q4A: 73 seconds, 1.00 F1 |
Q4B: 40 seconds, 1.00 F1 |

|
e e T T e T

Ontology-based

diagram element — interface XX E

]

Figure 4: AK organisation for answering experiment questions at Océ

11

Question 1: Which requirements are realized by
architecture design element XX?

File-based

Ontology-based

Question 2: Which requirements are related to requirement YY?

File-based

Subsection - |R : t| |C t| .
system design cquiremen omponen Section -
.. system design [
realized by Functional Requirement K
: unctional Requirement -
Subsection — software - | q S
] s satisfies : I e S === .
architecture design Subse.ctlon . qualityis quality is
J 1 system detailed functions redlitiad e is related
Subsection - Subsection - \I/ (inverse) : related to o
architecture design XX subsystems and components Reaui
equirements
|Requirements in text Requirements in text in text |N0n-funct10na1 Requirement

Question 3: Which requirements does decision ZZ
depend on?

File-based

Section -

Ontology-based
Requirement

system design Decision
L s 00 I dependson
Subsection - -
design principles e

(inverse)

Question 4: Which architecture design elements are caused by

decision 00?

File-based

Section -
system design

N2

Ontology-based

results in

Subsection -
design principles

results in (inverse)

| Subsubsection - decisions|

| Subsubsection - decisions|

|Requirements in text|

N2

Components in text

comprises of C(;mponent

Subsystems and

part of

Figure 5: AK organisation for answering experiment questions at LaiAn

5.2. Use of Fitting AK Organisation

The analysis in Section[5.1.2]indicates that presence or absence
of fitting AK organisation influences the efficiency and effec-
tiveness of AK retrieval. However, this analysis does not tell us
how participants used the available AK organisation.

There are answers that can be found in multiple file-based
document sections, each with a varying amount of fitting AK
organisation. Participants could use any of these sections to find
answers. Moreover, participants could skip AK organisation
by keyword searching on the names of AK instances. In this
case they, e.g., skip the table of contents or class navigation and
directly go to a document section or wikipage, respectively.

In order to analyze what AK organisation was used, we look
at the search actions of participants during the experiment. We
captured the search actions of participants by video recording
what was shown on their monitor screen when they answered
the experiment questions.

We measured use of AK organisation in about 6,000 search
actions in over 11 hours of video recordings. We could not
record videos of 9 out of the 22 LaiAn participants. Part of the
video recordings of 2 participants in the Océ experiment were
corrupted beyond repair.

”Use” of AK organisation might have different interpreta-
tions and meanings in different contexts. For example, partici-

12

pants might use an AK organisation by keeping in mind which
document or section they are reading. This form of use is how-
ever hard to objectively measure. For our measurements, we
consider fitting AK organisation to be used if 1) the fitting AK
organisation appears on the screen of a participant, 2) the par-
ticipant has enough timeE]to recognize the fitting AK organisa-
tion, and 3) the participant follows the fitting AK organisation
and navigates to answers.

RatioTimeFitting is introduced as a metric which represents
how much time participants spent using fitting AK organisation
to answer an experiment question. RatioTimeFitting is calcu-
lated per participant per experiment question by dividing the
‘time spent using fitting AK organisation’ by the ’total time
spent searching for AK’.

Figure [6] shows how RatioTimeFitting was calculated from
the search actions of a participant answering Océ question 1A.
The first two search actions involve use of a directory and docu-

SBased on our observations from the experiment videos we chose to use 3
seconds as the minimum time required for participants to recognize and use
fitting AK organisation in their searches. We observed that participants would
act upon the fitting AK organisation after 3 seconds or more. After 3 seconds
they would, e.g., open documents, click in ArchiMinds’ class navigation, give
answers from text containing fitting AK organisation, or talk about the AK
organisation and surrounding AK.

Océ experiment question 1A:

Which|settings|have an|impact|on|£)ehaviour YY"
— =

Open directory with behaviour documents - 2 seconds

v

Open behaviour document - 1 second

Scroll from title page to section 2
(skipped table of contents) - 1 seconds

‘ Scan section 2 - 11 seconds ‘

v

Participant search actions:

Detailled scan of section 2.3 (on behaviour YY) - contains
highlighted text that mentions “setting” - 21 seconds

v

Detailled scan of section 2.4 (on configuration) - contains
highlighted text that mentions “setting” - 7 seconds

v

‘ Scan section 3 to 5 - 5 seconds ‘

v

\ Scroll from section 5 to title page — 10 seconds \

RatioTimeFitting: (Ratio

31 seconds spent using fitting AK organisation

of time spent using fitting
AK organisation)

= 0.62 (62%)

50 seconds spent searching for AK in total

Figure 6: Example calculation of RatioTimeFitting from search actions of a participant using the file-based approach

ment with titles that explicitly relate to a type of AK mentioned
in question 1A, namely “behaviour”. The 3 seconds spent on
these actions is added to the ’time spent using fitting AK organ-
isation’ and the ’total time spent searching for AK’.

The next two search actions in Figure[6|do not involve use of
fitting AK organisation; the participant quickly scrolled past the
text in the title page and section 2. The 12 seconds spent is only
added to the ’fotal time spent searching for AK’. Actions 5 and
6 again involve use of fitting AK organisation because ’setting”
(an AK type in question 1A) is explicitly mentioned in text that
is organised by a special layout, and because the text contains
the answers to question 1A.

Participants using the ontology-based approach had a higher
average RatioTimeFitting than participants using the file-based
approach, i.e., they spent more time using fitting AK organisa-
tion during AK retrieval. On average the RatioTimeFitting of
Océ participants was 0.72 when using the ontology-based ap-
proach and 0.39 when using the file-based approach. LaiAn
participants had an average RatioTimeFitting of 0.70 when us-
ing the ontology-based approach and 0.63 when using the file-
based approach.

The difference in RatioTimeFitting between the two ap-
proaches is smaller in the LaiAn experiment. This is due to the
complexity of the file-based documentation: a single document
was used at LaiAn whereas multiple documents and directories
were used at Océ. Consequently, there was less non-fitting AK
organisation to navigate in the less complex file-based AK or-
ganisation at LaiAn.

To verify that the use of fitting AK organisation influences
AK retrieval, we test if a correlation exists between RatioTime-
Fitting and the efficiency and effectiveness of AK retrieval. We

13

use the following hypothesis:

Hyc = There is a correlation between the use of fitting AK or-
ganisation and the efficiency and effectiveness of AK retrieval.
The null hypothesis states that there is no correlation.

Time-effectiveness is introduced to represent AK retrieval ef-
ficiency and effectiveness in a single metric which allows for
testing of the hypothesis using two variables (RatioTimeFitting
and Time-effectiveness). Time-effectiveness is calculated per an-
swer in the experiment by dividing the F'I score (effectiveness)
by the ’total time spent searching for AK’ (efficiency).

A Time-effectiveness of 0.02 (e.g., for F1 score 1.0 divided
by 50 seconds spent searching for AK) means that a participant
is able to retrieve 2% of the complete and correct answer to
an experiment question each second. Someone with an Time-
effectiveness of 0.04 (or 4%) is twice as fast, e.g., by finding a
complete and correct answer in 25 seconds.

The RatioTimeFitting and Time-effectiveness for three Océ
participants answering question 4 are not included in the test.
These participants were not familiar with UML notations for
interfaces and are not representative of the other 23 participants
in this case.

Using the Shapiro-Wilk test, we found that the measurements
for RatioTimeFitting and Time-effectiveness are not normally
distributed. Therefore the non-parametric Spearman’s rank cor-
relation test is applied.

