
VU Research Portal

Knowledge Engineering Rediscovered: Towards Reasoning Patterns for the Semantic
Web
van Harmelen, F.A.H.; ten Teije, A.; Wache, H.

published in
Foundations for the Web of Information and Services - A Review of 20 Years of Semantic Web Research
2011

Link to publication in VU Research Portal

citation for published version (APA)
van Harmelen, F. A. H., ten Teije, A., & Wache, H. (2011). Knowledge Engineering Rediscovered: Towards
Reasoning Patterns for the Semantic Web. In D. Fensel (Ed.), Foundations for the Web of Information and
Services - A Review of 20 Years of Semantic Web Research (pp. 57-75). Springer Verlag.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 23. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303661339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.vu.nl/en/publications/7e9dd006-1607-47aa-8af8-896295057bdb

Knowledge Engineering rediscovered:
Towards Reasoning Patterns for the Semantic Web

Frank van Harmelen
Vrije Universiteit Amsterdam

Frank.van.Harmelen@cs.vu.nl

Annette ten Teije
Vrije Universiteit Amsterdam

annette@cs.vu.nl

Holger Wache
University of Applied Sciences

Northwestern Switzerland

holger.wache@fhnw.ch

ABSTRACT
The extensive work on Knowledge Engineering in the
1990s has resulted in a systematic analysis of task-types,
and the corresponding problem solving methods that
can be deployed for different types of tasks. That anal-
ysis was the basis for a sound and widely accepted
methodology for building knowledge-based systems, and
has made it is possible to build libraries of reusable
models, methods and code.

In this paper, we make a first attempt at a similar analy-
sis for Semantic Web applications. We will show that it
is possible to identify a relatively small number of task-
types, and that, somewhat surprisingly, a large set of
Semantic Web applications can be described in this ty-
pology. Secondly, we show that it is possible to decom-
pose these task-types into a small number of primitive
(“atomic”) inference steps. We give semi-formal defini-
tions for both the task-types and the primitive inference
steps that we identify. We substantiate our claim that
our task-types are sufficient to cover the vast majority
of Semantic Web applications by showing that all en-
tries of the Semantic Web Challenges of the last 3 years
can be classified in these task-types.

1. INTRODUCTION
1.1 Lessons from Knowledge Engineering
Starting with the seminal work by Clancy [4], research
in Knowledge Engineering has developed a theory of
generic types of tasks, which can be implemented by
a generic set of problem solving methods, decompos-
able into primitive inference steps. Examples of the
task types that were identified are diagnosis, design,
scheduling, etc. Via the problem solving methods (e.g.
a pruning method for the classification task) these tasks

Copyright ACM ...$5.00

could be decomposed into elementary inference steps
such as generate-candidate, specify-attribute,
obtain-feature, etc.

This work has lead to well-founded methodologies for
building knowledge-based systems out of reusable com-
ponents. The CommonKADS methodology [12] is per-
haps the best known of such methodologies, although
certainly not the only one. Another example is the
generic tasks approach by Chandrasekaran [3]. We will
use the terminology of the CommonKADS approach,
and will identify tasks and inferences in the context of
the semantic web.

This work in Knowledge Engineering originated from
a shared frustration about the lack of reusable compo-
nents for building knowledge-based systems. If “Knowl-
edge Engineering” was really “engineering”, where were
the reusable components, and why did every imple-
mentor have to start from scratch? The important in-
sight was to describe the tasks that Knowledge Based
Systems perform at a sufficiently abstract level, the
“Knowledge Level”, introduced by Newell in his 1980
AAAI presidential address [9], later in [10]. Once the
discussion moved from the implementation details on
the “symbol level” to the more abstract “knowledge
level”, it became possible to identify generic task-types,
reusable problem solving methods and reusable elemen-
tary inference steps. Since then, libraries of reusable
components have been published both in books (e.g.
[2]) and on websites (e.g. http://www.commonkads.
uva.nl), and are now in routine use.

As is well known from other branches of engineering,
reusable components help to both substantially increase
the quality of design and construction as well lowering
the costs by reusing tried-and-tested design patterns
and component implementations. Menzies [8] illustrates
the reuse benefits for reasoning patterns.

1.2 Applicable to Semantic Web engineering?
The above raises the question if similar lessons can be
applied to Semantic Web engineering. Can we identify
reusable patterns and components that can help design-
ers and implementers of Semantic Web applications?

