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Abstract

An exact maximum likelihood method is developed for the estimation of parameters in a
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specific and time-varying effects. We propose an estimation procedure based on the
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1 Introduction

In this paper we develop a Monte Carlo maximum likelihood procedure for the estimation

of parameters in a generalized dynamic panel data model. We assume that available data

y stems from a possibly unbalanced panel of N individuals. For each individual i, we have

Ti observations over time, with i = 1, . . . , N . The term “individual” can refer to countries,

firms, groups, persons or other separately definable entities. Our generalized dynamic panel

data model consists of a nonlinear non-Gaussian density for the observations conditional on

a latent signal. We decompose the latent signal into a fixed component and a stochastic

component. The fixed component is defined as a linear function of explanatory variables

and lagged observations, whereas the stochastic component includes random individual-

specific effects and time-varying effects. The two effects are assumed to come from mutually

independent Gaussian densities. When the density of the observations is considered to be

conditionally Gaussian with mean equal to the latent signal and some arbitrary variance, the

model reduces to the linear Gaussian random effects panel data model as studied in Hsiao

(2003) and Baltagi (2005).

Maximum likelihood estimation is complicated for the proposed model because the like-

lihood does not exist in closed form. The nonlinearity of the observation density together

with the stochastic component of the latent signal prohibit closed form solutions. For the

simultaneous analysis of random individual-specific and time-varying effects we extend the

methods of Shephard & Pitt (1997) and Durbin & Koopman (1997). Their methods are

based on Monte Carlo simulation methods. In particular, they adopt an importance sampler

for which an approximating linear Gaussian state space model is used to draw samples. We

need to extend their method because our model includes random individual-specific effects.

We construct a sequence of conditional importance densities that sequentially integrates

out random effects from the joint distribution. We disentangle the integration over the

cross-section dimension (for the individual-specific effects) and the time series dimension

(for the time-varying effects). The constructed importance densities are based on a linear
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Gaussian dynamic panel data model which sufficiently approximates the true model. Our

proposed methodology for obtaining the linearized Gaussian model takes into account the

developments reported in So (2003) and Jungbacker & Koopman (2007).

We further show that the panel of time series can be collapsed into two low-dimensional

vector series. Each vector series follows an approximating linear Gaussian panel data model.

These low-dimensional vector series are used to sample random individual-specific and time-

varying effects from the importance densities. In particular, the first transformation col-

lapses the cross-sectional dimension of y without compromising the information needed to

sample the time-varying effects. This transformation is introduced in Jungbacker & Koop-

man (2008). The second transformation collapses the time series dimension of the panel

without compromising the information needed to sample the individual-specific effects. The

transformations are easy to implement and lead to large computational savings when eval-

uating the Monte Carlo likelihood. We document the possible savings that can be achieved

by our approach.

For non-Gaussian dynamic panel data models without time-varying effects, other Monte

Carlo estimation methods are considered in the literature. Examples are simulated maximum

likelihood approaches based on the Geweke-Hajivassiliou-Keane (GHK) sampler, see Geweke

(1991), Hajivassiliou (1990) and Keane (1994) and the more general Markov Chain Monte

Carlo methods including Gibbs sampling and the Metropolis-Hastings algorithm, see Geweke

& Keane (2001). Richard & Zhang (2007) and Liesenfeld & Richard (2008) show that simu-

lation based inference is possible using their efficient importance sampling (EIS) method for

non-Gaussian dynamic panel data models with individual-specific and time-varying effects.

Our method differs from the Liesenfeld & Richard (2008) approach in three ways. First, we

disentangle the Monte Carlo integration over the individual-specific and time-varying effects

by conditioning on the posterior modal values of the time-varying and individual-specific ef-

fects, respectively. Second, our importance samplers fall in the class of importance samplers

proposed by Shephard & Pitt (1997) and Durbin & Koopman (1997), which are considerably

faster compared to the EIS importance samplers, as shown in Koopman, Lucas & Scharth
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(2011) for a large variety of models. Third, we sample random effects from our importance

densities, after transforming the data panel y into two low-dimensional vector series. Increas-

ing the panel dimensions while keeping the number of random effects constant, has almost

no impact on the overall computational efficiency of our proposed estimation method.

The new estimation method for the general model provides several additional benefits.

First, when only individual-specific effects are included in our model, our sampler remains

highly accurate despite the length of the time series dimension. In this respect we improve

on the GHK sampler based simulation method, whose performance is shown to deteriorate

as the time series dimension becomes large, see Lee (1997). Second, our framework allows for

the treatment of heterogeneous regression parameters. This is useful as in empirical panel

data studies parameter homogeneity is often hard to establish a priori. Heterogeneity can be

imposed with respect to the individuals as well as the time periods, by following the imple-

mentation described in Hsiao & Pesaran (2008). They discuss heterogeneous parameters in

the context of linear regression models. Our estimation procedure requires only minor mod-

ifications to adopt their model specifications, while retaining our non-Gaussian framework.

Third, the estimation method can be computationally modified to handle missing values and

unbalanced panels. Additional methods are not necessary and it contrasts with the two-step

procedures as developed by for example Stock & Watson (2002).

The remainder of the paper is organized as follows. The next section reviews some

known examples of studies from different areas of research, for which the model specification

can be cast into our generalized dynamic panel data model framework. Section 3 formally

describes the generalized dynamic panel data model in detail. In Section 4 we develop

our Monte Carlo maximum likelihood method for the general model. We provide steps for

efficient implementation and explain our treatment of unbalanced panels. Section 5 evaluates

the performance of our estimation method in a simulation study concerning Student’s t

dynamic panel data models, which are further investigated in Section 6, where we present

an empirical study concerning economic growth rates for countries listed in the Penn World

tables. The study extends existing panel data applications for economic growth by allowing
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for Student’s t densities, missing values, parameter heterogeneity and multiple time-varying

effects. Section 7 summarizes our findings and presents some directions for future research.

2 Some Examples

Due to the general formulation of our model many different classes of models can be con-

sidered for the estimation methods of Section 4. Before we present the generalized dynamic

panel data model in detail in Section 3 we discuss three illustrations from different fields

of research. Each illustration implies a different non-Gaussian conditional density for vari-

able yi,t, which is associated with individual i and time period t. Each density is defined

conditional on signal zi,t, given by

zi,t = yi,t−1γ + x′i,tβ + µi + ξt, (1)

where γ is a parameter measuring the effect of the previous outcome variable yi,t−1, β is

a parameter vector measuring explanatory variables xi,t, µi is a random individual-specific

effect and ξt is a random time-varying effect. Equation (1) is discussed in Hsiao (2003) and

Baltagi (2005) for the case where yi,t follows a conditionally Gaussian density, with mean

given by zi,t and some arbitrary variance. When relaxing the Gaussian assumption many

additional phenomena can be cast into this framework.

2.1 Credit risk model

An important topic in empirical finance is the dynamical modeling of default rates. The

basic framework that underlies the works of Duffie, Saita & Wang (2007) and Koopman

& Lucas (2008), is that the default risk of firms can be decomposed into a firm-specific

risk component and a systematic, economy-wide risk component. Their framework can be

described using observed variables yi,t and a partially unobserved signal zi,t, given by (1).

Let yi,t denote the number of firms that default from a group of firms i in time period t.
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Koopman & Lucas (2008) construct groups of firms by matching current ratings, industries

and age cohorts. The corresponding density, relating yi,t to signal zi,t, is than given by

yi,t ∼ Binomial
{
ki,t, [1 + exp(−zi,t)]−1

}
,

where ki,t is the number of firms in group i at time t and [1 + exp(−zi,t)]−1 is the logit

transformed default probability. The logit transformation leaves zi,t unrestricted and keeps

the default probability between zero and one. For the interpretation of the components

of signal zi,t it holds that γ captures the structural causal effect of firms defaulting in the

previous time period, xi,t is the vector of explanatory variables including observed sector-

specific and macro-economic variables, see Duffie et al. (2007), µi is the group-specific risk

component, capturing unobserved rating, industry and age cohort effects, and finally ξt is the

unobserved common systematic risk component. Additional lags of yi,t can also be included

in this specification, which can be important depending on chosen time-grid. The unobserved

systematic risk factor is often taken as the weighted average of several economy-wide factors.

2.2 Binary panel data model

In situations where person i has to make yes/no decisions for multiple time periods t, we

obtain binary panel data sets. Examples are decisions concerning employment, crime, chil-

dren, consumption and union participation. The modeling of binary panels has attracted

much attention in the micro-econometric literature; see Heckman (1981a, b) for early contri-

butions and Baltagi (2005, Chapter 11) for a textbook treatment. A special case concerns

the dynamic analysis of labor supply of females; see for example Hyslop (1999) and Keane

& Sauer (2009). For this particular example let yi,t = 1 denote the outcome that female i is

working in time period t and yi,t = 0 that she is not working. A logistic model for variable

yi,t can be given by

yi,t ∼ Binary
{

[1 + exp(−zi,t)]−1
}
,
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where signal zi,t is interpretable as the latent net-utility resulting from decision yi,t. For the

components of the signal zi,t in (1) it holds that, yi,t−1 captures the effect of the decision in

the previous time period, xi,t is a vector of observed human capital, demographic and family

structure variables, µi is the person-specific effect representing time invariant unobserved

human capital and taste factors, and ξt is the time-varying effect capturing demand side

aspects of the labor market, such as the business cycle. This model is an example. Different

simplifications and extensions of this model can be framed in our set-up.

2.3 Economic growth model

In the empirical economic growth literature much effort has been devoted towards testing

variants of the neo-classical growth model of Solow (1956). Prominent examples include

Mankiw, Romer & Weil (1992) and Islam (1995). The neo-classical growth model relates

the gross domestic product of a country in an arbitrary time period to the savings rate,

the population growth rate and the gross domestic product of the previous time period.

In the majority of studies the corresponding parameters are estimated by using data from

the Penn World Tables. However, a concern is that the data is subject to large outliers;

see Temple (1999) and Durlauf, Johnson & Temple (2005). It implies that a selection of

observations, that are distant from the rest data, may act as influential outliers or leverage

points. For example, De Long & Summers (1991) find that, within their sample of countries,

the observations of Botswana and Zambia have large effects on the coefficient estimates and

their precision. To address this issue Juarez & Steel (2010) assume a Student’s t density for

the growth variable variable yi,t = log Yi,t − log Yi,t−1, where Yi,t is the per capita output of

country i for period t. The growth rate is then modeled by

yi,t ∼ t(zi,t, σζ , ν),

where t(zi,t, σζ , ν) is the Student’s t density with mean zi,t, scaling σζ and degrees of freedom

ν. Juarez & Steel (2010) find strong evidence in favor of heavier tails for a sample of OECD
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countries1. We investigate this economic growth illustration further and more formally in

Section 6.