Application of Spearman’s rank test indicates a strong cor-
relation (coefficient » = 0.67) between RatioTimeFitting and
Time-effectiveness in the Océ experiment and a moderate cor-
relation (coefficient » = 0.48) at LaiAn. These test results are
statistically significant at the p=0.01 level with a (2-sided) P-
value of 6.9872* for the Océ measurements and 0.00035 for the

LaiAn measurements. Consequently, we reject the null hypoth-
esis Ho and accept the alternative hypothesis Hy .

Figure [/| depicts the correlation in a scatterplot, where the
x-axis displays RatioTimeFitting and the y-axis displays Time-
effectiveness. Each dot in the scatterplot represents a sin-
gle participant answering a single question. Dots in the up-
per right corner represent participants that took relatively little
time to find a correct and complete answer (i.e. high Time-
effectiveness) whilst primarily using fitting AK organisation.
Dots in the lower left corner represent participants who did not
find complete and correct answers quickly whilst using little
fitting AK organisation. Figure [7| shows that increased use of
fitting AK organisation (RatioTimeFitting on the x-axis) leads
to increased Time-effectiveness of AK retrieval (on the y-axis).

5.3. AK Organisation and Search Behaviour

The test for correlation and our observations in the experiment
videos give evidence that when participants used fitting AK or-
ganisation they:

1. quickly recognized the types of AK and relationships be-
tween AK.

2. quickly and correctly recognized the location of answers.

3. less often misinterpreted the descriptions of AK because

the type of AK and the context of AK (i.e. relationship to

other AK) was explicit.

continued searching if they had not retrieved all correct

answers. They had a better understanding where to find

different types of AK and relationships between AK.

When participants used less fitting AK organisation they often
gave less correct answers. In this situation participant also spent
more time searching documentation to verify that they found a
complete (recall) and correct (precision) answer.

Participants navigated many file-based documents and sec-
tions when they encountered little fitting AK organisation. For
instance, we measured from the video recordings that partici-
pants answering Océ question 3A navigated 3.6 directories and
4.7 file-based documents on average. In the ontology-based ap-
proach they however navigated only 1.8 classes and 1.2 seman-
tic relationships on average.

The study in [51]] reports an in-depth analysis of participants’
search behaviour when they used the file-based documentation
approach in the Océ experiment. The participants had to deal
with search uncertainty when fitting AK organisation was miss-
ing in part of the navigation path to the answers they had to find.
As a result, participants were not always certain in which doc-
ument or section AK was located. Keyword searching helped
to locate AK, but often took much time and gave incomplete
results due to spelling variations, abbreviations, and synonyms.
Participants said they were uncertain about the completeness
and correctness of 38% of their answers from file-based docu-
mentation.

Participants could use the ontology-based AK organisation
by listing class instances in an overview and by faceting and
filtering AK via semantic relationships. During the experiment
we observed that these search features allowed participants to

14

quickly check the completeness of their answers and remove
search uncertainty. This use of ontology-based AK organisation
prevented errors and wasted time that might otherwise occur
when dealing with search uncertainty in file-based documenta-
tion.

However, participants had to learn how to use the AK organ-
isation in ArchiMind, reducing its positive effect on efficiency
and effectiveness. For example, some participants were uncer-
tain about how to use ontology-based AK organisation to filter
AK in ArchiMind.

Several participants commented in a questionnaire (reported
in Section [6)) that the semantic relationships between AK and
the class instance overview in ontology-based documentation
allowed them to check for completeness and provided deter-
minism to their answers. Participants commented that the use
of semantic relationships for AK structuring, traceability, and
navigating was helpful, and several participants commented
that the semantic relationships removed search uncertainty and
gave more search options to find relevant AK. When asked
about issues with searching in file-based documentation, par-
ticipants commented that indeterminism and difficulties in en-
suring completeness of answers are problematic, which corre-
sponds with the findings about search uncertainty in [51]].

6. Qualitative Evaluation

After the experiments we asked each participant to fill in a
questionnaire, reported in Table in which the file-based
and ontology-based approach (referred to as ’ArchiMind’) are
evaluated. Table[D.5]reports an evaluation of the ontology and
experiment by a subset of the Océ participants during a work-
shop and by LaiAn participants during meetings after the ex-
periments took place.

The Océ workshop was announced via email and posters to
invite software professionals working in the location where the
experiment took place. The evaluation form (the basis for Table
could be collected when leaving the room where the work-
shop took place. We emailed LaiAn experiment participants to
ask for their interest in evaluating the experiment findings. 10
LaiAn participants indicated that they were willing to fill in the
evaluation form and we selected 6 participants by considering a
wide coverage and even distribution of their roles.

6.1. Evaluation of Documentation Approaches

Most participants evaluate the ontology-based approach and its
search mechanisms as being better than the file-based approach
for searching AK. Participants generally feel it is worthwhile to
implement ontology-based documentation in their company as
long as its benefits outweigh the costs and if enough support is
given.

6.2. Evaluation of Experiment and Ontology

Table[D.5|shows that most respondents consider the experiment
questions to be relevant for their job and representative of the
questions they ask in their daily work. This evaluation by expe-
rienced documentation users indicates that we asked the right
questions in both experiments.

0,04

0,02+

0,00

Océ experiment r=0.67 LaiAn experiment r=0.48
o
012 o o
o
0,06+
0,104
o
0,087 o
0,04 o
0,06 ° o

0,02

0,00

Time-effectiveness = AK retrieval efficiency and effectiveness

RatioTimeFitting= Ratio of time spent using fitting AK organisation

Figure 7: Correlation between RatioTimeFitting and Time-effectiveness when answering Océ and LaiAn experiment questions using both documentation approaches

Part of the respondents think that the experiment results are
limited to the specific question sets. Their remarks suggest that
it will be challenging to give ontology support for all domain
knowledge and questions asked. Even though the respondents
generally evaluate the ontology as realistic, most Océ respon-
dents think there should be more domain concepts in the ontol-
ogy. This may very well reflect the specific domain in which
they work.

7. Cost-Benefit Analysis

The experiment results show that ontology-based documenta-
tion can provide benefits by improving the efficiency and effec-
tiveness of AK retrieval. However, there are also costs asso-
ciated with setting up ontology-based documentation. A con-
cern that Océ and LaiAn practitioners have with adopting the
ontology-based approach in their projects is whether its bene-
fits outweigh its costs (see question 3 in Table[D.4). In this sec-
tion we provide a cost-benefit analysis of using ontology-based
documentation in the studied projects at Océ and LaiAn.

Costs and benefits are undeniable factors when discussing
the documentation of SA [52]. A recent systematic literature
mapping in [S3] however shows that there is very little work
about the cost aspect of software documentation. Even less
work is published that quantifies both the costs and benefits, or
the return on investment of using software documentation. One
notable example is the work by Garousi et al. in [54], where
a cost-effectiveness index of technical software documents is
calculated by dividing the number of times that a document is
accessed or downloaded (benefit) by the time spent editing this
document (cost).

15

Similarly, we use measures that represent costs and benefits
of ontology-based documentation in order to estimate its re-
turn on investment when it replaces file-based documentation.
We estimate costs from the recorded time spent on creating the
ontology-based documentation in the experiments. We estimate
benefits from the efficiency and effectiveness measurements in
the experiment and document usage estimates by professionals.
The estimates by professionals are crude, e.g., "I estimate 20%
to 25%”, and therefore the cost-benefit analysis is indicative.

7.1. Costs and Benefits in Océ Project

We spent 4 hours installing and configuring ArchiMind.
Around 40 hours were spent to build the Océ ontology and se-
mantically annotate (see Section [£.3.3|for details) the 79 pages
in the Océ experiment document subset. We estimated that
the total set of actively used product-line reference architecture
documents is 2024 pages in size. Building an ontology for, and
semantically annotating the AK in the total active documenta-
tion set is estimated to cost around 1028 hours.

