

VU Research Portal

Factor analysis of the scale of prodromal symptoms: Differentiating between negative and depression symptoms.

Klaassen, R.M.; Velthorst, E.; Nieman, D.H.; de Haan, L.; Becker, H.E.; Dingemans, P.M.; van de Fliert, J.R.; van der Gaag, M.; Linszen, D.

published in Psychopathology 2011

DOI (link to publisher) 10.1159/000325169

document version Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

Klaassen, R. M., Velthorst, E., Nieman, D. H., de Haan, L., Becker, H. E., Dingemans, P. M., van de Fliert, J. R., van der Gaag, M., & Linszen, D. (2011). Factor analysis of the scale of prodromal symptoms: Differentiating between negative and depression symptoms. Psychopathology, 44(6), 379-385. https://doi.org/10.1159/000325169

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address: vuresearchportal.ub@vu.nl

Psychoneuroendocrinology (2011) xxx, xxx-xxx

REVIEW

Adulthood trauma and HPA-axis functioning in healthy subjects and PTSD patients: A meta-analysis

Ellen R. Klaassens^{a,*}, Erik J. Giltay^a, Pim Cuijpers^b, Tineke van Veen^a, Frans G. Zitman^a

^a Department of Psychiatry, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands ^b Department of Clinical Psychology, VU University Amsterdam, Van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands

Received 19 September 2010; received in revised form 3 July 2011; accepted 3 July 2011

KEYWORDS

Meta-analysis; Trauma; Cortisol; PTSD; Adult; HPA-axis

Summary

Background: Hypothalamic—pituitary—adrenal (HPA)-axis dysregulation has inconsistently been associated with posttraumatic stress disorder (PTSD). Yet, trauma exposure rather than PTSD may be responsible for HPA-axis dysregulation. In two meta-analyses, we assessed the association of adulthood trauma exposure and HPA-axis functioning in healthy subjects with and without PTSD. *Method:* A literature search in Pubmed and PsychInfo, using keywords and MeSH terms such as cortisol, emotional trauma, and PTSD, was performed. Only studies that included mentally healthy trauma-exposed (TE) individuals as well as non-exposed (NE) healthy individuals and/or PTSD patients (PTSD) were selected. This resulted in 1511 studies of which ultimately, 37 studies (21 TE versus NE and 34 TE versus PTSD, N = 2468) were included. Methodological quality of all studies was assessed according to specific quality criteria. Pooled effect sizes (Hedges's g) on cortisol levels were compared. For all analyses, random effect models were used. *Results:* Cortisol levels were neither significantly different between TE versus NE subjects (-0.029; 95%CI: -0.145; 0.088) nor between TE subjects versus PTSD patients (0.175; 95%CI: -0.012; -0.362). Subgroup analyses showed an increased cortisol suppression after the low dose dexamethasone suppression test (DST) in TE versus NE subjects (-0.509; 95%CI: -0.871; -0.148).

dexamethasone suppression test (DST) in TE versus NE subjects (-0.509; 95%CI: -0.871; -0.148). This meta-analysis was limited by the fact that lifetime psychiatric illness and childhood trauma were not an exclusion criterion in all 37 studies.

Conclusion: Neither adulthood trauma exposure nor PTSD were associated with differences in HPA-axis functioning, although adulthood trauma may augment cortisol suppression after the DST. More evidence on other dynamic tests of HPA-axis functioning in PTSD and adulthood trauma exposure is needed.

© 2011 Elsevier Ltd. All rights reserved.

* Corresponding author at: Department of Psychiatry, Leiden University Medical Center (LUMC), Albinusdreef 2, PO Box 9600, 2300 RC Leiden, The Netherlands. Tel.: +31 71 5263785; fax: +31 71 5248156.

E-mail address: E.R.Klaassens@lumc.nl (E.R. Klaassens).

0306-4530/\$ — see front matter 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.psyneuen.2011.07.003

Contents

Introduction	000
Methods and materials	000
Identification of studies	000
In- and exclusion criteria	000
	000
Data analysis and power calculation.	000
	000
	000
Results	000
Search and inclusion	000
Study characteristics	000
TE subjects versus NE control subjects	000
	000
	000
Discussion	000
	000
	000
	000
Conflict of interest	000
	000
References	000

Introduction

Trauma exposure, often involving a threat to life or the prospect of serious injury, may increase the vulnerability to the development of many psychiatric disorders, which is most evident in posttraumatic stress disorder (PTSD). In patients with PTSD, neurobiological alterations of the HPA-axis have been found. In 1986, Mason et al. were the first to describe low urinary cortisol levels in patients with PTSD. In a subsequent study, the same research group replicated the results (Yehuda et al., 1990). They concluded that these findings suggest a physiological adaptation of the HPA-axis to chronic stress. Since then, many studies on cortisol under basal and challenged conditions in patients with PTSD have reported alterations in hypothalamic—pituitary—adrenal (HPA)-axis functioning in patients with this disorder.

Several techniques are currently in use to assess HPA-axis functioning. Cortisol is secreted with a pulsatory diurnal rhythm, with a peak (average increase of 50%) approximately 30 min after awakening, and a progressive decline during the day. Cortisol levels under basal conditions mainly reflect adrenal functioning, and may be assessed in several bodily fluids such as saliva, blood (serum or plasma) and urine. Several challenge paradigms targeting the HPA-axis at different levels are also used frequently. The low dose dexamethasone suppression test (DST) is the most widely used challenge test in neurobiological stress research. Ingestion of 0.5 mg of dexamethasone at 23.00 h on the night before the test day leads to downregulation of the HPA-axis due to feedback inhibition and induces a modest suppression of the HPA-axis, enabling differentiation between normal, enhanced suppression, and non-suppression. By collecting cortisol samples before and after dexamethasone administration, the feedback effects of dexamethasone on the HPAaxis can be calculated. In psychiatric populations, the DST was first used in patients with major depressive disorder (MDD), who showed non-suppression of cortisol in response to dexamethasone (Carroll et al., 1976). Enhanced suppression of cortisol is reported in patients with PTSD (Yehuda et al., 1993, 1995a, 2004b) but also in trauma-exposed veterans without PTSD (de Kloet et al., 2007). A potentially more sensitive measure to study negative feedback regulation of the HPA-axis is the combined dexamethasone/corticotropin-releasing hormone (Dex/CRH) test, originally developed by Holsboer et al. (1987). The Dex/CRH has been reported to differentiate between patients with MDD and healthy controls and it has therefore been argued that the Dex/CRH test can unveil more subtle HPA-axis disturbances. Psychological stress challenges, such as the Trier Social Stress Test (TSST) have also been used to study HPA-axis functioning in relation to trauma-exposure. Most studies that used nonpharmacological stress challenges, however, focused on childhood trauma exposure (Heim et al., 2000; Elzinga et al., 2003, 2008; Carpenter et al., 2007), whereas only a few involved adulthood trauma (Liberzon et al., 1999; Bremner et al., 2003).

Since Mason et al. (1986), many studies on cortisol under basal and challenged conditions in patients with PTSD have reported alterations in hypothalamic—pituitary—adrenal (HPA)-axis functioning in patients with this disorder. However, the results are not consistent. Some studies reported lower cortisol levels in PTSD patients compared to a nonclinical sample (Rohleder et al., 2004; Neylan et al., 2005; Yehuda et al., 2005b; Wessa et al., 2006; de Kloet et al., 2007), whereas other studies reported higher cortisol levels in patients with PTSD (Lindley et al., 2004; Inslicht et al., 2006). Interestingly, military veterans with PTSD showed lower levels of cortisol in the first hour after awakening compared to non-trauma-exposed (NE) civilian controls. However, compared to a control group with a history of

Adulthood trauma and HPA-axis functioning in healthy subjects and PTSD patients: A meta-analysis

deployment related trauma exposure (e.g., being shot at, ambushed or taken hostage, seeing others being killed or injured, and witnessing human suffering during military operations, such as combat or peace-enforcement operations), no differences in cortisol concentrations were reported (de Kloet et al., 2007).

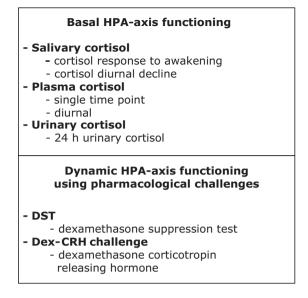
There may be several explanations for the mixed results that have been reported. First, different HPA-axis outcome measures reflect different HPA-axis mechanisms; basal functioning (Rohleder et al., 2004; Golier et al., 2006, 2007; de Kloet et al., 2007; Gill et al., 2008; Klaassens et al., 2010a,b) versus various dynamic tests (Yehuda et al., 2002; de Kloet et al., 2007; Klaassens et al., 2010a,b) of HPA-axis reactivity have been used. Second, different types of trauma (e.g., combat, Holocaust, other) are involved (Yehuda et al., 1995a; Boscarino, 1996; Bonne et al., 2003; Seedat et al., 2003; Griffin et al., 2005; Inslicht et al., 2006; Klaassens et al., 2010a,b). Third, long term effects of early life trauma (or early developmental stage) (Heim et al., 2000; Meinlschmidt and Heim, 2005: Carpenter et al., 2007: Tyrka et al., 2008) may have a different effect on HPA-axis function in adult life than trauma exposure during adulthood. Evidence from studies in rodents and non-human primates have shown that maternal separation and other trauma exposures early in life induced persistent changes in the set-point of the HPAaxis in such a way that there is an altered biological and behavioural reactivity to stress in later life; these longlasting effects seemed stronger than upon trauma exposure during adulthood (Sanchez et al., 2001; Tarullo and Gunnar, 2006).

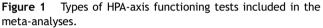
Finally, in many studies healthy subjects with and without a history of trauma exposure are brought together in a single control group, often without making a distinction between them (Smith et al., 1989; Lecrubier et al., 1997; Yehuda et al., 2004a, 2007; Lindley et al., 2004; Golier et al., 2006). Therefore, the effect, if any, of trauma exposure in the absence of psychopathology on HPA-axis functioning, is currently unclear. The few studies that included separate trauma-exposed (TE) and non-exposed (NE) control groups reported conflicting results. Some studies found HPA-axis alterations after trauma irrespective of the presence of psychopathology (de Kloet et al., 2007; Klaassens et al., 2009, 2010b), whereas other studies reported HPA-axis dysregulation after trauma only in relation to PTSD (Yehuda et al., 2002; Griffin et al., 2005; Wessa et al., 2006).

In this paper, we present meta-analyses of studies on the relationship between adulthood trauma, HPA-axis functioning and PTSD. Because the impact on HPA-axis functioning may be different for adulthood versus childhood trauma exposure, and because many groups of people are at risk for trauma exposure during adulthood (e.g., military personnel, police officers, fire-fighters, rescue workers, health care workers), we focussed on adulthood trauma in non-clinical and PTSD samples. In addition, basal HPA-axis functioning as well as dynamic tests of the HPA-axis were analyzed. We carried out two meta-analyses: in our first meta-analysis we examined the association of trauma exposure during adulthood and HPA-axis functioning in healthy subjects without psychiatric disorders (TE) and compared them with healthy subjects without a history of trauma exposure (NE). In our second meta-analysis we examined whether these traumaexposed individuals without psychiatric disorders differed from PTSD patients. Our aim was to establish whether trauma exposure during adulthood is associated with HPA-axis dys-regulation in the absence and presence of PTSD.

Methods and materials

First, relevant studies were identified and selected according to specific in- and exclusion criteria. After selection of the studies, methodological quality of the studies was assessed according to eight quality criteria.


Identification of studies


To identify relevant studies published in the English language, a systematic computerized literature search in the databases of PubMed and Psychinfo was performed from the earliest available date up to January 2010. The following (key)words and MeSH terms, including combinations, were used: 'post-traumatic stress disorder', 'PTSD', 'hydrocortisone', 'cortisol', 'dexamethasone', 'HPA-axis', 'life change events', 'psychological stress', 'emotional trauma', 'combat disorders', and 'veterans', with limitations set on 'humans' and 'adults'. In addition, reference lists of the selected articles were checked for further relevant publications, as were reference lists of other relevant meta-analyses and reviews (Burke et al., 2005; Otte et al., 2005; de Kloet et al., 2006; Meewisse et al., 2007; Chida and Steptoe, 2009; Handwerger, 2009). To be selected, studies had to include a group of TE subjects. In addition, the studies had to assess either a group of NE controls, to facilitate comparisons between TE and NE subjects, or a group of PTSD patients in order to facilitate comparisons between TE subjects and PTSD patients. Needless to say, studies that assessed all three groups were included in the meta-analyses as well. Studies that only included PTSD patients and NE subjects were excluded. The selection process consisted of three phases. At first, the inclusion criteria were applied to the citations generated from the searches by the first author (EK). During the next phase, titles identified as potentially relevant, were requested in full text papers and closely read by EK who also made the second selection. In the third phase, all studies that were potentially eligible for the meta-analysis (n = 150) were assessed independently by EK, EG and/or TV. In case of inconsistencies on a study, it was openly discussed until consensus was reached.

In- and exclusion criteria

Only published case—control studies on humans exposed to trauma during adulthood, written in the English language were eligible. Studies were included when (a) the design included a TE group as well as a NE group and/or a group of PTSD patients; (b) the HPA-axis outcome measures were either salivary, plasma, or 24-h urinary cortisol; (c) the HPA-axis measurement included either basal assessment, characteristics of the diurnal variation of cortisol, the DST, or reactivity after the Dex/CRH test or a psychological challenge test (Figure 1); (d) mean cortisol levels and standard deviations (SD), standard error (SE) or confidence interval (CI), *p*-values or other statistics for the groups were described; (e) patients had current PTSD, established with

E.R. Klaassens et al.

a DSM-based diagnostic interview (studies using merely a measure of symptom severity were not included); (f) at least two studies on the same type of HPA-axis assessment were present; (g) TE and NE subjects were without current psychiatric disorder as assessed with a DSM-III or IV (semi-)structured interview (e.g., Structured Clinical Interview for DSM-IV Axis I Disorders [SCID-I], Mini-International Neuropsychiatric Interview [M.I.N.I.] or Composite International Diagnostic Interview [CIDI]). Two studies (Lauc et al., 2004; Gill et al., 2008) did only assess the absence of current PTSD and MDD, the latter using the Clinician Administered PTSD Scale (CAPS; Blake et al., 1995). Nonetheless, they were included in the meta-analysis. One of these studies had an overall quality score that was suboptimal (Lauc et al., 2004). In case of studies fulfilling all inclusion criteria and reporting data on overlapping cohorts, the study with the largest sample size was included (n = 2) (Yehuda et al., 1995b; Golier et al., 2007). When sample sizes were equal, the study with the most complete information was included (n = 2) (Yehuda et al., 1995a; Young and Breslau, 2004). One study (de Kloet et al., 2008) was excluded because it was the only study that used the Dex/CRH test to examine HPA-axis functioning in TE subjects versus PTSD patients.

Exclusion criteria were (a) childhood trauma but not adulthood trauma was assessed; (b) childhood trauma was assessed in addition to adulthood trauma and some individuals only reported childhood trauma; (c) clinically significant adrenocortical and thyroid diseases or any serious unstable medical condition was present; (d) it was unclear whether subjects also suffered from current PTSD.