It hardly needs arguing that work on the Semantic Web
has put great emphasis on the reusability of knowledge,
in the form of ontologies. It is fair to say that insights
about reusable knowledge elements have been at the
birthplace of the Semantic Web enterprise. The idea of
reusable ontologies has also been generalised into work
on reusable ontology patterns (e.g. [1, 7]).

However, all of this work deals with reusable knowledge
elements. There is little if any work on reusable rea-
soning patterns. This paper is a first attempt at finding
reusable reasoning patterns for SemWeb applications.

1.3 Structure of the paper
After discussing related work (section 2) and some for-
mal preliminaries (section 3), the paper is structured in
the following steps:

1. Identify typical task types and give semi-formal
definitions to characterise them (section 4.1);

2. Validate the task types by showing that a large
number of representative and realistic Semantic
Web applications can be classified into a limited
number of such task types (section 4.2);

3. Define primitive inference steps through
semi-formal definitions (section 5.1);

4. Validate the primitive inference steps: show
that the identified task types can be decomposed
into the given inference steps. (section 5.2).

If the above steps would succeed, this would be of great
value to Semantic Web application builders, leading to
the possibility of libraries of reusable design patterns
and component implementations. It would also con-
stitute an advance in our understanding of the land-
scape of Semantic Web applications, which has until
now mostly grown bottom up, driven by available tech-
nical and commercial opportunities, with little or no
theory-formation on different types of applications and
their relationships.

2. RELATED WORK
As described above, most if not all, work on reusability
for the Semantic Web has focussed on reusable knowl-
edge, to the exclusion of reusable reasoning patterns.
More or less the only exception that we are aware of is
the work by Oren [11, 5]. Although similar in approach
(they also survey the past years of Semantic Web Chal-
lenge entries to detect recurring patterns in these appli-
cations), their focus is rather different. In Knowledge
Engineering terms, they are focusing more on “sym-
bol level” issues such as architectural components, pro-
gramming language used and (de)centralisation of the
architecture, whereas we are interested in a “knowledge
level” analysis that is independent of implementation
details. The one element in Oren’s analysis that comes
closest to our goals is his “application type”, which has

a large overlap with our notion of “task types”. How-
ever, Oren then links these application types to required
architectural components (storage, user-interface, etc),
but does not link them into primitive reasoning steps,
which is the goal that we are pursuing.

[6] analyses 33 semantic search applications with a sim-
ilar aim to ours (discovering re-usable components) but
more limited than ours (considering only search appli-
cations), and not attempting any (semi-)formal defini-
tions.

From this brief analysis, we conclude that ours is the
first attempt at a systematic analysis of Semantic Web
reasoning patterns.

3. FORMAL PRELIMINARIES
We will use the terms terminology, ontology, class, con-
cept and instance as follows: a terminology is set of
class-definitions (a.k.a. concepts) organised in a sub-
sumption hierarchy; instances are members of such con-
cepts. Ontologies consist of terminologies and sets of
instances.

More formally we will consider an ontology O as a set
of triples 〈s, p, o〉, where ∈ and ⊆ are special cases of p.
In other words, we consider two specific predicates: ⊆
for the subsumption relation, and ∈ for the membership
relation. We use 〈c1,⊆, c2〉 to denote that a class c1 is
subsumed by a class c2. We use 〈i,∈, c〉 to denote that
an individual i is a member of a class c. A terminology
T is a set of triples whose predicate is the subsumption
⊆ only, and an instance set I is a set of triples which
predicate is the membership relation ∈ only. T resp.
I can be extracted from ontology O with the function
T (O) resp. I(O). An ontology is the union of its ter-
minology, its instance set, and possibly triples 〈s, p, o〉
using other relations p: O ⊇ T ∪I. We will overload the
∈ notation and also use it to denote that a triple is a
member of a set (as in: 〈s, p, o〉 ∈ O). We do not assume
that triple-sets are deductively closed. We will use ` to
denote that a triple can be derived from a set (as in:
O ` 〈s, p, o〉), using some appropriate semantics (e.g.
RDF Schema or OWL DL derivations). O∗ contains
all triples 〈s, p, o〉 which can be derived from O. Please
note that O∗ contains O and may be infinite. We will
use lower case letters c, i for a single concept or instance,
and uppercase letters C, I for concepts sets containing
〈ci,⊆, cj〉 or instance sets containing 〈i,∈, ck〉. We will
often use the terms “ontologies” and “knowledge” as
interchangeable.