3 Generalized dynamic panel data model

We formally define the generalized dynamic panel data model for observations of variable

yi,t, that is associated with individual i and time t. Data is available for N individuals.

For each individual i, the time series dimension is Ti, for i = 1, . . . , N . Each time period

is indexed by t. The entire time span of the unbalanced panel is restricted between some

arbitrary starting period t = 1 and the final period t = T . The model for variable yi,t is

given by

yi,t
i.i.d.∼ p(yi,t|zi,t;ψ), (2)

where zi,t is the signal for yi,t and p(yi,t|zi,t;ψ) is a density that depends on the parameter

vector ψ. We assume that p(yi,t|zi,t;ψ) is possibly non-Gaussian and is correctly specified.

The latent signal zi,t incorporates all dynamics, covariates and stochastic processes driving

the density p(yi,t|zi,t;ψ). A general decomposition of signal zi,t is given by

zi,t = wi,t + εi,t, (3)

where wi,t is a fixed component and εi,t is a stochastic component. The fixed component wi,t

is specified by the linear function

wi,t = x′i,tβ + γ(B)yi,t, (4)

where xi,t is a k× 1 vector of observable explanatory variables, β is a k× 1 parameter vector

and γ(B) = γ1B+ · · ·+γpyBpy is the backshift polynomial, with unknown coefficients γj for

j = 1, . . . , py and for some non-negative integer py. The backshift operator B is defined such

that Bsyi,t = yi,t−s, for any integer s. The polynomial γ(B) incorporates past outcomes to

1OECD is the Organisation for Economic Co-operation and Development.
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affect the current signal in a structural way; see the discussion in Baltagi (2005, Chapter 8).

Initially we will assume that parameters β and γ are common for all individuals and time

periods, and that explanatory variables xi,t are exogenous and uncorrelated with εj,t, for all

i, j = i, . . . , N and common time periods t. Section 6 discusses options for relaxing these

assumptions.

The stochastic component εi,t is given by

εi,t = a′i,tµi + b′i,tξt, µi ∼ NID(δ,Σµ), (5)

where µi is a q × 1 vector of individual-specific effects, which is weighted for individual i in

time period t by q × 1 vector ai,t and ξt is a r × 1 vector of time-varying effects, which is

weighted for individual i in time period t by r × 1 vector bi,t. The individual effects µi are

assumed normally and independently distributed, with q × 1 common mean vector δ and

q× q variance matrix Σµ, which are both considered fixed. Both weight vectors, ai,t and bi,t,

are considered fixed and may depend on the parameter vector ψ. Time-varying effects ξt,

are assumed to be generated from a linear dynamic process given by

ξt = Gαt, αt+1 = Hαt +Rηt, ηt ∼ NID(0,Ση), t = 1, . . . , T, (6)

where r × p dimensional matrix G relates the generating linear autoregressive process αt to

the time-varying effects ξt, H is a p× p transition matrix, R is a p× l disturbance selection

matrix and ηt is a l × 1 vector of disturbances with variance matrix Ση. These system

matrices are fixed and known, although some elements may depend on parameter vector ψ.

The initial state vector α1 is assumed normally distributed with mean zero and variance

matrix P . The corresponding initial time-varying effect is normally distributed with mean

zero and variance Σξ = GPG′. Individual-specific effects µi and µj are assumed mutually

uncorrelated and independent from the time-varying effects, ξt, for all i, j = 1, . . . , N and

t = 1, . . . , T .

Many studies based on panel data models are dynamic in nature and the occurrence of a
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particular outcome often appears to be related to past outcomes. The dynamic panel data

model, given by equations (2), (3), (4), (5) and (6), allows us to distinguish between two

sources capable of explaining these dynamics, see Heckman (1981a, b). The first source is the

presence of “true state dependence”, which is the phenomenon that past outcomes provide

explanatory power for future outcomes. This is represented in our model by term γ(B)yi,t.

The second source, referred to by Heckman (1981a) as “spurious state dependence”, explains

dynamics as resulting from serial correlation in stochastic component εi,t. We aim to capture

serial correlation in εi,t by including individual-specific effects µi and time-varying effects ξt.

The general model contains many parameters. To identify these parameters in the model

different strategies can be considered. In general we need to restrict either the distribution

of µi, ξt or a combination of both. Further, as only a limited number of elements of weight

vectors ai,t and bi,t can be identified, some hierarchical constraints must be imposed. Many

different restrictions can be considered, of which the appropriateness needs to be evaluated

on a case by case basis.

The initial signal of the first time period is given, for i = 1, . . . , N , by

zi,1 = x′i,1β + γ(B)yi,1 + a′i,1µi + b′i,1ξ1, µi ∼ NID(δ,Σµ), ξ1 ∼ N(0,Σξ), (7)

where we assume yi,t, for t < 1, to be fixed and known constants for all i = 1, . . . , N . For a

more elaborate treatment of the initial conditions, the methods of Woolridge (2005) can be

considered in our framework, but this is not further explored in this paper. The generalized

dynamic panel data model of this paper is fully defined by equations (2), (3), (4), (5), (6)

and (7). All parameters are collected in vector ψ and typically contain parameters affecting

signal zi,t. Under the assumption that the model is correctly specified, the density of the

observations y = {yi,t} conditional on signal z = {zi,t} is given by

p(y|z;ψ) =
N∏
i=1

Ti∏
t=1

p(yi,t|zi,t;ψ) =
N∏
i=1

p(yi,1|zi,1;ψ)

Ti∏
t=2

p(yi,t|µi, ξt;xi,t,Yi,t−1, ψ), (8)
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where Yi,t = {yi,1, . . . , yi,t}. The last equality is partly the result of the prediction error

decomposition.

4 Likelihood evaluation by Monte Carlo integration

This section discusses the method of Monte Carlo maximum likelihood for the estimation

of the parameter vector ψ. We first consider the generalized dynamic panel data model

for balanced panels, Ti = T for all i = 1, . . . , N . In Section 4.4 we provide the necessary

alterations for the treatment of unbalanced panels. The loglikelihood for observation vector y

is defined by `(ψ) = log p(y;ψ), where p(y;ψ) denotes the joint density of all observations for

parameter vector ψ. In the remainder of this section we drop the dependence on parameter

vector ψ for notational convenience and define log p(y) ≡ log p(y;ψ).

In the presence of unobserved random individual-specific and time-varying effects, µ =

{µi} and ξ = {ξt}, density p(y) can be expressed as

p(y) =

∫
z

p(y, z) dz =

∫
ξ

∫
µ

p(y, µ, ξ;x) dµ dξ =

∫
ξ

∫
µ

p(y|µ, ξ;x)p(µ, ξ) dµ dξ, (9)

where the second equality holds as x = {xi,t} is non-stochastic and where p(µ, ξ) = p(µ)p(ξ),

since µ and ξ are independent.

The evaluation of the high dimensional integral (9) is complicated because an analytical

solution is not available for the nonlinear non-Gaussian density p(y|µ, ξ;x) = p(y|z). We

propose to solve the integral by Monte Carlo integration. A frequency based estimator of this

type is given by M−1∑M
i=1 p(y|µ(i), ξ(i);x), where draws µ(i) and ξ(i), for i = 1, . . . ,M , are

obtained from density p(µ, ξ). This estimator is based on sampler p(µ, ξ) and is consistent

but it requires a very large number of draws before convergence to p(y) is achieved. More

efficiency is obtained when an adequate importance sampler can be used; see Ripley (1987).

The implementation relies on constructing an importance density, sampling from it and

adjusting the density of interest to correct for the use of the “incorrect” sampler. The
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importance density is usually conditioned on y so that the simulations from this density are

efficient as it accounts for the observations directly.

A general importance sampling representation for p(y) is given by

p(y) =

∫
ξ

∫
µ

p(y|µ, ξ;x)p(µ, ξ)

g(µ, ξ|y)
g(µ, ξ|y) dµ dξ, (10)

where g(µ, ξ|y) denotes the importance density. Integral (10) can be solved by Monte Carlo

integration for which we sample µ(i) and ξ(i) from the importance density and compute

estimate M−1∑M
i=1 p(y, µ

(i), ξ(i);x) / g(µ(i), ξ(i)|y).

For any choice of the density g(µ, ξ|y), sampling from it is likely to be complicated as the

covariance matrix of y has an inconvenient structure, as a result of correlation between all

individuals (due to ξt) and time periods (due to µi). To circumvent the problem, we propose

the use of two importance samplers; one for the cross-section dimension (for the integral of µ)

and one for the time series dimension (for the integral of ξ). Since g(µ, ξ|y) = g(µ|y)g(ξ|y),

by the independence between µ and ξ, we can sample µ and ξ separately from g(µ|y) and

g(ξ|y), respectively. We notice that densities g(µ|y) and g(ξ|y) still depend on ξ and µ,

respectively, by means of y. We therefore integrate out µ, by keeping ξ fixed at its posterior

modal value and we integrate out ξ by keeping µ fixed at its posterior modal value. The

posterior model values are chosen for computational convenience. Other sufficient statistics

can also be considered. Their performance needs to be evaluated on a case by case basis.

For density p(y) from the generalized dynamic panel data model we propose the following

importance sampling representation

p(y) =

∫
ξ

∫
µ

p(y|µ, ξ;x)p(µ)p(ξ)

g(µ|y; ξ̂)g(ξ|y; µ̂)
g(µ|y; ξ̂)g(ξ|y; µ̂) dµ dξ, (11)

where g(µ|y; ξ̂) and g(ξ|y; µ̂) are the importance densities. We define µ̂ and ξ̂ as the posterior
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modal values of p(µ, ξ|y;x), that is

{µ̂, ξ̂} ≡ argmax
µ,ξ

p(µ, ξ|y;x). (12)

The posterior modal values µ̂ and ξ̂ can be found iteratively, which we discuss Section 4.1.