Quality assessment

Because the HPA-axis is a delicate system that is influenced by many factors, elimination of as many factors that are known to potentially influence HPA-axis regulation, may well improve the quality of studies. In addition, previous studies have shown that the quality of studies may be improved by taking certain in- and exclusion criteria into account. Assessment of salivary cortisol on several time points and on more than one day is necessary to reliably assess the cortisol rise after awakening (Hellhammer et al., 2007). Studies among recovered depressives have shown that HPA-axis functioning may not return to normal, resulting in so-called 'scarring' (Zobel et al., 2001; Bhagwagar et al., 2003; Appelhof et al., 2006). In PTSD patients who were successfully treated, an increase in plasma cortisol levels was found after controlling for depressive symptoms (Olff et al., 2007). Because PTSD and major depression often co-occur, we have decided to give a quality point to studies that excluded recovered patients in their TE and NE groups. Also, several types of psychotropic medication, especially antidepressants, may affect HPA-axis functioning (Deuschle et al., 1997, 2003; Greden et al., 1983; Holsboer-Trachsler et al., 1991; Manthey et al., 2011). All the factors mentioned above were considered to be factors that improve the methodological quality of studies on HPA-axis functioning.

The guality of the included studies was independently assessed by two authors (EK and EG), using a checklist of 8 criteria. All guality criteria for each study were coded as either positive or negative. A study was considered to be of high quality when at least 5 of the following criteria were positive: (1) HPA-axis reactivity (e.g., Dex/CRH, psychological stress test) was assessed and/or the low dose DST was performed; (2) multiple time points were assessed; (3) basal cortisol was assessed on more than one day for the same outcome measure; (4) either blood samples were collected or, in the case of salivary cortisol sampling, extensive instructions were given or a monitoring device was used; (5) detailed trauma assessment was carried out (6) potentially confounding variables were taken into account; (7) when lifetime psychiatric history as assessed with a DSM-III or IV (semi-)structured interview in both the TE and NE groups was excluded. In case only the absence of current PTSD and MDD was assessed, we decided to include the studies as well (n = 3); (8) use of psychotropic medication or other medication that is known to influence HPA-axis functioning was excluded.

If a study did not report whether it met a specific quality criterion it was coded as negative. Disagreements were discussed until consensus was reached.

Data analysis and power calculation

Data management, calculation of effect sizes and calculation of the pooled mean effect sizes were performed using Comprehensive Meta-analysis (version 2.0.021, Biostat, Englewood, NJ, USA).

Two meta-analyses were conducted; one for the TE subjects versus the NE control subjects, and one for the TE subjects versus the PTSD patients. Effect sizes were calculated for three types of outcome data: (1) mean cortisol differences between the study groups (TE vs. NE and TE vs. PTSD), (2) the difference between the study groups percentage cortisol suppression to the DST, and (3) the Area Under the Curve with respect to ground (AUC_g) of the cortisol levels after the Dex/CRH test. The AUC_g, is a composite measure calculated according to the trapezoidal method (Pruessner et al., 2003). In the overall meta-analyses, the effect sizes for the DST (n = 5 for the TE versus NE groups and n = 9 for the

Adulthood trauma and HPA-axis functioning in healthy subjects and PTSD patients: A meta-analysis

TE versus PTSD patients group) and Dex/CRH test (n = 2 for the TE versus NE groups) were analyzed separately, because the interpretation of dynamic tests is different from basal conditions. These outcome measures were assessed in subgroup analyses only. Hedges's g (Hedges, 1982) weighted effect size was used as metric for all mean comparison. Hedges's g adjusts for differences in (small) sample sizes and yields a more conservative metric than Cohen's d (Deeks et al., 2009). All analyses were performed with the randomeffects model. To assess heterogeneity between the studies we calculated the I^2 , which is an indicator of heterogeneity in percentages. A zero percent (0%) value means no observed heterogeneity, and higher values represent increasing heterogeneity. Generally heterogeneity is categorised in 25% (low), 50% (moderate) and 75% (high) (Higgins et al., 2003). In addition, Q-statistics were calculated. A statistically significant Q rejects the null hypothesis of homogeneity and indicates a heterogeneous distribution of effect sizes between studies, meaning that systematic differences are present, and may influence the results.

The presence of publication bias was assessed by inspecting the funnel plot on primary outcome measures (effects on cortisol levels) and by Duval and Tweedie's trim and fill procedure (Duval and Tweedie, 2000) as implemented in the CMA software. This procedure yields an estimate of the effect size after publication bias has been taken into account, by calculating adjusted values of the pooled mean effect sizes and 95% confidence intervals. In this procedure, random effects models were used.

Power calculation

As proposed by Lipsey (1990), effect sizes of 0.3 were considered to be small. To investigate if there was sufficient statistical power in our meta-analysis to detect a small effect size, we conducted a power calculation according to the procedures described by Borenstein et al. (2009). These calculations indicated that we would need to include at least 14 studies with a mean sample size of 50 (25 participants per condition), to be able to detect an effect size of Hedges's g = 0.30 (conservatively assuming a high level of betweenstudy variance, a statistical power of 0.80, and a significance level, alpha, of 0.05). Alternatively, we would need 18 studies with 40 participants each to detect an effect size of Hedges's g = 0.30, or 24 studies with 30 participants. As we included 21 studies for the TE group (median of 16 participants, range 5– 265) versus the NE group (median of 15 participants, range 8– 183) and 34 studies for the TE group (median of 15, range 5– 265) versus the PTSD group (median of 21 participants, range 7–75), our analyses were sufficiently powered.

A post hoc power calculation showed that the 21 studies comparing non-exposed with trauma-exposed subjects had sufficient power to detect a significant effect size of 0.16, and the 34 studies comparing PTSD with trauma-exposed subject had sufficient power to detect a significant effect size of 0.15.

Subgroup analysis

For each subgroup, the pooled mean effect size was calculated, and a test was conducted to examine putative differences in effect sizes. Subgroup analyses were conducted for the following characteristics: HPA-axis outcome measure, type of trauma, gender, age groups, and quality of the studies. For all subgroup analyses, random effects models were used.

Results

Search and inclusion

The literature search combining the key words and MeSH terms resulted in 1511 studies (Supplement 1). After the first screening of abstracts and methods sections to select studies with a TE group, an NE control group and/or a group of PTSD patients, cortisol as an outcome measure and one of the five ways to assess HPA-axis functioning (Fig. 1), 150 studies were left. These studies were requested in full-text and screened in more detail by two raters (EK and EG or TV) independently. Thirty-nine of these 150 studies were discussed in detail to reach consensus about in- or exclusion. After this second screening, another 111 studies were excluded, leaving 39 studies eligible for our meta-analyses. The main reasons for exclusion in this phase were (1) no TE group was present (n = 45); (2) childhood trauma and not adult trauma exposure was assessed (n = 20); and (3) neither a PTSD patient group or a NE control group was studied (n = 14) (S1). From the corresponding authors of 10 studies we requested additional information on cortisol levels and on the exclusion of (childhood) trauma exposure. From seven of these (Lauc et al., 2004; Pico-Alfonso et al., 2004; Rohleder et al., 2004; Olff et al., 2006; Wessa et al., 2006; Simeon et al., 2008; Johnson et al., 2008), we received the requested data and the studies were included in the meta-analyses. Unfortunately, three authors did not respond to our request (Boscarino, 1996; Kanter et al., 2001; Neylan et al., 2003b). As a result, two of these studies were not included, whereas for one study we could only include basal cortisol data (Neylan et al., 2003b).

Study characteristics

The characteristics of the 37 included studies are outlined in Supplement 2. A total of 2468 subjects were included (1120 TE subjects, 508 NE controls, and 840 PTSD patients). The majority of the studies (n = 18) included a TE, an NE and a PTSD group. In an additional 17 studies only TE subjects and PTSD patients were examined, and three studies compared TE subjects and NE controls exclusively. As a result, the metaanalysis comparing TE subjects with NE control subjects included 21 studies, whereas the meta-analysis of TE subjects and PTSD patients included 34 studies. The majority of the studies included adult subjects (18–65 years of age), whereas three studies included older adults. Twelve studies included military personnel with combat exposure and seven studies included individuals with exposure to the Holocaust (Yehuda et al., 1995b, 2005a,b, 2009), war (Rohleder et al., 2004; Roth et al., 2006) or genocide (Eckart et al., 2009). One study included both combat veterans and Holocaust survivors (Yehuda et al., 2002). One study included both combat veterans and individuals exposed to various civilian trauma (Yehuda et al., 2004b). Five studies included women with a history of violence by an intimate partner (Seedat et al.,

2003; Pico-Alfonso et al., 2004; Griffin et al., 2005; Inslicht et al., 2006; Johnson et al., 2008) and 14 studies assessed individuals with other types of trauma (e.g., motor vehicle accidents, assault, disaster).

Thirty studies assessed basal cortisol; for this, 19 used salivary samples, six studies used plasma cortisol samples, and five studies assessed 24-h urinary cortisol (Pitman and Orr, 1990; Yehuda et al., 1995b, 2009; Bierer et al., 2006; Simeon et al., 2008). Three studies assessed basal cortisol at two time points over the day (Pico-Alfonso et al., 2004; Young and Breslau, 2004; Gill et al., 2008) and seven studies assessed salivary cortisol at multiple time points (Young et al., 2004; Yehuda et al., 2005a,b; Inslicht et al., 2006; Lindauer et al., 2006; Roth et al., 2006; Eckart et al., 2009). From one study we were only able to use an AM salivary cortisol sample because additional information was not available (Neylan et al., 2003b). Of the studies of salivary cortisol, eight calculated the salivary cortisol response to awakening (CAR) (Lauc et al., 2004; Rohleder et al., 2004; Olff et al., 2006: Wessa et al., 2006: de Kloet et al., 2007: Johnson et al., 2008; Klaassens et al., 2010a,b). Of the seven studies of plasma cortisol, six sampled at one time point (Yehuda et al., 2002; Bonne et al., 2003; Neylan et al., 2003a; Seedat et al., 2003; Liberzon et al., 2007; Shalev et al., 2008) and one study collected 24-h plasma cortisol (Golier et al., 2007).

Nine studies used the low dose dexamethasone suppression test (DST) (Yehuda et al., 1995a, 2002, 2004b; Bachmann et al., 2005; Griffin et al., 2005; Golier et al., 2006; de Kloet et al., 2007; Metzger et al., 2008; Simeon et al., 2008) of which seven assessed plasma cortisol (Yehuda et al., 1995a, 2002, 2004b; Bachmann et al., 2005; Griffin et al., 2005; Golier et al., 2006; Simeon et al., 2008), one study assessed salivary cortisol (Metzger et al., 2008), and one study assessed cortisol suppression after dexamethasone both in salivary and in plasma cortisol (de Kloet et al., 2007). The majority of these studies assessed pre- and post-Dex cortisol in morning samples, whereas two studies used afternoon samples (Yehuda et al., 1995a; de Kloet et al., 2007). Two studies that assessed HPAaxis functioning with the DST also assessed the CAR (de Kloet et al., 2007; Simeon et al., 2008). Two studies assessed plasma cortisol levels after the Dex/CRH challenge test in addition to the CAR (Klaassens et al., 2010a,b).

Two of the 37 studies met all 8 guality criteria (Klaassens et al., 2010a,b), 14 studies (38%) were considered of good quality (i.e., meeting five or more criteria). All 37 studies met the criterion for detailed trauma assessment. Only four studies sampled basal cortisol on more than one day (Pico-Alfonso et al., 2004; Rohleder et al., 2004; Klaassens et al., 2010a,b). Of the 19 studies that sampled salivary cortisol, 14 gave extensive sampling instructions in order to increase compliance (Lauc et al., 2004; Pico-Alfonso et al., 2004; Young et al., 2004; Young and Breslau, 2004; Lindauer et al., 2006; Roth et al., 2006; Wessa et al., 2006; de Kloet et al., 2007; Gill et al., 2008; Johnson et al., 2008; Metzger et al., 2008; Eckart et al., 2009; Klaassens et al., 2010a,b). None of the studies used time-monitoring devices. Twentyfive studies checked for potential confounders (Yehuda et al., 2005a), adjusted for potential confounders (Yehuda et al., 2002, 2004b, 2005b, 2009; Bonne et al., 2003; Neylan et al., 2003b; Pico-Alfonso et al., 2004; Rohleder et al., 2004; Young et al., 2004; Young and Breslau, 2004; Griffin et al., 2005; Golier et al., 2006, 2007; Inslicht et al., 2006; Olff et al.,

2006; Wessa et al., 2006; de Kloet et al., 2007; Shalev et al., 2008; Gill et al., 2008; Johnson et al., 2008; Metzger et al., 2008; Klaassens et al., 2010a,b) or excluded participants on potentially confounding variables such as smoking (Eckart et al., 2009). Of the 37 included studies, 19 excluded all psychotropic medication, seven did not mention medication use (Neylan et al., 2003b; Lauc et al., 2004; Young et al., 2004; Bierer et al., 2006; Roth et al., 2006; Shalev et al., 2008; Metzger et al., 2008). Lifetime psychiatric disorders were excluded in TE and/or NE subjects in ten studies (Yehuda et al., 1995b, 2005a, 2009; Bonne et al., 2003; Neylan et al., 2003a; Seedat et al., 2003; Rohleder et al., 2004; Olff et al., 2006; Klaassens et al., 2010a,b), whereas the other 27 studies did not exclude lifetime psychiatric disorders in their TE subjects or NE controls or did not report this.

Most quality points were lost by not assessing HPA-axis functioning on more than one day and by not excluding subjects with a history of psychiatric disorders in the control groups. When we considered the quality of studies regardless of assessment on one or more days, 10 studies were of less than optimal quality. Overall, the quality of HPA-axis assessment was good to excellent, most studies adjusted their findings for confounders and all described detailed assessment of trauma exposure during adulthood. This made us decide to include these 37 studies in our meta-analyses. The median quality score of studies assessing basal cortisol levels was 4 and the median quality score of studies assessing HPAaxis reactivity with the DST was 5 and for the two studies using the Dex/CRH test (Klaassens et al., 2010a,b) the median score was 8 points.

TE subjects versus NE control subjects

Fig. 2a shows a forest plot of the effect sizes (Hedges's g) of cortisol levels in TE subjects relative to NE controls subjects in each of the 20 studies. The pooled effect size (Hedges's g) using the random-effects model was -0.029 (95%CI: -0.145; 0.088), which suggests no difference in basal cortisol levels between TE subjects and NE controls with adult trauma-exposure. The overall analysis was performed without the DST and Dex/CRH outcomes. There was no heterogeneity ($l^2 = 0.00\%$, p = 0.468) in results between studies (Table 1a).

TE subjects versus PTSD patients

Fig. 2b shows a forest plot of the effect sizes (Hedges's g) of cortisol levels in TE subjects relative to patients with PTSD in each of the 34 studies. The overall analysis was performed without the DST outcome. There was significant heterogeneity ($l^2 = 68.26\%$, p < 0.001) in results between studies. The pooled effect size (Hedges's g) using the random-effects model was 0.175 (95%CI: -0.012; 0.362), which suggests no difference in HPA axis functioning between TE subjects and PTSD patients with adulthood trauma exposure (Table 1b).