4. TASK TYPES
In this section we will first (section 4.1) identify a lim-
ited number of general task types and give semi-formal
definitions for each of them. Notice that these tasks are
identified for the semantic web application in the same
way that the tasks of the CommonKADS framework

(like diagnosis etc.) are meant for knoweldge based sys-
tems. The selection of the tasks represents the most
prominent ones which can be found in current semantic
web application; the selection is not intented to be com-
plete. For each of these task types, we give the most
common definition of that task, although we show in
places that variations in these definitions are possible.
Subsequently (section 4.2) we will show how a repre-
sentative set of Semantic Web applications can all be
understood as instances of this small set of task types.

4.1 Defining Semantic Web task types
We will characterise seven different task types. For each
of them, we will give an informal description, the signa-
ture (types of their input and output parameters), and
a semi-formal definition of the functionality (relation
between input and output).

Search:
Perhaps the most prototypical Semantic Web applica-
tion is search, motivated by the low precision of current
search engines. Traditional search engines take as their
inputs a query (usually in the form of a set of keywords)
plus data-set of instances (usually a very large set of
web-pages), and return a subset of those instances. A
Semantic Web search engine would take a query in the
form of a concept description, this concept description
would be matched against an ontology (ie. a terminol-
ogy used to organise an instance set), and members of
the instance-set matching the query-concept would be
returned. Hence, search is a mapping which maps a
given concept c and ontology O to a set of instances
I ′ ⊆ I(O):

Search: c×O 7→ I ′

input request: a concept c
input knowledge: an ontology O, hence consisting of

a terminology T (O) (a set of 〈ci,⊆, cj〉), and an
instance set I(O) (set of 〈i,∈, ck〉).

answer: search(c, O) returns an instance set such that:

search(c, O) = {〈i,∈, c〉|∃cj : 〈cj ,⊆, c〉 ∈ T (O)∧
〈i,∈, cj〉 ∈ I(O)) }

In other words: search(c, O) returns all instances i that
are known to be members of subconcepts of c (and hence
are members of c as well).

Notice that this definition only returns instances of con-
cepts cj that are known to be a subconcept of c (since
we demanded 〈cj ,⊆, c〉 ∈ T (O)). An alternative defini-
tion would be to allow the use of deductive machinery
to derive the subconcepts of c:

search(c, O) = {〈i,∈, c〉|∃cj : O ` 〈cj ,⊆, c〉∧
O ` 〈i,∈, cj〉 }

Instead of O ` 〈cj ,⊆, c〉 (resp. O ` 〈i,∈, cj〉) we can

write 〈cj ,⊆, c〉 ∈ T (O∗) (resp. 〈i,∈, cj〉 ∈ I(O∗)).

Browse:
Browsing is very similar to searching (and often men-
tioned in the same breadth), but has as crucial differ-
ence that its output can either be a set of instances (as
in search), or a set of concepts, that can be used for
repeating the same action (ie. further browsing).

Thus, browse is a mapping which maps a given concept
c and ontology O to a set of instances I ′ plus a set of
concepts C:

Browse: c×O 7→ I ′ × C

input request: a concept c
input knowledge: an ontology O consisting of a ter-

minology T (O) and an instance set I(O)
answer: browse(c, O) returns a set of instances and a

set of concepts such that:

browse(c, O) = search(c, O)×
{〈cj ,⊆, c〉|〈cj ,⊆, c〉 ∈ T (O) ∧ ¬∆(cj , c, O)}∪
{〈c,⊆, cj〉|〈c,⊆, cj〉 ∈ T (O) ∧ ¬∆(c, cj , O)}

with ∆(cj , c, O)↔ ∃ck : 〈ck,⊆, c〉 ∈ T (O)∧
〈cj ,⊆, ck〉 ∈ T (O)

Besides instances that a user might be interested in
(based on the given input concept c), this returns the
immediate neighbourhood of c (immediate sub- and su-
perconcepts of c known in T), to be used for repeated
browsing by the user. As with search, alternative defi-
nitions are possible by returning a wider neighbourhood
for c, consisting also of indirect sub- and super-concepts,
or by deducing a neighbourhood of c instead of being
limited to the explicitly known neighbourhood (using `
instead of ∈).

Data integration:
The goal of data-integration is to take multiple instance
sets, each organised in their own terminology, and to
construct a single, merged instance set, organised in a
single, merged terminology. Hence, data integration is
a mapping which maps a set of ontologies to a (new)
ontology.