When applying Bayes rule twice to the right hand side of equation (11) we obtain

p(y) = g(y; ξ̂)g(y; µ̂)

∫
ξ

∫
µ

p(y|µ, ξ;x)

g(y|µ; ξ̂)g(y|ξ; µ̂)
g(µ|y; ξ̂)g(ξ|y; µ̂) dµ dξ, (13)

where we have retained the marginal properties of µ and ξ by imposing g(ξ) = p(ξ) and

g(µ) = p(µ). Densities g(y; ξ̂) = g(µ, y; ξ̂)/g(µ|y; ξ̂) and g(y; µ̂) = g(ξ, y; µ̂)/g(ξ|y; µ̂) can

be interpreted as the joint densities of the observations conditional on the posterior modal

values µ̂ and ξ̂, respectively. We notice that g(µ; ξ̂) = p(µ) and g(ξ; µ̂) = p(ξ), as µ and ξ

are independent. Under the assumption that the modes µ̂ and ξ̂ are well defined and can be

computed, we define p̂(y) as the Monte Carlo estimate of (13) and given by

p̂(y) = g(y; ξ̂)g(y; µ̂)
M∑
i=1

p(y|µ(i), ξ(i);x)

g(y|µ(i); ξ̂)g(y|ξ(i); µ̂)
, (14)

where samples {µ(1), . . . , µ(M)} are drawn independently from importance density g(µ|y; ξ̂)

and samples {ξ(1), . . . , ξ(M)} from g(ξ|y; µ̂). Density p(y|µ(i), ξ(i);x) is evaluated using equa-

tion (8).

The quality of the estimate in equation (14) depends on how well the product of g(µ|y; ξ̂)

and g(ξ|y; µ̂) approximates p(y, µ, ξ;x), which needs to be evaluated on a case by case basis.

In practice we take both importance densities from the Gaussian distribution and adjust

their mean and variance to ensure that the product is close in proportionality to p(y, µ, ξ;x).

For any importance density there holds that p̂(y) → p(y) as M → ∞, which is implied by

Kolmogorovs strong law of large numbers. However, the efficiency of the importance density

relies on the rate of convergence in terms of M . The Lindeberg-Levy central limit theorem

implies a
√
M convergence rate if draws from the importance sampler are independent and
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if importance weights

w(i) = p(y|µ(i), ξ(i);x)/
[
g(y|ξ(i); µ̂)g(y|µ(i); ξ̂)

]
, (15)

have finite mean and variance, as argued in Geweke (1989). The last condition can be

examined empirically using extreme value theory based tests proposed in Monahan (2001)

and Koopman, Shephard & Creal (2009). In the simulation study of Section 5 we consider

diagnostic test statistics for the existence of a variance in a sequence of importance weights

drawn from Student’s t dynamic panel data models.

4.1 Constructing the importance density

Next we consider the construction of importance densities g(µ|y; ξ̂) and g(ξ|y; µ̂), proposed

for evaluating estimate p̂(y), given in equation (14). We choose both densities to follow

Gaussian distributions and modify their means and variances such that their modes are equal

to the modes of the original posterior density p(µ, ξ|y;x). Similar strategies are followed

for models without random individual-specific effects; see for example, Shephard & Pitt

(1997) and Durbin & Koopman (1997, 2000). So (2003) and Jungbacker & Koopman (2007)

argue that this strategy can be implemented by numerically maximizing log p(µ, ξ|y;x) =

log p(y|µ, ξ;x) + log p(µ, ξ)− log p(y;x) with respect to µ and ξ.

The instrumental basis to facilitate this numerical maximization is given, for variable yi,t,

by the linear Gaussian panel data model

yi,t = ci,t + εi,t + ui,t, ui,t ∼ NID(0, d2i,t), (16)

where ci,t is a fixed constant, stochastic component εi,t is given by equation (5) and ui,t is

a random variable with mean zero and fixed variance d2i,t. The stochastic component εi,t is

the same as in the original model of interest . The predetermined component wi,t is not

explicitly included in approximating model (16) since it is fixed at time t. The constants
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ci,t and di,t are chosen such that (16) can be used to compute the posterior modal values

µ̂ and ξ̂, respectively. The elements ui,t and εj,s are uncorrelated with each other, for all

i, j = 1, . . . , N and s, t = 1, . . . , T . Furthermore, ui,t is serially uncorrelated. It follows that

g(y|µ, ξ) =
N∏
i=1

T∏
t=1

g(yi,t|µi, ξt), with g(yi,t|µi, ξt) ≡ NID(ci,t + εi,t, d
2
i,t). (17)

The maximization of log p(µ, ξ|y;x) with respect to µ and ξ can be carried out via the

Newton-Raphson method. The idea is to iterate between linearizing p(y|µ, ξ;x), by comput-

ing c = {ci,t} and d = {di,t}, to obtain g(y|µ, ξ) and updating µ and ξ based on the linearized

model given by equations (16) and (5). The following algorithm summarizes this method.
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Algorithm A

(i) Initialize the algorithm by choosing µ∗ and ξ∗ as starting values, which gives ε∗i,t and

z∗i,t, for all i = 1, . . . , N and t = 1, . . . , T ;

(ii) Given the set of two equations

∂ log p(yi,t|zi,t)
∂zi,t

=
∂ log g(yi,t|εi,t)

∂εi,t
,

∂2 log p(yi,t|zi,t)
∂zi,t∂zi,t

=
∂2 log g(yi,t|εi,t)

∂εi,t∂εi,t
,

for i = 1, . . . , N and t = 1, . . . , T , where p(yi,t|zi,t) is the observation model (2) and

g(yi,t|εi,t) is given by (17), we can deduct expressions for ci,t and di,t as functions of

zi,t, and compute ci,t = c∗i,t and di,t = d∗i,t for εi,t = ε∗i,t and zi,t = z∗i,t;

(iii) Compute µ̃ = Eg(µ|y; ξ∗) from the resulting model (16) with ξ = ξ∗, ci,t = c∗i,t and

di,t = d∗i,t;

(iv) Replace µ∗ by µ∗ = µ̃;

(v) Compute ξ̃ = Eg(ξ|y;µ∗) from the resulting model (16) with µ = µ∗, ci,t = c∗i,t and

di,t = d∗i,t;

(vi) Replace ξ∗ by ξ∗ = ξ̃

(vii) Iterate from (ii) to (vi) until convergence.

Since the mode and the mean of the approximating linear Gaussian model are set equal

to the mode of the original model, it holds that µ̃ = µ̂ = argmaxµ p(µ|y; ξ̂;x) and ξ̃ =

ξ̂ = argmaxµ p(ξ|y; µ̂;x). Further, as µ and ξ are independent, it holds that {µ̂, ξ̂} =

argmaxµ,ξ p(µ, ξ|y;x).

The performance of Algorithm A depends crucially on the efficient computation of the

conditional expectations in steps (iii) and (v). With respect to step (iii), for a given value

of ξ∗, the approximating model (16) is reduced to a standard random effects model, with

weighted individual-specific effects and heteroskedastic error term ui,t, see Baltagi (2005,
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Chapters 2 and 5). This becomes clear when concatenating variables yi,t, based on approxi-

mating model (16), over the time series dimension. This gives

ȳi = c̄i + Āiµi + B̄i + ūi, ūi ∼ NID(0, D̄i), i = 1, . . . , N, (18)

where ȳi = (yi,1, . . . , yi,T )′, c̄i = (ci,1, . . . , ci,T )′, Āi = (ai,1, . . . , ai,T )′, B̄i = (b′i,1ξ1, . . . , b
′
i,T ξT )′

and ūi = (ui,1, . . . , ui,T )′. The T × T variance matrix D̄i is diagonal by construction, with

elements d2i,1, . . . , d
2
i,T on the main diagonal. Based on (18), the computation of Eg(µ|y; ξ∗)

can be performed using standard multivariate normal regression theory. The details are

discussed in Appendix A.

Now consider step (v) where we need to compute Eg(ξ|y;µ∗). Given a value of µ∗,

approximating model (16), can be written as a linear Gaussian state space model. This can

be seen by concatenating variables yi,t over the cross-section dimension, which gives

yt = ct +At +Btξt + ut, ut ∼ NID(0, Dt), t = 1, . . . , T, (19)

where yt = (y1,t, . . . , yN,t)
′, ct = (c1,t, . . . , cN,t)

′,At = (a′1,tµ1, . . . , a
′
N,tµN)′, Bt = (b1,t, . . . , bN,t)

′

and ut = (u1,t, . . . , uN,t)
′. Variance matrix Dt is diagonal by construction, with elements

d21,t, . . . , d
2
N,t on the main diagonal. Based on (19) the computation of Eg(ξ|y;µ∗) is carried

out using the Kalman filter and smoothing methods. The details are provided in Appendix

B.

4.2 Collapsing the approximating linear Gaussian panel data model

The evaluation of likelihood estimate p̂(y) in (14), requires M samples of µ and ξ from

importance densities g(µ|y; ξ̂) and g(ξ|y; µ̂), respectively. The posterior modal values µ̂ and

ξ̂ are obtained from Algorithm A. Both importance densities are based on approximating

model (16). The vector representations (18) and (19), are adopted for computing the M

samples by using the simulation smoother methods of Durbin & Koopman (2002). However,
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both representations have large dimensions leading to simulation smoother methods that

are computationally demanding. Instead, we show that more efficiency can be obtained by

first performing two transformations to reduce the cross-section and time series dimensions

of observed data y. In particular, the vectors series ȳi and yt in equations (18) and (19),

can be transformed into two low-dimensional vector series ȳli and ylt, for t = 1, . . . , T and

i = 1, . . . , N . Based on these vector series, samples ξ(i) and µ(i) can be drawn from g(ξ|yl; µ̂)

and g(µ|ȳl; ξ̂), respectively, where ȳl =
[
(ȳl1)

′, . . . , (ȳlN)′
]′

and yl =
[
(yl1)

′, . . . , (ylT )′
]′

. The

resulting samples can be regarded as coming from g(µ|y; ξ̂) and g(ξ|y; µ̂), respectively. In

Section 5 we present the computational gains in evaluating the likelihood, for both sets of

importance densities. The computational improvements resulting from the transformations

are high.

4.2.1 Collapsing the cross-section dimension

For the simulation of time-varying effects ξ(i) from g(ξ|yl; µ̂), we collapse N × 1 vectors yt,

based on equation (19), into low-dimensional vectors ylt, without losing information relevant

for the extraction of ξ. This transformation has been introduced in Jungbacker & Koopman

(2008) for the efficient evaluation of the likelihood for linear Gaussian dynamic factor models.