Subgroup analyses

All subgroup analyses were performed separately for the TE versus the NE subjects and for the TE subjects versus the PTSD patients.

а

ARTICLE IN PRESS

Adulthood trauma and HPA-axis functioning in healthy subjects and PTSD patients: A meta-analysis

Study name	Sample size		Statistics for each study					Hedges's g and 95% Cl		
	Non-exposed	Trauma-exposed	Hedges's g	Lower limit	Upper limit	Z-Value	p-Value			
Salivary cortisol	Non-exposed	Hauma-exposed	neuges s g	mme	mm	2-value	p-value			
Gill 2008	21	24	-0.400	-0.985	0.185	-1.341	0.180			
de Kloet 2007	24	22	-0.394	-0.970	0.182	-1.340	0.180			
Klaassens 2010	24	38	-0.374	-0.884	0.136	-1.439	0.150			
Klaassens 2010a	23	33	0.105	-0.421	0.630	0.390	0.696			
Pico-Alfonso 2004	15	72	0.364	-0.191	0.919	1.287	0.198			
Rohleder 2004	8	5	-0.613	-1.754	0.528	-1.053	0.292			
Wessa 2006	15	19	0.148	-0.517	0.812	0.436	0.663			
Yehuda 2005	25	19	-0.003	-0.594	0.587	-0.011	0.991			
Yehuda 2005a	28	16	0.004	-0.600	0.609	0.014	0.989			
Young 2004	183	265	0.000	-0.188	0.188	0.000	1.000	📥		
Young 2004 Young 2004a	16	72	0.301	-0.188	0.188	1.095	0.273			
Toung 2004a	382	585	-0.023	-0.236 -0.156	0.840	-0.346	0.273			
	001	000	-0.020	-0.100	0.100	-0.040	0.700			
Plasma cortisol										
Griffin 2005	14	8	0.400	-0.444	1.244	0.929	0.353			
Golier 2007	16	11	-0.131	-0.876	0.614	-0.344	0.731			
Liberzon 2007	15	15	-0.310	-1.011	0.391	-0.868	0.386			
Seedat 2003	16	12	-0.668	-1.416	0.079	-1.753	0.080			
Simeon 2008	10	14	-0.654	-1.459	0.151	-1.591	0.112			
Yehuda 1995	14	12	0.454	-0.303	1.211	1.176	0.239			
Yehuda 2002	10	9	0.163	-0.699	1.025	0.371	0.711			
Yehuda 2002	9	9	-0.209	-1.091	0.674	-0.464	0.643			
Young 2004	9 16	9 72	0.115	-0.423	0.652	0.418	0.676			
roung 2004a	120	162	-0.086	-0.423 -0.346	0.652 0.175	-0.646	0.676			
	120	162	-0.000	-0.340	0.175	-0.040	0.516			
<u>Urinary cortisol</u>										
Simeon 2008	10	14	-0.547	-1.345	0.252	-1.342	0.180			
Yehuda 1995a	15	25	0.428	-0.206	1.063	1.323	0.186			
Yehuda 2009	12	10	0.000	-0.807	0.807	0.000	1.000			
	37	49	-0.001	-0.567	0.570	0.000	0.997			
DOT	37	49	-0.001	-0.567	0.570	0.004	0.997			
<u>DST</u>										
Griffin 2005	14	8	-0.816	-1.686	0.054	-1.839	0.066			
de Kloet 2007	23	24	-1.061	-1.662	-0.459	-3.454	0.001			
Simeon 2008	7	14	0.011	-0.860	0.882	0.025	0.980	⊺		
Yehuda 1995	14	12	-0.160	-0.908	0.588	-0.419	0.675			
Yehuda 2002	10	9	-0.457	-1.329	0.415	-1.027	0.304			
		9								
Yehuda 2004	9		-0.242	-1.126	0.641	-0.538	0.591			
	77	76	-0.509	-0.871	-0.148	-2.762	0.006			
Dex/CRH test										
Klaassens 2010	23	39	0.176	-0.334	0.686	0.677	0.499			
Klaassens 2010a	23	36	-0.084	-0.600	0.433	-0.318	0.751			
	46	75	0.048	-0.315	0.411	0.258	0.796			
								-2 -1 0 1		

Figure 2 (a) Hedges's pooled effect sizes (with 95% confidence interval) of cortisol levels between trauma-exposed and non-trauma exposed individuals without psychiatric disorders (n = 20 studies). Pooled estimate based on random-effects model. (b) Hedges's pooled effect sizes (with 95% confidence interval) of cortisol levels between trauma-exposed individuals without psychiatric disorders and PTSD patients (n = 34 studies). Pooled estimate based on random-effects model.

In the subgroup analyses for HPA-axis outcome measure, we performed subgroup analyses for the different basal measures of cortisol (i.e., saliva, blood, and urine) as well as for the dynamic cortisol measures (DST and Dex/CRH). No differences were found in the basal outcome measures or in the Dex/CRH cortisol levels. However, in the subgroup analysis on cortisol suppression after the low dose DST, a stronger cortisol suppression in TE subjects (Hedges's g = -0.509, p = 0.006) relative to NE subjects was found (Table 1a). The pooled effect size for the DST, however, was not statistically significant when comparing TE subjects with PTSD patients (Table 1b).

The pooled Hedges's g, did not differ according to age, gender, type of trauma, lifetime psychiatric disorders in TE and/or NE subjects, and medication use or comorbid MDD in PTSD patients, neither for TE subjects compared to NE controls nor for TE subjects compared to PTSD patients. When in sensitivity analyses the higher quality studies only were combined, the results remained similar. In detail, the 10 high-quality studies that compared TE versus NE yielded a Hedges's g of -0.101 and the 11 high-quality studies that compared TE versus PTSD yielded a Hedges's g of 0.169, that were largely of strengths similar to the overall effect sizes of -0.029 and 0.175, respectively (Tables 1a and 1b).

A post hoc sensitivity analysis in the TE versus PTSD groups revealed that the 5 studies with Holocaust victims showed the largest effect size that approached statistical significance (Hedges's g 0.446, p = 0.084), followed by the 18 studies that included other forms of trauma (Hedges's g 0.237, p = 0.077), while no hint for an effect was found in

