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RESUMO 

 

 

Na área de transmissão sonora em edificações, uma recente ênfase tem sido 

dada ao estudo de freqüências audíveis, abaixo de 100 Hz. Isto se deve ao aumento 

do número de fontes de ruído de baixa freqüência, tais como uso de aparelhos 

domésticos de som ou TV com a capacidade de emitir sons graves cada vez mais 

potentes, etc. Existe uma preocupação especial com ruídos de baixa freqüência 

devido a sua eficiente propagação através do ar e eficácia reduzida de sua 

atenuação por parte de várias estruturas, como por exemplo, protetores auditivos e 

paredes entre residências. Contudo, em baixas freqüências, as abordagens teóricas 

mais utilizadas apresentam deficiências explicativas sobre a realidade estudada e 

precisam ser aprimoradas. Adicionalmente, observa-se que as normas referentes a 

isolamento sonoro não abrangem a região de freqüências abaixo de 100 Hz e nem 

mesmo a introdução do Anexo F da norma ISO 140/3 (1995) foi capaz de garantir 

um nível adequado de reprodutibilidade dos resultados. Nesse sentido, modelos de 

transmissão sonora entre salas que utilizam técnicas de EF têm demonstrado as 

características modais dos campos acústicos e vibratórios envolvidos no sistema 

sala-parede-sala, indicando a necessidade de modelos apropriados para a absorção 

sonora em baixas freqüências. Neste trabalho um novo modelo de EF foi utilizado 

para descrever as relações entre as características de absorção sonora das 

superfícies internas de uma sala e a resposta em freqüência desta sala, para o 

intervalo de freqüências de 20 Hz a 200 Hz. Inicialmente, o modelo numérico foi 

validado por comparação com resultados experimentais para uma pequena câmara 

reverberante vazia, denominada sala de referência. Adicionalmente, investigou-se o 

efeito da introdução de elementos de mobília no interior da sala, os quais foram 

abordados como obstáculos rígidos e macios, a fim de verificar possíveis 

modificações nas freqüências naturais e amortecimento seletivo dos modos do 

sistema. O efeito da localização de tais obstáculos também foi incluído nas 

investigações. Os resultados obtidos apresentaram um grau de concordância 

satisfatório entre valores medidos e simulados, permitindo a conclusão de que a 

absorção sonora não modifica significativamente as respostas em freqüência da sala 

em baixas freqüências. 

 



 xxii

ABSTRACT 

 

 

Low frequency (below 100 Hz) sound transmission into and between dwellings is 

an increasing contribution to nuisance. This is due to a proliferation of hi-fi systems of 

high power and enhanced bass response, etc. There is a special concern about low 

frequency noise because of its efficient propagation in air, and the reduced ability of 

structures such as hearing protectors or separating walls to attenuate sound at these 

frequencies. It is at such low frequencies that existing theories of room acoustics and 

the relationships between sound level difference and sound reduction index are most 

tenuous. Current standards only deal with frequencies above 100 Hz, and despite the 

introduction of Annex F in ISO 140/3 (1995), for sound insulation measurements at 

low frequencies, there is still a poor repeatability between measurement results. A FE 

model of the sound transmission between dwellings has been developed which 

demonstrates the modal characteristics of the pressure and vibration fields of the 

rooms and separating wall, respectively. The work has highlighted the need for an 

appropriate model of sound absorption in small-furnished rooms at low frequencies. 

Therefore, in this thesis work, a new FE model is utilized to describe the relationship 

between the sound absorption characteristics of the internal surfaces of an 

enclosure, and its frequency response, for the frequency range below 200 Hz. 

Initially, a model of surface absorption appropriate for a modal description of 

contained sound fields at low frequencies is developed and an empty reference room 

is accurately modelled. In addition, the effect of inserting absorbent furniture is 

explored, in order to check for eigenmode shifts and selective damping of modes. 

The effect of furniture location is also investigated. Results indicate reasonable 

agreement between measurement and prediction allowing the conclusion that sound 

absorption has little effect on room frequency responses at low frequencies. 

 



CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

One of the challenges in the area of Acoustics is to contribute to the development 

of knowledge necessary to the generation of conditions conducive to human comfort 

and activity. It is already known, for example, that prolonged exposure of people to 

high noise levels may give rise to stress and/or to hearing loss problems [Beranek 

(1971), Bies and Hansen (1996), Crocker (1997), Gerges (2000)]. Noise levels can 

be low and still constitute a nuisance. A definition of nuisance is the prevention of 

occupants’ enjoyment of their own property. Acoustically, this enjoyment can take 

two simultaneous forms: the enjoyment of a quiet environment by a dweller and the 

enjoyment of loud music by a neighbour. This dual requisite requires that intervening 

walls and floors between dwellings should provide adequate sound insulation and 

impact isolation [Building Regulations of the U.K. Part E (2000)]. To help the Architect 

and Building Engineer comply with these standards, other standards exist containing 

recommended methods of measuring and rating the sound insulation of building 

elements, both in the laboratory and in the field [ISO 140 (1995)]. 

The standards apply to the frequency range 100-3150 Hz but a recent emphasis 

has been given to the study of the audible frequencies below 100 Hz. This is due to 

the increase in sources of low frequency noise, e.g., proliferation in hi-fi systems of 

high power and enhanced bass response, increased use of mechanical services and 

devices, and increasing traffic noise break-in. A review of the main low frequency 

noise sources can be found in the work of Berglund et al (1996). There is a special 

concern about low frequency noise because of its efficient propagation in air, and 

because of the reduced ability of structures such as hearing protectors or separating 

walls to attenuate sound at these frequencies [Mathys (1993), Berglund et al (1996)]. 

Unfortunately, it is at such low frequencies that existing theories of room 

acoustics and the relationships between sound level difference and sound reduction 

index are most tenuous. Current standards deal with frequencies above 100 Hz, and 

despite the introduction of Annex F in ISO 140/3 (1995), for sound insulation 

measurements at low frequencies, there is still a poor repeatability between 
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measurement results [Mathys (1993), Maluski and Bougdah (1997)]. The correction 

for receiver room absorption (and wall area), which relates the transmission loss of 

the separating wall to the sound level difference between the rooms, assumes a 

diffuse sound field condition. This assumption must be replaced with that which 

incorporates acoustic and vibration mode distributions. In a recent study by the 

Acoustic Research Unit (ARU) of the University of Liverpool, a Finite Element (FE) 

model has been developed to describe sound transmission between rooms at low 

frequencies [Maluski (1999)]. The model demonstrates that the modal characteristics 

of the pressure and vibration fields of the rooms and separating wall, respectively, 

strongly influence the sound level difference. The work has identified an important 

outstanding issue to be addressed, the need for an appropriate model of sound 

absorption in small furnished rooms at low frequencies, and the consideration of 

modally reactive absorption due to the vibration of the walls. 

 

1.2 Objectives 

The general objective of the thesis work was to characterise room absorption at 

low frequencies. In particular, the sound absorption at room surfaces and that due to 

room contents such as furniture was to be assessed with respect to their effect on 

steady-state sound level and therefore on sound level difference between rooms. 

The specific objectives of the thesis work were to: 

• Develop a model of surface absorption appropriate for a modal description of 

contained sound fields at low frequencies. 

• Develop a model of contents absorption for the same modal description. 

• Investigate experimentally, theoretically and numerically the effect of contents 

such as furniture on the frequency response of small rooms. 

 

1.3 Overview of the thesis 

The present work is contained in the broader area of sound transmission in 

buildings, and Chapter 2 states the general problem, introducing the basic theories 

on sound transmission through walls. Chapter 3 describes the resonant 

characteristics of rooms. The wave theory is presented as the most appropriate to 
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include the modal characteristics of rooms, and proposed investigation methods are 

considered. 

Chapter 4 introduces the Finite Element Method (FEM), and its applications in 

the area of Acoustics. The basic theory is described, and preliminary numerical 

results are presented for an empty rectangular room. Chapter 5 describes the 

general theory of sound absorption, which is of main concern in this work. Locally 

and modally reactive assumptions are discussed and field measurements are 

presented and compared with FEM predictions. 

Chapter 6 describes room frequency response measurements for an empty test 

room, which are to serve as a reference for the investigation of the effect of room 

contents on its frequency response. The measuring system characteristics are 

discussed, and the preliminary FE model developed in Chapter 4 is further 

implemented. Absorption is introduced in the numerical model, and the empty 

reference room is accurately modelled. 

Chapter 7 introduces the investigation of the effect of room contents on the room 

frequency response. In this chapter, such contents are initially regarded as solid 

obstacles, and the investigation is performed by means of a ‘standard unit’ placed at 

different positions within the room. Eigenfrequency shifts, selective damping of 

modes and mode generation are analysed, using the empty room results of Chapter 

6 as a reference. The room numerical model is modified to include the standard unit. 

Comparison between measurement and prediction is presented and discussed. 

Chapter 8 advances in the investigation of room contents effect, commenced in 

Chapter 7, by considering the standard unit covered by a thick layer of a known 

sound absorbing material. A discussion is presented on the best possible way to 

include such a layer of absorption in the numerical model, and results are presented 

and fully analysed. Chapter 9 extends the investigation even further, by considering 

the standard unit entirely composed of absorbing foam, in total contrast with the solid 

obstacle described in Chapter 7. Once more modifications are applied to the 

numerical model to provide the best agreement with measurements, and the 

analyses performed in the previous chapters are employed again, in order to quantify 

the effect of introducing contents on the reference room frequency response. 

The investigation is concluded in Chapter 10, by introducing a real element of 

furniture within the test room. The discussion of the results for the standard unit 

investigations, with the associated conclusions, dictates the best way to include the 
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considered element of furniture in the room model. Finally, Chapter 11 presents the 

overall work conclusions. Suggested topics for further research are also given in this 

final chapter. 
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CHAPTER 2 

SOUND INSULATION AT LOW FREQUENCIES 

 

2.1 Introduction 

It is recognised that low frequency (below 100 Hz) sound transmission into and 

between dwellings is an increasing contribution to nuisance. This is due to a 

proliferation of hi-fi systems of high power and enhanced bass response, increased 

use of domestic mechanical services and devices, and increasing traffic noise break-

in [Berglund et al (1992), Mathys (1993), Maluski (1999), Melo et al (2001)]. 

However, in current standards for assessing sound insulation, the frequency range is 

normally limited to frequencies above 100 Hz [ISO 140/3 (1995), Maluski and 

Bougdah (1997), Kang (1999)]. For lower frequencies, measurements are not often 

performed since the sound fields in both source and receiving rooms are not 

sufficiently diffuse to meet the requirements of conventional standards. It also has 

been suggested that such measurements are only one facet of acoustic comfort at 

these frequencies [Mathys (1993)]. There is thus a recognised need for suitable 

methods to measure, evaluate and predict sound insulation below 100 Hz. 

There are basically two mechanisms that inhibit the sound energy transmission 

between fluid spaces. In the first, sound energy is absorbed, particularly when 

passing through materials especially developed to efficiently convert acoustic energy 

into heat [Fahy (1985)]. Chapter 5 deals with this mechanism. In practice, it is the 

second mechanism that is used for sound insulation purposes. This involves the 

introduction of a change of impedance in the path of the sound, causing large 

reflection. The current chapter presents an overview of this second sound insulation 

mechanism. 

 

2.2 Infinite wall theory 

Consider a wall so large that effects, due to finite size, can be safely neglected. 

The wall is assumed thin, homogeneous, with no leaks, and with zero flexural rigidity 

(limp wall). The earliest model for sound transmission through a wall is as shown in 

Fig. 2.1 [Heckl (1981)]. An incident sound pressure field, pi, impinges on a wall of 
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thickness h, at an angle θ between the incident wave vector and wall normal, and 

gives rise to a reflected and transmitted sound field pr and pt, respectively.  

 

Figure 2.1 - Sound transmission through an infinite thin wall. 

 
The angle is the same for the reflected and transmitted waves, since the medium is 

the same in both sides of the wall. Assuming harmonic pressure fields and omitting 

the factor eiω t, the plane sound wave impinging on the wall is given by: 

)    (  ),( ykxki
i

yxeAyxp +−= ,             (2.1) 

where A is the sound pressure amplitude, and kx and ky are the components of the 

incident wave number k0 in the x and y directions, respectively, where, 

00
000

 2   ;  sin   ;  cos
c

kkkkk yx
ωπθθ

λ
==== .            (2.2) 

λ0 is the wavelength of the incident sound. From equations (2.2) and (2.1): 

)sin   cos (  0 ),( θθ yxki
i eAyxp +−= .            (2.3) 

The corresponding expressions for the reflected and transmitted waves are 

)sin   cos (  0 ),( θθ yxki
r eByxp −=              (2.4) 

)sin   cos (  0 ),( θθ yxki
t eCyxp +−= .            (2.5) 

The continuity conditions for the sound pressure and particle velocity at the wall are 

PCBAePypypyp yk
tri

y ∆=−+∴∆=−+ −   ),0(),0(),0(           (2.6) 
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where v0  is the wall surface velocity and ∆P is the amplitude of the pressure 

difference that drives the wall. Newton’s third law requires [Heckl (1981)] 

0   vmiP ω=∆ ,             (2.8) 

where m is the mass per unit area of the wall. From equations (2.6) to (2.8): 
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The ratio of the transmitted and incident pressure amplitudes leads to the 

transmission coefficient for oblique incidence, τ(θ), which is given by the ratio 

between the transmitted and incident sound intensities: 
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Finally, calculating the absolute value of equation (2.9) gives the transmission 

coefficient at oblique incidence [Heckl (1981), Gerges (1992)]: 

( ) 2
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






+

=

c
m
ρ

θω
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2.3 Diffuse field assumption 

In the calculation of the transmission coefficient, the classical (statistical) 

acoustics considers a sound field consisting of sound waves impinging on the wall 

from all directions with equal likelihood [Heckl (1981), Crocker (1997)]. This is the 

basic principle of a diffuse sound field, in which the incident waves are assumed to 

be uniformly distributed over all angles of incidence in such a way that each element 

of solid angle carries the same intensity towards the wall.  Furthermore, it is assumed 

that the phases of the elementary waves are distributed at random, so that the 
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interference effects may be neglected and their energies can be simply added 

[Kuttruff (1981), ISO 140 (1995), Gerges (1992)]. 

Thus, in the computation of τ, it is necessary to average the latter for all possible 

angles θ. According to Heckl (1981) this is done by calculating the ratio of the 

transmitted sound power Pt to the incoming sound power Pi, giving: 

( )∫==
2

0

 sin cos  2
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θθθθττ d
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P

i

t
m .          (2.12) 

Introducing equation (2.11) into (2.12) and adopting z = cos(θ ), gives 
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Considering R = (ω m / 2 ρ0 c0)2 and using a new variable substitution, u = 1 + R z2, 

gives 
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Performing the necessary calculations yields for the transmission coefficient for 

random incidence, τm: 
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From equation (2.15) an expression for the random incidence Transmission Loss TLm 

is given by: 
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where f is the frequency in Hz. Equation (2.16) is the so-called mass law formula 

(random incidence) and has been applied successfully in the normal frequency range 

[Heckl (1981)]. An approximate expression is given by [Reynolds (1981), Fahy 

(1985), Gerges (1992)]: 
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4.47) log( 20 −= fmTLfield .           (2.17) 

Equations (2.16) and (2.17) differ only by a small amount, as seen in Fig. 2.2. 

 

 

Figure 2.2 - Comparison between Mass Law (normal incidence), TLm, and TLfield. 

 
In order to introduce the flexural rigidity, D, in the sound transmission model, 

Kirchhoff’s plate theory is used [Timoshenko and Young (1968, Heckl (1981)], giving 

for the flexural motion of a free thin wall: 
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where v is the wall velocity. The introduction of D in the model gives rise to a new 

phenomenon, the so-called coincidence effect, which occurs when the tangential 

component of the sound wave matches one of the free flexural waves of the wall. For 

a wall without damping, there will be total transmission when the vertical component 

of the incident wave number k0 equals the free bending wave number on the wall, kb, 

giving 

θsin0kkb = ,             (2.19) 

where: 
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Thus, the coincidence frequency, fco, is given by [Heckl (1981), Fahy (1985), Gerges 

(1992)] 

θ2

2
0

sin   8.1 l
co ch

cf = ,           (2.21) 

where h is the wall thickness, and cl is the longitudinal wave speed given by: 

ρ
Ecl = .            (2.22) 

E is the Young's Modulus of the wall material and ρ is the wall density. From equation 

(2.21) it can be seen that the smallest coincidence frequency occurs for grazing 

incidence (θ = 0º). This frequency is called the critical frequency, fc, which is given by: 

l
c ch

cf
  8.1

2
0= .            (2.23) 

Below fc sound transmission occurs when the pressure fluctuation forces the wall to 

assume the same form of the acoustic field, such that the amplitude of the forced 

flexural wave does not depend on the wall damping. Such transmission is known as 

forced wall vibration, non-resonant wall response, or mass law, given by equation 

(2.16) [Heckl (1981), Fahy (1985), Maluski (1999), Gerges (1992)]. 

 

2.4 Finite wall theory 

In calculating the sound transmission through a wall of finite size, as shown in 

Fig. 2.3, the radiation load [Heckl (1981)], which is a function of wall size, boundary 

conditions and mode shapes, is not included. This greatly simplifies the problem, but 

does not incur large errors since the additional mass due to the surrounding air is 

very small [Heckl (1981)]. Thus, the pressure driving the finite wall of Fig. 2.3 

becomes twice the incoming pressure, and considering an incident wave as in 

equation (2.3), the forced velocity vf of the thin wall is given by [Morse (1968), Heckl 

(1981), Kinsler et al (1982)] 

θ

ω
nyki

f
oe

mi
Av si    

'  
 2 −= ,           (2.24) 



CHAPTER 2 – SOUND INSULATION AT LOW FREQUENCIES 11

where m’ is given by 
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Figure 2.3 - Sound transmission through a finite thin wall. 

 
Equation (2.24) does not satisfy the boundary conditions at y = 0 and y = l and in 

order to do so, free waves, which are solutions of equation (2.18), must be 

introduced into equation (2.24) for the wall velocity 

ykykykiykiyki
lf

bbbbo eaeaeaeae
mi
Avvv   

4
  

3
  

2
  

1
sin        

'  
 2

++++=+= −−− θ

ω
,        (2.26) 

where vl is the velocity for the free wall motion. The constants ai are determined from 

the boundary conditions: 
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In the case where the wall is excited by a standing wave, the term representing the 

forced velocity in equation (2.26) must be replaced by 

( )θθ

ω
sin  k sin  k oo

'  
 2 yiyi ee
mi
A

+− .           (2.28) 

Thus, the transmitted sound may be obtained by the radiation of the wall considered 

as a baffled piston, having a velocity distribution as in equation (2.26). In this case, 

the Rayleigh’s radiation formula yields: 
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where H0
(2) is the Hankel function [Gerges (1992)] and r is the distance between a 

radiating element on the wall, at (0,y0), and an observation point at (x,y), i.e., 

( )22
oyyxr −+= .            (2.30) 

The full calculation of the transmitted power Pt from equation (2.29) is complicated. 

This problem is partially circumvented by treating the forced and free waves 

separately. However, the bending waves, due to forced and free motions, have 

different wavelengths, and therefore different radiation efficiencies, σf and σl, 

respectively [Heckl (1981)]. The transmitted power (neglecting the cross terms) 

becomes: 

( )llffoot vvcSP σσρ     
2
1 22 += ,           (2.31) 

where S represents the wall area. The radiation efficiency, σ, gives an indication of 

how a sound source irradiates acoustic energy [Kinsler et al (1982), Gerges (1992)]. 

Additionally, Heckl (1981) considers as a reasonable approximation: 
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where σp is the radiation efficiency for a point excitation [Maidanik (1962)]. 

From equations (2.26), (2.31) and (2.32), and assuming that the incident power 

Pi is given by 

oo
i c

SAP
  4
 2

ρ
= ,             (2.33) 

then the transmission loss may be obtained. 

 
2.5 Standard method 

The data describing sound insulation of solid building components are normally 

presented in terms of sound transmission loss (TL), also called sound reduction index 

(SRI).  The assumptions inbuilt into the standard method of measurement [ISO 140/3 

(1995)] is that damping effects are sufficiently described as a receiver room total 

absorption which relates the transmission loss, TL, to the resultant sound level 
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difference:  












+−=

αSS
SLLTL log1021 ,                (2.34)                  

where L1 and L2 are the spatial averaged sound levels in the source and receiving 

room, respectively, S is the area of the element under test, Ss is the total surface 

area and α  is the average sound absorption in the receiving room. 

 
2.6 Summary 

Increased consideration is being given to sound insulation at very low 

frequencies. Although unacceptable variations in inter-laboratory measurements 

have been intensively discussed since the 1950’s, little has been done towards the 

development of a suitable measurement technique for frequencies below 100 Hz. 

The observed discrepancies are in part due to assumption of a diffuse field condition, 

which does not correspond to the modal characteristics encountered in rooms at low 

frequencies.  This also influences the role of absorption in such sound fields. 

The work reported in this thesis is a contribution towards a better understanding 

of the mechanisms of sound insulation at low frequencies by considering a modal 

approach to the analysis of sound fields in rooms. The work concentrates on the role 

of damping in the transmission of sound since there is not yet an agreed procedure 

for including room absorption (including furniture) in relating sound reduction index to 

the resultant sound level difference, below 100 Hz. The relationship is clearly 

understood above 100 Hz and is included in international standards, as described 

earlier. The question arises if similar relationships apply at low frequencies, or even if 

absorption needs to be included at all. 