Here only mild modifications of their methods are required.

Consider a linear approximating model for transformed data y∗t = St(yt− ct−Ât), where

Ât = (a′1,tµ̂1, . . . , a
′
N,tµ̂N)′ and yt follows equation (19), where At is replaced by Ât. The

N × N projection matrix St is assumed invertible, for all t = 1, . . . , T . The transformed

observations are given by

y∗t =

 ylt

yht

 , with
ylt = Slt(yt − ct − Ât)

yht = Sht (yt − ct − Ât)
, t = 1, . . . , T, (20)

where the projection matrices are partitioned as St =
[
(Slt)

′ ; (Sht )′
]′

. For our particular

model we choose matrices Slt and Sht to have dimensions r×N and (N−r)×N , respectively.
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As a result the observation vectors ylt and yht become of dimensions r × 1 and (N − r)× 1.

We aim to choose Slt and Sht such that ylt and yht are uncorrelated and only ylt depends on ξt.

In particular, we aim for a model of the form

ylt = SltBtξt + ult,

yht = uht ,

 ult

uht

 ∼ N

0,

 Dl
t 0

0 Dh
t


 , (21)

where Dl
t = SltDtS

l′
t and Dh

t = Sht DtS
h′
t are r × r and (N − r)× (N − r) variance matrices

respectively.

Suitable matrices St, which lead to model (21) need to satisfy the following conditions;

(a) matrices St needs to be of full rank to prevent the loss of information, (b) Sht DtS
h′
t = 0

to ensure that observations ylt and yht are independent, and (c) Sht Btξt = 0 to ensure that yht

does not depend on ξt. Several of sequences of matrices St that fulfill these conditions can

be found. A convenient choice is given by

Slt = ∆′tB
′
tD
−1
t , ∆t∆

′
t = (B′tD

−1
t Bt)

−1, (22)

with ∆t being a lower triangular matrix. This choice for Slt results in

ylt = ∆−1t ξt + ult, ult ∼ NID(0, Ir), t = 1, . . . , T, (23)

where ∆−1t is a r × r lower triangular matrix, ξt is defined in (6) and ult is a random vector

with mean zero and variance equal to the r-dimensional unit matrix Ir. Sampling time-

varying effects ξ(i) from g(ξ|yl; µ̂) is now performed by the applying the simulation smoother

methods of Durbin & Koopman (2002) to r-dimensional vector series ylt and model (23), for

t = 1, . . . , T . The matrices Sht remain of large dimensions and can be constructed from Slt

but they are not required for any of the necessary computations. Proof of this transformation

is presented in Jungbacker & Koopman (2008)
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4.2.2 Collapsing the time series dimension

For the simulation of individual-specific effects µ(i) from g(µ|ȳl; ξ̂) we collapse T × 1 vec-

tors ȳi, for i = 1, . . . , N , based on vector representation (18), with B̄i replaced by B̂i =

(b′i,1ξ̂1, . . . , b
′
i,T ξ̂T )′. We consider similar least squares type transformations as for the cross-

section dimension above. However, because µi and µj are independent, the transformed

observations ȳ∗i become simple rescaled averages of the variables in ȳi. Let

ȳ∗i =

 ȳli

ȳhi

 , with
ȳli = S̄li(ȳi − c̄i − B̂i)

ȳhi = S̄hi (ȳi − c̄i − B̂i)
, i = 1, . . . , N. (24)

The motivation of the transformation is the same as above. We require to sample µi based

on only ȳli without compromising data information. We choose matrices S̄li and S̄hi to have

dimensions q× T and (T − q)× T , respectively. The model we aim to construct is given by

ȳli = S̄liĀiµi + ūli,

ȳhi = ūhi ,

 ūli

ūhi

 ∼ N

0,

 D̄l
i 0

0 D̄h
i


 , (25)

where D̄l
i = S̄liD̄iS̄

l′
i and D̄h

i = S̄hi D̄iS̄
h′
i are q × q and (N − q)× (N − q) variance matrices

respectively. A convenient choice for S̄li, which satisfies the conditions stated above, is given

by

S̄li = ∆̄′iĀ
′
iD̄
−1
i , ∆̄i∆̄

′
i = (Ā′iD̄

−1
i Āi)

−1, . (26)

with ∆̄i being a lower triangular matrix. The resulting model for ȳli is given by

ȳli = ∆̄−1i µi + ūli, ūlt ∼ NID(0, Iq), i = 1, . . . , N, (27)

where ∆̄−1i is a lower triangular q × q matrix, µi is given in (5) and ūli is a random vector

with mean zero and q× q unit variance. Again we can construct large matrices S̄hi , but they

are not required for any necessary computations. Samples µ(i) can be drawn independently

from g(µi|ȳli; ξ̂), which is a Gaussian density with mean Σµ∆̄−1i (∆̄−1
′

i Σµ∆̄−1i + Iq)
−1ȳli and
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variance Σµ−Σµ∆̄−1i (∆̄−1
′

i Σµ∆̄−1i +Iq)
−1∆̄−1

′

i Σµ. Both expressions follow from the standard

lemma discussed in Appendix A.

4.3 Constructing the Monte Carlo likelihood

Next we discuss the construction of the Monte Carlo likelihood estimate p̂(y) in equation

(14). The estimate relies on densities g(y; µ̂) and g(y; ξ̂), that are based on the approximating

model (16). Density log g(y; µ̂) can be computed from the prediction error decomposition of

vector representation (19), with µ replaced by µ̂. This is obtained by a single pass through

the Kalman filter, see Durbin & Koopman (2001, Chapter 7). Computational efficiency can

increased by using the lower dimensional model (23), based on vector series ylt. In particular,

Jungbacker & Koopman (2008) show that

log g(y; µ̂) = constant + log g(yl; µ̂)− 1

2

T∑
t=1

log |Dt|+ e′tD
−1
t et, (28)

where yl = (yl
′
1 , . . . , y

l′
T )′ and et = yt − ct − Ât − Bt(B

′
tD
−1
t Bt)

−1B′tD
−1
t (yt − ct − Ât) is

the generalized least squares residual vector. Density g(yl; µ̂) can be computed from the

prediction error decomposition of model (23), which is a r × T -dimensional problem.

Due to the independence of the µi’s logdensity log g(y; ξ̂) is given by

log g(y; ξ̂) = constant− 1

2

N∑
i=1

log |Varg(ȳi; ξ̂)|+
[
(ȳi − c̄i − B̂i)′Varg(ȳi; ξ̂)

−1(ȳi − c̄i − B̂i)
]
,

where determinant |Varg(ȳi; ξ̂)| = |ĀiΣµĀ
′
i + D̄i| can be hard to evaluate, depending on the

structure of Āi. More efficiency can be obtained by using the collapsed vector series ȳli, for

i = 1, . . . , N . Based on model (27) we obtain

log g(y; ξ̂) = constant + log g(ȳl; ξ̂)− 1

2

N∑
i=1

log |D̄i|+ ē′iD
−1
i ēi, (29)

where ēi = ȳi − c̄i − B̂i − Āi(Ā
′
iD̄
−1
i Āi)

−1Ā′iD̄
−1
i (ȳi − c̄i − B̂i). Logdensity log g(y; ξ̂) can
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therefore be cased on the N × q-dimensional model (27).

The following algorithm summarizes the evaluation of the loglikelihood for balanced

panels. Given parameter vector ψ we can evaluate the Monte Carlo loglikelihood estimate

log p̂(y) in the following steps:

Algorithm B

(i) Run Algorithm A, where the posterior modal values µ̂ and ξ̂ are calculated;

(ii) Collapse panel y into low-dimensional vector series ȳli and ylt using Section 4.2;

(iii) Sample M draws µ(i) and ξ(i) from densities g(ξ|yl; µ̂) and g(µ|ȳl; ξ̂), which are based

on transformed models (23) and (27), and compute importance weights w(i), as given

in equation (15);

(iv) Evaluate logdensities log g(y; µ̂) and log g(y; ξ̂), by computing (28) and (29), respec-

tively;

(v) Compute log p̂(y) = log g(y; µ̂) + log g(y; ξ̂) + logM−1∑M
i=1w

(i).

Loglikelihood estimate log p̂(y) can be optimized with respect to parameter vector ψ

using an arbitrary numerical optimization method. As a practical choice we use the BFGS

algorithm, see Nocedal & Wright (1999). To retain the smoothness of the likelihood in ψ

we use the same random seed and the same value of M for each loglikelihood evaluation.

The resulting Monte Carlo parameter estimates are denoted by ψ̃. In Section 5 we show

the computational efficiency and accuracy of our methods, by providing average estimation

times and summary statistics from repeated parameter estimates, for simulated data from

Student’s t dynamic panel data models.

4.4 Unbalanced or incomplete panels

In this section we provide the details for the treatment of unbalanced panels. We assume

that for each individual we observe yi,t and xi,t for Ti consecutive time periods during a fixed
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time interval. When yi,t is unobserved step (ii) of Algorithm A is adjusted by removing xi,t

and unobservable lags Yi,t−1 from zi,t. The resulting zi,t only depends on µi, ξt and possibly

observed elements of Yt−1. Calculations in step (iii), conditional on ξ∗, are based on the

standard random effects model, for which missing values can be handled by adopting the

methods discussed by Baltagi (2005, Chapter 9). This amounts to calculating the compo-

nents in Appendix A as usual with T replaced by Ti. Step (v) of Algorithm A is calculated

by Kalman filter and smoothing methods, which can account for missing values, see Durbin

& Koopman (2001, Section 4.8).

The transformations for panel reduction from Section 4.2 need to be adjusted for missing

values as well. Jungbacker, Koopman & van der Wel (2011), show that by choosing an

alternative state space representation for model (19) collapsed vectors ylt can be computed

using similar transformations. The second transformation for the construction of ȳli can be

computed based on the observed elements of ȳi only, as µi and µj are independent for all

i, j = 1, . . . , N .

Likelihood estimate p̂(y) is based on densities g(y; µ̂) and g(y; ξ̂) and weights w(i). Density

g(y; µ̂) is based on the prediction error decomposition of lower dimensional model (23) and

can be computed from the Kalman filter output. Generalized least squares residuals et only

need to be computed for observed elements of yt. Density g(y; ξ̂), equation (29) can be

computed based on lower dimensional model (27) and by adjusting the generalized least

squares residual vectors ēi to contain only the observed elements of ȳi. The weights w(i) in

(15) are based on elements of p(y|µ(i), ξ(i);x) for which yi,t and xi,t are actually observed.