b

ARTICLE IN PRESS

E.R. Klaassens et al.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Study name	Sample size		Statistics for each study					Hedges's g and 95% (
Salivar cortisol Salivar cortisol Gill 2006 76 74 1540 0.685 0.483 0.689 0.697 Gill 2006 10 19 -0.983 0.685 0.543 0.548 0.000 Johnson 2008 32 20 -0.331 0.878 0.689 0.597 0.504 Lane 2004 14 16 0.838 0.183 1.680 0.437 0.015 0.462 0.016 0.497 0.016 0.497 0.016 0.497 0.016 0.497 0.016 0.497 0.016 0.497 0.016 0.497 0.497 0.016 0.497 0.493 0.513 <		Non-exposed	Trauma-exposed	Hednes's a			7-Value	n-Value		
Gill 2006 26 24 1.540 0.866 2.211 4.484 0.000 Lidhuma 2006 32 20 -0.331 0.983 0.525 -0.151 0.000 Linux 2004 32 20 -0.331 0.887 0.223 -1.148 0.243 Linux 2004 14 156 0.336 0.182 0.168 0.169 2.437 0.015 Microport 2005 13 111 0.438 0.786 0.168 0.169 2.437 0.015 Nysian 2005 13 0.111 0.484 1.120 0.733 0.452 0.464 Nysian 2006 23 13 0.125 0.585 0.056 1.154 0.054 Nysian 2006 23 19 0.355 0.051 0.321 0.444 0.444 Yaong 2004 458 0.155 0.051 0.327 1.465 0.464 0.167 Phene 2003 19 0.155 0.051 0.327 1.465 0.464 0.122 Bornman 2005 75 33 0.027 0.23	Salivary cortisol	Non-exposed	Hauma-exposed	neuges s g	mme	mm	2-value	p-value		
Bill 2006 26 24 1.540 0.866 2.211 4.484 0.000 Bindbard 200 0.933 0.557 0.957 0.026 Bindbard 200 0.331 0.887 0.225 1.188 0.243 Bindbard 14 15 0.336 0.182 0.188 0.268 0.188 0.269 Luc 2014 14 15 0.338 0.182 1.680 2.037 0.015 Weiger 2006 11 11 0.238 0.182 0.484 0.484 0.720 Weiger 2006 11 11 0.248 0.183 0.785 0.452 Weiger 2006 12 15 0.865 0.069 1.180 0.555 0.544 Weiger 2006 12 16 0.027 0.300 0.347 0.140 0.885 0.464 Weiger 2006 21 16 0.027 0.300 0.341 0.448 0.448 Weiger 2006 23 13 0.027 1.408 0.667 0.444 0.448 0.460	Eckart 2009	17	13	-0.246	-0.955	0.463	-0.680	0.497		1
might 2006 10 18 -0.199 -0.987 0.255 -0.517 0.668 16 Kode 2007 23 22 -0.31 0.268 0.186 0.268 0.599 2004 14 16 0.986 0.257 0.344 0.565 0.571 0.666 0.599 2004 14 16 0.986 0.183 1.680 0.2437 0.0437 0.944 Mage 2008 10 12 12 -0.388 1.182 0.423 0.668 0.599 Vir 2006 17 11 -0.112 -0.586 0.189 0.644 0.577 0.443 0.644 Vir 2006 17 11 -0.127 -0.027 0.443 0.644 0.575 0.499 0.555 0.572 0.568										
Johnson 2006 32 32 42 50 50 50 50 50 50 50 50 50 50										-
is fole. 2007 23 ac:2004 14 16 andsus:2008 12 12 12 -0.388 -1.182 0.427 0.087 0.344 televise:2008 12 12 12 -0.388 -1.182 0.427 0.087 0.344 televise:2008 12 12 12 -0.388 -1.182 0.427 0.087 0.344 11 0 -0.311 0.488 0.120 0.733 0.422 0.427 0.087 0.344 11 0 -0.311 0.488 0.120 0.427 0.427 0.087 0.344 12 2 0.113 0.488 0.1101 0.331 0.418 1.120 0.733 0.422 0.420 0.444 0.425 0.444 0.426 0.427 0.446 0.422 0.448 0.427 0.440 0.484 0.448 0.421 0.418 0.448 0.421 0.418 0.448 0.421 0.418 0.448 0.424 0.424 0.428 0.424 0.428 0.446 0.122 0.448 0.425 0.444 0.428 0.446 0.122 0.448 0.425 0.444 0.428 0.426 0.448 0.425 0.444 0.428 0.424 0.428 0.426 0.444 0.428 0.44										
ame 2004 14 16 0.936 0.183 1.600 2.437 0.015 Metager 2006 10 4.43 -0.240 -0.668 0.188 -1.098 0.272 Metager 2005 11 11 10.448 1.102 0.753 0.452 Metager 2004 44 72 -0.027 0.463 0.442 Metager 2004 12 5 0.118 0.826 0.463 0.442 Metager 2004 12 5 0.163 0.826 0.119 0.355 0.722 Vanisher 2005 23 19 0.045 0.557 0.460 0.811 0.416 0.849 Prouid 2005 23 19 0.045 0.577 0.400 0.811 0.416 0.841 Prouid 2005 13 0.212 0.440 0.851 0.416 0.811 Prouid 2005 13 0.222 0.731 0.066 -1.546 0.122 Jamer 2005 75 33 -0.224 -7.380 0.600 1.62 Jamer 2005 16 2.0										_
industry 2006 12 12 -0.36 -1.162 0.427 -0.907 0.364 Weydar 2006 37 31 -0.112 -0.686 0.188 -0.698 0.272 Weydar 2006 37 31 -0.112 -0.886 0.882 -0.648 0.644 Vico-Altona 2004 44 72 -0.027 -0.400 0.347 -0.140 0.889 Vico-Altona 2004 44 72 -0.027 -0.400 0.347 -0.140 0.889 Vico-Altona 2004 41 15 0.685 0.089 1.250 2.151 0.021 0.4460 0.644 Vicoa 2005a 19 0.576 -0.331 0.027 1.4065 0.561 0.446 0.527 Vicoa 2005a 19 16 0.272 -0.300 0.849 0.851 0.466 0.527 Vicoa 2005 15 83 2.041 0.255 -0.446 0.527 0.466 0.527 Vicoa 2007 16 13 -0.202 0.414 0.527 0.330 0.310 0.21<									I I -	
Metoger 2008 40 43 -0.240 -0.688 0.188 -1.098 0.272 Mir 2006 37 31 -0.112 -0.585 0.362 0.442 0.442 Diff 2006 41 15 0.686 0.188 -1.191 0.355 0.722 Versal 2006 29 19 0.575 0.009 1.159 1.922 0.031 Versal 2006 23 19 0.045 0.587 0.210 0.480 0.311 Versal 2006 23 19 0.045 0.587 0.210 0.480 0.331 Versal 2005 19 16 0.272 0.731 0.086 -1.546 0.122 Gram 2005 75 33 -0.192 -1.040 0.655 -0.446 0.577 Soler 2007 20 11 -0.037 -1.286 0.224 -1.384 0.167 Soler 2006 12 14 -0.537 -1.286 0.224 -1.384 0.167 Soler 2007 10 11 -0.022 0.779 -0.105 0.310										
Jeynin 2006 11 11 11 0.311 0.488 1.120 0.753 0.482 Wit2006 37 31 0.112 0.855 0.644 0.859 Noc.Alteney 2004 14 15 0.683 0.869 1.260 0.722 Stelledwit2006 23 19 0.575 0.081 0.811 0.418 0.824 0.191 0.355 0.614 0.119 0.418 0.614 0.614 0.614 0.614 0.614 0.614 0.614 0.614 0.614 0.614 0.614 0.614 0.614 0.614 0.614 0.614 0.614 0.614 0.612 0.614 0.612 0.614 0.612 0.614 0.612 0.614 0.612 0.614 0.612 0.614 0.612 0.614 0.612 0.614 0.612 0.614 0.612 0.614 0.612 0.614 0.612 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.616 0.617										
Diff 2006 37 31 -0.112 -0.585 0.382 -0.463 0.643 0.632 0.731 0.732 0.700 0.714 0.063 0.71 0.714 0.715 0.714 0.714 0.714 0.714 0.715 0.714 0.714 0.714 0.714 0.714 0.714 0.714 0.714 0.714 0.715 0.714 0.714 0.715 0.714 0.715 0.714 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
Nac.Admos 2004 44 72 -0.027 -0.400 0.347 -0.140 0.889 Steleder 2005 41 15 0.655 0.059 1.250 0.2154 0.034 Vessa 2006 29 19 0.557 0.069 1.250 0.2154 0.054 Vessa 2005 23 19 0.045 0.557 0.647 0.146 0.848 Vessa 2005 19 16 0.272 0.331 0.201 -0.480 0.631 Provag 2004 488 621 0.152 -0.081 0.372 1.405 0.161 Sternamo 2005 75 33 -0.122 -0.711 0.096 -1.546 0.132 Sternamo 2005 12 14 -0.527 -1.283 0.667 0.388 0.607 Sternamo 2005 15 8 2.041 1.025 0.678 0.388 0.607 Sternamo 2005 15 8 2.041 1.025 0.678 0.388 0.096 Sternamo 2005 7 14 0.625 0.679 0.388										
Solveder 2004 12 5 0.826 1.191 0.355 0.72 Wessa 2006 29 19 0.675 0.009 1.159 1.250 2.154 0.031 Vessa 2005 23 19 0.647 0.146 0.847 0.146 0.844 Verbuda 2005 23 19 0.647 0.146 0.841 0.416 Verbuda 2005 23 19 0.655 0.068 0.331 0.840 0.811 0.416 Verbuda 2005 23 19 0.65 0.061 0.372 1.405 0.160 Plance ortisol 3 0.922 0.711 0.086 -1.546 0.127 Solve 2007 2 14 0.637 -2.039 0.285 -0.444 0.677 Solve 2007 2 11 -0.027 -0.297 -0.383 0.309 0.398 0.001 Solve 2007 2 14 -0.027 0.279 -0.057 0.398 0.021 0.468 0.225 0.244 0.55 0.358 0.398 0.021 0.468										
bdh 2005 41 15 0.655 0.059 1.250 2.154 0.031 Versa 2006 23 19 0.045 0.557 0.647 0.146 0.841 Versa 2006 23 19 0.045 0.557 0.647 0.146 0.840 0.811 Versa 2004 88 621 0.153 0.051 0.940 0.811 0.418 Versa 2005 75 33 0.022 -0.731 0.086 -1.546 0.132 Sime 2005 75 33 -0.122 -0.711 0.086 -1.546 0.122 Sime 2005 75 33 -0.122 -0.711 0.086 -1.546 0.122 Sime 2005 12 14 -0.577 -1.238 0.067 3.388 0.000 Sime 2005 15 8 2.041 1.025 0.071 0.066 0.967 0.388 0.000 0.971 0.971 0.714 0.022 0.279 1.015 0.316 0.971 0.984 0.422 0.224 0.235 0.274 0.338 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
Wessa 2006 29 19 0.675 0.009 1.199 1.929 0.054 Verbuda 2005 19 0.647 0.575 0.647 0.648 0.811 Verbuda 2005 19 16 0.275 0.380 0.940 0.811 0.418 Verbuda 2005 19 0.656 0.311 0.201 0.468 0.631 Verbuda 2005 75 33 -0.922 0.731 0.066 -1.546 0.127 Jamme 2005 75 33 -0.322 0.731 0.066 -1.546 0.127 Jamme 2005 75 33 -0.322 -0.731 0.066 -1.546 0.127 Jamme 2005 12 14 -0.057 -1.400 0.855 -0.444 0.657 Jamme 2006 12 14 -0.052 -0.879 0.284 -0.165 0.169 Jamee 2007 15 8 2.041 1.025 0.978 0.385 -0.318 0.169 0.169 0.316 -0.457 0.316 0.356 -0.316 0.356 0.513 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></t<>										_
réhuda 2005 réhuda 2005 réhuda 2004 88 265 0.065 0.331 0.201 0.480 0.631 0.484 0.631 0.48 0.631 0.45 0.45 0.48 0.631 0.45 0.48 0.631 0.45 0.48 0.631 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45										
refunda 2005a 19 16 0.275 0.300 0.940 0.811 0.418 Plasma cortisol 2lasma cortisol 3achmann 2005 75 33 -0.322 0.731 0.086 -1.546 0.122 Joine 2003 8 13 -0.192 1.405 0.460 0.657 Joine 2005 75 33 -0.322 0.731 0.086 -1.546 0.122 Joine 2005 12 14 -0.537 -1.280 0.224 -1.348 0.167 Joine 2007 20 11 -0.002 -0.719 0.714 -0.066 0.386 -0.667 0.386 Joine 2007 24 21 -0.300 -0.867 0.222 0.386 0.001 Jerron 2007 16 15 -0.306 0.986 0.337 0.232 0.857 0.227 0.744 Jerron 2007 16 13 -0.228 0.867 0.366 0.336 0.016 0.336 0.936 0.277 0.744 Jenkero 2008 28 108 0.285	Vessa 2006			0.575	-0.009	1.159	1.929	0.054		
Cound 2004 66 265 -0.065 -0.31 0.201 -0.480 0.631 Plasma cortisol Bachmann 2005 75 33 -0.322 -0.731 0.086 -1.546 0.152 Solar 2006 12 14 -0.037 1.298 0.224 -1.384 0.167 Solar 2006 15 8 2.041 1.025 3.057 3.380 0.000 9.956 Sider 2007 20 11 -0.024 -7.190 0.714 0.006 0.956 Sider 2007 24 1 0.002 -0.719 0.714 0.006 0.956 Sider 2007 24 1 0.002 0.315 0.367 3.380 0.000 Sider 2007 24 1 0.026 0.750 0.276 0.335 0.361 0.001 Simeon 2003 24 18 0.265 0.150 0.866 0.385 0.361 0.376 0.276 0.774 Simeon 2008 7 14 0.122 0.994 0.750 0.227 0.024 0.178 </td <td>rehuda 2005</td> <td>23</td> <td>19</td> <td>0.045</td> <td>-0.557</td> <td>0.647</td> <td>0.146</td> <td>0.884</td> <td> </td> <td>- </td>	rehuda 2005	23	19	0.045	-0.557	0.647	0.146	0.884	 	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	rehuda 2005a	19	16	0.275	-0.390	0.940	0.811	0.418		<u> </u>
$\begin{array}{c cccccc} 458 & 621 & 0.155 & 0.061 & 0.372 & 1.405 & 0.160 \\ \hline Plasma cortisol \\ \hline \\ $	/oung 2004	68	265	-0.065	-0.331	0.201	-0.480	0.631	·	1
Aschman 2005 75 33 -0.322 -0.731 0.086 -1.546 0.122 Borne 2003 8 13 -0.122 -1.40 0.655 -0.444 0.657 Solier 2007 20 11 -0.027 -0.719 0.714 -0.057 0.979 0.714 -0.057 0.979 0.714 -0.057 0.979 0.779 0.714 -0.057 0.979 0.779 0.714 -0.055 0.957 0.986 0.355 0.987 0.355 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.555 0.571 0.784 0.750 0.252 0.224 0.252 0.274 0.255 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.571 0.365 0.513 </td <td></td> <td>458</td> <td>621</td> <td>0.155</td> <td>-0.061</td> <td>0.372</td> <td>1.405</td> <td>0.160</td> <td></td> <td></td>		458	621	0.155	-0.061	0.372	1.405	0.160		
Borne 2003 8 8 13 -0.192 -1.040 0.655 -0.44 0.657 Boler 2005 12 14 -0.537 -1.298 0.224 -1.384 0.167 Boler 2007 20 11 -0.002 -0.719 0.714 -0.006 0.996 Boler 2007 24 21 -0.300 -0.879 0.279 -1.015 0.310 Beler 2007 16 15 -0.305 -0.996 0.385 -0.936 0.300 Beler 2003 24 18 -0.288 -0.890 0.315 -0.935 0.300 Beler 2003 24 18 -0.288 -0.890 0.315 -0.935 0.365 Beler 2003 24 18 -0.288 -0.890 0.315 -0.935 0.365 Beler 2008 29 118 0.255 -0.150 0.666 0.1235 0.217 Biner 2008 7 14 -0.122 -0.994 0.750 -0.275 0.744 Certuda 1995 14 12 0.987 0.194 1.781 2.239 0.015 Fertuda 2004 17 9 0.364 -0.425 1.152 0.964 0.365 0.513 -0.799 -1.480 -0.119 -0.365 0.513 Direr 2008 7 14 -0.0224 1.236 0.310 Direr 2008 7 14 -0.0224 1.226 0.904 0.366 Direr 2008 7 14 -0.0224 1.235 0.011 Fertuda 2004 17 9 0.364 -0.425 1.152 0.904 0.366 Direr 2008 7 14 -0.0224 1.236 0.301 Direr 2008 7 14 -0.0224 1.236 0.301 Direr 2008 7 14 -0.0224 1.236 0.001 Direr 2008 7 14 -0.023 1.0382 0.001 Direr 2008 7 14 -0.023 1.048 0.019 -0.277 0.297 Direr 4004 209 28 10 0.010 -0.697 0.717 0.029 Direr 2008 7 14 -0.067 0.717 0.029 0.977 Direr 2008 7 14 -0.021 -0.788 0.728 -0.865 0.387 Direr 2008 7 14 -0.021 -0.788 0.728 -0.865 0.986 Direr 2008 7 14 -0.021 -0.788 0.728 -0.865 0.986 Direr 2008 17 14 0.011 -0.880 0.882 0.025 0.980 Direr 2008 17 14 0.011 -0.880 0.882 0.025 0.980 Direr 2008 17 14 0.011 -0.880 0.882 0.025 0.980 Direr 2008 17 14 0.011 -0.286 0.082 0.025 0.980 Direr 2008 17 14 0.011 -0.286 0.0882 0.025 0.980 Direr 2008 17 14 0.011 -	<u>Plasma cortisol</u>									
Borne 2003 Bolie 2006 12 14 14 10537 12 14 10537 12 14 10537 12 14 10537 12 14 10537 12 14 10537 12 14 10557 12 14 1055 12 10 10 12 10 10 10 10 10 10 10 10 10 12 11 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 15 17 10 12 15 17 10 12 15 17 10 12 15 17 10 12 15 17 10 12 15 17 10 12 15 17 10 12 15 17 17 10 12 15 17 17 17 17 17 17 17 17 17 17	achmann 2005	75	22	0 200	0 721	0.086	1 546	0.122		1
Solier 2006 12 14 -0.537 -1.288 0.224 -1.344 0.167 Salier 2007 20 11 -0.002 -0.719 0.714 -0.006 0.996 Sartfin 2005 15 8 2.041 1.025 3.057 3.938 0.000 Jer Kote 2007 16 15 -0.305 -0.996 0.386 -0.867 0.370 Veylan 2003a 24 18 -0.228 -0.996 0.325 0.366 Sheev 2008 29 118 0.225 0.150 0.660 1.235 0.217 Sheev 2008 29 118 0.225 0.994 0.750 -0.275 0.774 Vehuda 1995 14 12 0.997 0.194 1.781 2.439 0.015 Vehuda 2004 17 9 0.364 -0.425 1.152 0.904 0.366 Vehuda 2004 29 307 0.996 0.111 0.382 0.651 0.513 Vehuda 2004 29 307 0.966 0.111 0.382 0.021 0										_
Solier 2007 20 11 -0.002 -0.0719 0.714 0.006 0.996 Siftin 2005 15 8 2.041 1.025 3.057 3.938 0.000 Librizon 2007 24 21 -0.300 -0.879 0.279 -1.015 0.310 Librizon 2007 16 15 -0.305 -0.996 0.386 0.967 0.386 Jeler 2003 24 18 -0.228 0.986 0.385 0.350 0.996 Seedat 2003 10 12 0.091 0.716 0.899 0.151 0.222 0.824 Simeon 2008 7 14 -0.122 0.994 0.750 0.275 0.784 Griuda 2002 28 9 0.521 0.224 1.285 0.361 0.996 Griuda 2004 17 9 0.364 0.425 1.52 0.904 0.366 Griuda 2004 17 9 0.364 0.425 1.52 0.904 0.366 Wirman 1990 20 15 -0.799 1.480 0.119										- 1
Ariffin 2005 15 8 2.041 1.025 3.057 3.938 0.000 te Kloet 2007 24 21 -0.300 -0.879 0.279 -1.015 0.310 berzon 2007 16 15 -0.305 -0.996 0.285 -0.867 0.386 veylan 2003 24 18 -0.288 -0.800 0.315 0.935 0.521 sedat 2003 10 12 0.091 0.716 0.999 0.222 0.824 shelev 2008 29 118 0.255 -0.150 0.660 1.235 0.774 Arehuda 1995 14 12 0.967 0.194 1.781 2.439 0.015 Arehuda 2004 29 307 0.096 0.191 0.382 0.655 0.513 Jirnary contisol Jirnary contisol Since 2006 32 10 1.236 0.491 1.981 3.250 0.001 Jernari 1990 20 15 -0.799 1.480 -1.199 2.303 0.221										
te Kloet 2007 24 21 -0.300 -0.879 0.279 -1.015 0.310 i.berzon 2007 16 15 -0.305 -0.996 0.385 -0.867 0.386 seedat 2003 10 12 0.091 -0.716 0.899 0.222 0.824 Shalev 2008 29 118 0.255 -0.150 0.660 1.235 0.217 Simeon 2008 7 14 0.122 -0.994 0.760 -0.275 0.784 (fehuda 1995 14 12 0.987 0.194 1.781 2.439 0.015 (fehuda 2004 17 9 0.364 -0.425 1.152 0.904 0.366 299 307 0.096 0.191 0.382 0.655 0.513 Jinacr 2006 32 10 1.236 0.491 1.881 3.250 0.001 291 3.366 0.425 1.152 0.904 0.366 1.233 0.655 0.513 Jinacr 2006 7 14 1.092 -2.023 -0.616 0.386 jineon 2008 7 14 1.092 -2.023 -0.616 0.2197 (fehuda 1995 20 15 -0.799 -1.480 -0.119 -2.303 0.021 Jinacr 2006 7 14 -1.092 -2.023 -0.160 -2.297 0.022 (fehuda 2009 28 10 0.010 -0.697 0.717 0.029 0.977 109 74 0.162 0.816 1.139 0.325 0.776 Jineon 2008 7 14 -0.021 -0.788 0.730 1.983 4.243 0.000 (fehuda 2009 28 10 0.010 -0.697 0.717 0.029 0.977 109 74 0.162 0.816 1.139 0.325 0.776 Jineon 2005 75 33 -0.180 -0.587 0.228 -0.865 0.387 Jone 109 74 0.162 0.816 1.139 0.325 0.776 DST Sachmann 2005 75 33 -0.180 -0.587 0.228 -0.865 0.387 Jineon 2005 75 33 -0.180 -0.587 0.228 -0.865 0.387 Jineon 2005 75 33 -0.180 -0.587 0.228 -0.865 0.387 Jineon 2005 75 33 -0.180 -0.587 0.228 -0.056 0.956 Jineon 2005 75 4.4 0.213 -0.790 0.364 -0.723 0.470 Jineon 2005 75 33 -0.180 -0.587 0.228 -0.056 0.956 Jineon 2005 75 4.4 0.213 -0.790 0.364 -0.723 0.470 Jineon 2005 75 4.4 0.213 -0.790 0.364 -0.723 0.470 Jineon 2005 75 4.4 0.213 -0.790 0.364 -0.723 0.470 Jineon 2006 7 144 0.011 -0.880 0.0682 0.025 0.980 Jineon 2006 7 144 0.011 -0.880 0.0681 0.490 Jineon 2006 7 144 0.011 -0.880 0.682 0.025 0.980 Jineon 2006 7 144 0.011 -0.880 0.682 0.025 0.980 Jineon 2006 7 144 0.011 -0.880 0.682									₽	-