Océ participants estimate that on average they spend 19.75%,
or 1.6 hours, of their daily working time on retrieving software
knowledge (see question 7 in Table[D.4). By consulting 13 Océ
professionals in most project roles we estimated that out of the
1.6 hours each day, 16.6 minutes is used on average to retrieve
AK from the product-line reference architecture documents.

At least 50 Océ professionals use the reference architecture
documents, as shown in Table [I| The Océ experiment partic-
ipants spent 47.06% less time on average when they used the
ontology-based approach, compared to the file-based approach.
From this we estimate that on average 6.5 hours can be saved
each workday by the 50 Océ professionals combined.

7.2. Cost and Benefit in LaiAn Project

We spent 4 hours installing and configuring ArchiMind at La-
iAn. Around 24 hours were spent to semantically annotate (see
Section for details) the single SA document of 46 pages
which is the total document set that specifies the SA in the stud-
ied project.

LaiAn participants estimate that on average they spend
29.17%, or 2.3 hours, of their daily working time on retrieving
software knowledge (see question 7 in Table[D.4). By consult-
ing a subset of the participants that cover all project roles we
estimated that out of the 2.3 hours each day, 17.4 minutes is
used on average to retrieve AK from SA documentation.

At least 22 LaiAn professionals use the experiment docu-
ment, as shown in Table [I} The LaiAn experiment partici-
pants spent 26.96% less time on average when they used the
ontology-based approach, compared to the file-based approach.
From this we estimate that 1.7 hours can be saved each workday
by the 22 LaiAn professionals combined.

7.3. Return on Investment

We give an estimation of the period after which the replace-
ment of file-based documentation with ontology-based docu-
mentation in the studied projects results in an overall time gain.
This is a coarse estimation because it depends on many vari-
ables; the return on investment may be sooner or later depend-
ing on, e.g., the learning curve of professionals using the se-
mantic wiki, proficiency of professionals that semantically an-
notate the documents, and the exact usage of SA documentation
across different software project phases.

We have not measured the cost of maintaining ontology-
based SA documentation, e.g., updating document content in
wikipages and updating AK organisation in the ontology to sup-
port evolving AK needs.

We estimated in Section that the ontology-based ap-
proach can save 6.5 hours each working day on average at Océ,
and this accumulates to 1690 hours time savings each year. This
indicates that the return on the 1028 hours investment cost, i.e.,
the break-even point, is around 7 months (or 158 working days)
after ontology-based documentation is introduced. The time
savings after the 7 months apply to product-line reference ar-
chitecture documentation that is used for multiple years.

We estimated that the ontology-based approach can save 1.7
hours each working day on average at LaiAn. This indicates
that the return on the 28 hours of investment is around 3 weeks
(or 16 working days) after ontology-based documentation is in-
troduced. The time savings after the 3 weeks apply to SA docu-
mentation that is used for several months in the studied project.

The ontology-based approach also improves the effectiveness
of AK retrieval. Having more correct and complete informa-
tion prevents errors, which in turn also saves time that would
normally be spent on correcting these errors.

8. Threats to Validity

In our experiment plan, we accounted for possible threats dur-
ing the experiment design. We followed guidelines from [55]]
for reporting the experiments and its threats to validity.

16

8.1. Construct Validity

The researchers who created the ontology later also proposed
the experiment questions. The creation of the ontology and the
preparation of the experiment questions were done as separate
activities at different times. The questions were not set based
on the ontological structure. The experiment questions were
checked by professionals to ensure that they are representative
of questions asked by professionals in the studied domains. To
ensure that the answers could be found in both approaches, the
researchers checked if the answers could be found using both
the ontology-based and file-based AK organisation. We mit-
igated this potential bias by using experiment questions based
on the experiment documentation content and evaluation of four
selection criteria by professionals in a pilot study (see Section
|.3.4). The group of pilot study participants was different and
independent from the software professionals that provided Océ
concepts and relationship types for Océ ontology extension.

The use of ontology-based documentation did not always
favour AK retrieval efficiency and effectiveness. For instance,
several experiment questions could be answered using the in-
verse of semantic relationships in the ontology, namely, Océ
questions 1A, 1B, 3A, and 3B and LaiAn questions 2, 3, and
4. This negatively impacted the performance of the ontology-
based approach in our experiment.

8.2. Internal Validity

A subset of the documentation from one particular Océ project
was used. Participants from that project had, more than other
Océ participants, prior knowledge of this documentation. How-
ever, the document and question types used in the experiment
were generic. To avoid prior knowledge that could bias our
results, participants were not informed about how much and
precisely which documents were present in the documentation
subset used in the experiment. Moreover, they were instructed
to always find and verify possible answers in the experiment
documentation despite any prior knowledge.

In the Océ experiment the description of interfaces, required
for question 4B, was outdated in the system reference docu-
ment. Océ professionals verified that presence of outdated doc-
uments is a common situation, e.g., during development. We
chose to not update any AK in order for the file-based and
ontology-based document content to be identical and realistic.
This situation does not affect the interpretation of our results.

A possible bias is that participants that evaluated the exper-
iment results (reported in Table [D.5) are more curious and re-
ceptive to new ideas and tools, and this is a potential threat to
validity. We tried to mitigate this threat by sending an open
invitation for the Océ workshop and by selecting a subset of
LaiAn participants based on a wide coverage of their roles (see
Section [6).

8.3. External Validity

Even though exact replication between experiments in software
engineering is unattainable [56]], we aimed for maximum con-
sistency between the experiment procedures in the Océ and La-
iAn experiments. Several variations between the experiment

domains, e.g., those reported in Table [T} indicate that the re-
sults are generalizable to other software project domains. The
use of SADs, SBDs, system reference-, and design documents
can be considered generic documentation practice in industry.

The specific set of questions asked in the experiment limits
generalization, even though we verified that the questions are
representative of the questions that the industry professionals
ask in their daily work. For example, the experiment questions
involve traceability between AK, which may not be fully rep-
resentative of questions in other software projects. Moreover,
the questions involve retrieval of AK that is explicitly present
in documentation, as opposed to, e.g., retrieval or evaluation of
AK from memory and colleagues.

We did not investigate how frequent the experiment questions
are normally asked in the studied projects. This limits general-
ization because certain questions may be asked more frequently
than others, and thus have a greater impact on AK retrieval ef-
ficiency and effectiveness.

Architectural models were searched and traced via a UML
modelling tool (MagicDraw) in the file-based approach at Océ,
and viewed as static pictures embedded in the file-based doc-
ument at LaiAn. The use of architectural modelling tools in
our experiment may be different from other software industry
projects, which may adopt advanced architectural modelling
tools with extensive search, AK annotation, cross-referencing,
and tracing features. A file-based documentation approach that
includes the use of more advanced architectural modelling tools
may provide better AK retrieval efficiency and effectiveness
than the file-based approach studied in our experiment.

Several factors in the cost-benefit analysis limit generaliza-
tion. The semantic annotations were manually applied, which
is more costly than the use of semi-automatic annotation. The
researchers had little domain knowledge, which increased the
time required for Océ ontology extension. The studied soft-
ware projects at Océ and LaiAn are architecture-driven, which
increases the usage of SA documentation and in turn increases
the potential benefits ontology-based SA documentation.

9. Implications

9.1. Implications for Practitioners

We found that the use of AK organisation that is fitting for ques-
tions correlates with the efficiency and effectiveness of answer-
ing these questions. Use of fitting AK organisation helped par-
ticipants to quickly identify the location of answers and cor-
rectly recognize the answers. Lack of fitting AK organisa-
tion introduces search uncertainty about the location and com-
pleteness of answers, which caused participants to waste time
searching for AK in wrong locations and miss answers.