5 Simulation study for the Student’s t dynamic panel

data model

We proceed by presenting a simulation study for a Student’s t dynamic panel data model,

which is a special case of the generalized dynamic panel data model discussed in Section 3.

The simulation study is designed to evaluate the small sample properties of the estimation
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procedure presented in Section 4. The focus is on determining whether a
√
M convergence

rate is guaranteed for our importance sampling estimate p̂(y) and whether the method is

computationally feasible and accurate. The Student’s t model is chosen as many data panels

of interest contain certain elements yi,t, that are numerically distant from the rest of the

data. They can be be dealt with by allowing for heavier-than-normal tail behavior, which

we address by assuming a Student’s t distribution with ν degrees of freedom for density

p(yi,t|zi,t;ψ). In particular, the data generating process for variable yi,t is given by

yi,t = zi,t + ζi,t, ζi,t ∼ t(0, σζ , ν), i = 1, . . . , N, t = 1, . . . , Ti, (30)

where zi,t is given by equation (3) and t(0, σζ , ν) denotes the Student’s t density with mean

0, scale σζ and degrees of freedom ν.

Bayesian Markov Chain Monte Carlo (MCMC) estimation procedures for Student’s t dy-

namic panel data models without time-varying effects are considered by Fruhwirth-Schnatter

& Kaufmann (2008), who represent the Student’s t distribution as a scaled mixture of normal

distributions. Juarez & Steel (2010) consider similar models, as well as skewed versions of

the Student’s t distribution, but also adopt MCMC.

5.1 Simulation Design

The main interest is in assessing the performance of the Monte Carlo estimation procedure

for different signals, parameter values, panel sizes and numbers of missing values. Table 1

presents the combinations of signals and parameter values, that we investigate in our study.

The signals correspond to models with; 1 individual-specific effects, 2 time-varying effects or

3 both.

For each signal we include a single covariate xi,t, drawn independently from the N(0, 1)

distribution and polynomial γ(B), with py = 1 and γ1 = γ = 0.2. We choose β = 1. We

include a univariate, q = 1, individual-specific effect µi and a univariate, r = 1, time-varying

effect ξt. Weights ai,t and bi,t are normalized to one. The individual-specific effect is normally

24



distributed with common mean δ fixed at zero and variance Σµ = σ2
µ. We investigate different

values of standard deviation Σµ = σµ = 0.5, 1, 3. The time-varying effect is updated by an

autoregressive process αt of order 1, where G = 1, H = h, R = 1 and Ση = σ2
η. Different

degrees of persistence are investigated by taking h = 0.3 or h = 0.9. The scaling of the

time-varying effects is chosen as ση = 0.2. The initial value of the autoregressive process is

given by N
[
0, σ2

η/(1− h2)
]
. Parameters σζ and ν, pertaining to the Student’s t distribution

are of less interest in our study. We fix the value of σζ at one and estimate degrees of

freedom ν along with the other parameters. We consider only ν = 10, as different choices

have shown not to affect our simulation results. The entire parameter vector is given by

ψ = {ν, β, γ, σµ, h, ση}.

Each signal listed in Table 1 is analyzed for panel sizes; (N = 50, T = 100), (N =

100, T = 50), (N = 100, T = 100) and (N = 250, T = 250). Further we consider each

model with either no missing values and 40% of the values missing. The values are missing

at random from the beginning and the end of each panel.

5.2 Diagnostic tests for the behavior of the importance sampler

A sufficient condition to guarantee a
√
M convergence rate for Monte Carlo estimate p̂(y)

is the existence of a variance in the importance samplings weights w(i), as given in equation

(15), for i = 1, . . . ,M . Koopman et al. (2009) propose test statistics for evaluating the

finiteness of the variance in a sequence of importance weights. Implementation of their

suggested Wald type test statistic is done by the following steps.

Simulate a panel y from the observational density (30), with a signal and parameter

values given in Table 1 and panel sizes as discussed in Section 5.1. Next we estimate the

parameters using the Monte Carlo maximum likelihood methods of Section 4. Note that

for signals 1 and 2 from Table 1 the estimation procedure simplifies as either ξt or µi is

restricted to zero, respectively. The parameter vector ψ is then replaced by its resulting

estimate ψ̃ and we generate 100, 000 importance sampling weights w(i) using importance

densities g(ξ|yl; µ̂) and g(µ|ȳl; ξ̂). For a given threshold wmin, we only consider the weights
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that are larger than the threshold. These, say s, exceedence values x1, . . . , xs are assumed to

come from the generalized Pareto distribution with logdensity function f(a, b) = − log b −

(1 + a−1) log (1 + ab−1xi) for i = 1, . . . , s, where unknown parameters a and b determine

the shape and scale of the density, respectively. For an appropriately chosen threshold and

when a ≤ 0.5, the variance of the importance sampling weights exists. We estimate a and b

by maximum likelihood, denoted by ã and b̃, respectively, and compute the t-test statistic

tw = b̃−1
√
s / 3(ã− 0.5) for the null hypothesis H0 : a = 0.5. As r →∞ and under the null

hypothesis, the distribution of the test-statistic converges to the standard normal. We reject

the null hypothesis when the statistic is positive and significantly different from zero, that

is, when it is larger than 1.96 with 95% confidence.

Durbin & Koopman (1997) argue that the use of antithetic variables improves the ef-

ficiency of the importance sampling weights. An antithetic variable in this context is a

random draw µ(i) or ξ(i) from the importance densities, that is equiprobable with µ or ξ,

respectively, and leads to smaller Monte Carlo variation. For each draw of µ(i) and ξ(i) we

use two antithetic variables to balance for location and scale; see Durbin & Koopman (2001,

Section 11.9.3) for a detailed discussion.

Figure 1 presents the resulting test statistics for the different panel sizes and signals 1.b,

2.b, 3.b and 3.e, as listed in Table 1. The statistics are computed for different values of

threshold wmin. In particular, we choose wmin such that the largest 1% to 50% of the weights

are included. For each model the test statistics are computed with and without the use of

antithetic variables.

The test statistics that are computed without using antithetic variables show mixed

evidence. For the signals 1 and 2, that include only an individual-specific or a time-varying

effect, the test statistics fail to reject the null-hypothesis for all thresholds. Thus providing

evidence in favor of the existence of a variance in the simulated sample of importance weights.

For signals including both individual-specific and time-varying effects (3.b and 3.e), the null

hypothesis is often rejected for the large panels (N = 250, T = 250). However, all test

statistics that are computed with antithetic variables fail to reject the null-hypothesis, hereby
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providing evidence in favor of the existence of a variance in the importance weights. Most

test statistics have highly negative values, that only increase marginally when the panel size

increases. The presented results also hold for the other signals listed in Table 1. They are

further discussed in a technical appendix available from the websites of the authors. The

results presented in the remainder of this paper are all computed using antithetic variables.

5.3 Simulation Results

For each signal listed in Table 1 and panel sizes (N = 50, T = 100), (N = 50, T =

100), (N = 100, T = 100) and (N = 250, T = 250), we simulate 100 data panels. For

each simulated data panel, which is then treated as the observed panel y, we evaluate the

likelihood. The evaluation procedure is implemented as discussed in Section 4 and by using

M = 500 draws from the importance densities. We considered implementations based on

vector series yt and ȳi, as well as on collapsed vector series ylt and ȳli, for i = 1, . . . , N and

t = 1, . . . , Ti, as discussed in Section 4.2. The average evaluation times are presented in

Table 2. The likelihood evaluation procedure based on the collapsed vectors is between 2

and 4 times faster compared to evaluation without collapsing the vectors.

For each simulated panel y we estimated the corresponding parameters ψ using the

estimation method with collapsed vectors. From the set of estimated parameters we report

the average bias and standard deviation in Table 3 for signals 1.b, 2.b, 3.b and 3.e. The results

of our Monte Carlo study show that the estimation procedure is successful. All parameter

estimates center around their “true” values for all different models and parameter values.

Important is that individual state dependence, as captured by φ(B)yi,t, can be empirically

identified and separated from stochastic components µi and ξt.

From each simulated data panel we also removed 40% of the observations, at the begin-

ning and end of the data set, creating unbalanced panels. The parameter estimates remained

unbiased and the standard errors increase slightly. The full set of parameter estimation re-

sults, with and without missing values, are presented in a technical appendix available from

the websites of the authors. Here we also provide implementation code written in the Ox
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programming language version 6.10 of Doornik (2007).

6 Empirical evidence for economic growth

We present an empirical study for a panel of economic growth variables for countries listed

in the Penn World Tables (PTW) version 6.3, see Heston, Summers & Aten (2009). A large

body of literature has made use of panel data models to analyze economic growth data

for different subsets of countries, see for example Islam (1995), Caselli, Esquivel & Lefort

(1996), Lee, Pesaran & Smith (1997), Lee, Pesaran & Smith (1998), Hoeffler (2002), Ho

(2006), Pesaran (2007), Juarez & Steel (2010) and Moral-Benito (2010). The majority of

the panel data growth literature has concentrated on estimating variants of the neo-classical

growth model, or Solow growth model; see Solow (1956). The formal empirical testing of this

model is pioneered in Mankiw et al. (1992), for the cross-section case, and in Islam (1995)

for the panel data case.

Throughout our study we consider a single sample of countries consisting of time series

observations pertaining to all countries for which the per capita output variable was available

in PTW 6.32. The total sample includes 187 countries that have observations from 1952 until

2007. The resulting panel is highly unbalanced. For example, in the initial year 1952 there

are observations recorded for 53 countries, whereas in 2007 there are observations recorded

for 187 countries.

6.1 Student’s t dynamic panel data model

In our study we define yi,t = 100(log Yi,t − log Yi,t−1), where Yi,t is the per capita output of

country i in year t. A model for growth rate variable yi,t, that fits within the general model

2We used variable RGDPL and removed Serbia and Timor Leste as their output per capita was only
available for 1 year.
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of Section 3, is given by

yi,t = zi,t + ζi,t, ζi,t ∼ t(0, σζ , ν),

zi,t = yi,t−1γ + x′i,tβ + µi + ξt, µi ∼ NID(δ, σ2
µ),

ξt = hξt−1 + ηt, ηt ∼ NID(0, σ2
η),

(31)

for i = 1, . . . , N and t = 1, . . . , T , where zi,t is the signal, ζi,t is the Student’s t distributed

observation disturbance term, parameter γ measures state dependence, parameter vector β

measures the effect of the explanatory variables xi,t whereas µi captures unobserved country-

specific effects and ξt captures the common time-varying effects. Variants of this model have

been considered in for example Caselli et al. (1996), Ho (2006) and Juarez & Steel (2010).