In order to investigate the absorbing effects of rooms and their contents, at low 

frequencies, the approach is to fully model and measure an empty test room and 

then to measure and predict the effects on room response of introducing contents, so 

as to be able to characterise them as obstructions and/or absorbers. The next 

chapter presents a general discussion of the wave theory used throughout this work 

to analyse the modal characteristics of rooms. 
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CHAPTER 3 

MODAL CHARACTERISTICS OF ROOMS AT LOW FREQUENCIES 

 

3.1 Introduction 

In Chapter 2, it was concluded that in order to achieve a full understanding of the 

acoustic properties of rooms at low frequencies, then classical acoustics, with diffuse 

sound field assumptions, should be replaced by a theory which accounts for acoustic 

and vibration mode distributions [Melo et al (2001)]. Diffuse sound field assumptions 

are generally used to describe sound pressure fields in rooms when there is a high 

modal density (number of modes per Hertz). While these assumptions are of some 

physical validity at medium and high frequencies, in the low frequency range room 

responses display a strong modal character [Gagliardini et al (1991)]. Large 

fluctuations in sound pressure, with respect to changes in both frequency and 

location, are observed. They are the result of the large spacing in frequency of the 

acoustic modes, where one mode can dominate the response in a particular 

frequency band [Maluski (1999)]. 

It is known that rooms such as concert halls, sound studios, lecture rooms, etc., 

display resonant characteristics. Knudsen (1932) reports the common observation 

that resonances are clearly perceptible in small hard-surfaced rooms. Also, many 

organists and choristers maintain that certain churches possess “sympathetic notes”, 

i.e., that these enclosures tend to reinforce certain tones [Knudsen (1932)]. 

According to Warnock and Vorländer (1993), rooms act like filters and, at low 

frequencies, only respond well at the resonances (see Fig. 3.1). Room frequency 

responses, measured in third-octave bands, may contain only one mode and it would 

be practically the same to measure only at that frequency, because for the other 

frequencies the room is ‘dead’ [Warnock and Vorländer (1993)]. 

This chapter presents an overview of the so-called wave theory of room 

acoustics [Kuttruff (1981)]. It can be argued that this theory, in its exact form, can 

only be applied to simple geometries, such as rectangular rooms, thus having 

immediate application to a very limited number of practical problems. However, as it 

will be shown in Chapter 4, the wave theory can be used in conjunction with 
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numerical methods, such as FEM, to describe enclosures of irregular shape, due to 

the presence of recesses, columns, wall irregularities, or even furniture. 

 

Figure 3.1 - Sound pressure level in a corner of the small reverberant chamber of the ARU (see 

Chapter 6). 

 

3.2 General wave theory 

The theory presented in the following sections allows the calculation of the sound 

pressure at any point within an enclosure, and takes into account important 

parameters which cannot be included in diffuse field based theories, such as source 

and receiver positions, shape and dimensions of the enclosure [Gagliardini et al 

(1991), Maluski (1999)]. 

 

3.2.1 Basic equations 

The first of the fundamental equations of fluid dynamics (only non-viscous fluids 

will be considered here) is the continuity equation, which represents the conservation 

of mass [Arfken and Weber (1995)]. Consider a finite volume V, fixed in space, which 

has a surface S as its boundary, with a normal unit vector , pointing in the ( )xn rr
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outward surface direction (see Fig. 3.2). Thus, at an arbitrary instant t, the total mass 

of fluid inside V is [Morse and Ingard (1968), Arken and Weber (1995), Lenzi (1998)]: 

( )∫=
V

dVtxM  , 
r

ρ .             (3.1) 

 
Figure 3.2 - Finite volume of fluid, V, fixed in space.  

 

This mass may vary with time, and such variation can be described as: 

∫V dV
dt
d  ρ .                        (3.2) 

The rate must equal the rate of flow in, minus the rate of flow out of V. Thus, the 

conservation of mass requires: 

( ) ( )∫∫∫ ⋅−=
SVV

dSntxvdVtxAdV
dt
d  ,  ,  

rrrr
ρρρ ,                    (3.3) 

where it is assumed that each volume unit has a velocity ( )tx,v
rr

, and that at each 

point x
r

, inside V, the fluid mass increases at a rate ( )txA , 
r

ρ , per unit volume. Thus, 

the first term in the right hand side of equation (3.3) represents the amount of fluid 

entering V, whereas the second term represents the amount of fluid leaving volume V 

throughout its boundaries. Since V is fixed in space, then: 

∫∫ ∂
∂

=
VV

dV
t

dV
dt
d   ρρ                       (3.4) 

From the Divergence Theorem [Morse and Ingard (1968), Cremer and Müller (1982), 

Arken and Weber (1995), Alves (1998)], 
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( )∫∫ ⋅∇=⋅
VS

dVvdSnv     
rrrr

ρρ .           (3.5) 

Thus, 

( )

( ) .  0   

     

=



 ⋅∇+−

∂
∂

∴

∴⋅∇−=
∂
∂

∫

∫∫∫

dVvA
t

dVvdVAdV
t

V

VVV

rr

rr

ρρρ

ρρρ

           (3.6) 

As this result must apply to any arbitrary V, then the terms in the square brackets 

must be identically null at all points in the fluid. If there is no source inside V, such 

that A = 0, then the continuity equation is obtained in the form 

( ) 0 =⋅∇+
∂
∂ v

t
rr

ρρ .             (3.7) 

The second fundamental equation of interest expresses conservation of 

momentum. Consider a volume element containing a fixed amount of mass, which 

moves with a velocity . This mass has a momentum given by ( txv , )rr

∫=
V

dVvQ   
rr

ρ .             (3.8) 

The force associated with this momentum is 

( )

.   

  

∫

∫

=∴

∴==

V

V

dV
dt
vdF

dVv
dt
d

dt
QdF

rr

r
r

r

ρ

ρ

             (3.9) 

The force acting on the volume element is caused by normal and sheer tensions on 

the element surfaces, and for unit volume: 

( )kjif xzxyxx
ˆˆˆ ττσ ++⋅∇=

r
,           (3.10) 

where  σ and τ represent normal and sheer tensions, respectively, ; dVfdF xx = î ,  

and  are unit vectors in the x, y and z directions, respectively, and similar 

expressions apply for f

ĵ

k̂

y and fz. 

For a non-viscous (ideal) fluid the sheer tensions vanish and the normal tensions 

equal the hydrostatic pressure, p [Lenzi (1998)]: 
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pzyx −=== σσσ .           (3.11) 

Manipulation yields the equation of the equilibrium of forces: 

p
dt
vd

∇−=
rr

 ρ ,            (3.12) 

Since: 

( ) ,  vv
t
v

dt
vd

t
z

z
v

t
y

y
v

t
x

x
v

t
v

dt
vd

rrr
rr

rrrrr

∇⋅+
∂
∂

=∴

∴
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

=

         (3.13) 

equation (3.12) can be rewritten as: 

( ) 0  
rrrrr

r

=∇+



 ∇⋅+

∂
∂ pvv

t
vρ ,          (3.14) 

which is known as Euler’s equation [Morse and Ingard (1968), Temkin (1981), Lenzi 

(1998), Alves (1998)]. 

Finally, consider the equation of state, relating sound pressure and fluid density:  

   ( )spp ,ρ≡ ,            (3.15) 

where s represents the entropy of the system. From equation (3.15): 

ds
s
pdpdp

s ρ
ρ

ρ








∂
∂

+







∂
∂

=  .             (3.16) 

It is assumed that the process is isentropic, i.e.: 

. 

0

dt
dp

dt
dp

dt
ds

s

ρ
ρ 








∂
∂

=∴

∴=

           (3.17) 

As the term in brackets in equation (3.17) is a constant, then this expression may be 

rewritten as 

dt
dc

dt
dp ρ2= ,            (3.18) 

where c is the local propagating velocity of a perturbation in the fluid. 
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3.2.2 Linear acoustics 

For the linear problem, it is possible to consider that the fluid dynamics results 

from small perturbations (p’, v ′
r

, and ρ’) in a uniform state represented by p0, v0
r

, and 

ρ0 [Temkin (1981), Alves (1998)]. Thus, the fluid state, at any instant, may be 

represented by 

.  0 

0

0

′+=

′+=

′+=

ρρρ
vvv
ppp
rrr

            (3.19) 

Substituting equation (3.19) into (3.7) and (3.14), and making use of (3.18) yields for 

the continuity equation 

0  2
0 =⋅∇+′∇⋅+

∂
′∂ vcpv

t
p rrrr

ρ ,          (3.20) 

and for Euler’s equation 

    ( ) 00 =′∇+



 ∇⋅+

∂
∂ pvv

t
v rrrr
r

ρ .          (3.21) 

Neglecting the terms involving products of acoustic parameters, and assuming c is 

approximately equal to c0 (the velocity of sound in the non-perturbed fluid), then: 

0  2
00 =⋅∇+

∂
′∂ vc

t
p rr

ρ        (3.22-a) 

.00 =′∇+
∂
∂ p

t
v rr

ρ         (3.22-b) 

 

3.2.3 Wave equation 

Differentiating equation (3.22-a) in relation to t and applying the divergent 

operator to equation (3.22-b) gives: 

( ) 02
002

2
=⋅∇

∂
∂

+
∂

′∂ v
t

  cρ
t
p

 
rr

       (3.23-a) 

( ) 02
0 =′∇+⋅∇

∂
∂ pv
t

rr
ρ .        (3.23-b) 
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The first term in equation (3.23-b) appears in both expressions, and equation (3.23) 

now becomes [Knudsen (1932), Morse and Ingard (1968), Kuttruff (1981), Reynolds 

(1981), Cremer and Müller (1982)]: 

01
2

2

2
0

2 =
∂

′∂
−′∇

t
p

c
p .          (3.24) 

This is the so-called wave equation, which describes a pressure wave travelling in 

the fluid with velocity c0. 

 

3.2.4 Rectangular rooms 

The three-dimensional wave equation, for sound pressure, p(x,y,z,t), is given by 

equation (3.24), where  is the Laplacian operator [Reynolds (1981), Arken and 

Weber (1995)], t is time and c

2∇

0 is the sound velocity in air. Assuming harmonic sound 

signals, the sound pressure may be written 

( ) ( ) tiezyxPtzyxp ⋅⋅⋅= ω,,,,, ,          (3.25) 

where ω is the angular frequency. Substituting equation (3.25) into (3.24) yields the 

three-dimensional Helmholtz equation for sound pressure 

02
0

2 =+∇ PkP ,           (3.26) 

where k0 = ω /c0 is the wave number. This equation can be solved assuming 

separable functions, i.e.  

P(x,y,z) = P(x) P(y) P(z).          (3.27) 

Substituting this expression into the Helmholtz equation and separating the variables 

gives: 

0)()( 2
2

2
=+ xPk

dx
xPd

x ,          (3.28) 

with similar expressions for y and z, where: 

2
0

222 kkkk zyx =++ .          (3.29) 

Equation (3.28) has a general solution of the type (similar expressions apply for y and 

z) 
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( ) ( ) ( )xkBxkAxP kxxx sin cos += ,          (3.30) 

where Ax and Bx are constants. Furthermore, assuming a rectangular room with 

dimensions Lx, Ly, and Lz, and hard surfaces, the particle velocity at the walls is zero 

and the pressure is a maximum, i.e. 

0=⋅∇ nP
rr

,            (3.31) 

where  is the unit vector normal to the surface of the wall. Equation (3.31) is the 

boundary condition, upon which the sound field inside the room is strongly dependent 

[Bies and Hansen (1996), Crocker (1997)]. 

nr

 

3.2.5 Eigenmodes and eigenfrequencies 

The constants Ax, …, Bz from equation (3.30) are used to satisfy the boundary 

conditions prescribed by equation (3.31). The constant kx must, therefore, assume 

one of the allowed values 

x

x
x L

nk π
= ,            (3.32) 

where nx is a non-negative integer. Using the previous results (together with the 

corresponding expressions for y and z) it is possible to obtain the general solution for 

the sound pressure inside the enclosure 

( ) 







⋅










⋅








⋅=

z

z

y

y

x

x
n L

zn
L

yn
L

xnPzyxP  cos
 

cos cos,, 0
πππ ,       (3.33) 

where P0 is a constant which can be interpreted as the maximum pressure amplitude 

[Maluski (1999)]. Furthermore, introducing the results for kx, ky and kz into equation 

(3.29), and knowing that ω = 2 π f, where f is the frequency in Hz, yields: 

222
0

2 







+










+








=

z

z

y

y

x

x
n L

n
L
n

L
ncf .          (3.34) 

Equations (3.33) and (3.34) specify, respectively, the shapes and natural 

frequencies of the acoustic modes that can exist in a rectangular room having 

dimensions Lx, Ly and Lz. Equation (3.33) represents a three-dimensional standing 

wave, and becomes complete with the factor ei ω t describing the time dependence of 

the sound pressure. The collection of points at which the sound pressure is zero for 
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all times forms three equidistant planes (nodal planes), which are mutually 

orthogonal. However, for rooms of irregular shape the sets of points of vanishing 

sound pressure give birth to “nodal surfaces”, which are, generally, not planes 

[Kuttruff (1981)]. 

 

3.2.6 Classification of normal modes 

If the cosine terms are expressed as exponentials, then equation (3.33) can be 

written as: 

( )zkykxki zyxeDzyxP ±±±=        ),,( ,         (3.35) 

where D  is a constant. The underlining bar denotes complex quantities. Equation 

(3.35) indicates that there may be eight possible combinations of signs in the 

exponents, each of them representing (when multiplied by eiω t) a plane travelling 

wave inside of a rectangular room [Gerges (2000), Kuttruff (1981), Cremer and 

Müller (1982)]. The standing waves described by equation (3.35) are classified in 

three categories: 

• Axial modes: when two n’s are zero. These waves are made up of two 

travelling waves propagating parallel to one axis, and striking only two 

opposite walls; 

• Tangential modes: when only one n is zero. In this case the standing wave is 

built up of four travelling waves, reflecting from four walls and moving parallel 

to the other two walls; 

• Oblique modes: those for which none of the n’s are zero. These waves are 

made up of eight travelling waves, striking all the six room walls and moving in 

paths non-parallel to any of the room surfaces [Morse and Bolt (1944)]. 

 

3.2.7 Modal density 

An expression for the modal density of a sound field in an enclosure can be 

obtained by considering the “k-space”, where the wave numbers kx, ky, and kz are 

interpreted as Cartesian coordinates (see Fig. 3.3). Then, each natural frequency is 

represented by discrete points [Morse and Bolt (1944), Kuttruff (1981)]. In turn, each 

of these points is determined by the intersection of three sets of equidistant, mutually 
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orthogonal planes, each of which cuts perpendicularly one of the axes at one of the 

allowed values of kx, ky, and kz. 

 

Figure 3.3 - Geometrical representation of the k-space. 

 
Consequently, a rectangular lattice is formed in the first octant of the k-space, as 

negative eigenvalues are of no physical significance. With this geometrical 

representation, equation (3.29) may be seen as describing a spherical surface with 

radius k0 [Kuttruff (1981), Cremer and Müller (1982)]. The volume enclosed by this 

sphere is thus 3
0 3

4 kπ , where again, only one eighth of this volume is of interest. 

Two consecutive eigenfrequencies are spaced π / Lx, π / Ly, and π / Lz in the 

directions kx, ky, and kz, respectively. Thus, the volume of a “unit cell” is given by: 

VLLL zyx

3 

   

ππππ
= ,           (3.36) 

where V is the volume of the room. 

Now let N(f) be the number of modes from 0 Hz to an upper limit f, which is 

equivalent to the number of lattice points in the first octant of k-space, up to radius k0. 

To determine this quantity, one has to divide all the volume enclosed in the first 

octant, up to radius k0, by the volume of the unit cell, and in order to do this correctly 

it will be considered here the scheme shown in Fig. 3.4 [Lenzi (1998)]. 
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Figure 3.4 - Scheme used for the correct assessment of N(f). 

 
Thus, using such scheme it is easier to see that the total volume occupied by the N(f) 

modes is the summation of the following terms: 

1. Volume, in the first octant, of sphere of radius k0: 

6
 3

0
1

kV π
= .           (3.37) 

2. Volume of three fourths of discs (two of which are indicated in Fig. 3.4), 

having thickness π /2Lx, π /2Ly, and π /2Lz: 











++=

zyx LLL
kV 111
8

2
0

2 

2
π .         (3.38) 

3. Volume of three rectangular columns of length k0, and having transversal 

sections π 2/4Lx Ly, π 2/4Lx Lz, and π 2/4Ly Lz: 











++=

zyzxyx LLLLLL
kV 111

4
0

2 

3
π .        (3.39) 

4. Volume of one eighth of the unit cell: 
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V
V

8

3 

4
π

= .           (3.40) 

In total, the number of modes, up to frequency f is: 

( )

, 
8
1

84
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4321
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∴
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=
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VfN

V

VVVVfN

ππ

π

         (3.41) 

where S = 2(Lx Ly + Lx Lz + Ly Lz) and L = 4(Lx + Ly + Lz). Finally, the number of 

modes per Hertz at the frequency f is given by: 

. 
82

  4)(

)()(

0
2

0

2
3

0 c
Lf

c
Sf

c
Vfn

df
fdNfn

++=∴

∴=

ππ
          (3.42) 

The three terms on the right hand side of equation (3.42) are respectively associated 

with oblique, tangential, and axial modes, described in Section 3.2.6. 

 

3.2.8 Cut-off frequency and modal overlap factor 

The sound field inside an enclosure can be assumed to be diffuse when the 

modal density becomes sufficiently large [Maluski (1999)]. This will happen above the 

so-called cut-off frequency, fc, which depends on the limiting modal density assumed. 

Increasingly, reference is made to the modal overlap factor, M, given by [Schroeder 

(1969), Crocker (1997)]: 

B

f
M i

i∑ ∆
= ,            (3.43) 

where ∆fi, is the distance in Hertz between the -3 dB points (below the peak) on the 

response curve. B is the frequency band. Averaging the modal bandwidth over all 

modes in the frequency band B, gives [Cremer et al (1973)]: 

T
f 2.2

=∆ ,            (3.44) 
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where T is the reverberation time. The modal overlap is a function of modal density 

and room loss factor since both contribute to a smoothing of the frequency response, 

and in more general terms may be defined as [Bies and Hansen (1996)] 

)(fnfM ⋅∆= .            (3.45) 

The cut-off frequency is given by [Schroeder (1969), Crocker and Price (1975), 

Viveiros (1998), Maluski (1999)] 

V
TMcfc  8.8

3
0

π
= .           (3.46) 

Generally, the sound field is assumed diffuse when the modal overlap factor is 

greater than or equal to 3 [Schroeder (1969), Bies and Hansen (1996)]. Above this, 

Crocker (1997) refers to the high-frequency range. 

 

3.3 Models of sound fields in rooms 

In the following sections different theoretical and numerical models of room 

frequency response are described with the intention of selecting the most appropriate 

for the proposed investigation. 

 

3.3.1 Analytical model 

An analytical model is described which allows the prediction of the transfer 

function between two points inside a rectangular enclosure. In order to obtain such 

an expression, the Helmholtz equation (3.26) is again considered, but this time to 

describe the sound pressure field inside a rectangular room. The room surfaces are 

assumed to be locally reacting, with acoustical properties determined by the surface 

impedance, Z, which in turn depends on the surface and the frequency, but not on 

the sound incidence angle [Kuttruff, (1981)]. Equation (3.31) assumes the form: 

nvi
n
PnP  0ωρ−=

∂
∂

=⋅∇
rr

,          (3.47) 

where vn is the normal component of the particle velocity at the wall surface [Morse 

and Ingard (1968), Cremer and Müller (1982), Gerges (2000)]. Using the concept of 

normal impedance, equation (3.47) becomes 
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0 0 =+
∂
∂ Pi

n
PZ ωρ ,           (3.48) 

and replacing Z by the specific impedance ζ  = Z/ρ0c0  gives 

0=+
∂
∂ ikP

n
Pζ .           (3.49) 

The Helmholtz equation (3.26) yields non-zero solutions, fulfilling the boundary 

condition (3.49), only for discrete values of k, called eigenvalues and denoted by kn 

[Kuttruff (1981)]. As in Section 3.2.5, each eigenvalue kn is associated with an 

eigenfunction Pn(r), where r denotes the position in space. If k has a fixed value in the 

boundary condition, which may be given by the driving frequency of a sound source, 

then it is possible to show that the eigenfunctions are mutually orthogonal [Cremer 

and Müller (1982), Kuttruff (1981), Gerges (2000)]: 





≠
=

=∫∫∫ mn
mnK

dVrPrP n
V mn  if ,0

 if ,
 )( )( ,         (3.50) 

where Kn is a constant and V is the room volume. If all the eigenvalues and 

eigenfunctions of a room are known, it is possible to obtain the steady state response 

to arbitrary sound sources. Assuming a sound source density function a(r) with a 

driving (angular) frequency ω, the wave equation becomes (as when considering the 

term  in equation (3.6)): 0≠A

( )raiPkP 0
22 ωρ−=+∇ .          (3.51) 

The sound source density function may be a complex function of sound sources, 

distributed throughout the room [Kuttruff (1981)]. Furthermore, since the 

eigenfunctions form a complete and orthogonal set of functions, a(r) can be 

expanded in a series of Pn: 

( ) ( )∑=
n

nn rPBra ,           (3.52) 

where the summation is extended over all possible values of n (i.e., nx, ny, and nz), 

and Bn is a constant. For the sought solution P(r,ω) a similar expansion yields 

( ) ( )∑=
n

nn rPCrP ω, ,          (3.53) 
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and the solution can be determined once the coefficients Cn are calculated in terms 

of the coefficients Bn. Introducing both series into equation (3.51), and using 

 gives: nnn PkP 22 −=∇

220
n

n
n

kk
BiC
−

= ωρ .           (3.54) 

Assume a point source at position r0, with a constant volume velocity A. The sound 

source density function may be expressed in terms of a Dirac delta function: 

( ) ( )0 rrAra −= δ .           (3.55) 

This assumption allows a simple calculation of the coefficients Bn, which are then 

given by 

( )0 1 rPA
K

B n
n

n = .           (3.56) 

Substituting (3.56) into (3.54) and the result into (3.53) yields for the sound pressure 

inside a rectangular room excited by a point source: 

( ) ( ) ( )∑
−

=
n nn

nn

kkK
rPrPiArP

)(
 , 22

0
0ωρω ,          (3.57) 

which is known as the Green’s function of the room [Kuttruff (1981)]. If any portion of 

the room boundary has a complex value of impedance, the eigenvalues kn will be 

also complex quantities [Morse and Ingard (1968)], i.e. 