This means that AK retrieval from existing file-based docu-
mentation in industry can be improved by providing more fit-
ting AK organisation for the questions of its users. This can be
done by first identifying what questions document users ask and
then creating an AK organisation that explicitly denotes where
the types of AK and relationships between AK in these ques-
tions can be found.

17

If there are many users in a project, with many different ques-
tions about interrelated AK, then an ontology-based approach
may be more cost-effective than a file-based approach. An on-
tology is non-linear and can provide a fitting AK organisation
for many questions about interrelated AK without introducing
redundancy and scattered AK descriptions. When there are
many AK users this results in large benefits that may outweigh
the costs of creating ontology-based documentation.

However, a linear file-based AK organisation can be fitting
for the set of questions that is most frequently asked. Our find-
ings in Section [5] suggest that the AK retrieval efficiency and
effectiveness of file-based and ontology-based documentation
is similar when both approaches provide fitting AK organisa-
tion for questions. A file-based approach could be more cost-
effective, e.g., in small projects with few AK users, because
creation of a file-based document for a few questions that are
frequently asked could be less costly than setting up ontology-
based documentation, whilst both approaches provide similar
benefits in this case.

We found that a tutorial on the features of the ArchiMind
semantic wiki tool is helpful to efficiently and effectively use
ArchiMind for the first time. The participants in the Océ ex-
periment followed a 30 to 45 minute tutorial on ArchiMind and
used the ontology-based approach more efficiently and effec-
tively at the start of the experiment as compared to the LaiAn
participants who followed a 5 minute tutorial.

9.2. Implications for Researchers

Software and its architecture is decomposed by separation of
concerns and this is reflected in its documentation. The lin-
ear nature of file-based documentation imposes practical limi-
tations when comprehensively describing the relationships be-
tween AK that are relevant for the concerns of document users.
The limitations of the linear file-based documentation format
are overcome in ontology-based documentation.

In our experiment, we demonstrated that an ontology-based
organisation can support many relationships between AK and
prevent redundancy in the descriptions of AK. File-based doc-
umentation supported less relationships between AK and did
contain redundant and scattered AK descriptions.

In our analysis we identified and quantified the impact of AK
organisation on the efficiency and effectiveness of AK retrieval.
The correlation between the use of fitting AK organisation and
the time-effectiveness of AK retrieval explains why ontology-
based documentation was more effective and efficient than file-
based documentation. Moreover, the analysis of the AK or-
ganisation and the correlation apply to both documentation ap-
proaches and show that one can improve AK retrieval from SA
documentation in general by providing more fitting AK organ-
isation.

Viewpoints and views are used to frame and address the con-
cerns of stakeholders [12l]. Our findings suggest that stake-
holders retrieve AK more efficiently and effectively when view-
based descriptions have a fitting AK organisation for the ques-
tions that follow from their concerns. Combining view-based
architecture descriptions with an ontology-based approach, as
proposed by Tamburri in [48]], seems promising in this light.

10. Related Work

Several tools and approaches for managing AK exist such as
ADDSS [57], Archium [58], AREL [59], PAKME [60], and
SEURAT [61]]. These tools and approaches can be used to store,
analyse, and retrieve formalized AK with semantics and they
support many architecting activities. They differ from our ap-
proach in that they are not ontology-based (except for SEURAT
[61]]) and have less support for storing, managing, and retriev-
ing knowledge contents stored in small and searchable chunks.

Su et al. proposed KaitoroBase [62], a tool for explor-
ing architecture documents, built on freebase semantic wiki.
KaitoroBase allows for visualization and non-linear navigation
of SADs stored in wikipages. A meta-model based on Archi-
tecture Driven Design is used, however, there are no details
on whether other types of architecture documentation are sup-
ported. KaitoroBase provides exploration from a single node
(say a single requirement), whereas our approach allows explo-
ration from a set of related nodes (say all requirements realized
by a component).

Happel and Seedorf [63] proposed documentation of Ser-
vice Oriented Architectures (SOA) using Ontobrowse semantic
wiki. A textual description is given of what typically should be
included in an ontology for documenting SOAs, but no actual
ontology is described. Their focus on SOA and lack of industry
validation is a differentiation to our work.

Lopez et al. [45] proposed the Toeska Rationale Extrac-
tion (TREx) approach to recover, represent, and explore de-
sign rationale in text documents, including in-page semantic
annotations. The Toeska ontology, based on ArchVoc [43]], is
used together with the NDR ontology. Semantically annotat-
ing AK concepts outside these ontologies requires adaptation
of the TREX tools, ontologies, and experience with natural lan-
guage processing, whereas our approach only requires ontology
adaptations. A web-based rationale browser allows for retrieval
of AK using faceting and linking to document sources, and
these features are also provided in ArchiMind. It is not spec-
ified in [45] whether this rationale browser supports the same
search features as ArchiMind, e.g., keyword search, ontology
browsing, and filters. Evaluation by comparing the precision,
recall, and time-cost of AK retrieval between a file-based and
ontology-based approach is similar to our experiment setup.
However, complete recovery of all AK in a document set by stu-
dents and by an automated rationale recovery system is tested
in [43], whereas we tested AK retrieval using a specific set of
questions that was answered by industry professionals. Their
case study provides evidence that AK recovery is more effec-
tive when using an ontology-based approach.

Jansen et al. [19] proposed a method, and the associated
Knowledge Architect tool suite, for semantic annotation of AK
in SA documents. An ontology is constructed by identifying
AK concepts in SA documentation, whereas we use a general-
purpose AK ontology and AK needs collected from software
professionals for Océ ontology extensions. Their approach uses
an MS word plug-in for semantically annotating and viewing
AK ontology instances and a tool for navigating AK instances
and their relationships. Different tools are used for semanti-

18

cally annotating, viewing, and navigating AK, whereas Archi-
Mind provides a single integrated interface for this. In [19] ev-
idence is provided that the use of an ontology-based approach
improves the understanding of AK in terms of improved ef-
ficiency and quality of comments during architectural review.
This is different from our evaluation, which is in terms of AK
retrieval efficiency and effectiveness.

11. Conclusions and Future Work

The major contribution of this work is the empirical evidence
that explains how the organisation of documented AK impacts
the efficiency and effectiveness of retrieving that AK. We con-
ducted experiments in which software professionals answered
questions about AK that are representative of questions they
ask in their daily work. Part of the available AK organisation
was fitting for AK retrieval; it explicitly denoted the AK types
and relationships between AK specified in the experiment ques-
tions. We found that the usage of fitting AK organisation corre-
lates with the efficiency and effectiveness of AK retrieval.

We quantified and verified the impact of AK organisation on
the efficiency and effectiveness of AK retrieval. The analysis
that we conducted and the correlation that we found show that
it is possible to improve AK retrieval from SA documentation
by providing more fitting AK organisation for the questions of
documentation users.

Use of fitting AK organisation helped document users to
quickly identify the location of answers and correctly recog-
nize the answers. Lack of fitting AK organisation introduces
search uncertainty about the location and completeness of an-
swers, which caused document users to waste time searching
for AK in wrong locations and miss answers. Ontology-based
documentation can improve AK retrieval by providing a more
fitting AK organisation for many questions, with more diverse
possibilities to use the fitting AK organisation via multiple nav-
igation paths to the AK that needs to be retrieved.

The file-based document organisation reflects a single-
dimensional AK organisation that curtails efficient and effec-
tive AK retrieval. However, not all questions about AK are
answered more efficiently and effectively using the ontology-
based approach. We tested a subset of questions in our experi-
ment, and these questions are about relationships between AK.
A linear file-based AK organisation can be fitting for certain
questions and it might not be cost-effective to provide ontology
support for questions that are not often asked and for projects
with few AK users.