liberzon 2007 16 15 - 0.305 -0.996 0.335 -0.667 0.386 levian 2003a 24 18 -0.288 -0.890 0.315 -0.935 0.350 0.935 0.9350 0.355 0.9350 0.947 0.122 0.824 120 0.987 0.194 1.781 2.439 0.015 1371 0.079 0.0364 -0.425 1.152 0.904 0.366 0.191 0.382 0.655 0.513 Dimeno 2008 7 14 1.092 1.256 1.371 0.170 0.999 0.224 1.265 1.371 0.170 0.904 0.366 0.191 0.382 0.655 0.513 Dimeno 2008 7 14 -1.092 -2.023 0.061 109 74 0.152 -0.160 -2.297 0.022 109 74 0.162 -0.160 -2.297 0.022 109 74 0.162 -0.816 1.139 0.325 0.746 Dimeno 2008 12 14 -0.021 -0.768 0.730 0.188 4.243 0.000 109 74 0.162 -0.816 1.139 0.325 0.746 Dimeno 2005 75 33 -0.180 -0.687 0.717 0.029 0.977 109 74 0.162 -0.816 1.139 0.325 0.746 Dimeno 2005 75 33 -0.180 -0.587 0.228 -0.865 0.387 Dimeno 2005 75 33 -0.180 -0.587 0.228 -0.366 0.387 Dimeno 2005 75 33 -0.180 -0.587 0.228 -0.056 0.956 Dimeno 2008 7 14 0.011 -0.880 0.056 0.936 Dimeno 2008 7 144 0.021 -0.788 0.226 0.980 Dimeno 2008 7 144 0.021 -0.788 0.226 0.980 Dimeno 2008 7 144 0.011 -0.882 0.025 0.980 Dimeno 2008 7 144 0.014 -0.245 0.273 0.105 0.916										
Jeylan 2003a 24 18 -0.288 0.890 0.315 -0.935 0.350 Shalev 2003 10 12 0.091 -0.716 0.899 0.222 0.824 Shalev 2008 29 118 0.255 -0.150 0.660 1.235 0.217 Simeon 2008 7 14 -0.122 0.994 0.750 -0.275 0.784 Vehuda 1995 14 12 0.997 0.194 1.781 2.439 0.016 Vehuda 2004 17 9 0.364 -0.425 1.152 0.904 0.366 Jirnary cortisol 299 307 0.096 0.191 0.382 0.655 0.513 Jirnary cortisol 20 15 -0.799 -1.480 -0.119 -2.303 0.021 Vehuda 1995a 22 25 1.356 0.730 1.983 4.243 0.000 Vehuda 2009 28 10 0.010 -0.697 0.717 0.022 0.977 Vehuda 2009 28 10 0.010 -0.687 0.228	le Kloet 2007	24	21	-0.300	-0.879	0.279	-1.015	0.310		1
Jeylan 2003a 24 18 -0.288 0.890 0.315 -0.935 0.350 Shalev 2003 10 12 0.091 -0.716 0.899 0.222 0.824 Shalev 2008 29 118 0.255 -0.150 0.660 1.235 0.217 Simeon 2008 7 14 -0.122 0.994 0.750 -0.275 0.784 Vehuda 1995 14 12 0.997 0.194 1.781 2.439 0.016 Vehuda 2004 17 9 0.364 -0.425 1.152 0.904 0.366 Jirnary cortisol 299 307 0.096 0.191 0.382 0.655 0.513 Jirnary cortisol 20 15 -0.799 -1.480 -0.119 -2.303 0.021 Vehuda 1995a 22 25 1.356 0.730 1.983 4.243 0.000 Vehuda 2009 28 10 0.010 -0.697 0.717 0.022 0.977 Vehuda 2009 28 10 0.010 -0.687 0.228	iberzon 2007.	16	15	-0.305	-0.996	0.385	-0.867	0.386		
Seedat 2003 10 12 0.091 -0.716 0.899 0.222 0.824 Shalev 2008 29 118 0.255 -0.150 0.660 1.235 0.217 Similer 2008 7 14 -0.122 -0.994 0.750 -0.275 0.784 Vehuda 1995 14 12 0.997 0.194 1.781 2.439 0.015 Vehuda 2002 28 9 0.521 -0.224 1.285 1.371 0.170 Vehuda 2004 17 9 0.364 -0.425 1.152 0.904 0.366 Jimeon 2006 32 10 1.236 0.491 1.981 3.250 0.001 Vehuda 2004 20 15 -0.799 -1.480 -0.119 -2.303 0.021 Vehuda 1995 22 25 1.356 0.730 1.983 4.243 0.000 Vehuda 2009 28 10 0.010 -0.697 0.717 0.029 0.977 Vehuda 2009 28 10 0.162 -0.816 1.139 0.325 </td <td></td> <td>24</td> <td>18</td> <td></td> <td>-0.890</td> <td></td> <td></td> <td>0.350</td> <td></td> <td></td>		24	18		-0.890			0.350		
Shalev 2008 29 118 0.255 -0.150 0.660 1.235 0.217 Simeon 2008 7 14 -0.122 -0.994 0.750 -0.275 0.784 Vehuda 2002 28 9 0.521 -0.225 0.784 -0.275 0.784 Vehuda 2004 17 9 0.584 -0.425 1.152 0.9044 0.366 299 307 0.096 -0.191 0.382 0.655 0.513 Jrinary cortisol Jiter 2006 32 10 1.236 0.491 1.981 3.250 0.001 Vitran 1990 20 15 -0.799 -1.480 -0.119 -2.303 0.021 Simeon 2008 7 14 -1.092 -2.023 -0.160 -2.297 0.022 Vehuda 2009 28 10 0.010 -0.697 0.717 0.229 0.767 Vehuda 2005 75 33 -0.180 -0.587 0.228 -0.865 0.387 Vehuda 2005 15 8 <									b_	
Simeon 2008 7 14 -0.122 -0.994 0.750 -0.275 0.784 Vehuda 1995 14 12 0.987 0.194 1.781 2.439 0.015 Vehuda 2004 17 9 0.364 -0.425 1.152 0.904 0.366 299 307 0.096 -0.191 0.382 0.655 0.513 Jrinary cortisol Bierer 2006 32 10 1.236 0.491 1.981 3.250 0.001 Vehuda 2003 7 14 -1.092 -2.033 0.021 - - Simeon 2008 7 14 -1.092 -2.023 0.016 -2.297 0.022 Vehuda 1995a 22 25 1.356 0.730 1.983 4.243 0.000 Simeon 2005 75 33 -0.160 -0.597 0.228 -0.865 0.387 Other 2005 75 33 -0.160 -0.587 0.228 -0.865 0.366 Solier 2006 12 14										_
fehuda 1995 14 12 0.987 0.194 1.781 2.439 0.015 fehuda 2002 28 9 0.524 -0.224 1.265 1.371 0.170 gehuda 2004 17 9 0.364 -0.425 1.152 0.904 0.366 Jernary cortisol J 0.096 0.191 0.382 0.655 0.513 Jernary cortisol Simeon 2006 32 10 1.236 0.491 1.981 3.250 0.001 Simeon 2008 7 14 -1.092 -2.023 0.160 -2.297 0.022 Yehuda 1995a 22 25 1.356 0.730 1.983 4.243 0.000 Yehuda 2009 28 10 0.010 -0.697 0.717 0.029 0.977 Yehuda 2005 75 33 -0.180 -0.587 0.228 -0.465 0.387 Solier 2006 12 14 -0.021 -0.788 0.726 -0.056 0.956 Solier 2006 12 14 -0.217 0.784 -0.723										_
Yehuda 2002 28 9 0.521 -0.224 1.265 1.371 0.170 Yehuda 2004 17 9 0.364 -0.425 1.152 0.904 0.366 Zeg9 307 0.096 -0.191 0.382 0.655 0.513 Jrinary cortisol Bierer 2006 32 10 1.236 0.491 1.981 3.250 0.001 Simeon 2008 7 14 -1.092 -2.023 0.160 -2.297 0.022 Yehuda 2009 28 10 0.010 -0.697 0.717 0.029 0.977 Yehuda 2009 28 10 0.010 -0.697 0.717 0.228 0.977 Yehuda 2005 75 33 -0.180 -0.587 0.228 -0.865 0.387 Solier 2006 12 14 -0.021 -0.768 0.726 -0.056 0.956 Solier 2006 12 14 -0.021 -0.768 0.728 -0.473 0.470 Bierer 2005 15 8 -0.806 -0.587 <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		-								
Yehuda 2004 17 9 0.364 -0.425 1.152 0.904 0.366 Jzinary cortisol Bierer 2006 32 10 1.236 0.491 1.981 3.250 0.001 Pitman 1990 20 15 -0.799 -1.480 -0.119 -2.303 0.021 Simeon 2008 7 14 -1.092 -2.023 -0.160 -2.297 0.022 Vehuda 1995a 22 25 1.356 0.730 1.983 4.243 0.000 Vehuda 2009 28 10 0.010 -0.697 0.717 0.029 0.977 OST 74 0.162 -0.816 1.139 0.325 0.746 OST 0.228 -0.056 0.956 0.387 Joine 2005 75 33 -0.162 -0.846 1.838 0.066 Joine 2005 15 8 -0.206 0.056 0.956 0.387 Joine 2005 15 8 -0.206 0.056 0.956 0.387 Joine 2006 12 14										
299 307 0.096 -0.191 0.382 0.655 0.513 Jinary cortisol Bierer 2006 32 10 1.236 0.491 1.981 3.250 0.001 Ditman 1990 20 15 -0.799 -1.480 -0.119 -2.303 0.021 Simeon 2008 7 14 -1.092 -2.023 -0.160 -2.297 0.022 (rehuda 1995a 22 25 1.356 0.730 1.983 4.243 0.000 (rehuda 2009 28 10 0.010 -0.697 0.717 0.029 0.977 OST 0 74 0.162 -0.816 1.139 0.325 0.746 DST 33 -0.180 -0.587 0.228 -0.865 0.387 Solier 2006 12 14 -0.021 -0.768 0.726 -0.056 0.956 Solier 2005 15 8 -0.806 -1.665 0.054 -1.838 0.066 Ie Kloet 2007 21 24 -0.277 0.578 0.691 0.490										
Hierer 2006 32 10 1.236 0.491 1.981 3.250 0.001 Pitman 1990 20 15 -0.799 -1.480 -0.119 -2.303 0.021 Simeon 2008 7 14 -1.092 -2.023 -0.160 -2.297 0.022 'ehuda 1995a 22 25 1.356 0.730 1.983 4.243 0.000 'ehuda 2009 28 10 0.010 -0.697 0.125 0.746 Difer 2006 12 14 -0.021 -0.768 0.726 -0.056 0.957 Solier 2006 12 14 -0.021 -0.768 0.726 -0.056 0.956 Solier 2005 15 8 -0.806 -1.685 0.956 0.956 Solier 2005 15 8 -0.806 -0.723 0.470 Veltazor 21 -0.213 -0.790 0.364 -0.723 0.470 Simeon 2008 7 14 0.011 -0.862 0.025 0.980 -4 'ehuda 2002 34 9<			-							Γ
Pitman 1990 20 15 -0.799 -1.480 -0.119 -2.303 0.021 Simeon 2008 7 14 -1.092 -2.023 -0.160 -2.297 0.022 Zehuda 1995a 22 25 1.356 0.730 1.983 4.243 0.000 Zehuda 2009 28 10 0.010 -0.697 0.717 0.029 0.977 109 74 0.162 -0.816 1.139 0.325 0.746 DST 3achman 2005 75 33 -0.180 -0.587 0.228 -0.865 0.387 Golier 2006 12 14 -0.021 -0.768 0.726 -0.056 0.956 Jorffin 2005 15 8 -0.806 1.665 0.054 -1.838 0.666 Je Kloet 2007 21 24 -0.213 -0.709 0.364 -0.723 0.490 Jimeon 2008 7 14 0.011 -0.286 0.882 0.020 0.986 Jimeon 2008 7 14 0.211 0.790 0.364 -0.	Jrinary cortisol									
Pitman 1990 20 15 -0.799 -1.480 -0.119 -2.303 0.021 Simeon 2008 7 14 -1.092 -2.023 -0.160 -2.297 0.022 (ehuda 1995a 22 25 1.356 0.730 1.983 4.243 0.000 (rehuda 2009) 28 10 0.010 -0.697 0.717 0.029 0.977 109 74 0.162 -0.816 1.139 0.325 0.746 DST 3achmann 2005 75 33 -0.180 -0.587 0.228 -0.865 0.387 Solier 2006 12 14 -0.021 -0.768 0.726 -0.056 0.956 Solier 2005 15 8 -0.806 1.665 0.054 -1.838 0.666 16 Kotet 2007 21 24 -0.213 -0.709 0.364 -0.723 0.490 Jimeon 2008 7 14 0.011 -0.860 0.882 0.020 0.986 Gridua 2004 17 9 0.432 0.359 1.224 1	Sierer 2006	30	10	1 226	0.401	1 0.9.1	3 250	0.001	1	
Simeon 2008 7 14 -1.092 -2.023 -0.160 -2.297 0.022 Yehuda 1995a 22 25 1.356 0.730 1.983 4.243 0.000 Yehuda 2009 28 10 0.010 -0.697 0.717 0.029 0.977 109 74 0.162 -0.816 1.139 0.325 0.746 DST Solier 2005 75 33 -0.180 -0.587 0.228 -0.865 0.387 Solier 2006 12 14 -0.021 -0.768 0.726 -0.056 0.956 Simeon 2008 7 14 -0.021 -0.778 0.691 0.490 Simeon 2008 7 14 -0.160 0.882 0.025 0.980 Gimeon 2008 7 14 0.011 -0.860 0.882 0.029 0.990 Yehuda 2002 34 9 -0.059 0.780 0.662 -0.161 0.872 Yehuda 2004 17 9 0.432 -0.359 1.224 1.071 0.284										
Yehuda 1995a 22 25 1.356 0.730 1.983 4.243 0.000 Yehuda 2009 28 10 0.010 -0.697 0.717 0.029 0.977 109 74 0.162 -0.816 1.139 0.325 0.746 DST 3achmann 2005 75 33 -0.180 -0.587 0.228 -0.865 0.387 Sachmann 2005 75 33 -0.180 -0.587 0.228 -0.056 0.956 Solier 2006 12 14 -0.021 -0.768 0.726 -0.056 0.956 Siffin 2005 15 8 -0.806 -1.665 0.054 -1.838 0.066 Ie Kloet 2007 21 24 -0.213 -0.790 0.364 -0.723 0.470 Aletzger 2008 40 43 0.151 -0.277 0.578 0.981 0.490 Simeon 2008 7 14 0.011 -0.862 -0.0161 0.872 Yehuda 2002 34 9 -0.059 -0.780 0.662 -0.161										
Yehuda 2009 28 10 0.010 -0.697 0.717 0.029 0.977 109 74 0.162 -0.816 1.139 0.325 0.746 OST 33 -0.180 -0.587 0.228 -0.865 0.387 Sachmann 2005 75 33 -0.180 -0.587 0.228 -0.865 0.387 Solier 2006 12 14 -0.021 -0.768 0.726 -0.056 0.956 Silmeon 2008 7 14 -0.213 -0.790 0.364 -0.723 0.470 Vehuda 2002 34 9 -0.059 -0.780 0.662 -0.611 0.872 Vehuda 2004 17 9 0.432 -0.359 1.224 1.071 0.284	Simeon 2008	7	14	-1.092	-2.023	-0.160	-2.297	0.022		
Yehuda 2009 28 10 0.010 -0.697 0.717 0.029 0.977 109 74 0.162 -0.816 1.139 0.325 0.746 OST 3achmann 2005 75 33 -0.180 -0.587 0.228 -0.865 0.387 Sachmann 2005 75 33 -0.180 -0.587 0.228 -0.066 0.956 Solier 2006 12 14 -0.021 -0.768 0.726 -0.056 0.956 Simeon 2008 7 14 0.011 -0.860 0.882 0.025 0.980 Yehuda 2002 34 9 -0.059 -0.780 0.662 -0.161 0.872 Yehuda 2004 17 9 0.432 -0.359 1.224 1.071 0.284 <td>rehuda 1995a</td> <td>22</td> <td>25</td> <td>1.356</td> <td>0.730</td> <td>1.983</td> <td>4.243</td> <td>0.000</td> <td></td> <td></td>	rehuda 1995a	22	25	1.356	0.730	1.983	4.243	0.000		
109 74 0.162 -0.816 1.139 0.325 0.746 OST 0.162 -0.816 1.139 0.325 0.746 Achmann 2005 75 33 -0.180 -0.587 0.228 -0.865 0.387 Solier 2006 12 14 -0.021 -0.768 0.726 -0.056 0.956 Solier 2005 15 8 -0.806 -1.665 0.054 -1.838 0.066 le Kloet 2007 21 24 -0.213 -0.790 0.364 -0.723 0.470 detzger 2008 40 43 0.151 -0.277 0.578 0.691 0.490 ofmeon 2008 7 14 0.011 -0.860 0.862 0.025 0.980 rehuda 2002 34 9 -0.059 -0.780 0.662 -0.161 0.872 rehuda 2004 17 9 0.432 -0.359 1.224 1.071 0.284 235 166 0.014 -0.245 0.273 0.105 0.916	ehuda 2009	28	10			0 717	0 020		_	_ _
DST Bachmann 2005 75 33 -0.180 -0.587 0.228 -0.865 0.387 Solier 2006 12 14 -0.021 -0.768 0.726 -0.056 0.956 Solier 2005 15 8 -0.806 -1.665 0.054 -1.838 0.066 le Kloet 2007 21 24 -0.213 -0.790 0.364 -0.723 0.470 Metzger 2008 40 43 0.151 -0.277 0.578 0.691 0.490 Simeon 2008 7 14 0.011 -0.860 0.882 0.025 0.980 Yehuda 1995 14 12 0.937 0.148 1.726 2.329 0.020 Yehuda 2002 34 9 -0.059 -0.780 0.662 -0.161 0.872 Yehuda 2004 17 9 0.432 -0.359 1.224 1.071 0.284 235 166 0.014 -0.245 0.273 0.105 0.916	5114UA 2008									
Solier 2006 12 14 -0.021 -0.768 0.726 -0.056 0.956 Griffin 2005 15 8 -0.806 -1.665 0.054 -1.838 0.066 le Kloet 2007 21 24 -0.213 -0.790 0.364 -0.723 0.470 Aletzger 2008 40 43 0.151 -0.277 0.578 0.691 0.490 Simeon 2008 7 14 0.011 -0.860 0.882 0.025 0.980 (ehuda 1995 14 12 0.937 0.148 1.726 2.329 0.020 (ehuda 2002 34 9 -0.059 -0.780 0.662 -0.161 0.872 (ehuda 2004 17 9 0.432 -0.359 1.224 1.071 0.284 235 166 0.014 -0.245 0.273 0.105 0.916	DST									4
Solier 2006 12 14 -0.021 -0.768 0.726 -0.056 0.956 Sniffin 2005 15 8 -0.806 -1.665 0.054 -1.838 0.066 le Kloger 2007 21 24 -0.213 -0.700 0.364 -0.723 0.470 Aletzger 2008 40 43 0.151 -0.277 0.578 0.691 0.490 Simeon 2008 7 14 0.011 -0.860 0.882 0.025 0.980 Yehuda 1995 14 12 0.937 0.148 1.726 2.329 0.020 Yehuda 2002 34 9 -0.059 -0.780 0.662 -0.161 0.872 Yehuda 2004 17 9 0.432 -0.359 1.224 1.071 0.284 235 166 0.014 -0.245 0.273 0.105 0.916										
Sriffin 2005 15 8 -0.806 -1.665 0.054 -1.838 0.066 le Kloet 2007 21 24 -0.213 -0.790 0.364 -0.723 0.470 Aletzger 2008 40 43 0.151 -0.277 0.578 0.691 0.490 Simeon 2008 7 14 0.011 -0.860 0.882 0.025 0.980 Vehuda 1995 14 12 0.937 0.148 1.726 2.329 0.020 Vehuda 2002 34 9 -0.059 -0.780 0.662 -0.611 0.872 Vehuda 2004 17 9 0.432 -0.359 1.224 1.071 0.284 235 166 0.014 -0.245 0.273 0.105 0.916										
e Kloet 2007 21 24 -0.213 -0.790 0.364 -0.723 0.470 fetzger 2008 40 43 0.151 -0.277 0.578 0.691 0.490 simeon 2008 7 14 0.011 -0.660 0.822 0.025 0.980 rehuda 1995 14 12 0.937 0.148 1.726 2.329 0.020 rehuda 2002 34 9 -0.059 -0.780 0.662 -0.616 0.872 rehuda 2004 17 9 0.432 -0.359 1.224 1.071 0.284 235 166 0.014 -0.245 0.273 0.105 0.916	Golier 2006	12	14	-0.021	-0.768	0.726	-0.056	0.956	— — ●	-
e Kloet 2007 21 24 -0.213 -0.790 0.364 -0.723 0.470 fetzger 2008 40 43 0.151 -0.277 0.578 0.691 0.490 simeon 2008 7 14 0.011 -0.660 0.822 0.025 0.980 rehuda 1995 14 12 0.937 0.148 1.726 2.329 0.020 rehuda 2002 34 9 -0.059 -0.780 0.662 -0.616 0.872 rehuda 2004 17 9 0.432 -0.359 1.224 1.071 0.284 235 166 0.014 -0.245 0.273 0.105 0.916	Griffin 2005	15	8	-0.806	-1.665	0.054	-1.838	0.066		
Metzger 2008 40 43 0.151 -0.277 0.578 0.691 0.490 simeon 2008 7 14 0.011 -0.860 0.882 0.025 0.980 'ehuda 1995 14 12 0.937 0.148 1.726 2.329 0.020 'ehuda 2002 34 9 -0.059 -0.780 0.662 -0.161 0.872 'ehuda 2004 17 9 0.432 -0.359 1.224 1.071 0.284 235 166 0.014 -0.245 0.273 0.105 0.916			24							1
Simeon 2008 7 14 0.011 -0.860 0.882 0.025 0.980 'ehuda 1995 14 12 0.937 0.148 1.726 2.329 0.020 'ehuda 2002 34 9 -0.059 -0.780 0.662 -0.161 0.872 'ehuda 2004 17 9 0.432 -0.359 1.224 1.071 0.284 235 166 0.014 -0.245 0.273 0.105 0.916										-
Yehuda 1995 14 12 0.937 0.148 1.726 2.329 0.020 Yehuda 2002 34 9 -0.059 -0.780 0.662 -0.161 0.872 Yehuda 2004 17 9 0.432 -0.359 1.224 1.071 0.284 235 166 0.014 -0.245 0.273 0.105 0.916	-								_	
Yehuda 2002 34 9 -0.059 -0.780 0.662 -0.161 0.872 Yehuda 2004 17 9 0.432 -0.359 1.224 1.071 0.284 235 166 0.014 -0.245 0.273 0.105 0.916									T	
iehuda 2004 17 9 0.432 -0.359 1.224 1.071 0.284 235 166 0.014 -0.245 0.273 0.105 0.916										-
235 166 0.014 -0.245 0.273 0.105 0.916										- 1
	rehuda 2004	17	9	0.432	-0.359	1.224	1.071	0.284		⊢ <u>+</u>
-2 -1 0 1		235	166	0.014	-0.245	0.273	0.105	0.916		
								-2	-1 0	1