00 c
i

c
k nn

n
ϖω

+= ,           (3.58) 

and assuming nn ωϖ << , equation (3.57) becomes: 

( ) ( ) ( )∑
−−

=
n nnnn

nn

iK
rPrPiAcrP

) 2(
 , 22

0
0

2
0

ωϖωω
ωρω .         (3.59) 

Equation 3.59 is the transfer function between the two points r and r0. The parameter 

nϖ  is referred to as the modal damping constant [Kuttruff (1981)], which may be 

quantified in terms of the modal bandwidth, ∆f. Writing equation (3.59) in a 

condensed form gives: 

( ) ∑
−−

=
n nnn

n

i
DrP

ωϖωω
ω

 2
, 22

,          (3.60) 



CHAPTER 3 – MODAL CHARACTERISTICS OF ROOMS AT LOW FREQUENCIES 30

where Dn is a function not only of the source and receiver positions, but also of the 

frequency. The strong frequency dependence is indicated by the term  and it 

is possible to replace ω

22
nωω −

n by ω in the last term of the denominator without any serious 

error.  This allows a much simpler way of calculating the absolute value of the nth 

term of equation (3.60) [Kuttruff (1981), Kropp and Pietrzyk (1999)]: 

( ) 2
1

22222  4 



 +−

=

nn

nD
P

ϖωωω

.          (3.61) 

The stationary sound pressure in a room, at a single exciting frequency, results from 

the combined effect of several resonance systems with angular resonance 

frequencies ωn and damping constants nϖ , which lie mostly between 1 and 20 s-1 

[Kuttruff (1981)]. 

Summarising, the sound pressure is at resonance whenever ω = ωn , and at the 

nth resonance the nth eigenvalue Pn predominates, having an amplitude inversely 

proportional to the imaginary part of kn for that frequency [Morse and Ingard (1968)]. 

Based on equation (3.60), and using the software Matlab [Matlab Rev 5.1 (1997)] a 

computer routine was written in order to calculate a room frequency response for a 

rectangular room having the same overall dimensions as the small reverberant 

chamber of the Acoustics Research Unit (see Chapter 6). For such a room, the 

eigenvalues ωn were calculated and the damping constants nϖ  were obtained from 

the measured frequency response, using the half-power bandwidth method. The 

parameters Dn were assigned unit values, since sources and receivers were 

assumed to be in room corners. Fig. 3.5 presents a comparison between the 

analytical model and experimental results, which were primarily shown in Fig. 3.1. 

The development of the analytical model was important as it gave insights into 

the modal characteristics of room resonances at low frequencies. However, it posed 

limitations to the proposed investigation. These arise mainly from the fact that this 

method can only deal with perfectly rectangular rooms and simple sound sources 

assumptions. Furthermore, it cannot deal with inhomogeneous surface absorption 

[Gagliardini et al (1991), Kihlman et al (1994), Kropp et al (1994), Maluski (1999)]. 
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Figure 3.5 - Experimental (____) and analytical (_ _ _) frequency response of a rectangular room of 

dimensions 5.78 m x 3.04 m x 4.24 m. 

 
The poor agreement between analytical and experimental results shown in Fig. 

3.5 is principally due to the impossibility of such a model to account for even small 

irregularities in the room geometry, as was the case of the room measured (see 

Chapter 6). Also, it was difficult to correctly estimate the damping constants due to 

modal superposition. It was concluded that an analytical model would not be 

sufficiently flexible or accurate for the investigation proposed. 

 

3.3.2 Numerical models 

While separable coordinate systems are available for enclosures of simple 

geometries, it is necessary to resort to numerical methods, e.g., the Boundary 

Element Method (BEM) and the Finite Element Method (FEM) for enclosures of 

complex geometries [Bai (1992)]. In the 1960’s the integral equations had important 

influence in the development of FEM (this method is discussed in greater detail in 

Chapter 4). 
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Later, a method was developed to model the system at its boundaries, allowing 

the prediction of radiation and scattering phenomena in infinite domains. Boundary 

Element Methods have been reported in the literature [Cops (1994), Atalla and 

Bernhard (1994), Crocker (1997), Maluski (1999)]. BEM is a numerical method for 

obtaining approximate solutions to boundary integral equations. The equations 

provide a well defined formulation of boundary-value problems in different branches 

of engineering, e.g., elasticity, plasticity, fracture mechanics, wave propagation, etc. 

[Tullberg (1983), Holmström (2001)]. 

Initially, boundary integral equations were considered to be a different type of 

analytical method, somewhat unrelated to other approximate methods such as the 

Finite Element Method [Holmström (2001)]. As with FEM, the interest for BEM has 

increased with the development of computer speed and power [Tullberg (1983), 

Brebbia (1984), Holmström (2001)]. In both methods the problem domain must be 

discretized into finite elements. However, while in FEM the entire domain has to be 

discretized, in BEM only the bounding surface of the domain is divided into elements. 

BEM consists basically of two different approaches: the indirect and the direct 

approach. For the direct approach, at least one closed boundary is required, and the 

physical variables (sound pressure and normal particle velocity for acoustic 

problems) can only be considered on one side of the surface. This approach can be 

used for internal or external problems, but not both. On the other hand, the indirect 

approach yields the variables discontinuities through the surface, dealing with interior 

and exterior problems simultaneously [Tullberg (1983), Brebbia (1984), Crocker 

(1997)]. Although BEM may seem particularly attractive, since dimensionality of the 

problem is reduced by the fact that only boundary meshes need to be constructed 

[Bai (1992)], it is recognized that its main applications are for exterior problems, as 

acoustic mode prediction is relatively poor [Pietrzyk and Pedersen (1996), Crocker 

(1997), Maluski (1999)]. Therefore, this method was not selected for the prediction of 

room frequency response. 

FEM on the other hand can effectively solve interior acoustic problems, related to 

bounded geometries. So far, it has proved to be a valid analysis technique for 

acoustic problems with various dissipative boundary conditions. The strength of this 

method lies in its flexibility regarding room geometry, boundary conditions and forcing 

functions [Bernhard (1985), Ma and Hagiwara (1991), Smith and Bernhard (1992), 

Sysnoise Rev 5.1 (1993)]. FEM can take into account locally absorbing linings of 
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various thicknesses and therefore offered the possibility of considering room contents 

(furniture and other obstructions) as absorbers as well as non uniform distributions of 

surface absorption.  For these reasons, this method was selected as the appropriate 

technique to predict room frequency responses, for comparison with measurements 

throughout this work. 

 

3.4 Summary 

Rooms display resonant features at low frequencies. Such modal character is 

exemplified by narrow band measurements of room response. It is the purpose of 

this work to fully model and measure the frequency response of an empty test room, 

and then to measure and predict the effects of introducing contents on this room 

response, so as to be able to characterize such contents as obstructions and/or 

absorbers. 

Different investigation methods have been considered, including analytical and 

Boundary Element Methods. FEM was selected as the most appropriate approach for 

this study. It is better suited than BEM for the determination of natural frequencies 

and mode shape of cavities.  It is able to deal with non-rectangular geometries (unlike 

analytical models) and dissipative boundary conditions. FEM is described in greater 

detail in the next chapter. 
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CHAPTER 4 

FINITE ELEMENT MODEL 

 

4.1 Introduction 

The development of the digital computer in the 1950’s allowed rapid 

developments in data handling and calculation. Of particular interest here has been 

the development of numerical calculation methodologies, such as the Finite Element 

Method (FEM), which is a numerical procedure for analysing continua. This method 

represents an automatic operation to construct a set of equations describing a static 

or dynamic system [Cook et al (1989), Fancello and Mendonça (1997), Crocker 

(1997)].  A model of the system is created and then modelled mathematically. From 

the mathematical equations created, it is possible to obtain an analytical or numerical 

solution (the latter occurring most of the time) [Zienkiewicz and Taylor (1971), Melo 

et al (2001)]. Although results are rarely exact, errors are reduced by processing 

more equations to achieve engineering accuracy at reasonable cost [Cook et al 

(1989)]. 

 

4.2 Applications in acoustics 

According to Craggs and Stead (1976), the use of FEM in the area of Acoustics 

was first suggested by Gladwell (1965) for simple one and two-dimensional 

problems. Later, Mason (1967) worked on the development of extremely accurate 

rectangular parallelepiped elements having 32 degrees of freedom, although it was 

concluded that the size and shape of such elements restricted their application. 

Jennequin (1971) used a two-dimensional FE model to study the sound field inside 

the passenger section of a car. FEM continues to have applications in Acoustics, as 

recently reviewed by Crocker (1997), Astley (1998), and Maluski (1999). 

Of particular interest here are the contributions in the area of room acoustics, 

including the study of the sound field inside irregular enclosures, damping effects, 

panel flexibility, and coupling between structural and acoustical subsystems [Craggs 

(1973), Craggs and Stead (1976), Petyt et al (1976), Geddes and Porter (1988), 

Easwaran and Craggs (1995), Augusztinovicz (1998)]. 
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Maluski (1999) has employed FE modelling to study the sound insulation 

between dwellings at low frequencies. This model was validated by comparison with 

scale model measurements [Maluski and Bougdah (1997), Gibbs and Maluski (1998), 

Maluski (1999)], and the associated model of transmission between rooms 

demonstrated that the modal characteristics of the pressure and vibration fields of the 

rooms and separating wall, respectively, strongly influence the sound level difference. 

Maluski’s work has identified important outstanding issues to be addressed, e.g., the 

need for an appropriate model of sound absorption in small-furnished rooms at low 

frequencies, and the consideration of modally reactive absorption due to the vibration 

of the walls [Maluski (1999)]. 

 

4.3 Controlling parameters 

When working with FEM, the structure or continuum under study must be divided 

into elements, in a process called discretization [Zienkiewicz and Taylor (1971), Cook 

et al (1989)]. Nodes indicate where the elements are connected to one another, and 

each element has its properties formulated. In acoustic and structural analyses, the 

nodal variables are, in general, sound pressure and particle displacement, 

respectively. A fine discretization of the domain is likely to produce very accurate 

results, although this may involve long computation times, even when working with 

powerful computers. Thus, a compromise has to be established between accuracy 

and processing time, and since reliable predictions require, at least, 6 elements to 

properly represent the pressure field over the governing wavelength [Atalla and 

Bernhard (1994), Maluski and Bougdah (1997)], the element size is automatically 

determined by the upper frequency of interest [Astley (1998)]. 

In addition to element size, the accuracy of the results depends on the element 

type. A rectangular or approximately rectangular domain allows the use of cubic 

elements during the discretization process. ‘Hex8’ and ‘Hex20’ represent, for 

example, two types of cubic elements, having 8 and 20 nodes, respectively [Patran 

Rev 8.0 (1999), Maluski (1999)]. In the case of a room model, a greater number of 

nodes allows a more accurate prediction of the room eigenfrequencies [Crocker 

(1997)]. For this reason, the Hex20 element type was used in the FE models 

developed in this work. 
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4.4 Room-wall-room system 

In order to estimate the sound transmission between two rooms, the sound 

pressure field in each of them, and the particle velocity field on the separating wall 

must be determined [Fahy (1985)]. Furthermore, it is necessary to know the effects of 

the sound source on the source room, the influence of the pressure field over the 

separating wall vibration field, and the response of the receiving room to this vibrating 

field [Craggs and Stead (1976), Gagliardini et al (1991), Maluski (1999)]. 

 

4.4.1 Acoustic field 

Consider a Room-Wall-Room system as shown in Fig. 4.1. 

 

 
Figure 4.1 - Room-Wall-Room system. 

 

Soon after the sound source is switched on, a steady state sound field within the 

rooms is achieved, allowing the assumption of a harmonic pressure field, p, of the 

type 

tiezyxPtzyxp    ),,(),,,( ω= ,             (4.1) 

where x, y, and z are the spatial coordinates, t is the time, P is the pressure 

amplitude, and ω is the angular frequency. The sound pressure field inside the 

source room is given by 
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where k0 = ω /c0, R is the sound source term , n
r

 is a unit vector normal to the 

separating wall, ρο is the air density, and u is the wall displacement in the x direction. 

Applying the Galerkin method [Zienkiewicz and Taylor (1971)] to equation (4.2) 

yields 

( ) 0ˆ 1
2

1
2 =−+∇∫  dVpRPkP

V o ,            (4.3) 

where  is an arbitrary function that must be null wherever the pressure Pp̂ 1 is 

prescribed. Expanding equation (4.3) and knowing that 

( ) pPpPpP ˆ  ˆ ˆ   11
2

1 ∇•∇+∇=∇•∇
rrrr

,            (4.4) 

then 
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2

11 =−+∇•∇−∇•∇ ∫∫∫∫ VV oVV
 dVpR  dVpPkdVpPdVpP
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.          (4.5) 

From the Divergence Theorem [Morse and Ingard (1968)], together with the last two 

expressions of equation (4.2) gives 

0ˆˆˆˆ 1
2

1
2 =−+∇•∇−− ∫∫∫∫ VV oVS o  dVpR  dVp  Pk dVp  P dSp u ρω

rr
.          (4.6) 

This integral formulation has importance in that the set of functions P1 satisfying 

equation (4.6) is wider than the set of solutions of equation (4.2) [Zienkiewicz and 

Taylor (1971)]. This equation may be discretized using the so-called Galerkin’s 

approximation method [Cook et al (1989)]: 

iuijpj ipi  Nu u ;Npp  ; NpP ≅≅≅  ˆ 11 ,           (4.7) 

where pi and ui are the approximated values of pressure and displacement, 

respectively, at the ith node of the FE mesh, while  and  are the shape 

functions associated with this node [Sysnoise Rev 5.3 (1993)]. Similar definitions 

apply for index j. Substituting equation (4.7) into (4.6), and taking into account the 

following conventions: 

ipN iuN
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gives the following discretized equation for the source room: 

jpiijpiijpiij F p Mω pK u Qω =+−− 1
2

1
2 .            (4.9) 

The same procedure applies for the receiving room, except that for this room the 

sound source term is null and the normal vector points to the opposite direction (see 

Fig. 4.1). The discretized equation for the receiving room is given by: 

02
2

2
2 =+− iijpiijpiij  p Mω pK u Qω .         (4.10) 

 

4.4.2 Structural field 

For the separating wall of Fig. 4.1, with height Ly, thickness h, and flexural rigidity 

D, the structural field is described by the following system of equations:  
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where E is the Young’s modulus, ν is the Poisson’s ratio, and ρ is the volumetric 

density of the wall material. Following the same process as in Section 4.4.1: 

( )∫ =+−−∇
S

 dSu PPρ h uωu D 0ˆ21
24 ,         (4.12) 

where  is an arbitrary function that must be null wherever the displacement u and 

its gradient are prescribed. Expanding equation (4.12) it is possible to obtain: 
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From the Divergence theorem and the boundary conditions of equation (4.11) the 

integral equation follows: 

0ˆˆˆˆ 21
222 =+−−∇∇ ∫∫∫∫ SSSS

 dSu P dSu P dSuρ h u ω dSuu D .     (4.14) 

As in the previous section, in order to discretize equation (4.14), the following 

approximations must be used:  
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Thus, substituting equation (4.15) into (4.14), and observing the conventions: 
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the discretized equation for the separating wall is obtained:  

( ) 021
2 =−−− iiijiijuiiju pp Q u Mω uK .         (4.17) 

 

4.4.3 Acoustic-structural field 

Equations (4.9), (4.10) and (4.17) can be linked in one general matrix equation,  
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Knowing the “acoustic force” term, Fj, and calculating the acoustic and structural 

matrices, it is possible to obtain the solution for the separating wall displacement, u, 

and the sound pressure fields in the source room, p1, and in the receiving room, p2. 

Consequently, the sound level difference between the two rooms may be obtained, 

allowing the determination of the sound transmission characteristics of the room-wall-

room system. 
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4.5 Model of test room 

As described in Section 2.5, the thesis work considers a room model that takes 

into account the modal characteristics of low frequency sound fields inside 

enclosures. The core of the work was to fully model and measure an empty test room 

(see Chapter 6), and then to measure and predict possible effects on room frequency 

response produced by introducing contents, so as to be able to characterise the 

room contents as obstructions and/or absorbers. 

 

4.5.1 Assumptions 

One of the specific objectives of this work was to contribute in the expansion of 

knowledge already acquired in the area of building acoustics for the frequency range 

from 100 Hz to 3150 Hz. The complementary work was to include frequencies below 

the standard range, but extending into it. Thus, the original idea was to investigate 

sound fields from 20 Hz to 400 Hz. However, preliminary predictions revealed that an 

excessively long processing time was required to obtain room responses up to 400 

Hz (up to three days on Sun Workstations). Thus, it was decided to reduce the upper 

limiting frequency to 200 Hz, without loss of generality, since the core of the present 

study is related to the very low frequencies. Furthermore, due to the test room 

dimensions, the acoustic field inside the room starts to assume diffuse characteristics 

above 200 Hz (see Chapter 3). The frequency responses presented throughout this 

work were calculated up to 210 Hz, in order to take into account (at least partially) the 

higher mode contributions. Since reliable predictions require, at least, 6 elements to 

properly represent the pressure wave over the governing wavelength (see Section 

4.3), and since the upper frequency of interest was 200 Hz, an element size of 0.28 

m was selected. 

In Chapter 6, a detailed model of the test room is presented. Here, a preliminary 

representation is discussed, which served as a basis for the improved model. It was 

not the intention of this work to develop a new FE computer program. Instead, a 

commercial software package [Sysnoise Rev 5.4 (1999)] was used. The software 

does not have a mesh builder, and another commercial package [Patran Rev. 8.0 

(1999)] was used for this purpose. 

To summarise, a mesh of 3375 Hex20 cubic elements of 0.28 m was used to 

model a rectangular room of dimensions 5.78 m x 3.04 m x 4.24 m, employing a 
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Patran format and imported to Sysnoise. Since this phase of the work constituted 

only a preliminary development of an empty room model, no forms of acoustic energy 

loss were included. An omni directional point source and two omni directional 

receivers were introduced into the room corners (see Fig. 6.2), in order to excite and 

measure all room modes inside the frequency range of interest. 

 

4.5.2 Sysnoise 

Sysnoise Rev 5.4 (1999) is a commercial software package that uses FEM and 

BEM to perform numerical calculations for acoustic and structural-acoustic systems. 

In Sysnoise, interior acoustic problems involving various boundary conditions, which 

are of particular interest here, may be effectively simulated using FEM. One limitation 

of Sysnoise is that it does not include a mesh builder, although full communication is 

allowed between this program and all of the main FEM commercial software 

packages. Other FEM based commercial packages, including Ansys and Patran, 

were available, however, unlike Sysnoise these programs are not optimised for 

acoustic problems. Also, the present work was part of a joint programme between the 

Federal University of Santa Catarina (UFSC), Brazil, and The University of Liverpool, 

England, and the software Sysnoise was already available to both research groups. 

 

4.6 Preliminary results 

In order to verify the accuracy of the rectangular empty room model, the room 

eigenfrequencies were obtained analytically, making it possible to compare the 

numerical and analytical results. According to equation (3.34) the eigenfrequencies of 

a rectangular enclosure are given by: 
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To evaluate the inaccuracy due to the FE discretization, an error E was calculated 

[Melo et al (2001)]: 

100⋅
−

=
AE

AENEE ,           (4.20) 
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where NE and AE are the numerical eigenfrequency and analytical eigenfrequency, 

respectively. Fig. 4.2 shows that although the error is increasing with increased 

frequency, it is less than 0.05% for all the eigenfrequencies inside the frequency 

range of interest. 
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Figure 4.3 - Predicted room frequency response for the rectangular empty room model. 

 

4.7 Summary 

In Chapter 3 the modal characteristics of the acoustic field in rooms, at low 

frequencies, were discussed. This chapter introduced the basic principles of FEM, 

which was considered as the most appropriate approach to take into account modal 

characteristics. A preliminary model was developed for the empty rectangular test 

room. Although this model was to be further developed, as described in Chapter 6, to 

achieve the objectives set out in Section 2.5, it was possible to conclude that an 

accurate FEM model could be obtained without excessive computer time. The 

computed eigenfrequencies agreed with analytical values within 0.05% in the 

frequency range of interest, revealing the accuracy of this preliminary model and 

justifying the use of the chosen controlling parameters, as discussed in Section 4.5.1. 

So far, the developed room model has not included surface or content absorption. 

This topic is explored in Chapter 5. 