We obtained similar results from experimentation in two
companies which suggests promising results for using seman-
tic wikis in an industrial setting. The cost-benefit analysis also
indicates a positive return on investment.

Though the results of this study have indicated that ontology-
based SA documentation holds a promising future, there are yet
many more challenges to overcome. The effort required for se-
mantic annotation may limit adoption of the ontology-based ap-
proach. We plan to investigate into semi-automatic input (anno-
tation) of AK using natural language processing, parsing, form-
based user input, or rule-based logic (e.g., as proposed in [64]]).

Moreover, the level of fitness of an ontology to its intended
use can influence its benefits. In a future study we will compare
AK retrieval using an ontology built without knowing the ques-
tions asked and AK retrieval using an ontology built based on
the questions asked. Comparison between ontology-based and
hypertext-based approaches to SA documentation will also be
future work.

Acknowledgments

The authors wish to thank René Laan, Wim Couwenberg, Pieter
Verduin, Amar Kalloe, and the other good folks at Océ R&D
for their support, interest to participate in this research, and ex-
cellent insights. Also thanks to Jonathan Rebel, Ruben Har-
tog, and Berend van Veenendaal for adapting OntoWiki. This
research has been partially sponsored by the Dutch “Regeling
Kenniswerkers”, project KWR09164, “Stephenson: Architec-
ture knowledge sharing practices in software product lines for
print systems” and by the Natural Science Foundation of China
(NSFC) project No. 61170025 “KeSRAD: Knowledge-enabled
Software Requirements to Architecture Documentation”.

References
[1] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, 3rd

ed., Addison-Wesley, 2012.

P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Mer-

son, R. Nord, J. Stafford, Documenting Software Architectures: Views

and Beyond, 2nd ed., Addison-Wesley, 2010.

D. L. Parnas, Precise Documentation: The Key to Better Software, in:

The Future of Software Engineering, Springer, 2011, pp. 125-148.

P. Kruchten, Documentation of software architecture from a knowledge

management perspective - design representation, in: Software Architec-

ture Knowledge Management, Springer, 2009, pp. 39-57.

P. Lago, P. Avgeriou, First workshop on sharing and reusing architectural

knowledge, ACM SIGSOFT Software Engineering Notes 31 (2006) 32—

36.

J. A. Diaz-Pace, M. Nicoletti, S. N. Schiaffino, C. Villavicencio, L. E.

Sanchez, A stakeholder-centric optimization strategy for architectural

documentation, in: International Conference on Model and Data Engi-

neering (MEDI), Springer LNCS, 2013, pp. 104-117.

D. Rost, M. Naab, C. Lima, C. von Flach Garcia Chavez, Software archi-

tecture documentation for developers: A survey, in: European Conference

on Software Architecture (ECSA), Springer LNCS, 2013, pp. 72-88.

A. Tang, P. Liang, H. van Vliet, Software architecture documentation:

The road ahead, in: Working IEEE/IFIP Conference on Software Archi-

tecture (WICSA), IEEE, 2011, pp. 252-255.

K. A. de Graaf, A. Tang, P. Liang, H. van Vliet, Ontology-based software

architecture documentation, in: Joint Working IEEE/IFIP Conference on

Software Architecture (WICSA) and European Conference on Software

Architecture (ECSA), IEEE, 2012, pp. 121-130.

P. Tarr, H. Ossher, W. Harrison, S. M. Sutton, Jr., N degrees of separation:

multi-dimensional separation of concerns, in: International Conference

on Software Engineering (ICSE), ACM, 1999, pp. 107-119.

D. Parnas, P. Clements, A rational design process: How and why to fake

it, in: Formal Methods and Software Development, volume 186, Springer

LNCS, 1985, pp. 80-100.

ISO/IEC/IEEE systems and software engineering — architecture descrip-

tion, ISO/IEC/IEEE 42010:2011(E) (2011) 1-46.

N. Rozanski, E. Woods, Software Systems Architecture: Working With

Stakeholders Using Viewpoints and Perspectives, Addison-Wesley Pro-

fessional, 2005.

H. Koning, H. van Vliet, Real-life IT architecture design reports and

their relation to IEEE std 1471 stakeholders and concerns, Automated

Software Engineering 13 (2006) 201-223.

[2]

[3]
[4]

(3]

[6]

(7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

19

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

U. van Heesch, P. Avgeriou, R. Hilliard, A documentation framework for
architecture decisions, Journal of Systems and Software 85 (2012) 795 —
820.

W. Schwittek, S. Eicker, Communicating architectural knowledge: Re-
quirements for software architecture knowledge management tools, in:
European Conference on Software Architecture (ECSA), volume 6285,
Springer LNCS, 2010, pp. 457-463.

M. Shahin, P. Liang, Z. Li, Architectural design decision visualization for
architecture design: preliminary results of a controlled experiment, in:
Proceedings of the 5th European Conference on Software Architecture
(ECSA): Companion Volume, ACM, 2011, pp. 2:1-2:8.

M. A. Javed, U. Zdun, The supportive effect of traceability links in
architecture-level software understanding: Two controlled experiments,
in: Working IEEE/IFIP Conference on Software Architecture (WICSA),
IEEE, 2014, pp. 215-224.

A. Jansen, P. Avgeriou, J. S. van der Ven, Enriching software architecture
documentation, Journal of Systems and Software 82 (2009) 1232-1248.
R. C. de Boer, H. van Vliet, Architectural knowledge discovery with la-
tent semantic analysis: Constructing a reading guide for software product
audits, Journal of Systems and Software 81 (2008) 1456—1469.

C. Hofmeister, R. Nord, D. Soni, Applied Software Architecture,
Addison-Wesley, 2000.

J. S. van der Ven, A. Jansen, P. Avgeriou, D. K. Hammer, Using architec-
tural decisions, in: International Conference on the Quality of Software
Architectures (QoSA), Karlsruhe University Press, 2006.

T. C. Lethbridge, J. Singer, A. Forward, How software engineers use
documentation: The state of the practice, IEEE Software 20 (2003) 35—
39.

J. Conklin, Hypertext: An introduction and survey, IEEE Computer 20
(1987) 17-41.

A. Dillon, C. McKnight, J. Richardson, Navigation in hypertext:
A critical review of the concept, in: Interational Conference on
Human-Computer Interaction (INTERACT), North-Holland Publishing
Co., 1990, pp. 587-592.

T. R. Girill, C. H. Luk, Hierarchical search support for hypertext on-line
documentation, Man-Machine Studies 36 (1992) 571-585.

M. Thiiring, J. M. Haake, J. Hannemann, What’s eliza doing in the chi-
nese room? incoherent hyperdocuments and how to avoid them, in: ACM
Conference on Hypertext (HYPERTEXT), ACM, 1991, pp. 161-177.

M. Buffa, F. Gandon, G. Ereteo, P. Sander, C. Faron, Sweetwiki: A se-
mantic wiki, Web Semantics: Science, Services and Agents on the World
Wide Web 6 (2008) 84 —97.

W. Wang, R. Rada, Experiences with semantic net based hypermedia,
International Journal of Human-Computer Studies 43 (1995) 419 — 439.
J. Nanard, M. Nanard, A.-M. Massotte, A. Djemaa, A. Joubert, H. Be-
taille, J. Chauch, Integrating knowledge-based hypertext and database for
task-oriented access to documents, volume 720 of LNCS, Springer, 1993,
pp. 721-732.

C. Solis, N. Ali, M. Babar, A spatial hypertext wiki for architectural
knowledge management, in: Workshop on Wikis for Software Engineer-
ing (WIKIS4SE), 2009, pp. 36—46.