Figure 2. (Continued).

studies on trauma experienced during combat (Hedges's g –0.044, p = 0.770; Table 1b).

There were no significant interactions between, on the one hand, TE versus NE and TE versus PTSD, and, on the other hand, subgroups (all ps > 0.20 for interaction). In other words, subgroups did not significantly differ for their effect sizes, in none of the meta-analyses.

In the two main analyses, neither the funnel plot nor Duval and Tweedie's trim and fill procedure pointed at a significant publication bias (data not shown). The effect sizes did not change after adjustment for possible publication bias in both analyses (the observed and adjusted effect sizes were exactly the same, and the number of imputed studies was zero).

Discussion

Our main finding is that TE individuals in the absence of psychopathology did not differ on basal cortisol levels from NE healthy control subjects. Moreover, PTSD patients did not differ from TE subjects with respect to basal cortisol levels. Results were largely consistent for saliva, plasma and urine in which the cortisol was measured. The only significant differ-

1

0

11

1

L U

J

III.

60

63

Comparison	Number of studies	Number of subjects per group TE/NE	Hedges's g	95%CI	<i>p</i> -Value for effect size	Ζ	Q	/ ²	<i>p</i> -Value for heterogeneity
Trauma-exposed (TE) a	nd non-exposed	(NE) healthy subjects							
All studies (without	21	710/513	-0.029	-0.146; 0.087	0.620	-0.495	19.636	0.00	0.481
DST and Dex/CRH)									
Outcome									
Salivary cortisol	11	585/382	-0.023	-0.156; 0.109	0.730	-0.346	9.852	0.00	0.454
Plasma cortisol	9	162/120	-0.089	-0.345; 0.168	0.498	-0.678	8.581	6.77	0.397
Urinary cortisol	3	49/37	-0.001	-0.567; 0.570	0.997	-0.004	3.521	43.20	0.172
DST	6	76/77	-0.482	-0.862; -0.102	0.013	-2.484	6.901	27.55	0.228
Dex/CRH test	2	75/46	0.048	-0.315; 0.411	0.796	0.258	0.492	0.00	0.483
Type of trauma									
Combat	5	93/92	-0.077	-0.363; 0.209	0.599	-0.526	3.732	0.00	0.444
Holocaust	5	79/90	0.117	-0.185; 0.419	0.447	0.761	1.309	0.00	0.860
Other	11	538/331	-0.085	-0.285; 0.115	0.405	-0.832	13.504	25.95	0.197
Gender									
Male	5	120/100	-0.146	-0.436; 0.144	0.324	-0.986	4.723	15.23	0.317
Female	5	188/82	0.001	-0.408; 0.410	0.998	0.003	8.229	51.39	0.084
Age									
\leq 40 years	8	413/288	-0.097	-0.310; 0.116	0.374	-0.889	8.563	18.26	0.286
>40 years	13	297/225	-0.007	-0.172; 0.185	0.942	-0.072	10.801	0.00	0.546
Quality									
High	10	299/171	-0.101	-0.330; 0.128	0.388	-0.863	11.685	22.98	0.232
Suboptimal	11	411/342	-0.005	-0.138; 0.149	0.941	0.074	7.302	0.00	0.697

Note: HPA-axis, hypothalamus-pituitary-adrenal-axis; TE, trauma exposed healthy subjects; NE, non-exposed healthy subjects; 95%CI indicates 95% confidence interval; DST, dexamethasone suppression test; Dex/CRH, dexamethasone corticotropin-releasing hormone.

Comparison	Number of studies	Number of subjects per group TE/PTSD	Hedges's g	95%CI	<i>p</i> -Value for effect size	Ζ	Q	1 ²	<i>p</i> -Value for heterogeneity
Trauma-exposed (TE) healt	hy subjects and	PTSD patients (PTSD)							
All studies (without DST)	34	967/835	0.177	-0.011; 0.365	0.065	1.846	104.842	68.52	0.000
Outcome									
Salivary cortisol	17	621/458	0.155	-0.061; 0.372	0.160	1.405	39.217	59.20	0.001
Plasma cortisol	14	307/299	0.102	-0.188; 0.393	0.491	0.689	33.752	61.48	0.001
Urinary cortisol	5	74/109	0.162	-0.816; 1.139	0.746	0.325	36.213	89.95	0.000
DST	9	166/236	-0.009	-0.272; 0.255	0.949	-0.064	12.144	34.12	0.145
Type of trauma									
Combat	11	210/269	-0.044	-0.343; 0.254	0.770	-0.292	24.806	59.69	0.006
Holocaust	5	79/120	0.446	-0.060; 0.952	0.084	1.726	11.561	65.40	0.021
Other	18	678/446	0.237	-0.026; 0.499	0.077	1.768	11.561	65.40	0.021
Gender									
Male	10	169/226	-0.034	-0.377; 0.310	0.847	-0.192	24.588	63.40	0.003
Female	7	197/177	0.341	-0.222; 0.904	0.235	1.188	37.475	83.99	0.000
Age									
\leq 40 years	13	538/274	0.103	-0.166; 0.372	0.452	0.752	28.499	57.89	0.005
>40 years	21	429/561	0.220	-0.042; 0.483	0.100	1.645	75.578	73.54	0.000
Quality									
High	11	227/221	0.169	-0.235; 0.573	0.412	0.820	39.468	74.66	0.000
Suboptimal	22	731/586	0.169	-0.051; 0.389	0.133	1.504	64.152	67.27	0.000

...

Note: HPA-axis, hypothalamus-pituitary-adrenal-axis; TE, trauma exposed subjects; PTSD, posttraumatic stress disorder patients; 95%CI indicates 95% confidence interval; DST, dexamethasone suppression test; Dex/CRH, dexamethasone corticotropin-releasing hormone.

_

Adulthood trauma and HPA-axis functioning in healthy subjects and PTSD patients: A meta-analysis

ence concerned DST findings, as adulthood trauma may augment cortisol suppression after the DST. As mentioned earlier, in trauma-exposed veterans without PTSD enhanced suppression of cortisol is reported (de Kloet et al., 2007). This is in line with pre-clinical studies that showed long-term alteration in glucocorticoid regulation in response to an acute or chronic stressor (van Dijken et al., 1993; Buwalda et al., 1999). Increased sensitivity of the HPA-axis to corticosteroids after trauma exposure may be a mechanism of the body to protect itself against the detrimental effects of sustained high cortisol levels.

In contrast to exposure to childhood trauma, which is associated with alterations in HPA-axis functioning (Heim et al., 2000; Rinne et al., 2002; Meinlschmidt and Heim, 2005; Carpenter et al., 2007; Tyrka et al., 2008; Klaassens et al., 2009), trauma during adulthood was not associated with basal cortisol. This is also in line with our post hoc sensitivity analysis in which we excluded Holocaust studies, which markedly attenuated the effect size. This seems valid as trauma exposure during the Holocaust very likely also included trauma exposure during childhood. At least some of the Holocaust survivors that were included were likely to be under 16 years of age when they were subjected to a life in a concentration camp, ghetto or in hiding, and therefore the tendency for a stronger effect size may have been due to the fact that part of the subjects were exposed to trauma during childhood rather than adulthood."