The random country-specific effect µi is assumed to be normally distributed with mean δ

and variance σ2
µ. The time-varying effect ξt is modeled by an autoregressive process or order

1. Experiments with higher order autoregressive processes did not lead to further model

improvements. The disturbance ζi,t is modeled by a Student’s t density with ν degrees of

freedom and scaling σζ . For ν → ∞, the Student’s t density converges to the Gaussian

density.

Typically, the vector of explanatory variables xi,t includes at least three elements; the

investment ratio, the population growth rate and the logarithm of the level of output per

capita from the previous time period (log Yi,t−2); see Mankiw et al. (1992) and Caselli et al.

(1996). These explanatory variables are likely to be correlated with the mean of the growth

rate. For example, a higher mean population growth rate will generally lead to a lower

mean growth rate. This type of correlation between explanatory variables xi,t and country-

specific effects µi is unaccounted for in random effects models and leads to biased parameter

estimates; see Durlauf et al. (2005) for a discussion of this issue in the context of economic

growth. To overcome this issue we standardize the explanatory variables to have mean zero

and unit variance for each country. The country-specific effect µi can therefore be interpreted

as the mean growth rate for country i. It is comparable across countries and corresponds

to average covariate values; see Juarez & Steel (2010). This is a simple method for avoiding
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biases from correlation between xi,t and µi. Other, less restrictive methods can equally well

be considered for our framework; see Chamberlain (1984) for a more elaborate discussion.

The parameter estimation results are presented in Table 4. They are computed using the

procedures discussed in Section 4. The left panel shows the results for the case where ζi,t is

modeled by the Student’s t density. The right panel shows the results for an approximation

of the Gaussian density, obtained by fixing ν = 1000 in the Student’s t density. The results

clearly indicate the importance of the Student’s t density with a small ν; the degrees of

freedom coefficient ν is estimated just above the value 2. The loglikelihood values also

indicate that the Student’s t model is preferred over the Gaussian model. Furthermore,

the inclusion of the explanatory variables seems important. The corresponding parameter

estimates are significant and have their expected sign. Higher savings, lower population

growth rates and lower GDP levels all lead to higher growth rates; see Solow (1956) and

Mankiw et al. (1992) for a more elaborate discussion concerning the economic interpretation

of these results.

Parameter γ measures the structural dependence on the previous growth rate variable.

This parameter is estimated as highly significant between 0.1281 and 0.1608 in the different

specifications. The interpretation of γ is interesting. If its value approaches zero the growth

rate process becomes an independent disturbance process conditional on the country-specific

level µi, the explanatory variables xi,t and the common time-varying effect ξt. The time trend

of the corresponding country than becomes similar to the common time-varying effect. If

parameter γ approaches unity, the country-specific growth rate process becomes a unit-root

process. This indicates that the country follows its own path rather than the common path

as estimated by the common time-varying effect. It may be expected that parameter γ will

be different for different countries. This is formally investigated in the Section 6.2.

Figure 2 presents the estimated time-varying effects for the Student’s t and Gaussian

models including explanatory variables. Their computation is discussed in Appendix C. The

time-varying effect is capable of identifying a general global business cycle as we observe in
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Figure 2; the NBER recession periods of the US economy are presented as gray bars3. The

difference between the Student’s t model and the Gaussian model is clearly visible. The 95 %

confidence bounds of the Gaussian approximation are much wider. Only in a small number

of years the time-varying effect is significantly different from zero. This in sharp contrast to

the estimate of the time-varying effect for the Student’s t model for which a more defined

business cycle emerges.

6.2 Parameter heterogeneity

In this section we consider model (31) and we replace parameter γ in the ith equation by

γi, for i = 1, . . . , N . In particular, we treat γi as a random country-specific effect. The

approach of randomizing parameters is discussed in the context of linear regression models

by Hsiao & Pesaran (2008). A benefit of the approach is that few additional parameters are

necessary to make γ country-specific. The parsimonious implementation is important in our

modeling framework since the Monte Carlo maximum likelihood estimate of parameter vector

ψ is obtained by maximizing log p̂(y) in (14) with respect to ψ using numerical methods.

When the number of distinct parameters increases, these methods become numerically more

challenging.

The proposed extension can be cast into our general framework by setting

yi,t = zi,t + ζi,t, zi,t = x′i,tβ + a′i,tµi + ξt, ai,t = (yi,t−1, 1)′, µi = (γi, µ́i)
′, (32)

where µi is here a vector of two country-specific effects, which are normally distributed

with mean δ and diagonal variance matrix Σµ. The country-specific effect µ́i is the mean

component allowing for level differences in the growth rate variables, which was the role of

the univariate µi in model (31). The vector ai,t is known at time t and can be treated as

fixed. The other components in model (32) are treated in a similar way as in our previous

analysis. Based on our initial results of Section 6.1 we model disturbances ζi,t in model (32)

3The recession dates are obtained from http://www.nber.org/cycles.html
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by the Student’s t density.

The estimates of the country-specific effects are visually displayed in Figure 3. They are

estimated as discussed in Appendix C. We show the estimated state dependence parameters

and the estimated mean growth rates. The borders of countries that are not included in our

sample, such as Burma and Western Sahara, are not displayed on the maps. For 146 countries

(out of 187) the estimate for the mean growth rate is significantly different from zero (with

a 95% confidence level). For the state dependence parameter this result is obtained for 112

countries. The estimated time-varying effect (not shown) is identical as in Section 6.1; see

Figure 2. Further details for individual countries are presented in the technical appendix.

Several interesting facts emerge from Figure 3. Most of which are in agreement with

the stylized facts discussed in Durlauf et al. (2005). Between 1952 and 2007 most countries

are found to have positive mean growth rates. However large differences in magnitude are

displayed. High growth rates are predominantly found for countries located in East and

Southeast Asia, whereas low growth rates (sometimes negative) are found for countries from

the sub-Saharan African region. The “miracle” growth countries such as Taiwan, Republic

of Korea, Botswana, Cyprus, Ireland and Portugal, are also nicely identified by our model.

Interesting variation is found between the estimates for state dependence, for model (32).

The countries that are associated with former communist or dictatorial regimes show high

levels of state dependence. The typical examples are China, Russia, Vietnam and Cambodia.

Also, countries with unique export products tend to show high levels of state dependence as

their economies are less affected by global trends. A prominent example is Botswana, where

most of the economy relies on the export of minerals such as diamonds.

Western European countries show mixed results. All mean growth rates are positive

and typically above 2%. The exception is Germany, which is likely due to its reunification.

Eastern European countries also show high growth rates. These countries appear in our

sample after they have become independent from the former Soviet-Union. The high growth

rates are likely based on the last few years in which these countries have received economic

support from the United States and Western European countries. The estimates for γi for
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these countries are also quite high indicating that their economies have not fully integrated

to the global economy.

For Africa, we have obtained a high variety of mean growth rates and of levels of state

dependence. The African countries can be divided into roughly two groups. The first group

has a significant positive mean growth rate. These are the countries for which we suspect

that they are catching up. Typical examples are Cape Verde, Ghana and Sri Lanka. The

second group consists of countries with very low and negative mean growth rates. Typical

examples are Djibouti, Eritrea and Somalia.

The countries that have close political, economic and trade links with the United States

show estimates similar to the U.S. The key examples are Australia, United Kingdom and

The Netherlands. Countries such as Mexico, Canada and many other Central-American

countries also have similar estimates compared to the United States. For South-America we

have obtained lower growth rates, except for Chili.

6.3 Time-varying effects

Next we extend the model to include additional time-varying effects. So far we assumed

that all countries are equally affected by a univariate common time-varying effect ξt. The

estimated effect was able to identify the general global (US) business cycle; see Figure 2.

Here we investigate whether different time-varying effects can be detected for different groups

of countries.

On the basis of the estimated country-specific effects of Section 6.2, we identify nine

groups of countries: Western Europe, Eastern Europe, Middle East, Africa high, Africa low,

US and related, South-America, East Asia and the rest of the world. The groups and their

countries are listed in Appendix D.

The extended model is summarized in our general framework as follows

yi,t = zi,t + ζi,t, zi,t = x′i,tβ + a′i,tµi + b′i,tξt, ai,t = (yi,t−1, 1)′, µi = (γi, µ́i)
′, (33)
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where ξt is the 9× 1 vector of time-varying effects and bi,t is set equal to the jth column of

the 9× 9 identity matrix if country i is in group j. The time-varying effects are modeled as

nine independent autoregressive processes of order one with persistence parameter hj and

scaling parameter σjη.

Figure 4 presents the estimated time-varying effects for the nine country groups. A

large variety of different growth patterns is found. The Western European and United

States groups show similar cyclical patterns indicating the presence of a business cycle. The

African groups (high and low) show that within one continent at least two different groups

of countries are emerging. First, the high growth group consist of countries that started

with very low negative growth but are catching up. Second, the low growth group consist of

countries that are experiencing a declining growth pattern.

The Eastern European group illustrates convincingly how missing values are handled

within our framework. Before 1990, the confidence bounds are relatively wide, because data

for only a few countries is available. After 1990 the growth rates increase and the confidence

bound become more narrow as more countries are included in the panel. The persistence

parameters and scaling parameters of the estimated time-varying effects are presented in

Table 5. The Western European and US based groups show lower levels of persistence.

7 Conclusion

We have developed a simulation-based methodology for the estimation of parameters in a

general class of dynamic panel data models with cross-section and time-varying random

effects. The new estimation method for this class of models is developed in this paper.

The use of importance sampling and related methods provides the means for a feasible

analysis. The computational efficiency of our methods is due to the ability to separate the

cross-section effects from the time-varying effects and to collapse high-dimensional vectors

to low-dimensional vectors that contain the sufficient statistics relevant for the analysis.

Further, the use of the Kalman filter allows for the efficient sampling of the time-varying
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effects. In a Monte Carlo study we have given clear evidence of the validity of our estimation

methods for finite samples.