C. Solis, N. Ali, An experience using a spatial hypertext wiki, in: Pro-
ceedings of the 22nd ACM Conference on Hypertext and Hypermedia
(HT), ACM, 2011, pp. 133-142.

K. A. de Graaf, Annotating software documentation in semantic wikis,
in: Workshop on Exploiting semantic annotations in information retrieval
(ESAIR), ACM, 2011, pp. 5-6.

K. A. de Graaf, P. Liang, A. Tang, W. R. van Hage, H. van Vliet, An
exploratory study on ontology engineering for software architecture doc-
umentation, Computers in Industry 65 (2014) 1053 — 1064.

T. R. Gruber, A translation approach to portable ontology specifications,
Knowledge Acquisition 5 (1993) 199 — 220.

C. Lépez, P. Inostroza, L. M. Cysneiros, H. Astudillo, Visualization
and comparison of architecture rationale with semantic web technologies,
Journal of Systems and Software 82 (2009) 1198-1210.

G. Antoniou, F. van Harmelen, A Semantic Web Primer, second ed., MIT
Press, 2008.

M. Shahin, P. Liang, M. Khayyambashi, Architectural design decision:
Existing models and tools, in: Working IEEE/IFIP Conference on Soft-
ware Architecture (WICSA), IEEE, 2009, pp. 293-296.

A. Akerman, J. Tyree, Using ontology to support development of software

(40]

[41]

[42]

(43]

[44]

[45]

[46]

[47]

(48]

(49]
[50]

(51]

(52]

(53]

(54

[55]

[56]

[57]

(58]

(591

[60]

[61]

[62]

architectures, IBM Systems Journal 45 (2006) 813-825.

P. Kruchten, An Ontology of Architectural Design Decisions in Software
Intensive Systems, in: 2nd Groningen Workshop Software Variability
Management (SVM), 2004, pp. 54-61.

C. A. Welty, D. A. Ferrucci, A formal ontology for re-use of software
architecture documents, in: International Conference on Automated Soft-
ware Engineering (ASE), IEEE, 1999, pp. 259-270.

A. Tang, P. Liang, V. Clerc, H. van Vliet, Traceability in the co-evolution
of architectural requirements and design, in: Relating Software Require-
ments and Architectures, Springer, 2011, pp. 35 — 60.

L. Babu T., M. Seetha Ramaiah, T. V. Prabhakar, D. Rambabu, Archvoc -
towards an ontology for software architecture, in: Workshop on SHAring
and Reusing architectural Knowledge Architecture, Rationale, and De-
sign Intent (SHARK-ADI), IEEE, 2007, pp. 5-11.

J. K. Kyaruzi, J. van Katwijk, Beyond components-connections-
constraints: Dealing with software architecture difficulties, in:
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), IEEE, 1999, pp. 235-242.

C. Loépez, V. Codocedo, H. Astudillo, L. M. Cysneiros, Bridging the
gap between software architecture rationale formalisms and actual archi-
tecture documents: An ontology-driven approach, Science of Computer
Programming 77 (2012) 66-80.

S. Auer, S. Dietzold, T. Riechert, Ontowiki a tool for social, semantic col-
laboration, in: International Semantic Web Conference (ISWC), volume
4273, Springer LNCS, 2006, pp. 736-749.

B. Hoenderboom, P. Liang, A Survey of Semantic Wikis for Require-
ments Engineering, Technical Report, SEARCH, University of Gronin-
gen, 2009.

D. A. Tamburri, An Architecture Description Viewpoint Wiki based on
the Semantic Web Paradigm, Master’s thesis, Department of Computer
Science, VU University Amsterdam, 2010.

C. van Rijsbergen, Information Retrieval, second ed., Butterworths & Co,
1979.

A. Singhal, Modern information retrieval: A brief overview, IEEE Data
Engineering Bulletin 24 (2001) 35-43.

K. A. de Graaf, P. Liang, A. Tang, H. van Vliet, The impact of prior
knowledge on searching in software documentation, in: ACM Sympo-
sium on Document Engineering (DocEng), ACM, 2014, pp. 189-198.

L. Bass, R. Kazman, I. Ozkaya, Developing architectural documenta-
tion for the hadoop distributed file system, in: Open Source Systems:
Grounding Research, volume 365 of IFIP Advances in Information and
Communication Technology, Springer, 2011, pp. 50-61.

J. Zhi, V. Garousi- Yusifoglu, B. Sun, G. Garousi, S. Shahnewaz, G. Ruhe,
Cost, benefits and quality of software development documentation: A sys-
tematic mapping, Journal of Systems and Software 99 (2015) 175 — 198.
G. Garousi, V. Garousi-Yusifoglu, G. Ruhe, J. Zhi, M. Moussavi,
B. Smith, Usage and usefulness of technical software documentation: An
industrial case study, Information and Software Technology 57 (2015)
664 — 682.

A. Jedlitschka, M. Ciolkowski, D. Pfahl, Reporting Experiments in Soft-
ware Engineering, in: Guide to Advanced Empirical Software Engineer-
ing, Springer, 2008, pp. 201-228.

A. Brooks, M. Roper, M. Wood, J. Daly, J. Miller, Replication’s role in
software engineering, in: Guide to Advanced Empirical Software Engi-
neering, Springer, 2008, pp. 365-379.

R. Capilla, F. Nava, S. Pérez, J. C. Dueiias, A web-based tool for manag-
ing architectural design decisions, ACM SIGSOFT Software Engineering
Notes 31 (2006).

A. Jansen, J. Bosch, Software architecture as a set of architectural design
decisions, in: Working IEEE/IFIP Conference on Software Architecture
(WICSA), IEEE, 2005, pp. 109-120.

A. Tang, Y. Jin, J. Han, A rationale-based architecture model for design
traceability and reasoning, Journal of Systems and Software 80 (2007)
918-934.

M. A. Babar, I. Gorton, A tool for managing software architecture knowl-
edge, in: Workshop on SHAring and Reusing architectural Knowledge
Architecture, Rationale, and Design Intent (SHARK-ADI), IEEE, 2007,
pp. 11-18.

J. E. Burge, D. C. Brown, Software engineering using rationale, Journal
of Systems and Software 81 (2008) 395-413.

M. T. Su, C. Hirsch, J. Hosking, Kaitorobase: Visual exploration of soft-

20

ware architecture documents, in: International Conference on Automated
Software Engineering (ASE), IEEE, 2009, pp. 657-659.

H.-J. Happel, S. Seedorf, Documenting service-oriented architectures
with ontobrowse semantic wiki., in: PRIMIUM, volume 328, 2008.

J. Guo, J. Cleland-Huang, B. Berenbach, Foundations for an expert sys-
tem in domain-specific traceability, in: International Requirements Engi-
neering Conference (RE), 2013, pp. 42-51.

J. Kunze, T. Baker, Dublin Core Metadata Element Set, Version 1.1, Tech-
nical Report RFC 5013, Internet Engineering Task Force, 2007.

[63]

[64]

[65]

Appendix A. ArchiMind Semantic Wiki

This section gives a detailed description of ArchiMind and how
it addresses the AK retrieval challenges described in Section
21

Figure depicts part of the ArchiMind GUI in which red
labels highlight different GUI elements. Label A highlights the
class navigation panel. The class navigation shows the ontol-
ogy classes in Figure 2] The subclasses of Architecture and
Requirement (denoted by their inheritance relationships in Fig-
ure[2)) can be expanded by clicking on the arrowheads. Label C
highlights a list with instances of class Requirement that were
retrieved using the class navigation panel.