Our main finding of a lack of association, is also in line with a subgroup analysis from the meta-analysis of Meewisse et al. (2007) on basal cortisol in adult subjects with and without PTSD, as they found no differences between people with PTSD and TE controls. In our meta-analysis, however, we extended the analysis from 15 studies that were included in their meta-analysis (Meewisse et al., 2007) to 34 studies in ours. Moreover, we exclusively focussed on adulthood trauma, whereas the other meta-analysis also included studies on victims of childhood sexual and physical abuse. Thus, our meta-analysis lends support for the hypothesis that *adulthood* trauma does not (markedly) affect HPA-axis functioning.

We included the dynamic DST and the Dex/CRH test in our meta-analyses, contrary to the former meta-analysis (Meewisse et al., 2007). Our analysis suggested that studies using the DST found more cortisol suppression in TE subjects compared with NE controls. Trauma-exposure during adulthood may thus be associated with a stronger HPA-axis feedback response. This suggests that the often-reported association between PTSD and negative feedback systems of cortisol could be trauma-related. Our second meta-analysis, however, did not extend this finding to PTSD subjects; no differences in effect size on the DST were found between TE subjects and PTSD patients. Differences in HPA-axis functioning between these groups have been ascribed to the presence of PTSD. In light of our findings, however, DST differences could be associated with trauma exposure rather than with PTSD psychopathology. Yet, the findings on the DST in TE versus NE subjects, were based on only 5 studies, and should be interpreted cautiously. Based on only two studies, no association was found between trauma exposure in adulthood and HPA-axis functioning during the Dex/CRH challenge test (Klaassens et al., 2010a,b).

There are several possible explanations for the inconsistent findings in previous studies when comparing PTSD patients to NE participants. First, the PTSD group may consist of a heterogeneous patient groups, as different forms of adult trauma (e.g., sexual violence/abuse, combat, Holocaust) were studied in different publications. Second, nonlinear associations with cortisol could exist that was not investigated with the techniques used in our meta-analysis. Recent publications showed both hypo- and hyperactivity of the HPA-axis being associated with depression (Bremmer et al., 2007; Penninx et al., 2011) or its dimensions in subjects with and without anxiety and depressive disorders (Wardenaar et al., 2011), which might also be present in PTSD. Third, publication bias may play a role, even if no true difference is present between the two groups. Studies finding either significantly enhanced or diminished cortisol levels in PTSD (Type 1 errors) may have higher chances to be published than studies that showed non-significant results. This may also explain the larger heterogeneity between study results when comparing TE versus PTSD subjects."

Limitations and strengths

The results of this meta-analysis should be interpreted in light of the limitations of the analyses and the body of studies within it. First, despite our efforts to include all available studies and good agreement between the reviewing authors, we cannot rule out the possibility that we have missed some studies meeting the inclusion criteria and we could not calculate inter-rater reliability scores for double-screening scores from pairs of reviewing authors. Fortunately, publication bias analyses suggest that, although some studies may have been missed, publication bias is unlikely to have influenced our findings. Second, in the process of designing these meta-analyses, several decisions based on our in- and exclusion criteria were made. Different criteria might have led to slightly different results. Third, we have included studies that did not specifically mention the assessment of childhood trauma exposure. We have taken the shortcoming of these studies into account in the quality score, which was used to do a sensitivity analysis only in studies of higher quality (Tables 1a and 1b). Fourth, not all studies explicitly stated whether they assessed lifetime psychiatric illness using (semi-)structured interviews, and therefore may have included subjects with past diagnoses of, e.g., adjustment disorders, mood disorders, and acute stress disorder. Fifth, some of the included studies had very small sample sizes, mostly as a result of the fact that the two control groups (TE and NE) were initially recruited as one control group and subgroup analyses were later performed. Finally, the quality of most studies (59%) was not optimal. Some studies assessed only one basal sample of cortisol, which in most cases was not related to time of awakening. The cortisol level assessed with a single time-point sample is very easily influenced by stress (e.g., in case of a vena puncture) or daytime variability. A strength of our meta-analysis was that we did not only include studies on basal cortisol sampling but also studies of cortisol reactivity to the DST and the Dex/CRH challenge test. In doing so, we have tried to create a more complete picture of HPA-axis functioning in relation to exposure to adulthood trauma in subjects with and without psychiatric disorders.

Conclusion

The lack of difference in pooled effect size between subjects with and without adult trauma exposure suggests that trauma exposure during adulthood per se is unlikely to affect basal HPA-axis functioning in subjects without PTSD. In addition, no evidence was found for an association of PTSD with basal HPA-axis functioning. Moreover, the lack of heterogeneity for the first meta-analysis suggests that additional studies on trauma exposure during adulthood are unlikely to yield different results. Interestingly, in a subgroup analysis of 5 studies we found that in the DST there was more cortisol suppression in TE subjects than in NE controls.

There are some (clinical) implications of our findings. Since there seems to be an interaction between trauma exposure, HPA-axis regulation and stress-related disorders such as PTSD. this may help us understand why some people do and others do not develop psychiatric disorders in the aftermath of traumatic stress. Moreover, the enhanced suppression after the DST may be contributing to an increased vulnerability to further exposure to stressors in the trauma-exposed subjects. Nevertheless, as we did not find large differences in basal cortisol levels among the groups, we advice further studies in this field to focus on more sensitive dynamic tests of HPA-axis integrity. In future studies on the effects of trauma, not only in patients with PTSD but also in patients with other psychiatric disorders, we therefore propose to carefully differentiate between adulthood and childhood trauma. Moreover, as most data is present for basal cortisol and the low-dose DST, more evidence on other dynamic tests of HPA-axis functioning in PTSD and adulthood trauma exposure is needed (e.g., de Kloet et al., 2008).

Role of the funding sources

Funding for this study was provided by the Leiden University Medical Center (LUMC). The LUMC had no further role in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.

Conflict of interest

None declared.

Acknowledgements

We gratefully acknowledge the help from corresponding authors of previous articles, who provided additional information as requested.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.psyneuen. 2011.07.003.

References

Appelhof, B.C., Huyser, J., Verweij, M., Brouwer, J.P., van Dyck, R., Fliers, E., Hoogendijk, W.J.G., Tijssen, J.G.P., Wiersinga, W.M., Schene, A.H., 2006. Glucocorticoids and relapse of major depression (dexamethasone/corticotropin-releasing hormone test in relation to relapse of major depression). Biol. Psychiatry 59, 696–701.

- Bachmann, A.W., Sedgley, T.L., Jackson, R.V., Gibson, J.N., Young, R.M., Torpy, D.J., 2005. Glucocorticoid receptor polymorphisms and post-traumatic stress disorder. Psychoneuroendocrinology 30, 297–306.
- Bhagwagar, Z., Hafizi, S., Cowen, P.J., 2003. Increase in concentration of waking salivary cortisol in recovered patients with depression. Am. J. Psychiatry 160, 1890–1891.
- Bierer, L.M., Tischler, L., Labinsky, E., Cahill, S., Foa, E., Yehuda, R., 2006. Clinical correlates of 24-h cortisol and norepinephrine excretion among subjects seeking treatment following the world trade center attacks on 9/11. Ann. N. Y. Acad. Sci. 1071, 514–520.
- Blake, D.D., Weathers, F.W., Nagy, L.M., Kaloupek, D.G., Gusman, F.D., Charney, D.S., Keane, T.M., 1995. The development of a Clinician-Administered PTSD Scale. J. Trauma. Stress 8, 75–90.
- Bonne, O., Brandes, D., Segman, R., Pitman, R.K., Yehuda, R., Shalev, A.Y., 2003. Prospective evaluation of plasma cortisol in recent trauma survivors with posttraumatic stress disorder. Psychiatry Res. 119, 171–175.
- Borenstein, M., Hedges, L.V., Higgins, J.P.T., Rothstein, H.R., 2009. Introduction to Meta-analysis, first ed. John Wiley and Sons, Ltd., Chichester.
- Boscarino, J.A., 1996. Posttraumatic stress disorder, exposure to combat, and lower plasma cortisol among Vietnam veterans: findings and clinical implications. J. Consult. Clin. Psychol. 64, 191–201.
- Bremmer, M.A., Deeg, D.J.H., Beekman, A.T.F., Penninx, B.W.J.H., Lips, P., Hoogendijk, W.J.G., 2007. Major depression in late life is associated with both hypo- and hypercortisolemia. Biol. Psychiatry 62, 479–486.
- Bremner, J.D., Vythilingam, M., Vermetten, E., Adil, J., Khan, S., Afzal, N., Nazeer, A., McGlashan, T., Elzinga, B., Anderson, G.M., 2003. Cortisol response to a cognitive stress challenge in posttraumatic stress disorder (PTSD) related to childhood abuse. Psychoneuroendocrinology 28, 733–750.
- Burke, H.M., Davis, M.C., Otte, C., Mohr, D.C., 2005. Depression and cortisol responses to psychological stress: a meta-analysis. Psychoneuroendocrinology 30, 846–856.
- Buwalda, B., de Boer, S.F., Schmidt, E.D., Felszeghy, K., Nyakas, C., Sgoifo, A., et al., 1999. Long-lasting deficiet dexamethasone suppression of HPA activation following peripheral CRF challenge in social defeated rats. J. Neuroendocrinol. 11, 513–520.
- Carpenter, L.L., Carvalho, J.P., Tyrka, A.R., Wier, L.M., Mello, A.F., Mello, M.F., Anderson, G.M., Wilkinson, C.W., Price, L.H., 2007. Decreased adrenocorticotropic hormone and cortisol responses to stress in healthy adults reporting significant childhood maltreatment. Biol. Psychiatry 62, 1080–1087.
- Carroll, B.J., Curtis, G.C., Mendels, J., 1976. Neuroendocrine regulation in depression. II. Discrimination of depressed from nondepressed patients. Arch. Gen. Psychiatry 33, 1051–1058.
- Chida, Y., Steptoe, A., 2009. Cortisol awakening response and psychosocial factors: a systematic review and meta-analysis. Biol. Psychology 80, 265–278.
- Deeks, J.D., Altman, D.G., Bradburn, M.J., 2009. Statistical methods for examining heterogeneity and combining results from several studies in meta-analysis. In: Egger, M., Smith, G.D., Altman, D.G. (Eds.), Systematic Reviews in Health Care. second ed. BMJ Publishing Group, London, pp. 285–312.
- Deuschle, M., Schmider, J., Weber, B., Standhardt, H., Körner, A., Lammers, C.H., Schweiger, U., Hartmann, A., Heuser, I., 1997.
 Pulse-dosing and conventional application of doxepin: effects on psychopathology and hypothalamus-pituitary-adrenal (HPA) system. J. Clin. Psychopharmacol. 17, 156–160.
- Deuschle, M., Hamann, B., Meichel, C., Krumm, B., Lederbogen, F., Kniest, A., Colla, M., Heuser, I., 2003. Antidepressive treatment

Adulthood trauma and HPA-axis functioning in healthy subjects and PTSD patients: A meta-analysis

with amitriptyline and paroxetine: effects on saliva cortisol concentrations. J. Clin. Psychopharmacol. 23, 201–205.

- de Kloet, C.S., Vermetten, E., Geuze, E., Kavelaars, A., Heijnen, C.J., Westenberg, H.G.M., 2006. Assessment of HPA-axis function in posttraumatic stress disorder: pharmacological and non-pharmacological challenge tests, a review. J. Psychiatr. Res. 40, 550–567.
- de Kloet, C.S., Vermetten, E., Heijnen, C.J., Geuze, E., Lentjes, E.G.W.M., Westenberg, H.G.M., 2007. Enhanced cortisol suppression in response to dexamethasone administration in traumatized veterans with and without posttraumatic stress disorder. Psychoneuroendocrinology 32, 215–226.
- de Kloet, C., Vermetten, E., Lentjes, E., Geuze, E., van Pelt, J., Manuel, R., Heijnen, C., Westenberg, H., 2008. Differences in the response to the combined DEX-CRH test between PTSD patients with and without co-morbid depressive disorder. Psychoneuroendocrinology 33, 313–320.
- Duval, S., Tweedie, R., 2000. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in metaanalysis. Biometrics 56, 455–463.
- Eckart, C., Engler, H., Riether, C., Kolassa, S., Elbert, T., Kolassa, I.T., 2009. No PTSD-related differences in diurnal cortisol profiles of genocide survivors. Psychoneuroendocrinology 34, 523–531.
- Elzinga, B.M., Schmahl, C.G., Vermetten, E., van Dyck, R., Bremner, J.D., 2003. Higher cortisol levels following exposure to traumatic reminders in abuse-related PTSD. Neuropsychopharmacology 28, 1656–1665.
- Elzinga, B.M., Roelofs, K., Tollenaar, M.S., Bakvis, P., van Pelt, J., Spinhoven, Ph., 2008. Diminished cortisol responses to psychosocial stress associated with lifetime adverse events: a study among healthy young subjects. Psychoneuroendocrinology 33, 227–237.
- Gill, J., Vythilingam, M., Page, G.G., 2008. Low cortisol, high DHEA, and high levels of stimulated TNF-alpha, and IL-6 in women with PTSD. J. Trauma. Stress 21, 530–539.

Golier, J.A., Schmeidler, J., Legge, J., Yehuda, R., 2006. Enhanced cortisol suppression to dexamethasone associated with Gulf War deployment. Psychoneuroendocrinology 31, 1181–1189.

- Golier, J.A., Schmeidler, J., Legge, J., Yehuda, R., 2007. Twenty-four hour plasma cortisol and adrenocorticotropic hormone in gulf war veterans: relationships to posttraumatic stress disorder and health symptoms. Biol. Psychiatry 62, 1175–1178.
- Greden, J.F., Gardner, R., King, D., Grunhaus, L., Carroll, B.J., Kronfol, Z., 1983. Dexamethasone suppression tests in antidepressant treatment of melancholia. The process of normalization and test—retest reproducibility. Arch. Gen. Psychiatry 40, 493–500.
- Griffin, M.G., Resick, P.A., Yehuda, R., 2005. Enhanced cortisol suppression following dexamethasone administration in domestic violence survivors. Am. J. Psychiatry 162, 1192–1199.
- Handwerger, K., 2009. Differential patterns of HPA activity and reactivity in adult posttraumatic stress disorder and major depressive disorder. Harv. Rev. Psychiatry 17, 184–205.

Hedges, L.V., 1982. Estimation of effect size from a series of independent experiments. Psychol. Bull. 92, 490–499.

- Heim, C., Newport, D.J., Heit, S., Graham, Y.P., Wilcox, M., Bonsall, R., Miller, A.H., Nemeroff, C.B., 2000. Pituitary—adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. JAMA 284, 592–597.
- Hellhammer, J., Fries, E., Schweisthal, O.W., Schlotz, W., Stone, A.A., Hagemann, D., 2007. Several daily measurements are necessary to reliably assess the cortisol rise after awakening: Stateand trait components. Psychoneuroendocrinology 32, 80–86.
- Higgins, J.P., Thompson, S.G., Deeks, J.J., Altman, D.G., 2003. Measuring inconsistency in meta-analyses. BMJ 327, 557–560.
- Holsboer, F., von Bardeleven, U., Wiedemann, K., Muller, O.A., Stalla, G.K., 1987. Serial assessment of corticotropin-releasing hormone response after dexamethasone in depression. Implications for pathofysiology of DST non-suppression. Biol. Psychiatry 22, 228–234.