Given the generality of the generalized dynamic panel data model, many different models

can be designed for many different purposes. We have limited ourselves to illustrate the

methodology for a large panel of time series with observations from a Student’s t density.

Other possible applications of our model are also hinted and they include dynamic panel

data models for binary, count and categorical observations. Such models can be relevant in

economic studies but also in environmental or educational policy studies which need to be

based on high-dimensional panel data models. Although our illustration for the Penn World

Tables have used a time dimension of T = 56, the methods can also be used for data sets

with smaller or larger time spans.

In our current modeling framework we let the signal be dependent on cross-section and

time effects in a linear way (effects are additive). Further flexibility can be introduced by

having a signal that depends on the two effects in a nonlinear way (effects are multiplicative).

This extension leads to an even more general class of dynamic panel data models. It requires

further amendments in our methodology of estimation. A motivation to pursue this plan

for further research is the ability to estimate time-varying effects (or dynamic factors) and

their associated (cross-sectional or factor) loadings simultaneously. The generalized dynamic

factor model is an example of a model in this class and it can be analyzed by using the

importance sampling methods developed in this paper. We expect that the computationally

efficiency is not affected by this modification.

Appendix A

Based on vector representation (18), with B̄i replaced by B̄∗i = (b′i,1ξ
∗
1 , . . . , b

′
i,T ξ

∗
T )′, we calcu-

late conditional expectation Eg(µ|y; ξ∗), as needed in step (iii) of Algorithm A, by using a
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standard lemma from multivariate normal regression. There holds that

Eg(µ|y; ξ∗) = Eg(µ; ξ∗) + Covg(µ, y; ξ∗)Varg(y; ξ∗)−1 [y − Eg(y; ξ∗)] ,

which can be solved separately for each element Eg(µi|ȳi; ξ∗), as given ξ∗, µi only depends

on y by means of ȳi. Some simple manipulations give

• Eg(µi; ξ
∗) = 0;

• Covg(µi, ȳi; ξ
∗) = ΣµĀ

′
i;

• Varg(ȳi; ξ
∗)−1 = D̄−1i − D̄−1i L̄i(L̄

′
iD̄
−1
i L̄i + Iq)

−1L̄′iD̄
−1
i , where L̄i = Āi · choleski(Σµ),

see Roy & Sarhan (1956) and Roy (1958);

• Eg(ȳi; ξ
∗) = c̄i + B̄∗i .

Efficient implementation of the calculated can be accomplished without storing variance

matrices Varg(ȳi; ξ
∗) or its inverses.

Appendix B

Based on vector representation (19), with At replaced by A∗t (a′1,tµ∗1, . . . , a′N,tµ∗N)′, the calcula-

tion of expected value Eg(ξ|y;µ∗) in step (v) of Algorithm A is carried out using the Kalman

filter and smoothing methods; see Anderson & Moore (1979) and Durbin & Koopman (2001,

Chapter 4). Moreover, since Dt is diagonal the fast Kalman filter and smoothing methods

from Koopman & Durbin (2003) can be used.

Appendix C

Given the estimated parameter vector ψ̃ we calculate Monte Carlo estimates of the individual-

specific and time-varying effects. A more detailed discussion of this approach is given in
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Durbin & Koopman (2001, Chapter 11). Let f(µ, ξ) denote a general function of µ and ξ

that is of interest. It holds that

Ep [f(µ, ξ)|y] =

∫
ξ

∫
µ

f(µ, ξ)p(µ, ξ|y;x) dµ dξ,

where Ep[·|y] refers to the expectation with respect to the density p(µ, ξ|y;x). For given

modal values µ̂ and ξ̂, the accompanying importance sampling representation is given by

Ep [f(µ, ξ)|y] = p(y)−1
∫
ξ

∫
µ

f(µ, ξ)
p(y|µ, ξ;x)p(µ)p(ξ)

g(µ|y; ξ̂)g(ξ|y; µ̂)
g(µ|y; ξ̂)g(ξ|y; µ̂) dµ dξ.

When applying Bayes rule twice to the right hand side we obtain

Ep [f(µ, ξ)|y] =
g(y; ξ̂)g(y; µ̂)

p(y)

∫
ξ

∫
µ

f(µ, ξ)w(y, µ, ξ; µ̂, ξ̂)g(µ|y; ξ̂)g(ξ|y; µ̂) dµ dξ,

where

w(y, µ, ξ; µ̂, ξ̂) =
p(y|µ, ξ;x)

g(y|µ; ξ̂)g(y|ξ; µ̂)
.

Now, when setting f(µ, ξ) = 1 we obtain

1 =
g(y; ξ̂)g(y; µ̂)

p(y)

∫
ξ

∫
µ

w(y, µ, ξ; µ̂, ξ̂)g(µ|y; ξ̂)g(ξ|y; µ̂) dµ dξ.

And when dividing the two equations above we get

Ep [f(µ, ξ)|y] =

∫
ξ

∫
µ
f(µ, ξ)w(y, µ, ξ; µ̂, ξ̂)g(µ|y; ξ̂)g(ξ|y; µ̂) dµ dξ∫
ξ

∫
µ
w(y, µ, ξ; µ̂, ξ̂)g(µ|y; ξ̂)g(ξ|y; µ̂) dµ dξ

,

for which a Monte Carlo estimate f̃(µ, ξ) is given by

f̃(µ, ξ) =

∑M
i=1 f(µ(i), ξ(i))w(i)∑M

i=1w
(i)

,

37



where w(i) is defined in equation (15).

Appendix D

Decomposition of the world:

Western Europe

Austria, Belgium, Cyprus, Denmark, Finland, France, Germany, Greece, Iceland, Ireland,

Italy, Luxembourg, Malta, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland,

United Kingdom;

Eastern Europa

Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Bulgaria, Croatia, Czech

Republic, Estonia,Georgia, Hungary, Kazakhstan, Latvia, Lithuania, Macedonia, Moldova,

Montenegro, Poland, Romania, Russia, Slovak Republic, Slovenia, Turkey, Ukraine;

Middle East

Bahrain, Brunei, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia,

Syria, United Arabic Emirates, Yemen;

Africa high positive growth µi > 0.5

Algeria, Angola, Benin, Burkina Faso, Cape Verde, Republic of the Congo, Egypt, Equa-

torial Guinea, Ethiopia, Gabon,Botswana, Ghana, Guinea Bissau, Kenya,Kiribati, Lesotho,

Liberia, Libya, Malawi, Mali, Mauritania, Morocco, Mozambique, Nigeria, Rwanda, Sierra

Leone, South Africa, Sri Lanka, Sudan, Swaziland, Tanzania, Togo, Tunisia, Uganda, Zim-

babwe;

Africa low and negative growth µi < 0.5
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Burundi, Cameroon, Central African Republic, Chad, Democratic Republic of the Congo,

Ivory Coast, Djibouti, Eritrea, Gambia, Guinea, Madagascar, Namibia, Nicaragua, Niger,

Senegal, Somalia, Zambia;

US and related countries

Antigua and Barbuda, Australia, Canada, Costa Rica, Dominica, Dominican Republic,

Guatemala, Honduras, Mexico, New Zealand, Panama, Puerto Rico, St. Kitts and Nevis,

St. Lucia, St. Vincent and Grenadines, Trinidad and Tobago, United States;

South America

Argentina, Belize, Bolivia, Chile, Colombia, Ecuador, Brazil, Paraguay, Peru, Suriname,

Uruguay, Venezuela;

East Asia

Cambodia, China, Hong Kong, India, Indonesia, Japan, South Korea, Laos, Macao, Malaysia,

Philippines, Singapore, Taiwan, Thailand,Vietnam;

Rest

Afghanistan, Bahamas, Bangladesh, Barbados, Bermuda, Bhutan, Comoros, Cuba, El Sal-

vador, Fiji, Grenada, Guyana, Haiti, Jamaica, Kyrgyzstan, Maldives, Marshall Islands, Mau-

ritius, Micronesia, Fed. Sts. ,Mongolia, Nepal, Pakistan, Palau, Papua New Guinea, Samoa,

Sao Tome and Principe, Seychelles, Solomon Islands, Tajikistan, Tonga, Turkmenistan,

Uzbekistan, Vanuatu.

References

Anderson, B. D. O. & Moore, J. B. (1979), Optimal Filtering, Prentice-Hall, Englewood

Cliffs.

39



Baltagi, B. H. (2005), Econometric Analysis of Panel Data, John Wiley & Sons, New York.

Caselli, F., Esquivel, G. & Lefort, F. (1996), ‘Reopening the Convergence Debate: A New

Look at Cross-Country Growth Empirics’, Journal of Economic Growth 1, 363–389.

Chamberlain, G. (1984), Panel Data, in Z. Griliches & M. D. Intriligator, eds, ‘Handbook

of Econometrics, vol. 2’, Elsevier, Amsterdam, North-Holland, pp. 1247–1318.

De Long, J. B. & Summers, L. H. (1991), ‘Equipment Investment and Economic Growth’,

The Quarterly Journal of Economics 106, 445–502.

Doornik, J. A. (2007), Object-Oriented Matrix Programming Using Ox, Timberlake Consul-

tants Press, London.

Duffie, D., Saita, L. & Wang, K. (2007), ‘Multi-period corporate default prediction with

stochastic covariates’, Journal of Financial Economics 83, 635–665.

Durbin, J. & Koopman, S. J. (1997), ‘Monte Carlo maximum likelihood estimation of non-

Gaussian state space models’, Biometrika 84, 669–684.

Durbin, J. & Koopman, S. J. (2000), ‘Time series analysis of non-Gaussian observations

based on state space models from both classical and Bayesian perspectives’, Journal of

the Royal Statistical Society, Series B 62, 3–56.

Durbin, J. & Koopman, S. J. (2001), Time Series Analysis by State Space Methods, Oxford

University Press, Oxford.

Durbin, J. & Koopman, S. J. (2002), ‘A simple and efficient simulation smoother for state

space time series analysis’, Biometrika 89, 603–616.

Durlauf, S. N., Johnson, P. & Temple, J. (2005), Growth Econometrics, in P. Aghion & S. N.

Durlauf, eds, ‘Handbook of Economic Growth, vol. 1, Part A,’, Elsevier, Amsterdam,

North-Holland, pp. 555–677.

40



Fruhwirth-Schnatter, S. & Kaufmann, S. (2008), ‘Model-Based Clustering of Multiple Time

Series’, Journal of Business and Economic Statistics 26, 78–89.