 

 

 

 



CHAPTER 4 – FINITE ELEMENT MODEL 47

 

 

 
Figure 4.4 - Spatial distribution of pressure amplitude for the first mode (1,0,0). 

 

 

 

 

 
Figure 4.5 - Spatial distribution of pressure amplitude for the fourth mode (0,1,0). 

 

 

 

 



CHAPTER 4 – FINITE ELEMENT MODEL 48

 

 

 
Figure 4.6 - Spatial distribution of pressure amplitude for the fifth mode (2,0,0). 

 

 

 

 

 
Figure 4.7 - Spatial distribution of pressure amplitude for the ninth mode (1,1,1). 
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CHAPTER 5 

ROOM ABSORPTION 

 

5.1 Introduction 

In the present work, room absorption at low frequencies is examined in order to 

assess its influence on the general problem of sound insulation between adjacent 

rooms. The approach adopted was to input damping data into a validated FE model 

and adjusting this data until good agreement with measurement is obtained. Surface 

absorption was considered first, and then that due to room contents, with an 

emphasis on furniture. As a prelude to the study, a description is given of the 

fundamental processes of absorption in rooms. 

 

5.2 Previous work 

The use of sound absorbing materials remains one of the main forms of noise 

control in car and aircraft industries, as well as in enclosed spaces [Balvedi (1998)]. 

When sound waves propagate through the air and strike objects and boundary 

surfaces in enclosures, absorption takes place, both within the propagating medium 

and at the boundaries. In room acoustics, an understanding of the energy loss 

mechanisms is important in the determination of sound pressure levels resulting from 

sound sources within enclosures [Bies and Hansen (1996), Crocker (1997)]. The 

study of such mechanisms began at the end of the nineteenth century with the work 

of Rayleigh, who published on the absorption in porous materials [Rayleigh (1945)]. 

In 1900, after five years of research conducted in various halls at Harvard, Sabine 

developed an equation for the reverberation time, T in an enclosed space that 

remains a fundamental parameter to this day [Sabine (1900), Beranek (1992)]: 

A
VT 163.0= ,              (5.1) 

where T is the time taken for the sound field to decay 60 dB, V is the room volume, 

and A is the total sound absorption in the room at the frequency of measurement in 

square metres. 
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Biot (1956) developed the theory of Rayleigh on the propagation of elastic waves 

in porous materials, concluding that three waves (two dilatational and one rotational) 

may simultaneously exist in such materials depending on the ratio between the 

Young’s modules of the porous material and of the fluid inside the material [Biot 

(1956)]. The dilatational waves are denoted as waves of the first and second kind. 

The waves of the first kind are true waves, i.e., the dispersion is practically negligible 

with a phase velocity increasing or decreasing with frequency depending on the 

mechanical parameters. The waves of the second kind are highly attenuated. They 

are in the nature of a diffusion process, and the propagation is closely analogous to 

heat conduction. The rotational wave comes from the fact that a rotation of the solid 

causes a partial rotational entrainment of the fluid through an inertia coupling [Biot 

(1956)]. 

Beranek (1971) described the thermodynamic phenomena related to porous 

materials and their physical properties. He also proposed one of the first 

mathematical models for the determination of the characteristic acoustic impedance 

[Beranek (1971)]. A more profound study on the theory of porous materials was 

undertaken by Ingard (1994), who divided the energy loss mechanisms into viscous 

and inertial, thermal and structural effects. Bolton (1997) discussed the different 

types of porous material (rigid, flexible and elastic), and the influence of their 

macroscopic properties on their acoustic behaviour [Bolton (1997), Balvedi (1998)]. 

The energy loss mechanisms that occur at the main surfaces within a room may 

take one of two forms, depending on their vibroacoustic properties, the frequency 

range, and the dimensions of the room [Bies and Hansen (1996), Crocker (1997)]. 

The first mechanism is related to locally reactive surfaces and the second to modally 

reactive surfaces. The present chapter deals with each of these mechanisms, their 

effective frequency range, the need to include them in the FE model and the possible 

ways to do so. 

 

5.3 Air absorption 

Sound waves are attenuated during propagation through air. The decrease in 

intensity is expressed in terms of the medium attenuation constant m = 2α  (α is the 

air absorption coefficient) [Kuttruff (1979), Gerges (2000)]. Equation (5.1) now 

becomes [Bies and Hansen (1996), Gerges (2000)]: 
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mVA
VT
4

163.0
+

= .             (5.2) 

According to Gerges (2000), the effect of air absorption may be neglected up to 2 

kHz. Crocker (1997), however, states that the small propagation loss is generally only 

important in very large rooms and at frequencies above about 500 Hz. The 

attenuation of sound waves by the air may represent a serious problem in scale 

model measurements [Kuttruff (1979)]. This is not the case of the present study, and 

as the upper frequency of interest here is 200 Hz, the effects related to air absorption 

may be safely neglected. 

 

5.4 Absorption by porous surfaces 

Porous materials may be thought of as being formed of two distinct parts: the 

solid phase relates to the structural part of the material, and the fluid phase relates to 

the fluid (air) inside the pores of the material. Due to their low density, they are not 

efficient for sound insulation purposes. However, porous materials are frequently 

used as sound absorbers, due to their ability to convert acoustic energy into heat 

[Biot (1956), Kuttruff (1979), Ingard (1994), Balvedi (1998)]. 

 

5.4.1 Theory 

The absorption characteristics of a given material are determined by the 

absorption coefficient, α, which is defined as the ratio of the acoustic energy 

absorbed by the material, Wa, to the incident acoustic energy, Wi: 

i

a

W
W

=α .              (5.3) 

The values of α are always positive (0 ≤ α ≤ 1), mainly depending on the frequency, 

sound incidence angle, assumed sound field (diffuse, plane waves, etc.), material 

density, thickness and internal structure [Beranek (1971), Kuttruff (1979), Gerges 

(2000)]. The original postulate that the absorption coefficient is a fundamental 

property of the material has now been discarded in favour of an impedance concept 

[Beranek (1940-a, 1940-b, 1942), Gibbs (1970)]. Of particular interest here is the 

specific acoustic impedance, Z, which is defined as the ratio of acoustic pressure to 

associated particle velocity [Kinsler and Frey (1982), Bies and Hansen (1996)]. This 
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parameter is important in describing the propagation of sound in free space and is 

continuous at junctions between media. It is also important in describing the reflection 

and transmission of sound at an absorptive lining in a duct or on the walls of a room. 

Beranek (1942) developed a method to measure the specific normal acoustic 

impedance of a material, Zn, which involves the acoustic pressure at the material 

surface and the component of the particle velocity perpendicular to the material 

surface. Zwicker and Kosten (1947) have shown that the acoustic impedance of a 

rigidly backed material is given by 

)  (coth hWZ γ= ,              (5.4) 

where W is the characteristic impedance, γ is the propagation constant, and h is the 

material thickness. The propagation constant and the characteristic impedance are 

material constants that fully describe the acoustic properties of porous materials 

[Gibbs (1970), Balvedi (1998)]. 

 

5.4.2  Locally reacting surfaces 

The concept of a locally reactive boundary is of importance as it serves to 

uncouple the cavity and wall modes and greatly simplifies the analysis [Morse (1939), 

Bies and Hansen (1996)]. The locally reactive surface is defined as one for which the 

response at each point of the surface is only dependent on the local sound pressure 

and independent of the response at any other part of the boundary, i.e., local reaction 

means that the response to an imposed force at a point is determined only by local 

properties of the surface at the point of application of the force [Pan and Bies (1988), 

Bies and Hansen (1996)]. Thus, assuming locally reactive surfaces and using the 

impedance tube method developed by Beranek, it is possible to obtain a relation 

between the normal absorption coefficient, αn, and the specific normal acoustic 

impedance, Zn, given by [Brüel and Kjær (1955 & 1979), Beranek (1971)] 
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Paris (1928) related the sound absorption coefficient α, at a particular angle θ, to the 

normal impedance by the expression 
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Although the traditional description of sound fields in enclosures begins with the 

assumption that the walls are locally reactive, or effectively infinitely stiff, a 

complementary approach that the walls may be modally reactive at low frequencies 

must be considered, which gives importance to the coupling between structural and 

acoustic modes [Pan and Bies (1988), Bies and Hansen (1996)]. This is the subject 

of Section 5.5. 

 

5.4.3 Measurement methods 

The well established methods for obtaining the absorption coefficient of a 

material, as a function of frequency, either involve the use of a standing wave 

apparatus (or impedance tube) [Cremer and Müller (1982)] or a reverberant room 

[ISO 140/3 (1995)]. Recent approaches include the transfer function method that 

utilizes one or two microphones and a digital FFT analyser but it requires further 

development [Gerges (2000), Balvedi (1998)]. In the impedance tube method a tube 

has a loudspeaker in one end, while the other end is rigidly blocked [Cremer and 

Müller (1982, Gerges (2000)]. The sample of sound absorbing material is placed at 

the closed end. A sinusoidal signal generator feeds the loudspeaker in order to 

produce a standing wave, at a given frequency, inside the tube. A microphone probe 

measures the acoustic pressure along the tube. The probe also allows the 

measurement of the distance between the sample surface and the measuring 

position, by means of a graduated scale. Although simple and accurate, the 

impedance tube method is slow due to the need to measure at many discrete 

frequencies. Furthermore, only measurements of normal incidence absorption 

coefficient are possible [Seybert and Ross (1970), Beranek (1971), Cremer and 

Müller (1982), Balvedi (1998), Gerges (2000)]. 

The determination of the absorption coefficient in a reverberation room is 

performed by the analysis of the effect produced by the absorption material on the 

reverberation time, T, of the enclosure [ISO R354 (1985), Gerges (2000)]. A diffuse 

sound field is assumed, meaning that the sound energy is uniformly distributed within 
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the room. The principle of this technique consists in measuring T, without and with 

the absorption material placed on the room floor. Although it is possible to obtain the 

absorption coefficient for random incidence using this method, the observation of 

different values of α for the same material, when measured in different rooms, is not 

uncommon. This is due to a variation in the diffuse sound field characteristics 

observed for the different rooms [Bies and Hansen (1996)]. 

 

5.4.4 Parameter in FEM model 

The mechanisms of acoustic energy loss can be included in a FEM model in 

various ways: by defining a complex sound velocity to represent the absorption of 

sound as it passes through the medium, by defining acoustic modal damping 

characteristics, by modelling the characteristics of bulk absorbent materials, or by 

adding complex impedance boundary conditions to the surfaces of the cavity. As 

discussed in Section 5.3, the absorption of sound as it passes through the air may be 

neglected, and the definition of a complex sound velocity becomes unnecessary. The 

assignment of an acoustic modal damping characteristic is viable only for the first few 

acoustic modes of the cavity, since these characteristics must be determined 

experimentally. This becomes difficult with increasing frequency, due to modal 

superposition. The modelling of bulk absorbent materials requires the use of a 

special finite element formulation [Sysnoise Rev 5.4 (1999)]. The properties of the 

absorbent material (effective density of the fluid inside the material, sound velocity 

inside the material, resistivity, porosity, and structural factor) must be determined 

experimentally, which may not represent a simple task [Balvedi, (1998)]. The most 

common way to approach the absorption mechanism in a FE model of a room is by 

adding complex impedance boundary conditions [Pan and Bies (1988)]. 

Absorbent linings on surfaces can be simulated in FEM by imposing complex 

normal impedance (or admittance) boundary conditions. In this case the material is 

considered as locally reactive, and only the normal component of acoustic particle 

velocity is relevant. An advantage of this approach is that the impedance 

characteristics of the absorbent material may be derived from the absorption 

coefficient. 
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5.5 Modally reactive boundaries 

In the low frequency range, structural-acoustic modal coupling plays an important 

part in the absorption mechanism in an enclosure. Experiments regarding the 

interaction between the sound field and its boundaries have demonstrated that the 

walls of a reverberation chamber are modally reactive, in which case the sound 

absorption mechanism is associated with structural-acoustic mode coupling [Pan and 

Bies (1988 & 1990), Pan et al (1999)]. Consider a room with five rigid walls and one 

simply supported panel. The free vibration of the room-panel system may be 

characterised in terms of the sound field in the cavity, the panel displacement due to 

flexural vibration, and the exterior sound field due to the panel sound radiation [Pan 

and Bies (1990-a)]. Inside the cavity, the sound field may be described in terms of 

the acoustic velocity potential, Ψ, yielding 
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The air particle velocity v and the sound pressure P are given, respectively, by 
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The five non-vibrating walls are assumed to be locally reactive and the boundary 

condition for these walls is given by: 
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where Z is the specific normal acoustic impedance of the surfaces. For the flexible 

panel the continuity of the particle velocity and the normal panel velocity yields 
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where w is the panel normal displacement. The behaviour of the panel flexural 

motion, for a thin isotropic panel, is determined by [Heckl (1981), Fahy (1985), Pan 

and Bies (1990-a)] 
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where E, h, µ, ρ, are the Young’s modulus, thickness, Poisson’s ratio and density of 

the panel, respectively, and Ψe is the acoustic velocity potential on the outside 

surface of the panel, which is given by the Rayleigh integral for sound waves 

radiating from a baffled panel [Rayleigh (1896)] 
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where AM is the the modally reactive surface, k
r

 is the wave number of the sound 

field, and r is the distance from the panel surface to the observation point. The 

harmonic term eiω t can be omitted. The differential equations (5.7) and (5.11) may be 

put in an integral form, which has the advantage of providing a convenient 

formulation for numerical approximations [Zienkievicz and Taylor (1971), Pan and 

Bies (1990-a)]. This procedure requires a Green’s function that satisfies the original 

partial differential equations having a Dirac delta function as a point source 

[Feshbach (1944)]. The constructed Green’s function is a transfer function from the 

point source to the velocity potential at an observation point in the cavity, and may be 

obtained by normal mode expansion [Morse and Ingard (1968)] giving 

∑
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where  is the source point, 0r
r

NRω is the Nth room eigenfrequency, and ΦΝ  is the Nth 

normal acoustic mode, which according to Section 3.25, for a rectangular room, is 
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Thus, the acoustic velocity potential in the cavity is determined by integrating the 

distributed velocity contribution on the boundaries [Pan and Bies (1990-a)]: 
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where AL corresponds to the locally reactive surfaces and β is the specific normal 

acoustic admittance given by 

Z
c00ρβ = .            (5.16) 
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For the simply supported panel, the Green’s function is given by 
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where x
r

 and  are the observation and source points on the panel surface, 

respectively, 

0x
r

MPω is the Mth panel eigenfrequency, and ϕΜ  is the Mth normal structural 

mode given by 
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Thus, the normal displacement of the panel, resulting from the distributed sound 

pressure on the panel surface, is given by [Pan and Bies (1990-a)] 
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Finally, once Ψ and w are obtained, the fluid-structure interaction characteristics 

may be obtained [Dowell et al (1977), Pan and Bies (1990-a)]. The geometry of the 

cavity and the boundaries used in this analysis are very simple, but the method of 

modal coupling may be applied to more complex cases, since numerical methods 

(e.g. FEM) are available for finding the mode shapes of virtually any uncoupled 

enclosure and boundary structures [Pan and Bies (1990-a & b)]. 

 

5.6 Field measurements 

In a study of the effects of construction material on room frequency responses at 

low frequencies, Maluski and Gibbs (2001) have obtained field measurement data for 

the sound fields in living rooms and bedrooms of dwellings with heavyweight 

masonry or lightweight cavity construction [Maluski and Gibbs (2000 and 2001)]. 

Using a large speaker placed in one corner, the acoustic fields were measured for 

the frequency range from 25 Hz to 205 Hz, at a single microphone position. Fig. 5.1 

shows the measured room response of a 5.78 m x 4.89 m x 4.24 m room of plastered 

brick walls, and concrete floor and ceiling, whereas Fig. 5.2 shows the measured 

room response of a 4.24 m x 2.84 m x 2.40 m room with plasterboard and timber-

frame walls, floor, and ceiling. 
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Figure 5.1 - Measured and predicted frequency response of a 5.78 m x 4.89 m x 4.24 m room of 

plastered brick walls, and concrete floor and ceiling, according to Maluski and Gibbs (2001). 
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surface absorption coefficient. Below 100 Hz, the equivalent absorption coefficient of 

2% reproduced the effect of the masonry and concrete construction (see Fig. 5.1), 

whereas it was found that an absorption coefficient of 15% provided the best 

agreement with measurement for the lightweight cavity construction (see Fig. 5.2). 

 

5.7 Summary 

The nature of the interaction between a sound field in an enclosure and its 

boundaries is fundamental in the study of room acoustics. In classical acoustics 

based on the diffuse sound field assumption, this interaction is described by the 

concept of the sound absorption coefficient, physically representing the 

characteristics of the sound energy exchange over the boundaries. Sabine’s formula 

provides a relationship between the absorption coefficient and the reverberation time 

in a room. However, discrepancies between classical theory and measurements of 

low frequency sound fields in rooms, where diffusion cannot be assumed, indicate 

the need of a modal approach, taking into account the wave nature of sound within 

enclosures. 

Traditionally, the sound wave behaviour inside a room is investigated with the 

introduction of the concept of normal specific acoustic impedance, where the 

boundaries are described as locally reacting surfaces. Field and laboratory 

measurements (see Section 5.7 and Chapter 6, respectively) have shown the local 

reaction assumption to be a good approximation, even for very low frequencies, 

where the incident sound waves set the walls into vibratory motion. In the next 

chapter, an empty test room is fully measured and modelled, which will serve as a 

basis for the investigation of the absorbing effects of rooms and their contents, at low 

frequencies. 
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CHAPTER 6 

REFERENCE TEST ROOM 

 

6.1 Introduction 

In this chapter, the methodology and instrumentation used in performing the 

experimental part of this work is described. In addition, the numerical model, 

preliminarily constructed in Chapter 4 for the empty test room, is further developed 

and described. The objective of this phase of the investigation was to obtain reliable 

room frequency response measurements for the empty room, which was to serve as 

a basis for numerical model validation, and as a reference for the investigation of 

furnished rooms (see Chapters 7 to 10). 

 

6.2 Measurement system 

The assessment of acoustical problems is often facilitated by the determination of 

gain factors between excitation sources and receiver location responses. The 

fundamental quantity of interest here is the frequency response function (‘FRF’, 

sometimes called the transfer function) between two points of interest. Thus, given 

an excitation source signal x(t) and a simultaneously measured response signal y(t), 

the frequency response function is given by the ratio of the cross-spectral density 

function, between source and receiver signals, and the auto-spectral density function 

of the source signal [Beauchamp and Yuen (1980), Bendat and Piersol (1986), 

Beranek (1988), Beranek and Vér (1992)]. The frequency response function is 

generally a complex-valued quantity, giving both gain and phase difference. 

However, in many applications, only the gain is of interest, as was the case most of 

the time in the present work. 

Various methods may be used to obtain frequency response functions of rooms. 

Examples include, impulse methods [Vorländer (1996)], pure tone excitation [Chu 

(1984)], white noise [Maluski (1999)], etc. With impulsive excitation, the dynamic 

range (range of amplitudes within which a system can work without underload or 

overload) is low, due to the generally poor signal-to-noise (s/n) ratio associated with 

this technique [Vorländer (1996)]. With pure tone excitations, the measuring process 
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is very slow [Chu (1984 & 85), Maluski (1999)]. With white noise the spectral energy 

is continuously distributed over frequency bands, thus exciting all room modes. On 

the other hand, due to its random nature, white noise based measurements need to 

be averaged several times, which improves the s/n ratio, but also creates stochastic 

deviations [Chu (1984 & 85), Bjor and Winsvold (1994), Maluski (1999)]. These 

difficulties can be circumvented by use of recent methods of digital signal processing. 

Of particular importance is the Maximum Length Sequences (MLS) technique, due to 

its efficiency and also to the availability of portable PC-based equipment [Vorländer 

(1996), Gomes (1998), Sampaio (1998)]. 

 

6.2.1 Maximum Length Sequences 

MLS is a specific type of correlation measuring technique that, in principle, can 

be used for measurement of FRFs of acoustic systems, provided they are linear and 

time-invariant (LTI) [Vorländer (1996)]. Most acoustic systems may be considered 

approximately as LTI systems. While linearity is an important prerequisite for 

application of Fourier methods, time invariance means that the acoustic properties of 

the system under investigation remain unchanged during the measurement interval. 

MLS are periodic binary pseudo-stochastic signals with an autocorrelation 

function that approximates a Dirac pulse. They are generated by use of a shift 

register with feedback loops. Thus, with m denoting the order of the shift register, at 

most L = 2 m - 1 different combinations of 0’s and 1’s are possible; only the state with 

0’s in all elements is omitted, because then it will be impossible for a 1 to occur, and 

the shift register will remain frozen in this state [Vorländer (1996), Viveiros (1998)]. 

By introducing a clock frequency to the shift register, a periodic sequence of register 

states will be created. The sequence used as signal can be taken from any point in 

the register, and the important point is that with certain feedback loops the period of 

the repeated sequence has its maximum length L. Thus, the resulting signal is a 

“maximum length sequence” [Vorländer (1996)]. As an illustration, Fig. 6.1 presents 

one period of a maximum length sequence of order 8, over two periods of the 

autocorrelation function. 

Using the MLS technique, a significant saving in time is obtained in comparison 

to other methods, due to the availability of fast correlation algorithms [Rife and 
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Vanderkooy (1989), Vorländer (1996), Viveiros (1998), Gomes (1998)]. Also, due to 

its deterministic nature, a MLS signal should give exactly repeatable results. 

 

 
Figure 6.1 - a) MLS of order 8 and b) its autocorrelation function [Vorländer (1996)]. 