Integrate: {O1, . . . , On} 7→ O′

input request: multiple ontologies Oi with their ter-
minologies Ti = T (Oi) and their instance sets
Ii = I(Oi).

answer: a single ontology O′ with terminology T ′ and
instance set I ′

integrate({O1, .., On}) = O′

such that I ′ =
⋃

Ii and T ′ ⊇
⋃

Ti

It is difficult to give a more specific I/O-condition to

characterise data-integration. Typically (but not al-
ways), all input instances are part of the output (I ′ =
∪Ii), and typically (but not always), the output ter-
minology consists of all the input terminologies (T ′ ⊇
∪Ti), enriched with relationships between elements of
the different Ti, such as 〈ci,⊆, cj〉,
〈ci, sameAs, cj〉 or other relationships.

Personalisation and recommending:
Personalisation consists of taking a (typically very large)
data set plus a personal profile, and returning a (typi-
cally much smaller) data set based on this user profile.
The profile which characterises the interests of the user
can be in the form of a set of concepts, or a set of in-
stances. For instance typical recommender services at
on-line shops use previously bought items, which are
instances, while news-casting sites typically use general
categories of interest, which are concepts.

personalise : Idata × Iprofile ×O 7→ Iselection

or
personalise : Idata × Cprofile ×O 7→ Iselection

Personalise: Idata × Cprofile ×O 7→ Iselection

input request: an instance set Idata of triples 〈i,∈, cj〉
and a profile characterised as either a set of in-
stances Iprofile or a set of concepts Cprofile.

input knowledge: an ontology O
answer: a reduced instance set Iselection with

personalise(Idata, Cprofile, O) =
{〈i,∈, c′〉|∃c : i ∈ Idata ∧ c ∈ Cprofile∧

O ` 〈c′,∼, c〉 ∧ 〈i,∈, c′〉 ∈ I(O)}

That is, personalisation returns instances that are mem-
bers of concepts which are in some way related to the
target concept(s) through some relevant relation ∼. In-
terestingly, if we take ∼ to be ⊆, this becomes essen-
tially equivalent to our above definition of search. In
general, one could also return instances that are “al-
most” members of the profile-concepts (ie. they are in-
stances of concepts that are not subsumed by but closely
related to the target concepts).

Web-service selection:
Rather than only searching for static material such as
text and images, the aim of semantic web services is
to allow searching for active components, using seman-
tic descriptions of web-services. We can then regard a
concept c as the description of some web-service func-
tionality, and an instance i as a particular web-service.
Membership i ∈ c is then interpreted as “service i imple-
ments specification c”, and ci ⊆ cj as “specification ci is
a specialisation of specification cj” (and consequently,
every service i that implements specification ci also im-
plements specification cj). Just for mnemonic reasons,
we will use f for functionality instead of c, and s for

service instead of i, and similarly S for a set of services
instead of I.

At the level of the signature, the characterisation of this
task is the same as that of general search:

Service selection: f ×O 7→ S′

input request: required functionality f
input knowledge: an ontology O containing a set of

candidate services S(O) and a hierarchy of service
specifications T (O).

answer: members of the candidate set whose specifica-
tion satisfies the required functionality:

service selection(f, O) =
{〈s,∈, f〉|∃fj : 〈fj ,⊆, f〉 ∈ T (O)∧

〈s,∈, fj〉 ∈ S(O) }

The difference with search is of course that the query
describes functionality (rather than content), and the
candidate set consists of services. In general, this will
make the membership relation ∈ and the containment
relation ⊆ much harder to compute than in the case
of search (where we deal with static data instead). Of
course, the different variations that we gave for the def-
inition of search (e.g with or without deduction) can be
applied here as well.

Web-service composition:
An even more ambitious goal than web-service selection
is to compose a given number of candidate services into
a single composite service with a specific functionality.
The input of web-service composition is the same as
for the selection of a single web-service above, but the
output can now be an arbitrary control flow over a set
of web-services. We will informally denote such a flow
with FLOW without further specifying this. This then
results in a similar specification as search:

Service composition: f ×O 7→ FLOW

input request: required functionality f
input knowledge: an ontology O with set of candi-

date services S(O) and a hierarchy of service spec-
ifications T (O).

answer: members of the candidate set whose com-
pound specification FLOW satisfies the required
functionality:

compose(f, O) = FLOW
such that T (O) ` 〈FLOW,∈, f〉, and 〈s,∈, 〉 ∈ S(O)
for each service s occurring in FLOW

ie. the hierarchy of specifications in T (O) allows us to
infer that the computed FLOW satisfies the required
functionality, and FLOW must be composed of services
taken from S(O).