Geweke, J. F. (1989), ‘Bayesian Inference in Econometric Models Using Monte Carlo Inte-

gration’, Econometrica 57, 1317–1339.

Geweke, J. F. (1991), ‘Efficient Simulation from the Multivariate Normal and Student-t Dis-

tributions Subject to Linear Constraints’, Computer Science and Statistics. Proceedings

of the 23rd Symposium on the Interface. Seattle Washington, April 21-24, 1991 pp. 571–

578.

Geweke, J. & Keane, M. (2001), Computationally Intensive Methods for Integration in

Econometrics, in J. Heckman & E. Leamer, eds, ‘Handbook of Econometrics,V’,

pp. 3465–3568.

Hajivassiliou, V. (1990), ‘Smooth Simulation Estimation of Panel Data LDV Models’.

Mimeo, Yale University.

Heckman, J. J. (1981a), Heterogeneity and State Dependence, in S. Rosen, ed., ‘Studies of

Labor Markets’, The University of Chicago Press, Chicago: The National Bureau of

Economic Research, pp. 91–140.

Heckman, J. J. (1981b), Statistical Models for Discrete Panel Data, in C. F. Manski & D. L.

McFadden, eds, ‘Structural Analysis of Discrete Data and Econometric Applications’,

The MIT Press, Cambridge, pp. 113–177.

Heston, A., Summers, R. & Aten, B. (2009), ‘Penn world table version 6.3’. Center for

International Comparisons of Production, Income and Prices at the University of Penn-

sylvania.

Ho, T. W. (2006), ‘Income Thresholds abd Growth Convergence: A Panel Data Approach’,

The Manchester School 74, 170–189.

41



Hoeffler, A. E. (2002), ‘The Augmented Solow Model and the African Growth Debate’,

Oxford Bulletin of Economics and Statistics 64, 135–158.

Hsiao, C. (2003), Analysis of Panel Data, Cambridge University Press, Cambridge.

Hsiao, C. & Pesaran, M. H. (2008), Random Coefficients Models, in L. Mátyás & P. Sevestre,
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Signal Parameters
ν β γ σµ h ση

1; zi,t = yi,t−1γ + x′i,tβ + µi a; 10 1 0.2 0.5 - -
b; 10 1 0.2 1 - -
c; 10 1 0.2 3 - -

2; zi,t = yi,t−1γ + x′i,tβ + ξt a; 10 1 0.2 - 0.3 0.2
b; 10 1 0.2 - 0.9 0.2

3; zi,t = yi,t−1γ + x′i,tβ + µi + ξt a; 10 1 0.2 0.5 0.3 0.2
b; 10 1 0.2 0.5 0.9 0.2
c; 10 1 0.2 1 0.3 0.2
d; 10 1 0.2 1 0.9 0.2
e; 10 1 0.2 3 0.3 0.2
f; 10 1 0.2 3 0.9 0.2

Table 1: Signal specifications and parameter values for simulating observations in the Monte

Carlo study. The DGP is further given by yi,t
i.i.d.∼ t(zi,t, 1, ν), xi,t ∼ NID(0, 1), µi ∼

NID(0, σ2
µ), ξt = αt, αt+1 = hαt + ηt and ηt ∼ NID(0, σ2

η). The initial time varying effect
is taken N(0, σ2

η/(1− h2)).
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N T ν β γy σµ h ση

1.b
100 50 0.467 1.644 0.000 0.013 0.000 0.010 0.000 0.070 - -
50 100 0.442 1.640 -0.001 0.014 0.001 0.010 -0.019 0.107 - -
100 100 0.251 0.980 0.000 0.010 0.001 0.007 -0.015 0.074 - -
250 250 0.097 0.350 0.000 0.004 0.000 0.003 -0.001 0.045 -

2.b
100 50 0.305 1.532 0.000 0.015 0.001 0.009 - -0.023 0.076 0.007 0.027

50 100 0.271 1.533 0.000 0.013 0.000 0.009 - -0.011 0.052 -0.002 0.023

100 100 0.165 0.927 0.000 0.010 0.001 0.007 - -0.018 0.055 -0.005 0.020

250 250 0.099 0.368 0.000 0.004 0.000 0.003 - 0.002 0.031 -0.001 0.010

3.b
100 50 0.550 1.704 -0.001 0.013 0.001 0.010 -0.002 0.041 -0.025 0.077 -0.006 0.027

50 100 0.436 1.660 -0.002 0.013 0.001 0.010 -0.010 0.046 -0.013 0.055 -0.001 0.023

100 100 0.301 0.987 0.000 0.009 0.001 0.006 -0.005 0.039 -0.009 0.055 -0.005 0.019

250 250 0.130 0.373 0.000 0.004 0.000 0.003 0.001 0.024 0.002 0.031 0.001 0.010

3.e
100 50 0.566 1.725 -0.002 0.013 0.001 0.010 0.007 0.226 -0.019 0.181 -0.011 0.025

50 100 0.471 1.669 -0.001 0.012 0.000 0.010 -0.019 0.225 -0.014 0.141 -0.005 0.022

100 100 0.323 0.991 0.000 0.009 0.001 0.006 -0.018 0.224 -0.020 0.112 -0.007 0.018

250 250 0.127 0.370 0.000 0.004 0.000 0.003 -0.005 0.142 0.003 0.068 0.001 0.010

Table 3: Simulation results for the Student’s t dynamic panel data models. We present the
average bias and in lower case the standard deviation of the parameter estimates resulting
from 100 repetitive estimates from different simulated data panels. Signal specifications 1.b,
2.b, 3.b and 3.e from Table 1 together with observation model (30) are used for simulation.
All parameters are estimated by procedures outlined in Section 4, with M = 500 draws from
importance densities g(ξ|yl; µ̂) and g(µ|ȳl; ξ̂), respectively.
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yi,t ∼ t(zi,t, σζ , ν) yi,t ∼ t(zi,t, σζ , 1000)
No Regressors Regressors No Regressors Regressors

ν 2.0079 0.0113 2.0120 0.031 1000∗ 1000∗

σζ 49.379 35.114 35.580 18.482 7.0814 0.0577 6.9203 0.0564

γ 0.1496 0.0099 0.1608 0.0097 0.1281 0.0113 0.1565 0.0112

δ 2.0344 0.2336 1.8442 0.2446 1.7763 0.3630 1.3862 0.9524

σµ 1.4177 0.0986 1.4510 0.0989 1.1416 0.1252 1.1674 0.1208

h 0.5187 0.1353 0.5377 0.1424 0.7069 0.1216 0.9053 0.0814

ση 0.7293 0.0914 0.7536 0.0937 0.7750 0.1314 0.7710 0.1367

β1 0∗ 0.2724 0.0496 0∗ 0.4526 0.0799

β2 0∗ -0.3211 0.0528 0∗ -0.2304 0.0842

β3 0∗ -0.9075 0.0669 0∗ -1.8623 0.1021

log p̂(y) -39615 -39504 -41832 -41655
AIC 79244 79028 83676 83328
BIC 79267 79060 83695 83357

Table 4: Parameter estimation results (and standard errors in lower case) for economic
growth rate application. The model for growth rate variables yi,t is determined by signal zi,t,
which is given by zi,t = yi,t−1γ + x′i,tβ + µi + ξt, µi ∼ NID(δ, σ2

µ), ξt = αt, αt = hαt−1 + ηt,
ηt ∼ N(0, ση) and α1 ∼ N(0, σ2

η/(1− h2)). The parameters are estimated for an unbalanced
panel consisting of 188 countries and a maximum of T = 56 time periods from 1952 until
2007. The estimation method is implemented as discussed in Section 4 and by using M = 500
draws from the importance samplers. Parameters β1, β2 and β3 measure the effects of the
investment ratio, the population growth rate and the level of GDP, respectively. The AIC
and BIC criteria are computed as; AIC = 2P − 2 log p̂(y) and BIC = P logN − 2 log p̂(y),
where P denotes the number of distinct parameters.

Group hj σjη
Western Europe 0.3017 0.1661 1.2960 0.17112

Eastern Europe 0.8343 0.1060 1.0664 0.23715

Middle East 0.8809 0.0689 0.9895 0.24986

Africa high 0.9464 0.0591 0.5102 0.14910

Africa low 0.9705 0.0310 0.5471 0.22568

US and related 0.5670 0.2322 0.9123 0.20921

South-America 0.7844 0.1262 0.9671 0.22091

East Asia 0.7518 0.2684 0.9801 0.37081

Rest of the world 0.9617 0.0454 0.4931 0.15495

Table 5: Estimated persistence and scaling parameters for the time-varying effects presented
in Figure 4.
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Figure 1: Importance sampling diagnostics for Student’s t dynamic panel data models,
based on 100, 000 simulations of weights w(i) defined in equation (15). The test statistic are
computed with (solid line) and without (dotted line) the use of antithetic variables. The
test statistics are presented for signals 1.b, 2.b, 3.b and 3.e from Table 1 and for different
panel sizes. For each combination we computed test statistics for different thresholds wmin,
by procedures explained in Section 5.2. Thresholds are based on the number of exceedence
values x1, . . . , xs included. We have taken 0.01 = s/100000, 0.025 = s/100000, 0.05 =
s/100000, until 0.5 = s/100000.
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Figure 2: Estimated time-varying effects and 95 % confidence bounds (dotted lines) for
economic growth data for the Student’s t (top panel) and Gaussian (lower panel) dynamic
panel data models. The effects are computed based on estimated parameters ψ̃ (given in
Table 4) for an unbalanced panel of 187 countries and a total of T = 56 time periods from
1952 until 2007. Further computational details are presented in Appendix C.
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Figure 3: Estimated country-specific effects for economic growth data for the Student’s t
dynamic panel data model (32). The top panel shows the estimated mean growth rates and
the bottom panel shows the state dependence variables. The random effects are computed
based on estimated parameters ψ̃ for an unbalanced panel of 187 countries and a total of
T = 56 time periods from 1952 until 2007. Further computational details are presented in
Appendix C. 51
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Figure 4: Estimated time-varying effects and 95 % confidence bounds (dotted lines) for
economic growth data for the Student’s t dynamic panel data models. The effects are
computed for an unbalanced panel of 187 countries and a total of T = 56 time periods from
1952 until 2007. Further computational details are presented in Appendix C. The effects are
computed for each group discussed in Appendix D.
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