 

This allows the application of synchronous averaging, increasing the s/n ratio by 3 dB 

per doubling of the number of averages [Vorländer (1996)]. However, it should be 

remembered that the MLS technique is based on the theory of LTI systems, although 

weak non-linearities may be tolerated. Violations of this prerequisite are the subject 

of continuing research by others, and first studies indicate that errors may occur in 

outdoor measurements, or in measurements with extremely long averaging times and 

with unstable environmental conditions of temperature and static pressure [Rife and 

Vanderkooy (1989), Atkinson (1990), Mommertz and Müller (1995), Vorländer 

(1996)], none of which are the case in the present work. 

 

6.2.2 Room details 

In this work the reference room was one of the reverberant chambers of the 

Acoustics Research Unit (ARU) of the University of Liverpool. The main room 

dimensions are Lx = 5.78 m, Ly = 3.04 m, and Lz = 4.24 m. The room was not 

perfectly rectangular, having a small change in angle at the door position as indicated 

in Fig. 6.2. The room walls were of dense brick of thickness 122 mm with painted 15 

mm fine grain plaster on the internal surface. The test aperture (3.5 m2 in the centre 

of the wall opposite to the door wall), was filled with dense block work and skimmed 

with 10 mm of plaster, unpainted. The floor was a 100 mm thick reinforced concrete 

slab, cast on a resilient mat (for isolation from the building). The ceiling was of similar 
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construction as the floor. The door was of a heavy steel construction with 

compression seals. 

 
Figure 6.2 - Loudspeaker and microphone positions inside the investigated room, which has a change 

in angle at the door position. 

 
Conventional measurements of background noise level and reverberation time 

were performed for the investigated room, and the figures obtained are listed in 

Tables 6.1 and 6.2. The background noise levels shown in Table 6.1 were sufficiently 

low to avoid signal masking even at frequencies as low as 25 Hz. 

 
Table 6.1 - Measured background noise level for the investigated room. 

Frequency Band (Hz) Background Noise Level (dB) 
31.5 49.5 

63 40.0 

125 35.0 

250 25.0 

500 15.0 
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The reverberation times measured (see Table 6.2) were short enough to avoid 

aliasing errors [Ewins (1984), Bendat and Piersol (1986)], when measuring room 

frequency responses with the maximum length sequences technique [Rife and 

Vanderkooy (1989), MLSSA (1994)]. 

 
Table 6.2 - Measured reverberation time for the investigated room. 

Frequency Band (Hz) Reverberation Time (s) 
100 5.78 

125 4.14 

160 4.51 

200 5.82 

250 5.7 

315 5.31 

400 5.36 

500 5.62 

 

6.2.3 Measurement instrumentation 

All measurements were carried out with a loudspeaker placed at one corner, and 

two microphones located at two other opposite corners (see Fig. 6.2). Two 

loudspeakers were tested prior to the experimental investigation: a 305 mm drive unit 

(single cone) in a ported cabinet of dimensions 300 mm x 380 mm x 550 mm, and a 

457 mm drive unit (also single cone) in a ported cabinet 790 mm deep by 550 mm 

wide by 630 mm high. Both loudspeakers were ‘base reflex’, i.e., their ported cabinet 

had a path that allowed the out-of-phase motion of the loudspeaker to enhance the 

low frequency response. This allowed the excitation of all room modes in the 

frequency range of interest. Room frequency responses (sound pressure level versus 

frequency) were obtained using a MLS based system, and a schematic of the 

experimental set-up is shown in Fig. 6.3. Table 6.3 presents a list of the equipment 

employed. 

The MLS based system was a Maximum Length Sequence System Analyser 

[MLSSA (1994)] installed on a PC, and was used to generate a burst stimulus of 

length 65535 as excitation signal. This signal was then amplified before exciting the 
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room by means of the loudspeaker. Although the frequency range of interest is from 

20 Hz to 200 Hz, measurements frequency interval was typically 0 – 1 kHz. 

 

 
Figure 6.3 - Experimental set-up used in obtaining room frequency responses. 

 

The sound pressure was sampled at a rate of 4 kHz, acquiring 65536 points, 

displayed as a time history. Using a Blackman-Harris window [MLSSA (1994)], an 

8192 points FFT was used to obtain the room frequency response with spectral 

resolution of 0.49 Hz. 
 

Table 6.3 - Equipment used in the experimental set-up shown in Fig. 6.3. 

Device Type 
Amplifier Quad 50 E 

Loudspeaker Yamaha SW 118 IV 

Microphones B&K 4165 

Microphone Power Supply B&K 5935 
 

Prior to the room response measurements, a series of tests was performed, in 

order to verify the functioning of the equipment and its optimum configuration. In 

order to verify the equivalence of the output of the two matched microphones, the 

signals obtained at the same position inside the room were compared. Transfer 

functions were measured between each microphone and the loudspeaker. The 

transfer functions obtained were complex, but the results are presented as 

magnitudes. The ratio of the two transfer functions was then obtained. This ratio 
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should be a constant of 0 dB. The results show a reasonable flat spectrum at 0 dB 

within ±1 dB to allow the assumption of reasonably equivalent microphones (see Fig. 

6.4).  

 
Figure 6.4 - Ratio of magnitudes of transfer functions for two microphones positioned at the lower 

corner of the investigated room. 

 

The calibration measurements were repeated using a conventional Fourier Analyser, 

with white noise as excitation signal. A flat spectrum at 0 dB was obtained, though 

the results are not shown. Thus, it was concluded that the observed spikes at 

approximately 35 Hz and 190 Hz in Fig. 6.4 are simply due to the sensitivity of the 

MLS technique to system variations. The use of two fixed microphones allowed a 

much faster measurement procedure, with the additional advantage of guaranteeing 

exactly the same measuring positions between two consecutive experiments. 

In order to quantify the repeatability provided by the measuring system, the 

transfer function between one microphone and the loudspeakers was measured in 

the anechoic chamber of the ARU. The experimental set-up was the same as 

described previously, but with a low-pass filter, which was included in the measuring 

chain to reject a persistent low frequency background noise and thereby increase the 

signal to noise ratio. Again, the repeatability was expressed as a ratio of repeated 
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results (see Figs. 6.5 and 6.6). The curve shown in Fig. 6.5 was obtained using the 

305 mm loudspeaker with repeatability within ±1 dB, above 50 Hz, and within ±10 dB 

below 50 Hz. 

 
Figure 6.5 - Ratio of magnitudes for two measurements for the same microphone positioned inside the 

anechoic chamber of the ARU, with the 305 mm loudspeaker as the sound source. 

 

The curve displayed in Fig. 6.6 was obtained with the 457 mm loudspeaker with 

repeatability within ±2 dB below 50 Hz, and within ±0.1 dB above 50 Hz. 
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Figure 6.6 - Transfer function indicating the repeatability between two measurements for the same 

microphone positioned inside the anechoic chamber of the ARU, with the 457 mm loudspeaker as the 

sound source. 

Therefore, a better repeatability, mainly for the frequency range below 50 Hz, is 

achieved when the 457 mm loudspeaker is used, which is explained by the greater 

efficiency of the latter in exciting very low frequencies. 

It was recognised that a large loudspeaker might be more difficult to represent in 

a numerical model. This is because, ideally, the sound source is introduced in the 

numerical model as a point source (see Section 4.5.1). However, it was not physically 

possible to have in practice a small loudspeaker with the capability to excite very low 

frequencies. Thus, the 457 mm loudspeaker was selected as the best compromise. 

 

6.3 Finite element model 

In chapter 4, the present use of Finite Elements Methods in Acoustics was 

described. Section 4.5 dealt specifically with the parameters and assumptions used 

in modelling a rectangular room. Although the preliminary model demonstrated good 

accuracy when comparing results for room eigenfrequencies with those calculated 

analytically, it was not a complete model. 

The small change in angle at the door position (see section 6.2.2) was initially 

thought not to be influential. However, comparison of the results provided by the 

rectangular room model with measurement highlighted discrepancies throughout the 

frequency range. The curves shown in Fig. 6.7 correspond to the upper microphone 

results (microphone 1, as shown in Fig. 6.2). The modal characteristics of the 

enclosure at low frequencies are clearly indicated, as both predicted and measured 

sound pressure levels display maxima and minima, corresponding to room modes. 

Although not shown here, similar results were obtained for microphone 2. The first 

four peaks seen in Fig. 6.7 correspond to modes (1,0,0), (0,0,1), (1,0,1), and (0,1,0), 

respectively. In the comparison shown in this figure it is possible to see that after the 

second room mode this numerical model was only able to match a few 

eigenfrequencies for the shown interval. In the case of the third mode, for example, 

the discrepancy between predicted and measured mode frequency is approximately 

3%. 
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Thus, a new model of the room was created, taking into account the change in 

angle at the door position. The new mesh for the improved model is shown in Fig. 

6.8. As before, the element size was 0.28 m, and the element type was “HEXA 20”.  
 

 
Figure 6.7 - Comparison between (___) measurement and (___) preliminary prediction provided by the 

rectangular room model. 

 

 
Figure 6.8 - Isometric view of the refined finite element model of the test room. 
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On comparing the frequency responses provided by the rectangular room model 

and the improved room model (see Fig. 6.9), it is confirmed that the introduction of 

the small change in angle at the door position clearly affects the modal distribution, 

shifting several eigenfrequencies throughout the frequency range of interest. 
 

 
Figure 6.9 - Predicted curves showing the differences between the results of (___) improved room 

model and (___) rectangular room model. 

 

All the perceivable differences between the curves shown in Fig. 6.9 are 

exclusively due to geometrical differences between the two numerical models, since 

all the other parameters were kept the same as those described in section 4.5. 

 

6.4 Results 

In the following sections, experimental and numerical results for the empty test 

room are presented. Comparisons are made and adjustments in the FEM are 

described which improved the agreement with measurement. 
 

6.4.1 Preliminary comparison 
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A comparison first was made between measured room frequency response and 

that obtained from the numerical model, where the room surfaces were assumed 

non-absorbing (see Fig. 6.10). 
 

 
Figure 6.10 - Preliminary comparison between (___) measurement and (___) prediction, for the 

improved room model with hard boundaries. 

 
Although the predicted curve follows the trends of the experimental curve, in 

general it overestimates the response. This is mainly due to errors in sound source 

modelling and assumptions of zero absorption. This was also observed by Maluski 

(1999), and such errors were further investigated in the present work. 

 

6.4.2 Measurement and prediction of wall vibration 

As discussed in chapter 5, even without sound absorptive material inside the 

room, a possible mechanism of energy loss is introduced by the coupling between 

the room acoustic modes and the wall vibration modes. The contribution of this 

mechanism to the total sound absorption inside the room was measured as the 

vibratory response of one wall of the test room. The measured frequency response 

was compared to predicted values provided by theory [Leissa (1993)]. This allowed 

the determination of the most appropriate wall boundary conditions for best fit of 

predicted and measured eigenmodes. 
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The wall measured was the back surface (plane x = 5.78 m, according to Fig. 

6.2), since it was the simplest and most accessible. The internal dimensions were   Ly 

= 3.04 m, Lz = 4.24 m, and thickness h = 137 mm, approximately. The experimental 

set-up is shown in Fig. 6.11 and the equipment is listed in Table 6.4.  

 

 
Figure 6.11 - Experimental set-up for the investigation of wall vibration. 

 

 

Table 6.4 - Equipment used in the experimental set-up shown in Fig. 6.11. 

Device Type 
Power Amplifier Quad 50 E 

Loudspeaker Yamaha SW 118 IV 

Amplifier B&K 2706 

Shaker Ling Dynamic Systems 400 Series 

Accelerometer B&K 4378 

Preamplifier B&K Nexus 

 

The 457 mm loudspeaker was used first as the excitation source.  An electro-

dynamic shaker (Ling Dynamic Systems 400 series) was also used, attached to the 

wall 0.55 m from the left edge and 0.80 m from the floor, so as not to coincide with 

any structural node in the frequency range of interest. Measurements were carried 

out with the accelerometer placed inside and outside the room, in order to investigate 
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the influence of the sound field on the former, when using the loudspeaker as 

excitation source. Fig. 6.12 shows two measurements for the accelerometer placed 

on the external side of the wall, when the latter was excited by the two types of 

sources. The curves are plotted with measurement of the wall background 

acceleration level for comparison. 

 
 

Figure 6.12 - Vibratory response of test room wall. (___) Loudspeaker excitation, (___) shaker 

excitation, and (_ _ _) background noise. 

 
It can be concluded that the room walls vibrate when the low-frequency 

loudspeaker is used as a source inside the room, and that these vibrations contribute 

to the whole room absorption mechanism mainly at very low frequencies. Evidence of 

this is contained in the measured room frequency response (see the experimental 

curve in Fig. 6.7). The first three modes, for example, at approximately 30 Hz, 40 Hz, 

and 50 Hz, respectively, have a significant loss factor η [Morse and Ingard (1968)], 

when compared with the first three predicted modes shown in Fig. 6.10, which were 

obtained considering a room with no absorption. While the first three measured 

modes have loss factors 9.7%, 4.7%, and 3%, respectively, the corresponding 

predicted modes for a room with no absorption have loss factors 1.8%, 0.75%, and 

0.56%. Thus, since at these low frequencies the air absorption may be completely 

neglected (see Chapter 5) and the acoustic impedance of the room hard surfaces is 
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unlikely to produce such an effect, the role played by the wall vibrations in the room 

absorption mechanism becomes clear. 

A second set of measurements was carried out in order to identify the first wall 

modes. This was done by selecting accelerometer positions likely to be at, or near 

anti-nodes. Results were then compared with those for positions at corresponding 

nodes. Consequently, using this technique it was possible to identify the first seven 

wall modes, which are listed in Table 6.5. 
 

Table 6.5 - Identified wall modes. 

Mode Order Resonance 
Frequency (Hz) 

Modal Numbers Modal Shape 

 

1st 

 

24.9 

 

1,1 

 

 

 

2nd 

 

42.0 

 

2,1 

 

3rd 

 

62.5 

 

1,2 

 

4th 

 

71.8 

 

3,1 

 

5th 

 

80.6 

 

2,2 

 

6th 

 

102.5 

 

3,2 

 

7th 

 

112.3 

 

4,1 

+ 

 

 
Using the theory provided by Leissa (1993) the simplest case was 

which corresponds to simply supported edges (SSSS), as the rea

conditions were unknown. There were also difficulties due to the imprec

values of the wall material properties. The values used are suggeste

(1974), and listed in Table 6.6. 

For the SSSS case, the structural eigenfrequencies are given by: 

























+








⋅=

22

2 yz
ss L

n
L
mDf

ρ
π ,   
 
+

 

+ 

+ 
+   
 

 

+ 
+ 
+ 
+    +

+    +
 

 

+ 
+ 
+ 
+ 

+  + 
+  + 
+  + 

considered, 

l boundary 

ision of the 

d by Gibbs 

         (6.1) 



CHAPTER 6 – REFERENCE TEST ROOM 80

where m and n are the structural modal numbers (integers) and D is the flexural 

rigidity, which in turn is given by 

)1( 12
 

2 

3

ν−
=

hED .             (6.2) 

 
Table 6.6 - Wall material properties, according to Gibbs (1974). 

Property Value 
Young’s Modulus E = 1010 N/m2 

Poisson’s Ratio ν = 0.3 

Surface Mass Density ρ = 148 kg/m2 

 

From the wall dimensions and the values listed in Table 6.6, it was possible to 

calculate all the structural eigenfrequencies below 200 Hz, which is the upper 

frequency of interest. The values were calculated using the concept of “neutral lines”, 

i.e., adding half of the thickness value to the wall dimensions Ly and Lz. The 

eigenfrequencies also were calculated with the FEM program (Sysnoise) for 

comparison. The wall finite element mesh was constructed with the commercial 

software Patran, using an element size of 0.28 m, and structural elements “Quad 4”. 

The element size was chosen in order to match that used in the room model. 

However, the element type (Quad 4) was a requirement of Sysnoise, in order to 

model the wall with “Shell” elements, rather than “Plate” elements. The latter allows 

the use of more precise element types, but restricts the definition of the elements 

only to the x-y plane. 

A relative percentage error was calculated between theoretical and numerical 

eigenfrequency values, and all the results for the SSSS case are listed in Table 6.7. 

The same calculations were performed for the case in which all the wall boundaries 

were assumed to be clamped (CCCC). For this case, Leissa (1993) suggests a table 

of ratios of wall dimensions, which can be used to calculate the structural 

eigenfrequencies according to 

DL

rf
y

cc ρπ 2 2
= ,              (6.3) 

where r is the given ratio, which in this case corresponds to 0.72. Again, a numerical 

simulation was performed for the CCCC case, and as for the simply supported case, 



CHAPTER 6 – REFERENCE TEST ROOM 81

theoretical and numerical results are compared in Table 6.8. Although there is 

agreement between theoretical and predicted results (see Tables 6.7 and 6.8), they 

have not agreed with measurements (see Fig. 6.13), indicating that the real boundary 

conditions must lie between the two investigated cases (simply supported and 

clamped). This was also observed by Maluski (1999). 

 
Table 6.7 - Theoretical eigenfrequencies (TE), numerical eigenfrequencies (NE), and percentage error 

(E) for the SSSS case. 

Mode Order m,n TE (Hz) NE (Hz) E (%) 
1st 1,1 31.2 31.0 -0.49 

2nd 2,1 63.2 63.1 -0.19 

3rd 1,2 92.7 94.2 1.63 

4th 3,1 116.6 118.4 1.54 

5th 2,2 124.7 124.9 0.12 

6th 3,2 178.1 178.0 -0.04 

7th 4,1 191.3 199.3 4.17 

 
 

Table 6.8 - Theoretical eigenfrequencies (TE), numerical eigenfrequencies (NE), and percentage error 

(E) for the CCCC case. 

Mode Order m,n TE (Hz) NE (Hz) E (%) 
1st 1,1 58.3 58.4 0.25 

2nd 2,1 94.9 95.3 0.37 

3rd 1,2 139.1 142.6 2.50 

4th 3,1 155.9 159.3 2.20 

5th 2,2 173.1 174.3 0.71 

 

6.4.3 Adjusted model parameters 

In order to obtain the best fit between measurements and predicted results 

provided by the FE room model, the parameters and inputs of the latter were 

updated. The first parameter to be adjusted was the wall absorption coefficient that 

was to be entered in the numerical model in the form of an acoustic admittance – see 

equation (6.4) and Section 8.3. A parametric study was carried out to determine the 

value of surface absorption that would give the best agreement with measurements. 
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Figure 6.13 - Percentage error between theoretical (SSSS) and measured eigenfrequencies (see 

Tables 6.7 and 6.5, respectively), as a function of the measured eigenfrequencies. 

 

Three simulations were run, with frequency invariant surface absorption 

coefficients of 2%, 5%, and 10%, respectively. Fig. 6.14 shows the predicted results 

for the refined room model, considering hard surfaces and the three different values 

of absorption. Level differences between predictions for each value of α and 

measurement are presented in Fig. 6.15 in 1/12th octave bands. The one-twelfth 

octave bands were calculated with the aid of a computer and plots presented to this 

resolution were constructed from a logarithmic average of the narrow band results 

divided by the number of points in each band. 

As shown in Fig. 6.15, a surface absorption coefficient of αn = 0% (hard wall), 

overestimates values compared with measurements, and above 40 Hz its 

corresponding level difference is on average 7 dB ±8 dB. A value αn = 10% 

underestimates values compared with measurements and the corresponding level 

difference is on average -5 dB ±3 dB below 110 Hz, and -10 dB ±3 dB above this 

frequency. The corresponding level difference for αn = 5% also indicates an 

underestimation compared with measurements, although to a lesser extent. For this 

value of absorption coefficient the difference is on average -2 dB ±2 dB below 110 

Hz, and -6 dB ±3 dB above this frequency. The same figure shows that the level 

difference corresponding to an absorption coefficient of 2% fluctuates around 0 dB 
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with a variation ±5 dB, providing the smallest overall discrepancy with 

measurements. 
 

 
Figure 6.14 - Effect of increasing absorption coefficient on the room frequency response: (. . .) hard 

wall, (____) α = 2%, α = 5% (_ _ _), and α = 10% (____). 

 

Therefore, this value of absorption was selected as the most appropriate to 

simulate the absorption characteristics of the room surfaces. In obtaining the results 

plotted in Fig. 6.15, a correction was applied to predicted results in order to include 

the observed loudspeaker roll-off at frequencies below 100 Hz (see Fig. 6.16 and 

discussion below). 

The developed numerical model considers all room boundaries as locally 

reacting surfaces, and that a value of absorption enters the model in the form of a 

normal wall admittance A (assumed to be pure real) which can be calculated by: 

Z
A 1
= ,              (6.4) 

where Z is the normal wall impedance given by [Gerges (2000)] 
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Figure 6.15 - Level differences between measurement and prediction for (__
�

__) hard wall,               

(__ __) α = 2%, (__
Ο

__) α = 5%, and (__ __) α = 10%. 

 

The second parameter to be adjusted in the numerical model was the simulated 

sound source. The loudspeaker frequency response was not flat throughout the 

frequency range of interest, despite the fact that it is designed to operate at very low 

frequencies. Thus, the FE model of the actual room was further refined by including a 

polynomial expansion to fit the loudspeaker roll-off. The acoustic power of the 

numerical sound source was now expressible as a monotonic function of frequency. 

The curve representing this polynomial expression, along with a measurement of the 

empty test room frequency response, is presented in Fig. 6.16. 