Semantic Enrichment
This task type is concerned with annotating objects,
such as images or documents, with meta-data. Such
added meta-data can be used by task types like search
or browse to increase the quality of their answers. It
maps a single instance i to a set of triples about that
instance:

Semantic enrichment: i 7→ I

input request: an instance i to be enriched
answer: a set of triples I = {〈s, p, o〉|s = i} that all

have i as their subject.

Notice that we have allowed here triples with other
relation-symbols besides ∈ or ⊆, allowing for other, do-
main specific, properties.

4.2 Validating the task types
Of course the key question at this point is: how reusable
is the above set of task types? Can most Semantic
Web applications be described in terms of these task
types? Is this small set of seven task-types sufficient, or
will we end up inventing new task types for every new
application (hence defeating the goal of reusability)?1

In order to measure the completeness and reusability of
our list of task types, we have analysed all entries to the
Semantic Web Challenge events of the years 2005, 2006
and 2007 to see if they could be properly described with
our task types. As is well known, the “Semantic Web
Challenge”2 is an annual event that stimulates R&D by
showing the state-of-the-art in Semantic Web applica-
tions every year. It gives researchers an opportunity to
showcase their work and to compare it to others. Since
the competition is very unconstrained, and allows sub-
missions of a large variety of Semantic Web applica-
tions, we claim that the collected entries over a num-
ber of years together provide a representative sample
of state of the art Semantic Web applications, and are
hence a suitable data-set for verifying the completeness
and reusability of our list of task types. It is notewor-
thy that in his independent analysis, Oren [11, 5] also
turned to the entries in the Semantic Web Challenge as
a valid dataset.

Figure 3 shows the results of our analysis. It covers all
entries to the 2005, 2006 and 2007 competitions with
the exception of a small number of applications about
which we could not obtain any information, and a single
application for which we were not able to understand
the functionality. The analysis in figure 3 leads us to
the following main observations:

• All but one of the applications could be classified in
1Please note we do not intgend to present a complte list of
tasks but a mots prominent one.
2http://challenge.semanticweb.org/

terms of our task-types. The single missing application
(SMART, from 2007) can best be described as perform-
ing “question answering”. This would indeed be a valid
(and reusable) expansion of our list of task-types, but
we were unable to come up with a reasonably formal
definition of this task-type.
• Often, a single application belongs to multiple task
types. See for instance the prize winning e-culture ap-
plication ”MultimediaN” that performs a combination
of searching, browsing, and semantic enrichment. This
phenomenon is well known from Knowledge Engineer-
ing, where a single system also often performs multiple
tasks (e.g. first diagnosis, then planning a treatment).
Notice that Search and browse are often occur together
in an application.
• It is noticeable that the combined 2005-2007 Chal-
lenges do not contain a single submission that can be
described as web-service selection. This raises some
doubts as to the necessity of this task type. At the
same time, there were some (although few) entries that
could be properly described as web-service composition.

Taken altogether, we interpret these findings as support
for the reasonable completeness and reusability of the
task-types that we defined in section 4.1

5. PRIMITIVE INFERENCES
In this section we will define a number of primitive in-
ference steps, and we will show that each of the task
types identified before can be decomposed into a lim-
ited number of primitive inference steps.

The qualification “primitive” needs perhaps some ex-
planation. Just as in the CommonKADS methodology,
we interpret the term “primitive” to mean that from the
application builder’s point of view, it is not interesting
to further decompose this step, ie. application builders
would typically regard such a step as atomic. Of course
this is not a hard criterion: sometimes it might be use-
ful to further decompose such a step, e.g. for optimi-
sation reasons. Also, what is a primitive, elementary,
atomic component for an application builder might well
be a highly non-elementary, non-atomic and very com-
plex operation to implement. And indeed, many of the
primitive inference steps that we define below have been
subject to many years of research and development.
Thus, “primitive” should not be read as “simple”. It
only means that this step will typically be regarded as
atomic by application builders.

5.1 Defining primitive inference steps
In this section we define a small number of primitive
inference steps for Semantic Web applications. We give
a semi-formal definition of these primitive inferences,
including their signature.