Details and semantic relationships of AK instances can be
expanded in a tree-like view using ’+’ buttons (Label B). This
shows how AK is interrelated to other AK. Requirement * Com-
patibility’ is expanded in the list (Label C). Lists of AK in-
stances can be filtered based on keywords, classes, and seman-
tic relationships.

Label D shows how the list of requirements is faceted.
Columns, each representing a facet, show the architecture el-
ements and decisions that are related to the listed require-
ments via semantic relationships ’realized by’ and ’depends
on’. Faceting allows users to view AK with a certain relation-
ship to the listed AK.

File-based documentation content, e.g., from word proces-
sors and UML tools, and its layout is stored in wikipages (see
Label E) using a WYSIWYG editor. *Wikipage’ is an ontology
class and its instances are used to store documentation content.
ArchiMind allows for semantic annotation of phrases in docu-
mentation content that refer to AK instances, e.g., phrase "ex-
tractor’ refers to an instance of AK type component (see Label
E). The annotated text in the wikipages is highlighted yellow
and, when clicked, a pop-up menu shows the full description
of the AK instance, its semantic relationships to other AK in-
stances, and to other wikipages that describe it. See [33] for
more details.

The semantic annotations prevent issues with ambiguity, syn-
onyms, homonyms, spelling errors, abbreviations, and context-
dependent interpretation of AK in documentation content. This
alleviates AK retrieval challenge (1) Architecture documenta-
tion understanding, described in Section[2.1]

When a phrase is annotated in a wikipage, a semantic rela-
tionship is created from the wikipage to the AK instance(s) that
the phrase refers to, and vice versa. AK instances become trace-
able to the documentation content in wikipages that specifies
this AK, and vice versa. For example, a user that expands re-
quirement *Compatibility’ shown in Figure (Label C) will

D

B end. If performed very puristicly, the data extractors wouldn’t
so0 much be extracters but APfs that are able to receive data
from the appropriate sources. A list of advantages (green)
and disadvantages (red) are listed in this section.

req is
related to

depends on E

or pull

realized by depends on

‘Search in Navigation 1. vailability Business rules |two separated
Mon-Functional Requirement engine SEervers
Architecture : :
2. Choose representation representation
Decision Functional requirement, AP
Design alternative 3. Compatibility Data extraction
Diagram MNon-Functional Requirement, technigue -
Requirement _knowledge 24 Appendix - Push and Pull data push or pull
is located Wikipage content

Wiki :
Wikipage = Push data:

The first solution we had considered was pushing data from

one layer to another when ready up to the data storage at the E

E Extensibility of data gathering

Data extraction technigue - push

Figure A.8: AK exploration and faceting in ArchiMind semantic wiki

be able to see and navigate to wikipage '24 Appendix - Push
and Pull data’ (Label E) in which the requirement is annotated.
The user can also click on annotated phrase ’extractor’ on this
wikipage to view a description of this AK instance (component
extractor). This helps users to locate (sources of) AK descrip-
tions and thereby alleviates AK retrieval challenge (2) Locating
relevant architectural knowledge.

Semantic relationships in the ontology allow users to see how
AK instances are interrelated, e.g., “a requirement is realized by
components”, and thereby alleviates challenge (3) Traceability.
If changes are made to an AK instance, e.g., a decision is mod-
ified, a user can see what other AK is impacted by the change,
e.g., requirements depending on the decision. This alleviates
challenge (4) Change impact analysis.

Checking for the existence of semantic relationships allevi-
ates challenge (5) Assessing design maturity. For example, the
correctness and completeness of an architecture can be assessed
by checking if all requirements are realized by architecture ele-
ments and the buildability [T]] of an architecture can be assessed
by following the semantic relationships that indicate dependen-
cies between components.

Dublin Core [63] is used to store documentation meta-data,
e.g., date, author, and version of documents. OntoWiki of-
fers version control of knowledge base instances and basic
version control of wikipages was implemented in ArchiMind.
This allows users to check whether documentation is up-to-date
and can be trusted to reflect the AK in the running software
project. These features alleviate challenge (6) Credibility of in-
formation. The up-to-dateness of information is important for
its credibility because software and architecture continuously
evolve during a project and the documentation often lags be-

21

hind.

The maintenance effort in a documentation approach is im-
portant for its adoption. The use of document meta-data and
versioning, to alleviate challenge 6, also helps to see what doc-
umentation content is current during maintenance. Moreover,
one can locate the documents in which AK has to be changed
(challenge 2) and find related AK (challenge 3) that is affected
by the changes made. This helps to prevent that a redundantly
recorded AK description is only updated in one location. Se-
mantic annotation introduces additional costs during mainte-
nance, however, these costs can be minimized using an auto-
matic annotation mechanism.

Appendix B. Detailed Experiment Test Results

Table B.2: Time-Efficiency (Seconds), Effectiveness (F1 Score), and Statistical Test Results in Océ and LaiAn Experiment

Questions in | Measure Average ontol- | Average Difference p-value test re- | Effect size r
Océ experi- ogy-based file-based sults
ment
1A Seconds 161 394 233 0.00914 0.46
F1 score 0.97 0.96 0.01 0.28955 0.11
1B Seconds 157 212 55 0.03232 0.36
F1 score 0.85 0.65 0.20 0.02083 0.40
2 Seconds 229 382 153 0.00598 0.49
F1 score 0.95 0.70 0.25 0.03672 0.35
3A Seconds 148 401 253 0.00005 0.76
F1 score 1.00 0.47 0.53 0.00050 0.65
3B Seconds 197 374 178 0.00135 0.59
F1 score 0.92 0.59 0.33 0.01694 0.42
4A Seconds 73 78 5 0.44898 0.03
F1 score 1.00 0.74 0.26 0.01673 0.42
4B Seconds 40 64 24 0.01557 0.42
F1 score 1.00 0.68 0.32 0.00762 0.48
All questions Seconds 144 272 129 0.00001 0.85
F1 score 0.96 0.68 0.27 0.00000 1.10
Questions Measure Average ontol- | Average Difference p-value test re- | Effect size
in LaiAn ogy-based file-based sults
experiment
1 Seconds 251 259 7 0.29864 0.15
F1 score 0.94 0.79 0.16 0.01245 0.49
2 Seconds 102 196 94 0.00214 0.61
F1 score 0.91 043 0.48 0.00002 0.88
3 Seconds 216 263 47 0.03548 0.38
F1 score 0.88 0.75 0.13 0.03108 0.40
4 Seconds 102 204 102 0.00193 0.62
F1 score 1.000 0.98 0.02 0.15865 0.21
All questions Seconds 168 230 62 0.00055 0.70
F1 score 0.93 0.74 0.20 0.00000 0.95

22

Appendix C. Experiment Participants Details

Table details on the demographics of the experiment par-
ticipants at the two companies. At LaiAn, the project roles are
roughly defined and assigned to individuals. A software engi-
neer at LaiAn may also take on the role of deployment, test,
and operations engineer; an architect may also take on the role
of requirements engineer and designer; and a project manager
may also take on the role of delivery and quality manager.

Appendix D. Detailed Questionnaire Results

Table D.4: Questionnaire about File-based and Ontology-based Approach

1: When searching for software knowledge, would you evaluate
ArchiMind, compared to normal documentation, as:

Océ: Better: 24 (92.3%) Worse: 0 (0%) Making no difference: 2
(7.7%)

Most participants comment that they find (semantic) relationships im-
portant and useful when searching software knowledge. The search
mechanisms, facets, structure, and (centralized) accessibility are also
found useful by participants.

LaiAn: Better: 14 (63.6%) Worse: 6 (27.3%) Making no difference:
0 (0%) No opinion: 2 (9.1%)

Some participants evaluate ArchiMind as worse because they feel that
the UI is unsuitable for software documentation. This may be par-
tially due to the lack of in-wikipage annotation in the LaiAn experi-
ment (also see Section [#.3.3).