Also, it was observed that the program Sysnoise utilizes as a default a value of 

340 m/s for the velocity of sound in air, c0. However, according to Gerges (2000), this 

parameter is given approximately by 

Tc 6.03310 += ,              (6.6) 

where T is the temperature in ºC. The average room temperature was measured as 

20 ºC, yielding a value of c0 = 343 m/s, according to equation (6.6). This small 

difference in sound velocity in air yielded significant shifts in the predicted room 

modes, since according to equation (3.34), the room eigenfrequencies are directly 

proportional to c0. 
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Figure 6.16 - Curve of a polynomial expression simulating the loudspeaker roll-off at lower 

frequencies. 

 
As a result of these adjustments, it was possible to obtain an improved 

agreement between measurement and prediction for the empty test room frequency 

responses, as shown in Fig. 6.17. This is verified in Fig. 6.18, which shows level 

differences between measurement and prediction for the preliminary numerical model 

described in Chapter 4 and the new model with adjusted parameters. The results are 

presented in 1/12th octave bands and comparison shows the reduced overall 

discrepancy between measurement and prediction achieved with the improved 

model. 

Finally, following the idea introduced in Chapter 4, results are also presented in 

the form of modal patterns at frequencies 30 Hz, 57.1 Hz, 59.4 Hz and 77.3 Hz (see 

Figs. 6.19 to 6.22, respectively). For comparison, these figures show the same 

modes presented in Chapter 4 (rectangular room). Thus it is possible to observe how 

the small change in the room geometry (see Section 6.2.2) affects both the room 

eigenfrequencies and eigenmodes. 
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Figure 6.17 - (____) Prediction and (____) measurement, after parameter adjustments. 

 

 
Figure 6.18 - Level differences between measurement and prediction for (__

Ο
__) old model (Chapter 4) 

and (__ __) new model with adjusted parameters. 

 

6.5 Summary 

A description has been given of the measurements performed in order to obtain 

frequency responses for the empty test room, which was to be used as the reference 

for later measurements with obstacles and absorbers in the room. The adjustments 
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to the FE model of the empty room have also been described. The process of 

modelling the empty room has highlighted the need to account for even small 

irregularities in the room geometry, in order to obtain a good agreement between 

numerical and experimental results. 
 

 
Figure 6.19 - Spatial distribution of pressure amplitude for the first mode (1,0,0). 

 

 

 

 
Figure 6.20 - Spatial distribution of pressure amplitude for the fourth mode (0,1,0). 
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Figure 6.21 - Spatial distribution of pressure amplitude for the fifth mode (2,0,0). 

 

 

 

 
Figure 6.22 - Spatial distribution of pressure amplitude for the ninth mode (1,1,1). 

 

Furthermore, measurement of one of the room walls vibrational behaviour clearly 

showed that these vibrations contribute to the whole room absorption mechanism at 

very low frequencies. After a parametric survey, a value of absorption coefficient of 

2% was found to be the amount of surface absorption that produced the best 

agreement with measurements. This apparent absorption coefficient of 0.02 included 

the effect of wall vibration losses in the numerical model, and although this is a 
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simple damping model, i.e., there is no variation of the absorption coefficient with 

frequency, the resultant predicted FRFs agreed with measurement within 2 dB ±5 dB. 

Thus, the results presented in Figs. 6.17 and 6.18 show that it was possible to obtain 

a good fit between measurement and prediction, after simple adjustments mainly of 

wall impedance and loudspeaker frequency response, justifying the choice of the 

developed room FE model. 

In the following chapters, an investigation of the influence of room contents on 

the room frequency response is described, where the results of the present chapter 

serve as a basis for the evaluation of such effects. 
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CHAPTER 7 

ROOM CONTENTS AS OBSTACLES 

 

7.1 Introduction 

In chapter 6, measured and predicted frequency response functions (FRFs) were 

presented for empty rooms with rectangular and slightly non-rectangular shapes. 

Although most real rooms have (at least approximately) rectangular shapes, 

invariably they will be filled with various contents. In practice, such contents may be 

represented by machines in a factory, columns in large enclosures, and (of particular 

interest here) furniture inside dwellings. The question arises of whether low frequency 

acoustic characteristics of rooms are substantially altered by the contents. The 

importance of such an investigation has been highlighted by Maluski (1999) in a 

study where a finite element model of sound transmission between dwellings has 

been developed, which demonstrates the importance of the modal characteristics of 

pressure and vibration fields of rooms and separating wall, respectively. The work 

also identified important outstanding issues to be addressed, in particular, the need 

of an appropriate model of sound absorption in small-furnished rooms at low 

frequencies. 

Therefore, the aim of this chapter is to present a preliminary investigation of the 

effect of room contents on low frequency room responses. Initially, such room 

contents will be regarded as obstacles, i.e., hard-surfaced objects placed throughout 

the room volume. In order to quantify the effect of including contents, the results of 

the empty room, described in chapter 6, will be used as a reference. 

 

7.2 Eigenfrequency shift 

According to Wu and Fricke (1991) the acoustic properties of cavities are 

substantially modified after the introduction of objects, which modify the wave 

equation or boundary conditions and give rise to volumetric and scattering effects. 

These effects may even cause changes in the eigenfrequencies of the cavity. In fact, 

these changes may be exploited to solve problems in acoustic design, non-

destructive testing, structural, room, and building acoustics, e.g., in situations where 
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monitoring of the internal state of a duct or a pipe is important, yet untenable using 

conventional visual techniques [Antonopoulos-Domis (1980), Wu and Fricke (1990), 

de Salis and Oldham (2000)]. Using an inverse technique, Wu and Fricke (1990) 

have developed a method for determination of blockage location and cross-sectional 

area in ducts, by eigenfrequency shifts. This work was extended, and the Green 

function method was used to study the eigenfrequency shifts in a two-dimensional 

rectangular cavity containing arbitrary-shaped small objects. These shifts were then 

used to obtain the object size and location [Wu and Fricke (1991)]. The investigations 

were limited to centrally positioned obstacles, due to difficulties in obtaining the 

required second set of boundary conditions in the 2D cavity. This method was refined 

by de Salis and Oldham (2000), who developed a rapid technique for reconstructing 

the internal area function of a duct using eigenvalue shifts, which were measured 

using Maximum Length Sequence analysis under two sets of boundary conditions. 

The authors also observed that blockage reconstructions might be successfully 

achieved excluding the lowest order eigenvalues shifts, establishing that these are 

not necessarily the most important shifts for the reconstruction process, as initially 

thought by Wu and Fricke (1991). 

In the area of sound transmission in buildings, eigenfrequency shifts may be 

desired in situations where there is a strong coupling between adjacent rooms, 

mainly when these rooms are identical, since equal room configurations give poorer 

sound insulation when compared with cases of unequal rooms [Maluski and Gibbs 

(1998)]. 

Akil and Oldham (1995) have demonstrated that machines in factories may be 

treated as point scatterers at high frequencies, where ray tracing can be employed to 

predict their effect [Ondet and Barbry (1989), Akil and Oldham (1995)]. The machines 

are characterised in terms of a scattering cross-section, Q, given by 

α4
AQ = ,              (7.1) 

where A is the measured absorption of the scattering object (total surface area times 

the material absorption coefficient), and α is an assumed value of absorption 

coefficient based upon an “intelligent guess”. According to Akil and Oldham (1995), 

for a typical industrial fitting, a value of 0.1 was assumed appropriate for α. From 

equation (7.1) it can be seen that the expression for the scattering cross-section of 

an obstacle with simple shape and uniform surface sound absorption coefficient is 
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similar to expressions suggested by other researchers [Jovicic (1971), Lindqvist 

(1982), Kurze (1985), Ondet and Barbry (1989)] namely the scattering cross-section 

of an object is simply equivalent to its total surface area divided by four. 

At low frequencies, the inclusion of furniture in a room may generate additional 

eigenmodes, mode shifts and selective damping of modes [Melo et al (2001)]. 

According to Wu and Fricke (1991), the properties of the eigenfrequency shift pattern 

are uniquely related to the obstruction location, while the amplitudes of such shifts 

are determined by the blockage size. However, as it was observed during the present 

work, such effects will depend also on the construction of the obstruction, i.e., how 

hard or how soft it is. 

 

7.3 Standard unit and experimental set-up 

In order to perform a preliminary study of the influence of room contents as 

obstacles (e.g., furniture) on room frequency responses, a “standard unit” was 

constructed from lightweight concrete blocks (see Figs. 7.1 and 7.2). 

 

Figure 7.1 - Standard unit constructed of lightweight concrete blocks. 

Such a construction, whilst being heavy and reflective, allowed flexibility in 

changing unit dimensions, and in locating it inside the room. The standard unit was of 

dimensions lx = 1.53 m, ly = 0.88 m, and lz = 0.75 m and was positioned in three 
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locations (see Fig. 7.3). The size was chosen in order to approximate a large item of 

furniture such as a sofa. 

 

Figure 7.2 - Standard unit also showing the detail of its internal construction. 

Ideally, the standard unit should have been a solid box, with completely reflective 

surfaces. However, this ideal condition was not practically achievable, since the 

lightweight concrete blocks composing the unit were porous, unplastered and 

presented a sound absorption greater than that of the room surfaces. In order to 

quantify this effect, the reverberation time was measured, with the standard unit 

placed in the centre wall position (position b in Fig. 7.3). The results were then 

compared with the values of reverberation time previously obtained for the empty 

room (see Table 6.2), and this comparison is presented in Table 7.1. 
 

Table 7.1 - Comparison between values of reverberation time for the empty and furnished rooms, 

showing the standard unit unwanted sound absorption.  

Frequency Band (Hz) 100 125 160 200 250 315 400 500 

Empty room rev time (s) 5.78 4.14 4.51 5.82 5.70 5.31 5.36 5.62

Furnished room rev time (s) 2.95 3.07 2.64 3.85 3.51 3.78 3.48 3.79
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Using the method provided by ISO R354 (1985) and the values of Table 7.1, the 

equivalent absorption coefficient of the obstacle surface, αs may be calculated by 

[Gerges (2000)]: 

αα +

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



−
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V
s

s ,            (7.2) 

where V is the room volume, Ss is the sample area, T2 and T1 are, respectively, the 

room reverberation times with and without the standard unit, and α  is the average 

absorption coefficient of the room walls. The results for αs are shown in Table 7.2.  

 

Figure 7.3 - Top view of the standard unit positions within the room. a) Central, b) centre wall, and c) 

corner position. 

 
The values of absorption are greater than values for smooth dense concrete 

reported in the literature. For such material the value of absorption coefficient is given 

as approximately 2% [Kuttruff (1981), Crocker (1997)] and this was exactly the 

average value obtained for the room walls (experimentally and numerically). The 

values of Table 7.2, which were obtained based on the reverberation chamber 

method [ISO R354 (1985)], cannot be considered fully reliable since certain standard 

requirements were not observed, e.g., room volume and sample area. This problem 

was circumvented through a series of numerical simulations considering different 

values of absorption assigned to the standard unit surfaces, as described in Section 

7.4. 

Table 7.2 - Calculated absorption coefficient for the standard unit surface. 

Frequency Band (Hz) 100 125 160 200 

Absorption coefficient 0.33 0.18 0.32 0.19 
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The experimental set-up used to measure room frequency responses in the 

presence of the standard unit was the same as described in Section 6.2.3 (see Fig. 

6.3 and Table 6.3). Again, sound source and receivers were positioned in room 

corners, in order to excite and measure all room modes. The microphone positions 

were unaltered to allow comparisons between results for the empty room and room 

with standard unit. These comparisons served as a basis for the quantification of the 

effect on room response of contents. 

 

7.4 Numerical model 

As described in Section 6.3, a FE model of the empty reference room was 

successfully developed. The model now was modified in order to include the 

standard unit. The first difficulty encountered related to the determination of the 

dimensions of the simulated unit. As the reference room model was adopted as a 

starting point, the FEM mesh element size was preserved, and therefore obstacles in 

the new model were required to have dimensions that were a multiple of this mesh 

size. As the element size in the reference room model was approximately 0.28 m, the 

standard unit was included with dimensions 1.40 m, 0.84 m, and 0.84 m in the x, y, 

and z directions, respectively, i.e. the unit was simulated with 5 elements in the x 

direction, and 3 elements in the y and z directions. These were the closest possible 

values to the real unit dimensions. 

The 45 elements representing the standard unit were selected in the room finite 

element model, approximately in the same positions as in the real case. For each 

case, the selected elements were subtracted from the original model, giving rise to 

three new models representing a room with a hard box either in the floor centre, at 

the centre of a long wall, or at one corner. Since the values of absorption coefficient 

obtained for the standard unit (see Section 7.3 and Table 7.2) were not fully reliable, 

preliminary simulations were performed using different values of surface absorption 

coefficient (2%, 5%, and 20%) applied to the box surfaces. These initial simulations 

showed practically identical results, indicating that the absorption characteristics of 

the standard unit surface material may be neglected in the FE model. Thus, it was 

decided to adopt the simplest of these configurations, i.e., a constant surface 

absorption coefficient of 2% was assigned to the box surfaces, completing the model. 
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7.5 Results 

Figs. 7.4, 7.5, and 7.6 show the results for the standard unit positioned at central 

floor, centre wall and corner positions, respectively. Independent of location, the 

introduction of the standard unit did not appear to generate any additional acoustic 

mode in the measured room frequency responses. Counting the number of peaks in 

the room frequency responses before and after the introduction of the standard unit it 

is possible to see that there are 16 peaks up to 100 Hz (see Figs. 7.4-a and 7.4-b, for 

instance). However, the eigenfrequency shifts are clearly observed throughout the 

frequency range and some of the modes were surprisingly damped (see Figs. 7.4-a, 

7.5-a, and 7.6-a for central, centre wall and corner positions, respectively). The mode 

(1,0,1) at 50 Hz, for example, was shifted approximately 4% downwards for the first 

two standard unit positions (see Figs. 7.4-a and 7.5-a) and approximately 3% 

upwards for the corner position (see Fig. 7.6-a), whereas the mode (0,1,0) at 56 Hz 

suffered a reduction of approximately 10 dB after the introduction of the standard 

unit, for the centre wall and corner positions (see Figs. 7.5-a and 7.6-a, respectively). 

The predicted frequency responses presented similar characteristics (see Figs. 

7.4-b, 7.5-b, and 7.6-b), showing eigenfrequency shifts and selective modal damping 

after the introduction of the standard unit in the numerical model, but apparently no 

new eigenmodes (the same 16 peaks up to 100 Hz can also be counted in both 

curves of Fig. 7.4-b). 

In order to clearly present the effects of introducing contents on room frequency 

responses, measured and predicted level differences were obtained as shown in 

Figs. 7.4-c, 7.5-c, and 7.6-c. In each case, i.e., for each standard unit position, the 

level differences express the change in the room response after the introduction of 

the standard unit, with the empty room response as a reference. The experimental 

level differences shown in Figs. 7.4-c, 7.5-c, and 7.6-c were obtained from the 

difference of the corresponding experimental curves shown in Figs. 7.4-a, 7.5-a and 

7.6-a, and compared with predicted level differences obtained similarly from the 

difference between the respective predicted results displayed in Figs. 7.4-b, 7.5-b, 

and 7.6-b. Presenting the results in this manner it was possible to cancel (unwanted) 

common factors between the room responses with and without the standard unit, 

e.g., sound source and measuring system characteristics. 
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Figure 7.4 - Effect of obstacle on room frequency response. Unit at central position. a) Measurement 

for (____) empty room and (_ _ _) obstructed room. b) Prediction for (____) empty room and (_ _ _) 

obstructed room. c) Level difference (____) between measured values and (_ _ _) between predicted 

values. 
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Figure 7.5 - Effect of obstacle on room frequency response. Unit at centre wall position. a) 

Measurement for (____) empty room and (_ _ _) obstructed room. b) Prediction for (____) empty room and 

(_ _ _) obstructed room. c) Level difference (____) between measured values and (_ _ _) between 

predicted values. 
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Figure 7.6 - Effect of obstacle on room frequency response. Unit at corner position. a) Measurement 

for (____) empty room and (_ _ _) obstructed room. b) Prediction for (____) empty room and (_ _ _) 

obstructed room. c) Level difference (____) between measured values and (_ _ _) between predicted 

values. 
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Notice that if the standard unit have not introduced any modification in the room 

response, then Figs. 7.4-c, 7.5-c, and 7.6-c would simply display a straight line at 0 

dB. However, the eigenfrequency shifts, and the (small) additional sound absorption 

generate the level difference fluctuations observed in Figs. 7.4-c, 7.5-c, and 7.6-c. In 

fact, both measured and predicted level differences show that when the standard unit 

is centrally located (Fig. 7.4-c), the level difference fluctuates about 0 dB within a 

range ±3 dB for the frequency range below 50 Hz. The mean and range of level 

differences were simply estimated from visual inspection since it was assumed 

unnecessary to conduct a statistical analysis of results.  Between 50 Hz and 200 Hz 

the fluctuation about 0 dB is of the order of ±8 dB (see Fig. 7.7). For this standard 

unit position the predicted curve presented a fairly good agreement with 

measurement, mainly up to 120 Hz, as shown in Figs. 7.4-c and 7.7. 
 

 
Figure 7.7 - Level difference (____) between measured values and (_ _ _) between predicted values. Unit 

at central position. 

For the other two unit locations, the presence of the obstacle within the room has 

clearly more pronounced effects when compared with the previous case (see Figs. 

7.5-c and 7.6-c). Figs. 7.8 and 7.9 show that the change in level difference below 50 

Hz is of the order of ±2 dB and ±3 dB for the centre wall and corner positions, 

respectively. 
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Figure 7.8 - Level difference (____) between measured values and (_ _ _) between predicted values. Unit 

at centre wall position. 

 

 
Figure 7.9 - Level difference (____) between measured values and (_ _ _) between predicted values. Unit 

at corner position. 
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Above 50 Hz, the variation is of the order of +15 dB to -8 dB for centre wall 

position, and of the order of +12 dB to -8 dB for the corner position, although the 

most dramatic changes were observed in this last case for individual modes. 

Predictions are once again in good agreement with experimental results, increasing 

the confidence in the developed numerical model. 

In order to investigate whether the effect of introducing contents on room 

frequency responses are due mainly to room geometry perturbation or to additional 

absorption, it was decided to present the results of Figs. 7.4-a, 7.5-a, and 7.6-a in 

one-third octave bands, as shown in Fig. 7.10 for the same three obstacle positions. 

In the same way, the compared level differences shown in Figs. 7.7, 7.8, and 7.9 are 

presented in Fig. 7.11 also in one-third octave bands. Presented in this manner, the 

eigenfrequency shift effect is practically annulled, and since the compared levels 

shown in Fig. 7.10 are very similar to each other, regardless of the standard unit 

position, it is possible to conclude that the additional absorption due to the obstacle 

presence within the room plays no significant role in modifying the room frequency 

response, as initially indicated by the preliminary numerical model results of Section 

7.4. The presentation of the results in one-third octave bands has additional 

relevance since standard measurements of sound insulation are to a one-third octave 

resolution [ISO 140/3 (1995)]. Although the present standards apply to frequencies 

above 100 Hz, it can be assumed that if future standards are developed for 50 – 100 

Hz, then measurements also will be in one-third octave bands. For this frequency 

interval, the results of Fig. 7.11 show that the measured level difference is on 

average 1 dB, 2 dB, and 3 dB when the standard unit is located at the central floor, 

centre wall, and corner positions, respectively. 

Finally, results in the form of modal patterns are shown in Figs. 7.13 to 7.15 at 

the same selected frequencies as in Chapters 4 and 6 (i.e., at 29.3 Hz, 57.4 Hz, 59.6 

Hz and 76.5 Hz, respectively) for comparison. The results are presented for the 

standard unit placed at the centre wall position. When such results are compared 

with the ones obtained in Chapter 6 for the empty room, then it is possible to observe 

how the introduction of the standard unit changes the natural frequencies of the room 

and the associated modal patterns. Notice for example the dislocation of the pressure 

maxima from the wall centre (Fig. 6.20) to the room lower corner after the 

introduction of the standard unit in the centre wall position (Fig. 7.13). Furthermore, 
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as indicated in these figures, an eigenfrequency shift from 57.06 Hz to 57.36 Hz for 

this room mode can be observed. 

 
Figure 7.10 - Effect of obstacle on room frequency response. Measurements shown in one-third 

octave bands. a) Central floor position: (____) empty room and (____) obstructed room. b) Centre wall 

position: (____) empty room and (____) obstructed room. c) Corner position: (____) empty room and (____) 

obstructed room. 
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Figure 7.11 - Level difference (__ __) between measured values and (__ __) between predicted values. 

Results shown in one-third octave bands. a) Central floor position, b) centre wall position, and c) 

corner position. 
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Figure 7.12 - Spatial distribution of pressure amplitude for the first mode (1,0,0). 

 

 

 

 

 
Figure 7.13 - Spatial distribution of pressure amplitude for the fourth mode (0,1,0). 
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Figure 7.14 - Spatial distribution of pressure amplitude for the fifth mode (2,0,0). 

 

 

 

 

 

 
Figure 7.15 - Spatial distribution of pressure amplitude for the ninth mode (1,1,1). 
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7.6 Summary 

In this chapter, a preliminary study of the influence of furniture on low frequency 

room responses was performed by introducing a “standard unit” at three different 

positions within the enclosure. The results obtained in Chapter 6 for the empty test 

room were used as a reference. In each case eigenfrequency shifts and selective 

modal damping were observed throughout the frequency range of interest, and the 

numerical results were able to take these effects into account, showing overall good 

agreement with measurements. 