Realisation determines which concepts a given instance

task types primitive inference steps
realisation subsumption & mapping retrieval

classification
search x x
browse x x x
data integration x x x
personalisation x x x
service selection x x
service composition x
semantic enrichment

Figure 1: task types in terms of primitive inference steps.

C

T

I

Classify Subconcepts

Retrieve

Instances

Iprofile

T

Idata

realise concepts

Retrieve

Instances

classify subconcepts

(a) Search (b) Personalisation

Figure 2: Inference structures for the task types search and personalisation

is a member:
• Signature: i×O 7→ c
• Definition: Find a c such that O ` i ∈ c

Subsumption determines whether one concept is a
subset of another:
• Signature: c1 × c2 ×O 7→ bool
• Definition: Determine whether O ` c1 v c2

Mapping finds a correspondence relation between two
concepts defined in the ontolgy O.3 We follow the com-
mon approach, where the correspondence relation can
be either equivalence, subsumption or disjointness:
• Signature: c1 × c2 ×O 7→ {=,v,w,⊥}
•Definition: find an r ∈ {=,v,w,⊥} such that c1 r c2

Retrieval is the inverse of realisation: determining
which instances belong the given concept:
• Signature: c×O 7→ i
• Definition: find i such that i ∈ c

Classification determines where a given class should
be placed in a subsumption hierarchy:
• Signature: c×O 7→ (cl, ch)
• Definition: Find a highest subclass cl and a lowest
superclass sh such that O ` cl v c v ch

Our choice of these five primitive inference steps is not
the only choice possible. For instance, both classifica-
tion and mapping can be reduced to repeated subsump-

3The ontology O may be the union — not merger — of
several ontologies.

tion checks, and are hence not strictly speaking required
as separate inferences. Similarly, it is well known that
subsumption in turn can be reduced to satisfiability.
However, we have chosen the above five as primitive
inference steps because they seem to constitute a con-
ceptually coherent (although not formally minimal) set.

5.2 Decomposing the task types to primitive
inferences

The table in figure 1 shows how each of the task-types
from section 4.1 can be decomposed into the primitive
inferences described in section 5.1. (In the table, classi-
fication and subsumption have been merged in a single
column since the former is the iterated version of the
latter).

We lack the space to discuss all of these decompositions
in detail, and will discuss only two examples:

Search: the description of the search task-type in sec-
tion 4.1 shows that it is a combination of classification
(to locate the query-concept in the ontology in order to
find its direct sub- or super-concepts) followed by re-
trieval (to determine the instances of those concepts,
which form the answers to the query).
Personalisation: If the personal profile in the per-
sonalisation task-type consists of a set of instances (e.g.
previously bought items), then personalisation is a com-
position of realisation (to obtain the concepts that de-
scribe these instances), classification (to find closely re-
lated concepts), and retrieval (to obtain instances of
such related concepts, since these instances might be of

interest to the user).

In a similar way, all of the prototypical task-types we
described in section 4.1 can be implemented in terms
of the small set of primitive inference steps described
in this section, resulting in the decomposition shown in
figure 1.

Notice that the table in figure 1 only displays the min-
imally required reasoning tasks for each task-type. For
example, it is well possible to equip the search task with
a mapping component in order to map the vocabulary
of a user-query to the vocabulary of the ontology used
during search. Similar additions could have been made
for many other task-types.

Notice too that semantic enrichment can not be defined
based on these reasoning tasks. The reason for this is
that usually in reasoning the input facts are assumed
to be given, while semantic enrichment deals with con-
structing these input facts. Hence, semantic enrichment
cannot be seen in terms of inference steps, but it is the
only task type in our list that suffers from not being
decomposable into a combination of primitive inference
steps.

The CommonKADS method [12] uses the notion of an
inference structure to graphically depict the decomposi-
tion of a task into primitive inference steps, by showing
the data-dependencies between the primitive inference
steps that together make up a task. In figure 2, we show
the inference structures for the Search and Personalisa-
tion task-types using the decomposition into primitive
inference steps given above. This is what we consider as
the reasoning patterns. Also, figure 2 shows the struc-
tural similarity between Search and Personalisation: it
makes clear that Personalisation is essentially Search,
but preceeded by a realisation-step to map instances to
the concepts to which they belong.