- Holsboer-Trachsler, E., Stohler, R., Hatzinger, M., 1991. Repeated administration of the combined dexamethasone-human corticotropin releasing hormone stimulation test during treatment of depression. Psychiatry Res. 38, 163–171.
- Inslicht, S.S., Marmar, C.R., Neylan, T.C., Metzler, T.J., Hart, S.L., Otte, C., McCaslin, S.E., Larkin, G.L., Hyman, K.B., Baum, A., 2006. Increased cortisol in women with intimate partner violence-related posttraumatic stress disorder. Ann. N. Y. Acad. Sci. 1071, 428–429.
- Johnson, D.M., Delahanty, D.L., Pinna, K., 2008. The cortisol awakening response as a function of PTSD severity and abuse chronicity in sheltered battered women. J. Anxiety Disord. 22, 793–800.
- Kanter, E.D., Wilkinson, C.W., Radant, A.D., Petrie, E.C., Dobie, D.J., McFall, M.E., Peskind, E.R., Raskind, M.A., 2001. Glucocorticoid feedback sensitivity and adrenocortical responsiveness in posttraumatic stress disorder. Biol. Psychiatry 50, 238–245.
- Klaassens, E.R., van Veen, T., Giltay, E.J., Rinne, T., van Pelt, J., Zitman, F.G., 2010a. Trauma exposure and hypothalamic—pituitary—adrenal axis functioning in mentally healthy Dutch peacekeeping veterans, 10–25 years after deployment. J. Trauma. Stress 23, 124–131.
- Klaassens, E.R., Giltay, E.J., van Veen, T., Veen, G., Zitman, F.G., 2010b. Trauma exposure in relation to basal salivary cortisol and the hormone response to the dexamethasone/CRH test in male railway employees without lifetime psychopathology. Psychoneuroendocrinology 35, 878–886.
- Klaassens, E.R., van Noorden, M.S., Giltay, E.J., van Pelt, J., van Veen, T., Zitman, F.G., 2009. Effects of childhood trauma on HPAaxis reactivity in women free of lifetime psychopathology. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 889–894.
- Lauc, G., Zvonar, K., Vuksic-Mihaljevic, Z., Flögel, M., 2004. Postawakening changes in salivary cortisol in veterans with and without PTSD. Stress Health 20, 99–102.
- Lecrubier, Y., Sheehan, D.V., Weiller, E., Amorim, P., Bonora, I., Sheehan, K.H., Janavs, J., unbar, G.C., 1997. The Mini International Neuropsychiatrical Interview (MINI). A short diagnostic structured interview: reliability and validity according to the CIDI. Eur. Psychiatry 12, 224–231.
- Liberzon, I., Abelson, J.L., Flagel, S.B., Raz, J., Young, E.A., 1999. Neuroendocrine and psychophysiologic responses in PTSD: a symptom provocation study. Neuropsychopharmacology 21, 40–50.
- Liberzon, I., King, A.P., Britton, J.C., Phan, K.L., Abelson, J.L., Taylor, S.F., 2007. Paralimbic and medial prefrontal cortical involvement in neuroendocrine responses to traumatic stimuli. Am. J. Psychiatry 164, 1250–1258.
- Lindauer, R.J.L., Olff, M., van Meijel, E.P.M., Carlier, I.V.E., Gersons, B.P.R., 2006. Cortisol, learning, memory, and attention in relation to smaller hippocampal volume in police officers with posttraumatic stress disorder. Biol. Psychiatry 59, 171–177.
- Lindley, S.E., Carlson, E.B., Benoit, M., 2004. Basal and dexamethasone suppressed salivary cortisol concentrations in a community sample of patients with posttraumatic stress disorder. Biol. Psychiatry 55, 940–945.
- Lipsey, M.W., 1990. Design Sensitivity: Statistical Power for Experimental Research. Sage, Newbury Park, CA.
- Manthey, L., Leeds, C., Giltay, E.J., van Veen, T., Vreeburg, S.A., Penninx, B.W., Zitman, F.G., 2011. Antidepressant use and salivary cortisol in depressive and anxiety disorders. Eur. Neuropsychopharmacol., doi:10.1016/j.euroneuro.2011.03.002.
- Mason, J.W., Giller, E.L., Kosten, T.R., Ostroff, R.B., Podd, L., 1986. Urinary free-cortisol levels in posttraumatic stress disorder patients. J. Nerv. Ment. Dis. 174, 145–149.
- Meewisse, M.L., Reitsma, J.B., de Vries, G.J., Gersons, B.P.R., Ollf, M., 2007. Cortisol and post-traumatic stress disorder in adults: systematic review and meta-analysis. Br. J. Psychiatry 191, 387–392.

- Meinlschmidt, G., Heim, C., 2005. Decreased cortisol awakening response after early loss experience. Psychoneuroendocrinology 30, 568–576.
- Metzger, L.J., Carson, M.A., Lasko, N.B., Paulus, L.A., Orr, S.P., Pitman, R.K., Yehuda, R., 2008. Basal and suppressed salivary cortisol in female Vietnam nurse veterans with and without PTSD. Psychiatry Res. 161, 330–335.
- Neylan, T.C., Brunet, A., Pole, N., Best, S.R., Metzler, T.J., Yehuda, R., Marmar, C.R., 2005. PTSD symptoms predict waking salivary cortisol levels in police officers. Psychoneuroendocrinology 30, 373–381.
- Neylan, T.C., Lenoci, M., Maglione, M.L., Rosenlicht, N.Z., Metzler, T.J., Otte, C., Schoenfeld, F.B., Yehuda, R., Marmar, C.R., 2003a. Delta sleep response to metyrapone in post-traumatic stress disorder. Neuropsychopharmacology 28, 1666–1676.
- Neylan, T.C., Schuff, N., Lenoci, M., Yehuda, R., Weiner, M.W., Marmar, C.R., 2003b. Cortisol levels are positively correlated with hippocampal N-acetylaspartate. Biol. Psychiatry 54, 1118–1121.
- Olff, M., Meewisse, M.L., Kleber, R.J., van der Velden, P.G., Drogendijk, A.N., van Amsterdam, J.G.C., Opperhuizen, A., Gersons, B.P.R., 2006. Tobacco usage interacts with postdisaster psychopathology on circadian salivary cortisol. Int. J. Psychophysiol. 59, 251–258.
- Olff, M., de Vries, G.J., Guzelcan, Y., Assies, J., Gersons, B.P., 2007. Changes in cortisol and DHEA plasma levels after psychotherapy for PTSD. Psychoneuroendocrinology 32, 619–629.
- Otte, C., Hart, S., Neylan, T.C., Marmar, C.R., Yaffe, K., Mohr, D.C., 2005. A meta-analysis of cortisol response to challenge in human aging: importance of gender. Psychoneuroendocrinology 30, 80–91.
- Penninx, B.W.J.H., Beekman, A.T.F., Bandinelli, S., Corsi, A.M., Bremmer, M., Hoogendijk, W.J.G., Guralnik, J.M., Ferrucci, L., 2011. Late-life depressive symptoms are associated with both hyperactivity and hypoactivity of the hypothalamo-pituitaryadrenal axis. Am. J. Geriatr. Psychiatry 15, 522–529.
- Pico-Alfonso, M.A., Garcia-Linares, M.I., Celda-Navarro, N., Herbert, J., Martinez, M., 2004. Changes in cortisol and dehydroepiandrosterone in women victims of physical and psychological intimate partner violence. Biol. Psychiatry 56, 233–240.
- Pitman, R.K., Orr, S.P., 1990. Twenty-four hour urinary cortisol and catecholamine excretion in combat-related posttraumatic stress disorder. Biol. Psychiatry 27, 245–247.
- Pruessner, J.C., Kirschbaum, C., Meinlschmid, G., Hellhammer, D.H., 2003. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology 28, 916–931.
- Rinne, T., de Kloet, E.R., Wouters, L., Goekoop, J.G., DeRijk, R.H., van den Brink, W., 2002. Hyperresponsiveness of hypothalamic pituitary—adrenal axis to combined dexamethasone/corticotropin-releasing hormone challenge in female borderline personality disorder subjects with a history of sustained childhood abuse. Biol. Psychiatry 52, 1102–1112.
- Rohleder, N., Joksimovic, L., Wolf, J.M., Kirschbaum, C., 2004. Hypocortisolism and increased glucocorticoid sensitivity of proinflammatory cytokine production in Bosnian war refugees with posttraumatic stress disorder. Biol. Psychiatry 55, 745–751.
- Roth, G., Ekblad, S., Ågren, H., 2006. A longitudinal study of PTSD in a sample of adult mass-evacuated Kosovars, some of whom returned to their home country. Eur. Psychiatry 21, 152–159.
- Sanchez, M.M., Ladd, C.O., Plotsky, P.M., 2001. Early adverse experience as a developmental risk factor for later psychopathology: evidence from rodent and primate models. Dev. Psychobiol. 13, 419–449.
- Seedat, S., Stein, M.B., Kennedy, C.M., Hauger, R.L., 2003. Plasma cortisol and neuropeptide Y in female victims of intimate partner violence. Psychoneuroendocrinology 28, 796–808.

- Shalev, A.Y., Videlock, E.J., Peleg, T., Segman, R., Pitman, R.K., Yehuda, R., 2008. Stress hormones and post-traumatic stress disorder in civilian trauma victims: a longitudinal study. Part I. HPA axis responses. Int. J. Neuropsychopharmacol. 1–8.
- Simeon, D., Yehuda, R., Knutelska, M., Schmeidler, J., 2008. Dissociation versus posttraumatic stress: cortisol and physiological correlates in adults highly exposed to the World Trade Center attack on 9/11. Psychiatry Res. 161, 325–329.
- Smith, M.A., Davidson, J., Ritchie, J.C., Kudler, H., Lipper, S., Chappell, P., Nemeroff, C.B., 1989. The corticotropin-releasing hormone test in patients with posttraumatic stress disorder. Biol. Psychiatry 26, 349–355.
- Tarullo, A.R., Gunnar, M.R., 2006. Child maltreatment and the developing HPA axis. Horm. Behav. 50, 632–639.
- Tyrka, A.R., Wier, L., Price, L.H., Ross, N., Anderson, G.M., Wilkinson, C.W., Carpenter, L.L., 2008. Childhood parental loss and adult hypothalamic—pituitary—adrenal function. Biol. Psychiatry 63, 1147—1154.
- van Dijken, H.H., de Goeij, D.C., Sutanto, W., Mos, J., de Kloet, E.R., Tilders, F.J., 1993. Short inescapable stress produces long-lasting changes in the brain—pituitary—adrenal axis of adult male rats. Neuroendocrinology 58, 57—64.
- Wardenaar, K.J., Vreeburg, S.A., van Veen, T., Giltay, E.J., Veen, G., Penninx, B.W.J.H., Zitman, F.G., 2011. Dimensions of depression and anxiety and the hypothalamo-pituitary-adrenal axis. Biol. Psychiatry 69, 366-373.
- Wessa, M., Rohleder, N., Kirschbaum, C., Flor, H., 2006. Altered cortisol awakening response in posttraumatic stress disorder. Psychoneuroendocrinology 31, 209–215.
- Yehuda, R., Southwick, S.M., Nussbaum, G., Wahby, V., Giller Jr., E.L., Mason, J.W., 1990. Low urinary cortisol excretion in patients with posttraumatic stress disorder. J. Nerv. Ment. Dis. 178, 366– 369.
- Yehuda, R., Southwick, S.M., Krystal, J.H., Bremner, D., Charney, D.S., Mason, J.W., 1993. Enhanced suppression of cortisol following dexamethasone administration in posttraumatic stress disorder. Am. J. Psychiatry 150, 83–86.
- Yehuda, R., Boisoneau, D., Lowy, M.T., Giller Jr., E.L., 1995a. Dose– response changes in plasma cortisol and lymphocyte glucocorticoid receptors following dexamethasone administration in combat veterans with and without posttraumatic stress disorder. Arch. Gen. Psychiatry 52, 583–593.
- Yehuda, R., Kahana, B., Binder-Brynes, K., Southwick, S.M., Mason, J.W., Giller, E.L., 1995b. Low urinary cortisol excretion in Holocaust survivors with posttraumatic stress disorder. Am. J. Psychiatry 152, 982–986.
- Yehuda, R., Halligan, S.L., Grossman, R., Golier, A., Wong, C., 2002. The cortisol and glucocorticoid receptor response to low dose dexamethasone administration in aging combat veterans and Holocaust survivors with and without posttraumatic stress disorder. Biol. Psychiatry 52, 393–403.
- Yehuda, R., Golier, J.A., Halligan, S.L., Meaney, M., Bierer, L.M., 2004a. The ACTH response to dexamethasone in PTSD. Am. J. Psychiatry 161, 1397–1403.
- Yehuda, R., Halligan, S.L., Golier, J.A., Grossman, R., Bierer, L.M., 2004b. Effects of trauma exposure on the cortisol response to dexamethasone administration in PTSD and major depressive disorder. Psychoneuroendocrinology 29, 389–404.
- Yehuda, R., Golier, J.A., Harvey, P.D., Stavitsky, K., Kaufman, S., Grossman, R.A., Tischler, L., 2005a. Relationship between cortisol and age-related memory impairments in Holocaust survivors with PTSD. Psychoneuroendocrinology 30, 678–687.
- Yehuda, R., Golier, J.A., Kaufman, S., 2005b. Circadian rhythm of salivary cortisol in Holocaust survivors with and without PTSD. Am. J. Psychiatry 162, 998–1000.
- Yehuda, R., Blair, W., Labinsky, E., Bierer, L.M., 2007. Effects of parental PTSD on the cortisol response to dexamethasone administration in their adult offspring. Am. J. Psychiatry 164, 163–166.

Please cite this article in press as: Klaassens, E.R., et al., Adulthood trauma and HPA-axis functioning in healthy subjects and PTSD patients: A meta-analysis. Psychoneuroendocrinology (2011), doi:10.1016/j.psyneuen.2011.07.003

14

Adulthood trauma and HPA-axis functioning in healthy subjects and PTSD patients: A meta-analysis

- Yehuda, R., Bierer, L.M., Andrew, R., Schmeidler, J., Seckl, J.R., 2009. Enduring effects of severe developmental adversity, including nutritional deprivation, on cortisol metabolism in aging Holocaust survivors. J. Psychiatr. Res. 43, 877–883.
- Young, E.A., Breslau, N., 2004. Saliva cortisol in posttraumatic stress disorder: a community epidemiologic study. Biol. Psychiatry 56, 205–209.
- Young, E.A., Tolman, R., Witkowski, K., Kaplan, G., 2004. Salivary cortisol and posttraumatic stress disorder in a low-income community sample of women. Biol. Psychiatry 55, 621–626.
- Zobel, A.W., Nickel, T., Sonntag, A., Uhr, M., Holsboer, F., Ising, M., 2001. Cortisol response in the combined dexamethasone/CRH test as predictor of relapse in patients with remitted depression: a prospective study. J. Psychiatr. Res. 35, 83–94.