It has been shown that when a large solid item is introduced into the room, on its 

central floor position, there is little effect on the room frequency response for 

frequencies below 50 Hz. This is despite the fact that the first three normal room 

modes occur in this frequency range. However, this might be expected, since the 

major standard unit dimension is less than one quarter of the sound wavelength at 50 

Hz. This situation was observed regardless of the standard unit position and, 

therefore, it is possible to conclude that the room frequency response is insensitive to 

location below 50 Hz, considering the present unit dimensions. 

Above 50 Hz, the effect of including a solid item within the enclosure is more 

pronounced. In addition, the influence of location becomes apparent. Obstacles 

placed along a wall or in room corners will produce a higher change in room 

responses, if compared with a central location. Furthermore, analysis of the results 

presented not only in narrow band, but also in one-third octave bands allowed the 

conclusion that for a solid item within the room, the generated eigenfrequency shifts 

are the principal reason for the observed changes in the room responses. The 

obstacle surface absorption characteristics causes little change in the room 

frequency response (at most 5 dB as observed for the third octave bands 100 Hz and 

125 Hz, for the standard unit placed in the centre wall and corner positions, 

respectively) and need not to be taken into account in the numerical model. However, 

this may not be the case when there is a layer of highly sound absorptive material 

covering the standard unit surfaces. This modification may approximate more real 

furniture and this is explored in Chapter 8. 
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CHAPTER 8 

ROOM CONTENTS AS ABSORBERS 

 

8.1 Introduction 

In the previous chapter, the development of a standard unit allowed a preliminary 

investigation of the influence of room contents, regarded as hard obstacles, on the 

acoustic properties of enclosures, at low frequencies. However, hard-surfaced 

objects do not exclusively compose real furniture inside enclosures. Hence, 

extending the idea of the previous chapter, it is the intention here to present an 

investigation of the influence on room frequency responses of the standard unit, 

when covered by a layer of known sound absorbing material. 

 

8.2 Choice of sound absorption material 

The material selected was an open cell porous absorber, consisting of 

polyurethane flexible foam with a density of approximately 30 kg/m3 (see Fig. 8.1). 

 
Figure 8.1 - The selected sound absorbing material of thickness 150 mm. 

 
There was no other information available for the used foam, but in a recent work 

by Balvedi (1998) experimental results for a very similar kind of material yielded the 
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following values: flow resistance of the order of 45000 rayl/m, tortuosity (structural 

factor) of the order of 4.0, and porosity approximately 95%. In addition to being an 

effective sound absorbing material, the selected type of foam was easier to handle 

than materials such as fibreglass foams. 

As discussed in Chapter 5, the sound absorption characteristics of a material is 

represented by the sound absorption coefficient, α, which may be defined as the ratio 

between the acoustic energy that is absorbed by the material, and the acoustic 

energy incident on it. The measurement of the absorption coefficient allows the 

calculation of a more fundamental material property, the acoustic impedance, Z. 

Thus, the following section presents the determination of α, and hence Z, for the 

porous absorber employed. 

 

8.3 Impedance tube measurements 

The experimental part of this investigation was performed by means of the 

impedance tube method (see Section 5.3.3). A standing wave apparatus (Brüel and 

Kjaer type 4002) was used, driven by a heterodyne analyser (Brüel and Kjaer type 

2010). Such a set-up provides scales for direct reading of normal incidence 

absorption coefficient αn and distance d between the sample face and the position of 

the first sound pressure level minimum. A cylindrical sample of diameter 100 mm and 

thickness 150 mm was cut from a sheet of the foam. The measurement results are 

presented in Table 8.1. 

From the absorption coefficient and distance between sample and measuring 

point, it is possible to obtain the reflection coefficient, r, and phase angle, ∆, between 

incident and reflected waves, which are given by [Beranek (1940-a & b), Brüel and 

Kjaer (1955 & 1979)] 
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where λ is the corresponding wavelength at the given frequency. These parameters 

may be then used in determining the real and imaginary parts of the complex normal 

acoustic impedance, Zn, yielding [Brüel and Kjaer (1955 & 1979), Gibbs (1970)] 
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The input parameter for the finite element model is the normal acoustic admittance, 

An, which is simply the inverse of Zn: 

      
n

n Z
A 1

= .             (8.3) 

Table 8.1 - Impedance tube results. 

Frequency (Hz) Normal absorption 
coefficient, αn (%) 

Distance between sample and 
measuring position, d (cm) 

90 36 79.6 
100 40 71.0 
150 58 44.0 
200 71 31.4 
250 76 24.8 
300 85 19.0 
350 90 15.7 
400 96 21.8 
450 95 18.8 
500 94 16.7 

 
 
Table 8.2 lists the values of complex normal impedance and admittance calculated 

from the values in Table 8.1. 

Using the described apparatus, it was not possible to measure absorption 

coefficients at frequencies below 90 Hz, due to the impedance tube dimensions. In 

order to obtain αn corresponding to lower frequencies a linear extrapolation was 

applied to the experimental results of Table 8.1, assuming a zero value of absorption 

coefficient at 0 Hz. Such an extrapolation finds support in the literature [Gerges 

(2000)], and the results are shown in Fig. 8.2. Furthermore, it is interesting to notice 

that if the real and imaginary parts of admittance An, given by equation (8.3), are 

independently extrapolated to lower frequencies, and an inverse calculation is 

performed in order to obtain αn, these calculated extrapolated values agree well with 

the experimental extrapolated values. Such extrapolation of admittance values and 
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inverse calculation were performed for frequencies between 21 Hz and 70 Hz, and 

the results are shown in Fig. 8.3. 

 
 

Table 8.2 - Complex impedance and admittance results calculated from the values of Table 8.1. 

Frequency (Hz) Re{Zn} (rayl) Im{Zn} (rayl) Re{An} (rayl-1) Im{An} (rayl-1)
90 600.38 -1318.17 2.86 * 10-4 6.28 * 10-4 

100 611.83 -1218.54 3.29 * 10-4 6.55 * 10-4 

150 536.96 -794.13 5.84 * 10-4 8.64 * 10-4 

200 515.67 -582.70 8.52 * 10-4 9.62 * 10-4 

250 518.82 -511.10 9.78 * 10-4 9.64 * 10-4 

300 460.27 -364.41 1.34 * 10-3 1.06 * 10-3 

350 450.62 -286.10 1.58 * 10-3 1.00 * 10-3 

400 622.00 13.75 1.61 * 10-3 -3.55 * 10-5 

450 653.66 -12.95 1.53 * 10-3 3.03 * 10-5 

500 682.32 -29.27 1.46 * 10-3 6.27 * 10-5 

 
 
 
 

 
Figure 8.2 - Absorption coefficient for the selected foam extrapolated to low frequencies. 
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Figure 8.3 - Absorption coefficient for the selected foam extrapolated to low frequencies. (____) Values 

extrapolated from experimental results, and (-- --) values obtained from admittance results. 
 

The dependence of the absorption coefficient on the sound incidence angle, θ, 

was analysed for a few discrete frequencies. It was assumed that the material was 

locally reacting (see Chapter 5). The expression relating absorption and incidence 

angle is given by [Paris (1928)] 
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Fig. 8.4 shows the results for α(θ) at 90 Hz, 100 Hz, and 150 Hz. 

 
Figure 8.4 - Absorption coefficient, at a few discrete frequencies, as a function of the sound incidence 

angle. 
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It can be seen that the lower the frequency, the stronger the dependency of the 

absorption coefficient on the sound incidence angle. However, this angular 

dependency could not be incorporated into the numerical model. Most acoustic FE 

programs, including Sysnoise, convert imposed velocity or impedance boundary 

conditions to pressure gradient boundary conditions using the linearized frequency-

domain equivalent of Euler’s equation projected onto the normal direction with 

respect to the boundary, i.e., 
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In principle, it is possible to project the vectorial form of the linearized frequency-

domain Euler’s equation into any direction to obtain the relation between the 

impedance or admittance for that incidence angle, and the pressure gradient in the 

same direction. However, this introduces the pressure gradient in an "arbitrary" 

direction as an unknown of the acoustic problem. By using the normal direction to the 

boundary only, the number of unknowns in the problem is greatly simplified [Segaert 

(2001)]. Nevertheless, it is recognized that this may be one of the reasons for 

observed discrepancies between predicted and measured frequency responses. 

 

8.4 Absorbing floor area 

A preliminary investigation was conducted on the effect of the absorbing material 

on the room response, by laying large areas of the absorber on the reference room 

floor. The experimental set-up was the same as described in Section 6.2.3. Room 

frequency responses were obtained, when the floor had 5.1 m2, 8.6 m2, and 17.4 m2 

of the 150 mm foam, corresponding to 29%, 49%, and 99% of its floor area, 

respectively. The results are shown in Fig. 8.5. In order to quantify the effect of the 

absorber, the level difference between the room responses for the empty and treated 

room were obtained, as displayed in Fig. 8.6 for 29% and 49% covered floor, and in 

Fig. 8.7 for the 99% covered floor. In Fig. 8.6, it is possible to see that up to 70 Hz 

the change in the empty room frequency response is of the order of 2 dB; above 70 
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Hz the level difference is on average 6 dB. Similar behaviour is observed for the 49% 

floor covering despite the extra 20% of absorption. 

 

 
Figure 8.5 - Measurements of room frequency response for (……..) empty room, (____) 29%, (_ _ _) 49%, 

and (
___

) 99% of the floor area covered with absorption. 

 

 
Figure 8.6 - Effect of covering the room floor with absorption material. (____) Level difference between 

empty and 29% covered floor room responses. (_ _ _) Level difference between empty and 49% 

covered floor room responses. 
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Figure 8.7 - Effect of covering the room floor with absorption material showing the level difference 

between empty and 99% covered floor room responses. 

 
When 99% of the room floor was covered the room response was clearly 

modified for all the displayed frequency range, although the effect is greater for 

frequencies above 50 Hz, as shown in Fig. 8.7. Fig. 8.8 presents the results of the 

previous figure in one-twelfth octave bands. 

 

 
Figure 8.8 - Level difference between empty and 99% covered floor room responses. One-twelfth 

octave band results. 

The change in sound level can be characterised in three frequency regions, each 

with an average difference and a variation about the average. Up to 45 Hz the 
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average level difference is of the order of 1 dB with a variation +5 dB to -3 dB. 

Between 45 Hz and 90 Hz the average level difference is 6 dB with variation +5 dB to 

-3 dB. Above this frequency the average is 12 dB ±4 dB. 

The FE model, described in Chapter 6, was modified to simulate the case of 99% 

floor covering. A predicted room frequency response was obtained after assigning a 

frequency independent absorption coefficient of 50% to the room floor, and 2% to all 

the other room surfaces. This result is shown with the corresponding experimental 

measurements in Fig. 8.9. The predicted curve follows the same trends of the 

measured curve, despite the fact that only a rough approximation has been made to 

the absorption of the floor covering. 
 
 

 
Figure 8.9 - Measured and predicted frequency response of room with floor covered with 150 mm 

foam of absorption coefficient 50%. (____) Measurement and (_ _ _) prediction from first room model. 

 
 

The preliminary study described provided a level of agreement between 

measurement and prediction which promised greater agreement if the form of the 

input absorption data could be refined. This was the basis of the further study of the 

effect of absorption, both as a floor covering and as surface treatment of room 

obstructions.  
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8.5 Covered standard unit 

8.5.1 Measurement 

In this phase of the investigation of the influence of room contents on acoustic 

properties of enclosures, the room frequency response was measured with the 

standard unit covered with a layer of 150 mm of the selected sound absorption 

material, described in Section 8.2. The covered unit was once again positioned at the 

same three locations within the room: centre of the floor, centre wall, and corner 

positions (see Fig. 7.3). The experimental set-up was the same as described in 

Section 6.2.3. 

 

8.5.2 Prediction 

The simulation of the covered standard unit was more complicated than in the 

previous case of a hard box. The challenge was to correctly simulate the layer of 

absorption over the unit. As a starting point, frequency independent surface 

absorption coefficients were assumed, firstly of 20% and secondly of 50% to the box 

boundaries, in contrast to a value of 2% used for the uncovered box. Fig. 8.10 shows 

the predicted and measured response for a covered box located in the corner 

position (see Fig. 7.3). In general, results indicated that the approximate values of 

absorption gave poor agreement with measurement, indicating the need of a more 

consistent approach. 

The approach was to use the results of normal absorption coefficient 

measurements presented in Section 8.3. From the low frequency extrapolated 

absorption coefficient values shown in Fig. 8.2, a set of admittance values was 

generated for the frequency range from 20 Hz to 200 Hz (see Fig. 8.11). These 

resultant values of normal acoustic admittances were entered in the finite element 

model. 

 

8.6 Results 

The first result to be shown here is the recalculation of the room response for the 

case in which the room floor was covered with absorption material, as described in 

Section 8.4. Previously, a constant absorption coefficient value of 50% was assigned 
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to the floor, in the numerical model (see Fig. 8.9). The refined model included a 

frequency dependant normal admittance with values shown in Fig. 8.11 (see Section 

8.5.2). The predicted room response is shown with the same experimental curve 

displayed in Fig. 8.9, and the new result is shown in Fig. 8.12. 

 

 
Figure 8.10 - Measured and predicted frequency response of room with standard unit in the corner 

position and covered with 150 mm absorption material. (____) Measurement and (_ _ _) prediction from 

room model considering a constant value of absorption coefficient of 50% applied to the obstacle 

boundaries. 

 
Additionally, Fig 8.13 presents level differences between predictions for 

preliminary and refined model of covered floor, and measurement in 1/12th octave 

bands. For the preliminary model, considering a value of absorption coefficient of 

50% assigned to the room floor (see Fig. 8.9), the average level difference is of the 

order of -5 db ±3 dB up to 60 Hz. Above this frequency the level difference is on 

average 0 dB ±6 dB. The refined model (see Fig. 8.12) gives a level difference with 

an average value of 0 dB throughout the entire frequency interval, although with 

some fluctuations greater than in the previous model. Below 60 Hz there is a 

variation of +4 to -5 dB about the average value, and above this frequency the 

variation is of the order of +4 to -2 dB. The results obtained between measurement 

and prediction for the refined model validated the use of the developed table of 

admittance values in simulating the behaviour of the selected absorption material. 
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The same approach was then adopted for the covered unit cases, described as 

follows. 

 
 

 
Figure 8.11 - Real and imaginary values of normal acoustic admittance obtained from the extrapolated 

absorption coefficients of Fig. 8.2. 
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Figure 8.12 - Measured and predicted frequency response of room with floor covered with 150 mm 

absorption material. (____) Measurement and (_ _ _) prediction from refined room model.  

 
Figure 8.13 - Level differences between measurement and prediction of room with floor covered with 

150 mm absorption material. (__
Ο

__) Old model of Fig 8.9, and  (__ __) refined model of Fig. 8.12. 
 

Fig. 8.14 shows the measurements of FRF for the reference empty room and 

when the standard unit and the covered unit were positioned in the centre of the 

room floor. 

 
Figure 8.14 - Measurements for (…….) empty room, (____) hard box, and (

_ _
) lined box at central floor 

position. 
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A visual inspection of this figure reveals that the introduction of a layer of 

absorption material over the standard unit had a greater effect on the room frequency 

response, when compared with the previous case of a hard-surfaced box (see 

Chapter 7). The second room mode at 40 Hz, for example, is reduced 3 dB after the 

introduction of the solid unit, with an additional 4 dB reduction for the case of the 

lined unit. Also, while the fourth room mode at approximately 58 Hz was shifted 2.4% 

downwards in frequency with little level reduction for the solid unit case, in the case 

of the covered unit the same room mode is shifted 6% downwards and reduced by 

8.3 dB. 

Fig. 8.15 shows measurement and prediction for the room with the lined standard 

unit in the central floor position. Also shown here and in future figures containing 

predicted values, are the eigenfrequencies indicating the first axial modes (A), 

tangential modes (T) and oblique modes (O). 
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coefficient values to lower frequencies. Fig. 8.16 shows the predicted and measured 

level differences in 1/12th octave bands.  

 
Figure 8.16 - Results for the lined box in the central floor position: comparison between (__ __) 

measured and (__ __) predicted level differences in 1/12th octave bands. 
 

The results present similarities with those for the uncovered unit (see Chapter 7). 

When the covered standard unit is centrally located, the level difference has an 

average value of about 1 dB, but now within a range ±6 dB for the frequency range 

below 50 Hz. Between 50 Hz and 200 Hz the experimental level difference is on 

average 5 dB within a range ±5 dB. In general, the predicted curves underestimates 

measurements. 

Figs. 8.17 and 8.18, and Figs. 8.19 and 8.20 show the corresponding results for 

the cases where the covered unit was located centrally along the long wall and at the 

corner, respectively. For the centre wall position, the general observations described 

in the last paragraph apply. However, a comparison between Figs. 8.16, 8.18, and 

8.20 shows that, although the overall effect of the covered unit on the room 

properties is greater than in the uncovered box case, here the least influential 

position was not the central floor position, as it was the case in the previous chapter 

results. Instead, for the lined box case the corner position was observed to be the 

least influential. This may be explained by the fact that for the covered unit in the 

centre of the floor a greater amount of absorption material was present within the 

room, since no absorption was introduced between the standard unit and the room 

walls for the other two positions. Thus, since for the corner position the standard unit 
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is in contact with two room walls, this position received the minimum amount of 

absorption compared with the other two, leading to a smaller overall effect. 
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Figure 8.19 - Results for the lined box in the corner position indicating first axial (A), tangential (T) and 

oblique (O) modes: comparison between (____) measured and (_ _ _) predicted room responses. 

 

 
Figure 8.20 - Results for the lined box in the corner position: comparison between (__ __) measured 

and (__ __) predicted level differences in 1/12th octave bands. 
 

Finally, Fig. 8.21 shows measurements for empty and obstructed rooms in one-

third octave bands and Fig. 8.22 shows the resultant level differences between the 

two conditions. While the results obtained in the previous chapter indicated no 

absorption effect, Fig. 8.21 shows that the discrepancies are of the order of 5 dB to 

10 dB, an effect caused by the absorptive layer covering the standard unit. 
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Figure 8.21 - Effect of obstacle on room frequency response. Measurements shown in one-third 

octave bands. a) Central floor position: (__ __) empty room and (__ __) obstructed room. b) Centre wall 

position: (__ __) empty room and (__ __) obstructed room. c) Corner position: (__ __) empty room and 

(__ __) obstructed room. 
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Figure 8.22 - Level difference (__ __) between measured values and (__ __) between predicted values. 

Results shown in one-third octave bands. a) Central floor position, b) centre wall position, and c) 

corner position. 
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An analysis of Fig. 8.22 reveals that when the covered standard unit is centrally 

located, the level difference has an average value of about 2 dB, within a range ±4 

dB for the frequency range below 50 Hz. Between 50 Hz and 160 Hz the 

experimental level difference is on average 5 dB within a range ±3 dB. For the centre 

wall case, a similar behaviour is observed below 50 Hz as for the central floor 

position. However, above 50 Hz the level difference is on average 6 dB, within a 

range ±4 dB. Finally, for the corner position the level difference has an average value 

of about 1 dB, within a range ±2 dB for the frequency range below 50 Hz. Between 

50 Hz and 160 Hz the experimental level difference is on average 5.5 dB within a 

range ±2.5 dB. 

 

8.7 Summary 

In this chapter, the preliminary FE model described in Chapter 7 has been 

refined. Measurements and numerical simulations have been repeated for the same 

standard unit positions, but now considering a layer of a known sound absorption 

material covering the unit. Preliminary measurements and numerical simulations 

were conducted with the room floor covered with sound absorbing material, allowing 

the refinement of the FE model previously developed (see Chapters 6 and 7). An 

analysis of the results has confirmed the greater effect the lined standard unit has on 

room responses, when compared with the uncovered box case (Chapter 7). 

However, although the centre wall position happened to be the most influential one 

once again, results for the lined box case have replaced the central floor position by 

the corner position as the least influential one. 

In the next chapter the investigation is further developed by considering furniture 

wholly in terms of absorbing characteristics. This will be done by replacing the 

lightweight concrete blocks by a unit composed only of the sound absorbing material. 
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CHAPTER 9 

ROOM CONTENTS AS ‘SOFT’ ABSORBERS 

 

9.1 Introduction 

In chapters 7 and 8, the effect of room contents on the frequency response of a 

reference enclosure has been presented. The room contents have been represented 

as solid obstacles (Chapter 7) and as the same solid covered by a layer of sound 

absorption material (Chapter 8). In this chapter it is presented the results of a further 

investigation, in which the standard unit was reconstructed using sound absorbing 

foam only. The absorbing foam was the same material as described in Chapter 8, 

allowing the construction of a ‘soft’ unit having approximately the same dimensions 

as the solid and covered solid. It constitutes the last case to be studied in this work, 

before the approach to real furniture, which is the subject of the following chapter. 

 

9.2 Effect of absorber thickness 

Although the same sound absorption material described in Chapter 8 was used in 

the experimental part of the present chapter, it differed in that it was of increased 

thickness, and consequently, with the initial assumption of having greater absorption 

than previously. Thus, while a layer of 150 mm of the selected foam was used to 

cover the standard unit (Chapter 8), here the whole unit was composed of the foam, 

making it impractical for its absorption coefficient to be measured by conventional 

methods. Preliminary measurements of room frequency response indicate that 

results for the soft unit were very close to those of the covered unit, presented in 

Chapter 8. Figs. 9.1, 9.2, and 9.3 show measured frequency response functions for 

the covered and soft units placed at central floor, centre wall, and corner positions, 

respectively. Fig. 9.4 shows the same measured results presented as level 

differences, in one-third octave bands, between the covered unit and soft unit cases. 