6. CONCLUDING REMARKS
The main contribution of this paper has been to provide
a first attempt at providing a typology of semantic web
applications. We defined a small number of prototyp-
ical task-types, and somewhat surprisingly, almost all
entries to three years of Semantic Web Challenge com-
petitions can be classified into these task-types. We
also showed how each of these prototypical task-types
can be decomposed into a small number of primitive
inference steps. This results in the following reusable
components: the identified tasks, the inferences and the
decomposition of task into inferences (the so-called rea-
soning patterns). Analogously to established practice
in Knowledge Engineering, these results provide a first
step towards a methodology for building semantic web
applications out of reusable components.

We regard this work indeed as first steps towards this

goal. We would expect the typology of task-types to
grow beyond the current set of seven to cover a larger
corpus of semantic web applications. Also, the details
of our semi-formal definitions and our decompositions
may well have to be adjusted over time. Nevertheless,
such refinements would leave unaltered the general aim
of our proposal, namely that a more structured, ab-
stract and implementation independent analysis of the
semantic web applications “at the knowledge level” will
be necessary if we are to rise beyond the current ad hoc
practices.

7. REFERENCES
[1] E. Blomqvist and K. Sandkuhl. Patterns in

ontology engineering: Classification of ontology
patterns. In C. C. et al., editor, ICEIS (3), pages
413–416, 2005.

[2] J. Breuker and W. van de Velde. Common KADS
Library for Expertise Modelling. IOS Press, 1994.

[3] T. Bylander and B. Chandrasekaran. Generic
tasks for knowledge-based reasoning: The ”right”
level of abstraction for knowledge acquisition. Int.
J. of Man-Machine Studies, 26(2):231–243, 1987.

[4] W. J. Clancey. Heuristic classification. Artif.
Intell., 27(3):289–350, 1985.

[5] B. Heitmann and E. Oren. A survey of semantic
web applications. Technical report, DERI,
Galway, 2007.

[6] M. Hildebrand, J. R. van Ossenbruggen, and
L. Hardman. An Analysis Of Search-Based User
Interaction On The Semantic Web. Technical
Report INS-E0706, CWI, Amsterdam, 2007.

[7] L. Lefort, K. Taylor, and D. Ratcliffe. Towards
scalable ontology engineering patterns. In AOW
’06: 2nd Australasian workshop on Advances in
ontologies, pages 31–40, 2006.

[8] T. Menzies. Object-oriented patterns: lessons
from expert systems. Softw. Pract. Exper.,
27(12):1457–1478, 1997.

[9] A. Newell. The knowledge level (presidential
address). AI Magazine, 2(2):1–20, 33, 1980.

[10] A. Newell. Reflections on the knowledge level.
Artif. Intell., 59(1-2):31–38, 1993.

[11] E. Oren. Algorithms and Components for
Application Development on the Semantic Web.
PhD thesis, Nat. Univ. of Ireland, Galway 2007.

[12] G. Schreiber, H. Akkermans, A. Anjewierden,
R. de Hoog, N. Shadbolt, W. V. de Velde, and
B. Wielinga. Knowledge Engineering and
Management: The CommonKADS Methodology.
ISBN 0262193000. MIT Press, 2000.

Application Task Types
search browse data Personal- service service semantic

integr. ization select. compos. enrichment
CONFOTO (’05) x x
DynamicView (’05) x x
FungalWeb (’05) x x
Oyster (’05) x
Personal Reader (’05) x x x
Service Execution (’05) x
COHSE (’06) x x x
Collimator (’06) x
Dartgrid (’06) x x
Dbin (’06) x x
EKOSS (’06) x
eMerges (’06) x
Falcon-S (’06) x x
Foafing the Music (’06) x
Geo Services (’06) x
MultimediaN (’06) x x x
Paperpuppy (’06) x
Semantic Wiki (’06) x
ArnetMiner (’07) x x x
Cantabria (’07) x x x
CHIP (’07) x x
DORIS (’07) x x
EachWiki (’07) x
GroupMe (’07) x
iFanzy (’07) x x x
Int.ere.st (’07) x
JeromeDL(’07) x x
MediaWatch (’07) x x x
mle (’07) x x
Notitio.us (’07) x x
Potluck (’07) x x
Revyu (’07) x x
RKB Explorer (’07) x
SemClip (’07) x
SMART (’07)
swse (’07) x x
wwwatch (’07) x x

Figure 3: Classification of Semantic Web Challenge in our task-types.