2: Do you think that ArchiMind can provide you with better search
mechanisms than currently at your disposal?

Océ: Yes: 25 (96.2%) No: 0 (0%) 1 do not know: 0 (0%) No
opinion on this: 1 (3.8%)

Most participants comment that the semantic relationships are useful
for searching.

LaiAn: Yes: 13 (59.1%) No: 2 (9.1%) Some better, some not: 7
(31.8%) No opinion: 0 (0%)

Most participants find that ArchiMind provides meaningful traceabil-
ity information. Some participants feel that the search mechanisms are
not very convenient in some situations. For example, different levels
of requirements exist, from system goals to detailed requirements, and
users cannot distinguish between these levels when searching require-
ments.

3: Do you think it is worthwhile to set up a semantic wiki at your
company for searching software knowledge & documentation man-
agement?

Océ: Yes: 17.5 (67.3%) No: 2 (7.7%) 1 do not know: 6.5 (25%)
No opinion: 0 (0%)

Most participants comment they do not know whether the benefits of
the ontology-based approach outweighs the costs. Other elaborations
given are that enough effort should be invested, authorization should
not be an obstacle, training should be provided and that the knowledge
in the system should be complete, maintained well and reviewed by
an expert. One participant chose both options ‘yes’ (for management)
and ‘I do not know’ (for searching).

continued on next page. ..

23

LaiAn: Yes: 14 (63.6%) No: 3 (13.6%) 1 do not know: 4 (18.2%)
No opinion: 1 (4.5%)

Most participants support the idea that it is worthwhile to set up a se-
mantic wiki within their companies. Some participants tend not to
change to semantic wiki when current documentation tools work well.
Other participants are concerned about the conformance issue of doc-
umentation (e.g., document template and structure prescribed by cus-
tomers), especially in outsourcing projects. Two participant chose both
options ‘Yes” and ‘No’ with their arguments. For example, one thinks
that the answer of this question depends on the size of the project:
traditional documentation tools, like Office Word, are appropriate for
small projects and the semantic wiki is better for large and complex
projects.

4: Do you experience troubles in your daily job when searching for
software knowledge using the standard documents?

Océ: Yes: 23 (88.5%) No: 3 (11.5%)

Most participants comment that documentation is often outdated.
Other elaborations are that documentation is incomplete, indetermin-
istic, difficult to access or even hidden, contained in (too) many (scat-
tered) sources, hard to verify whether trustworthy, costly to keep up to
date, lacks detailed information, and has conflicting requirementsﬂ

LaiAn: Yes: 8(72.7%) No: 3(27.3%) (this question was answered
by half of the participants)

Most participants comment that only few documents are really useful
and have been used in the software development because it is difficult
to find the information they want. Other issues are lack of traceability
in requirements and design specifications, and difficulty in performing
impact analysis using documents.

5: From which sources do you normally get knowledge about the
software made at your company?

Océ: Most often mentioned are colleagues, then documents, source
code, Sharepoint, Docfinder, and CMSynergy.

LaiAn: Documents are most often mentioned and after that col-
leagues and source code.

6: From which types of documents do you normally get knowledge
about the software made at your company?

Océ: Most participants use SBDs. SADs, interface and functional
specifications, diagrams, technical reports and source code are also
used as well as impact analysis, high level architecture, Sysref, and
module design documents.

LaiAn: Most participants use requirement and architecture docu-
ments. Design, bidding, business process, project planning, test, trace-
ability, and API documents are also used as well as source code and
customer surveys.

7: What percentage of your time do you daily spend on searching
and retrieving software knowledge?

Océ:: 19.75%. The answers range from 0% to 50% or more. This
question was answered by half of the participants.

LaiAn: 29.17%. The answers range from 10% to 60%. This question
was answered by all the participants.

60cé successfully applies an agile development methodology to encourage
creativity and productivity. The drive to deliver business results is strong, and
this takes precedence over writing excessive documentation.

Table C.3: Demographics of Experiment Participants at Océ and LaiAn

Number of Primary role of Average years in Average years Average years
Company participants participants role at Océ in role working at Océ
6 Domain architect 3.60 4.77 9.92
5 Software engineer 6.47 6.81 7.47
5 Software project manager 3.83 5 14
Océ 4 Product- or system test engineer 9.75 11.75 11.625
4 Workflow architect 7.25 7.25 18.75
1 Configuration manager 3 10 3
1 Software designer 1 1 1
Number of Primary role of Average years in Average years Average years
Company participants participants role at LaiAn in role working at LaiAn
15 Software engineer 1.87 5.47 1.87
LaiAn 5 Software architect 4.50 7.50 4.50
2 Software project manager 1.50 1.80 1.90

Table D.5: Experiment and Ontology Evaluation at Océ and LaiAn

1 Do you believe in the experiment results? (do the results represent reality or are they artificial)

Océ: Yes-4 Toacertainextent-1 No-0 LaiAn: Yes-5 Toacertainextent-1 No-0

2 Are the experiment results limited to the specific question set used in the experiment?

Océ: Yes-1 Maybe-2 No-2 LaiAn: Yes-2 Maybe-2 No-2
Océ respondents comment that there are many questions and that it will be hard to model the entire working field.

3 Are the experiment questions relevant to your job and representative of the questions you ask during your job?

The Océ and LaiAn respondents evaluate all questions as relevant and representative for their jobs except for Océ question 3A (decisions made
about a component) and LaiAn question 1 (requirements realized by architecture design) which one Océ and one LaiAn respondent evaluate
as irrelevant and not representative.

4 Is the ontology model used in the experiment a correct representation of reality?

Océ: Yes-3 Toacertainextent-2 No-0 LaiAn: Yes-4 To acertainextent-2 No-0

5 Should there be more or less concepts in the model?

Océ: More -4 The same amount - 1 Less-0 LaiAn: More -2 The same amount -4 Less - 0
An Océ respondent indicates that more specific domain knowledge should be added.

6 Is it practical to work with the predefined model of software (architecture) knowledge?

Océ: Yes-5 Toacertainextent-0 No-0 LaiAn: Yes-5 Toacertainextent-1 No-0

7 Does the model help in reasoning about what knowledge is in the documents and what should be in documents?

Océ: Yes-5 Toacertainextent-0 No-0 LaiAn: Yes-6 Toa certainextent-0 No-0

24

	Introduction
	Background
	File-Based Documentation and Its Issues
	Hypertext Documentation and Its Issues

	Ontology-Based Documentation
	Software Architecture Ontologies
	ArchiMind Semantic Wiki

	AK Retrieval Efficiency and Effectiveness
	Experiment Goal
	Experiment Participants
	Experiment Materials
	File-based Documentation
	Ontology
	Document Annotation
	Experiment Questions

	Experiment Hypothesis
	Experiment Procedure
	Experiment Test Results
	Knowledge Retrieval Efficiency
	Knowledge Retrieval Effectiveness

	How AK Organisation Affects AK Retrieval
	AK Organisation
	Fitting AK Organisation
	Influence of Fitting AK Organisation on AK Retrieval Efficiency and Effectiveness

	Use of Fitting AK Organisation
	AK Organisation and Search Behaviour

	Qualitative Evaluation
	Evaluation of Documentation Approaches
	Evaluation of Experiment and Ontology

	Cost-Benefit Analysis
	Costs and Benefits in Océ Project
	Cost and Benefit in LaiAn Project
	Return on Investment

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Implications
	Implications for Practitioners
	Implications for Researchers

	Related Work
	Conclusions and Future Work
	ArchiMind Semantic Wiki
	Detailed Experiment Test Results
	Experiment Participants Details
	Detailed Questionnaire Results