In general, the soft unit is less absorptive in comparison with the covered unit case, 

but does not differ more than ±2.5 dB. On first inspection, this may not be surprising. 

If the soft unit is considered as an absorber of effective thickness 300 mm then 
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although significantly greater than 150 mm, it is still small compared with the 

governing wavelength of 6.9 m at 50 Hz. 

 

 
Figure 9.1 - Measured room frequency response for (____) lined box case (Chapter 8) and (____) soft 

box case. Results for central floor position. 

 
 
 

 
Figure 9.2 - Measured room frequency response for (____) lined box case (Chapter 8) and (____) soft 

box case. Results for centre wall position. 
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Figure 9.3 - Measured room frequency response for (____) lined box case (Chapter 8) and (____) soft 

box case. Results for corner position. 

 

However, there are complicating factors. When positioned in a room corner, the 

foam unit has solid surfaces backing the three exposed front surfaces (whereas the 

centrally located unit only has the floor surface as rigid backing and a freely 

suspended unit would have no rigid backing). Therefore, although a corner unit only 

has three of its six surfaces exposed, they all have rigid backings, which ensure that 

the sound wave travels through a double thickness of the foam. This exposes a 

challenge in modelling furniture as absorbers. Should soft furniture be modelled as 

absorbers only with no internal reflections, or should they be assumed to have a solid 

core with absorbing covering? 

The problem was approached by assuming that the soft unit behaves as if 

composed of a solid core covered by a layer of absorption. Consequently, different 

numerical models were created in order to simulate the soft unit case, considering 

different solid core sizes. The core sizes should (in principle) dictate the effective 

thickness of the surrounding absorbing foam, as will be further described. 

In order to calculate the new admittances as a function of material thickness, 

measurements of the acoustic impedance Z at thicknesses h and 2h must be 

performed at the same frequency, which give [Zwicker and Kosten (1947), Gibbs 

(1970), Balvedi (1998), Horoshenkov (2001)] 
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Figure 9.4 - Measured level differences between lined box FRFs (Chapter 8) and soft box FRFs in 

one-third octave bands. a) Results for central floor position, b) centre wall position, and c) corner 

position. 
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)coth( hWZh γ=               (9.1) 

)2coth(2 hWZ h γ= ,                       (9.2) 

where W is the complex characteristic impedance, and γ is the complex propagation 

constant of the material, as described in Section 5.4.1. Since [Spiegel (1992)]: 
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From equation (9.1): 

hZ
Wh =)tanh(γ               (9.5) 

Thus, equation (9.4) may be rewritten as: 
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From equation (9.6) the characteristic impedance of the material is given by: 

( )hhh ZZZW −= 22 ,             (9.7) 

and from equation (9.2): 
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1γ .              (9.8) 

Care is needed in the calculation according to equation  (9.7) to ensure Re {W} > 0 

[Horoshenkov (2001)]. 

Measurements were performed in order to obtain Z for foam thicknesses of 75 

mm and 150 mm, for the frequency range 90 Hz to 250 Hz, using the impedance 

tube method (see Chapters 5 and 8). From equations (9.7), (9.8), and (8.3) 

admittance values were obtained as a function of thickness and the results are 

shown in Table 9.1 and Fig. 9.5 for h = 35 mm, 75 mm (measurement), 150 mm 

(measurement), 200 mm, and 300 mm. In general, an increase in thickness is 

accompanied by an increase in the real part (Fig. 9.5-a) and in the imaginary part 
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(Fig. 9.5-b) of the admittance. However, above 180 Hz there is a cross-over in the 

values of the real part for thickness 150 mm and 300 mm. For the imaginary part, 

cross-overs occur above 140 Hz. This may be explained by the fact that since the 

absorption coefficient is approaching unity at higher frequencies, then increased 

thickness would show no increase in absorption (or correspondingly in the real part). 

For instance, it might even show a slight decrease due to experimental error.  

However, a clear increase in the real part of admittance is observed at lower 

frequencies when the absorption coefficient is not near unity (see Fig. 9.5-a). 
 

Table 9.1 - Values of admittance as a function of frequency and material thickness. Grey boxes 

indicate values obtained from measurements. 

Frequency (Hz) 90 100 150 200 250 

Re {A} (rayl-1) 
h = 35 mm 

2.654 . 10-5 2.553 . 10-5 4.299 . 10-5 6.341 . 10-5 7.468 . 10-5 

Im {A} (rayl-1) 
h = 35 mm 

1.950 . 10-4 2.273 . 10-4 3.405 . 10-4 4.696 . 10-4 5.551 . 10-4 

Re {A} (rayl-1) 
h = 75 mm 

7.748 . 10-5 8.801 . 10-5 1.627 . 10-4 2.722 . 10-4 3.571 . 10-4 

Im {A} (rayl-1) 
h = 75 mm 

3.790 . 10-4 4.342 . 10-4 6.453 . 10-4 8.713 . 10-4 1.008 . 10-3 

Re {A} (rayl-1) 
h = 150 mm 

2.862 . 10-4 3.291 . 10-4 5.843 . 10-4 8.517 . 10-4 9.782 . 10-4 

Im {A} (rayl-1) 
h = 150 mm 

6.283 . 10-4 6.554 . 10-4 8.641 . 10-4 9.624 . 10-4 9.636 . 10-4 

Re {A} (rayl-1) 
h = 200 mm 

4.710 . 10-4 4.783 . 10-4 7.392 . 10-4 9.182 . 10-4 9.713 . 10-4 

Im {A} (rayl-1) 
h = 200 mm 

6.509 . 10-4 6.348 . 10-4 7.469 . 10-4 7.786 . 10-4 7.859 . 10-4 

Re {A} (rayl-1) 
h = 300 mm 

5.685 . 10-4 5.193 . 10-4 7.213 . 10-4 8.557 . 10-4 9.090 . 10-4 

Im {A} (rayl-1) 
h = 300 mm 

5.559 . 10-4 5.590 . 10-4 6.540 . 10-4 7.313 . 10-4 7.762 . 10-4 
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Figure 9.5 - Admittance as a function of frequency and material thickness. (-.-x-.-) h = 35 mm, (__+__) h 

= 75 mm, (__ __) h = 150 mm, (.... ....) h = 200 mm, and (- - - - - -) h = 300 mm. a) Real values, and b) 

imaginary values. The solid curves indicate measurements. 
 

In Fig. 9.5-b it is seen that the imaginary part of the admittance increases with 

thickness up to h = 150 mm. Above this thickness, the imaginary part of admittance 

appears to decreases with increasing thickness. Again, this might be explained in 

terms of the absorption coefficient. For values of absorption coefficient close to unity 

the admittance will be predominantly real. The relatively small imaginary part will 

yield high experimental errors and systematic changes with thickness will be less 

observable. 
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Since the thickness of the covering absorbent foam was not less than 150 mm, it 

was assumed that the same values of admittance, as a function of frequency (as 

described in Chapter 8), could be applied to the soft box case independently of the 

different solid core dimensions input to numerical model. The first soft unit model 

(Soft box 1) included in the numerical room model consisted of a small solid core of 

dimensions 0.84 m x 0.84 m x 0.56 m. This was the smallest core considered and 

corresponded with 3 mesh elements in the x and y directions, and 2 elements in the z 

direction. Two additional cases were still considered with increased core sizes: ‘Soft 

box-2’ with core dimensions 1.40 m x 0.84 m x 0.84 m (5 elements in the x direction, 

and 3 elements in the y and z directions), and ‘Soft box-3’ with core dimensions 1.68 

m x 1.12 m x 1.12 m, i.e., the soft unit was simulated with 6 elements in the x 

direction, and 4 elements in the y and z directions.  

 

9.3 Results 

Fig. 9.6 shows two predicted room frequency responses corresponding to the 

cases of Soft box-1 and Soft box-3. 

 

 
Figure 9.6 - Predicted room responses for (____) smallest solid core case (Soft box-1), and (____) largest 

solid core case (Soft box-3). Central room floor case. 
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This figure presents only the two extreme cases for clarity (the models containing 

the smallest and biggest solid cores). The curves shown are quite different from each 

other, with the eigenfrequencies much shifted. For example, the fourth room mode 

shifts from 57 Hz to 52 Hz. In addition there is a greater overall modal damping, 

possibly due to the increased absorbing surface area. Because of the similarities 

observed between experimental curves for the soft unit and lined unit cases (see 

Figs. 9.1 to 9.4), it seems logical to suppose that the numerical model which will 

provide the best agreement with measurements lies somewhere between the two 

extreme cases shown in Fig. 9.6. In order to quantify the accuracy provided by each 

developed model, Fig. 9.7 presents level differences between predictions and 

measurement in 1/12th octave bands. 
 

 

Figure 9.7 - Level differences between measurement and prediction of room with soft unit in the centre 

of the room floor. (__Ο__) Soft box-1, (__ __) Soft box-2, and  (__ __) Soft box-3 results.  
 

For the Soft box-1 case, the figure shows a mean level difference of the order of -

2.5 dB with a variation +1 dB to -6 dB up to 50 Hz. Similar behaviour is observed for 

the Soft box-2 case. However, although the same average level also is observed for 

the Soft box-3 case below 50 Hz, the variation about the mean value is +4 dB to -8 

dB. This increased variation is attributed to the larger core size of Soft box-3. Above 

50 Hz the level differences are equivalent for the three models, being on average 1 

db ±3 dB. However, closer inspection reveals that the Soft box-1 (smallest core size) 

has the greatest discrepancy at high frequencies. The Soft box-2 model (intermediary 

core size) gives the smallest discrepancies up to 170 Hz, and above this frequency it 
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is the Soft box 3 model (largest core size) that presents the minimum discrepancy 

with measurements. This allows the conclusion that as the frequency increases, the 

effect of core size increases. However, overall, the Soft box-2 model gives the 

smallest discrepancy between prediction and measurement, and therefore, this 

model was incorporated into the room model. 

Figs. 9.8, 9.9, and 9.10 show narrow band results for the soft unit placed at 

central floor, centre wall, and corner positions, respectively, considering the Soft box-

2 as the prediction model. The agreement obtained between measurement and 

prediction was as expected, since the experimental results and numerical models for 

the soft unit were very similar to those for the covered unit (Chapter8), where a close 

fit between experimental and numerical results was already observed. 

 

 
Figure 9.8 - Comparison between (____) measurement for the soft absorber and (____) prediction for the 

‘Soft box-2’ model. Central floor position results. 
 

In order to quantify the effect of the soft unit on the room frequency response, 

measured and predicted level differences were obtained in 1/3rd octave bands (taking 

the empty room results as a reference) and the results are shown in Fig. 9.11. In this 

figure, as already indicated for the narrow band results, it is possible to see that the 

predictions follow the main trends of the experimental results, although the former 

slightly underestimates the latter. Fig. 9.11-a (centre of room floor position) shows a 
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mean level difference of the order of 0 dB ±2 dB, up to 50 Hz. Above this frequency, 

the difference is on average 3.5 dB with a variation ±1 dB.  

 

 
Figure 9.9 - Comparison between (____) measurement for the soft absorber and (____) prediction for the 

‘Soft box-2’ model. Centre wall position results. 

 

 
Figure 9.10 - Comparison between (____) measurement for the soft absorber and (____) prediction for 

the ‘Soft box-2’ model. Corner position results. 
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Figure 9.11 - Effect of ‘soft absorber’ shown as level differences in one-third octave bands, taking the 

empty room results as a reference. Comparison between (__ __) measured level difference and (__ __) 

predicted level difference. Soft box in a) central floor, b) centre wall, and c) corner position. 
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In the centre wall position (Fig. 9.11-b), the average level difference is 1 dB with 

a variation +2.5 dB to -2 dB. Above 50 Hz, the difference is on average 5 dB, with a 

variation +8 dB to +2 dB. Finally, in the corner position Fig. 9.11-c shows an average 

level difference of 2 dB with a variation +3 dB to -0.5 dB, but this time up to 80 Hz. 

Above this frequency the difference is on average 4 dB ±2 dB. 

Analysis of the results of Fig. 9.11 also reveals that for the soft unit, the centre 

wall position was again the most influential (see Fig. 9.11-b), particularly in the 125 

Hz third-octave band, with both measured and predicted level differences reaching a 

value of approximately 8.5 dB. While this behaviour was not evident in the covered 

unit results (see Section 8.6 for a discussion on the possible causes), here, where 

the standard unit was solely composed of foam, the same amount of absorptive 

material was always present within the room, making the effect of the standard unit 

location noticeable. 

 

9.4 Summary 

The measured and predicted FRFs for the soft absorber are very similar to those 

for the covered standard unit presented in Chapter 8. This is despite the fact that a 

thicker layer of sound absorption material (as in the case of the soft absorber) should 

provide increased sound absorption. In general, experimental and theoretical results 

indicated that there is an increase of the absorption coefficient as a function of the 

material thickness only up to a limiting depth, which seems to be about 150 mm for 

frequencies below 110 Hz. Above this frequency the material absorption 

characteristics seem to saturate, no matter how thick it may be. Thus, the approach 

used in this chapter was to simulate the soft unit also as a solid core with a known set 

of admittance values assigned to the solid surfaces. The set of admittance values, as 

a function of frequency, used here was the same one as described in Chapter 8, 

allowing once again a good agreement between experimental and numerical results. 

Similarities between soft and covered unit results indicate that even when the 

standard unit was entirely constituted of foam, the sound waves were penetrating in 

this foam only up to a certain depth, depending on the frequency considered. The 

numerical results have shown an overall good agreement with measurements when 

the intermediary core size was used, up to 170 Hz. Above this frequency the largest 

core size provided the minimum discrepancies with measurements, indicating that 
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the sound was penetrating less in the absorber, as it could be expected at higher 

frequencies. Consequently, at low frequencies it is believed that real furniture will 

also, in general, behave as solid objects covered by a layer of absorption, no matter 

how soft it may be. This is the subject of the next chapter, and the effect of real 

furniture on room properties is then the final case considered. 
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CHAPTER 10 

ROOM CONTENTS AS REAL FURNITURE 

 

10.1 Introduction 

Up to now, the effect on the acoustic properties of an enclosure produced by an 

idealized element of furniture (the standard unit) has been investigated. Chapters 7, 

8, and 9 dealt, respectively, with solid, covered and soft versions of the standard unit. 

In this chapter, an investigation of the effect on low frequency room response of 

including real furniture is described. A single element of furniture, a large armchair, 

also was introduced in the numerical model, using the knowledge developed during 

the standard unit investigations. 

 

10.2 Armchair 

The element of furniture used in this work was a large armchair as shown in Fig. 

10.1. It was selected as being representative of traditional furnishing, particularly in 

British homes. Although not representative of furniture of other countries or of 

‘contemporary’ tastes, it was assumed that its size and constituent materials 

represented an upper limit in unit absorption and scattering. Lighter and harder 

furniture would be expected to alter the frequency response of a room to lesser 

extent. The chair was constructed of a timber frame, with steel spring seat supports. 

The frame and springs were covered with dense fibrous material, which in turn, was 

covered with low density fibre padding and cushions. The covering was a thick-

woven textile. The overall dimensions were 0.85 m x 0.85 m x 0.85 m. 

 

10.2.1 Measurements 

The experimental set-up used to measure room frequency responses in the 

presence of the armchair, positioned on the three different locations (centre of room 

floor, centre wall, and corner), was the same as described in Section 6.2.3 (see Fig. 

6.3 and Table 6.3). Fig. 10.2-a shows the measured room frequency response in the 

presence of the armchair (central floor position) and the measured frequency 



CHAPTER 10 – ROOM CONTENTS AS REAL FURNITURE 147

response of the empty room. In Fig. 10.2-b is shown the level difference between 

the empty room and the room with chair. 

 

 
Figure 10.1 - Armchair used in the real furniture investigations. 

 
Visual inspection indicates that the presence of the armchair within the room 

causes little change in the room frequency response, except at certain frequencies 

where selective damping of modes can be observed. For example the level 

difference is 11.5 dB at 127 Hz, 6.4 dB at 178 Hz and 10.7 dB at 195 Hz. The overall 

difference is on average 0 dB up to 110 Hz with a variation ±5 dB. Between 110 Hz 

and 140 Hz the average level difference is of the order of 5 dB with a variation +11 

dB to -2 dB. Above 140 Hz the average is again 0 dB with a variation +10 dB to -8 

dB. However, no significant eigenfrequency shift was observed. This supports the 

observations made by Kihlman et al (1994) in an investigation of the influence of 

furniture in room frequency responses, but where it was stated that with significantly 

more and heavier furniture, the eigenfrequencies might be affected at low 
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frequencies. This corroborates the findings of Chapters 7, 8 and 9, in which the 

investigation for the standard unit revealed eigenfrequency shifts at frequencies as 

low as 50 Hz. 

 

 

Figure 10.2 - a) Comparison between frequency response measurements for (____) empty room and 

(____) room with the armchair at central floor position. b) Level difference between the two FRFs. 

 

Figs. 10.3 (a and b) and 10.4 (a and b) show measured frequency response 

functions for the case of the armchair placed at the centre wall and corner position, 
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respectively. For these positions it is possible to see that, although no 

eigenfrequency shift was observed, as in the central floor results (Fig. 10.2), here the 

absorption is more effective. 

 

 

Figure 10.3 - a) Comparison between frequency response measurements for (____) empty room and 

(____) room with the armchair at centre wall position. b) Level difference between the two FRFs. 

 
As shown in Fig. 10.3-b, for the centre wall case, the average level difference is 0 

dB ±3 dB up to 68 Hz. Between 68 Hz and 140 Hz the overall difference is on 
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average 5 dB with a variation +11.5 dB to -3 dB. Above this frequency, the 

average level difference is of the order of 0 dB, but with a variation +15 dB to -11.5 

dB.  For the chair in the corner position Fig. 10.4-b shows similar results to those for 

the centre wall case up to 140 Hz. Above this frequency, however, the average 

difference is of the order of 5 dB with a variation +15 dB to -9 dB. 

 

 

Figure 10.4 - a) Comparison between frequency response measurements for (____) empty room and 

(____) room with the armchair in the corner position. b) Level difference between the two FRFs. 
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10.2.2 Numerical model 

The procedure for numerically modelling the effect of introducing real furniture 

was similar to that adopted for the standard unit. Again, it used as a reference the 

developed FE room model, which had been proven to predict the response of the 

empty room in detail (see Chapter 6).  

The preliminary measurements indicated a small change in response on 

introducing the chair, particularly below 100 Hz. This has practical significance. If 

furniture does not have a significant effect in this frequency region then it need not be 

included as a correction to the measured sound level difference between rooms (see 

Chapter 1). In this investigation, it also allows a less refined model of absorption than 

described in chapter 9 for the standard unit. 

Two consecutive efforts were made in creating a model of the armchair to be 

included in the room model. Initially, the investigation aimed to indicate the geometry 

that should be adopted for the armchair model. Then, a parametric survey was 

carried out where different admittance values were assigned to the boundaries of the 

selected chair model, in order to provide the best fit with measured frequency 

response. 

The armchair was first modelled as a cube of volume 0.84 m x 0.84 m x 0.84 m, 

as it was assumed that for the frequency range of interest (20 Hz to 200 Hz) the 

sound field would not be (in principle) sensitive to the armchair geometry details. 

Admittance boundary conditions were prescribed at the box surfaces to take 

absorption effects into account. As for the case in the previously discussed models 

for the standard unit (see Chapter 9), sound transmission through the modelled 

armchair was not included. This contradicts an approach by Estorff and Karstedt 

(2000) in a study of numerical representation of vehicle seats, where it was assumed 

that the transmission of sound waves through the seats had a significant effect on the 

sound pressure distribution in a car [Estorff and Karstedt (2000)]. However, while this 

may be the case at higher frequencies (that work considered frequencies up to 600 

Hz) and for smaller enclosures such as a car cabin, this was not observed during the 

investigations for the standard unit (see Chapters 7, 8, and 9), and, consequently, the 

same approach utilised previously was used in the investigation of real furniture. 
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The first model, ‘Chair-1’, included a frequency independent absorption 

coefficient of 2% for the room surfaces. For the box surfaces a constant absorption 

coefficient of 50% was initially selected as being representative of the armchair 

absorption characteristics from 20 Hz to 200 Hz. Using the measured and predicted 

empty room results as a reference (see Chapter 6), the respective measured and 

predicted level differences were obtained and compared, as shown in Fig. 10.5. The 

signatures of the predicted and measured level differences are similar, although the 

numerical model is overestimating the measured values. 

 

 
Figure 10.5 - Armchair at central floor position results. Comparison between (____) measured and (____) 

predicted level differences for the ‘Chair-1’ model, taking the empty room results as a reference. 

 

A second model of the armchair (Chair-2) included more detail of the geometry 

and was introduced in the room numerical model, also at the central floor position 

(see Fig. 10.6). Again, a simple constant absorption coefficient of 2% was applied to 

the room internal surfaces, while a value of 50% was assigned to the chair surfaces. 

The results, also expressed as level differences, are shown in Fig. 10.7. Additionally, 

Fig. 10.8 presents level differences in 1/12th octave bands between predictions for 

Chair-1 and Chair-2 model, and measurement. The observed average level 

difference for both plots is of the order of -3 db with a variation -9.5 dB to 2 dB up to 

60 Hz. Above this frequency the level difference is on average 0 dB ±5 dB. Although 

both models presented similar characteristics over the frequency range, the overall 

agreement between prediction and measurement is slightly improved in the case of 
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the Chair-2 model, and this model was adopted in predicting the effects of the 

armchair on the room frequency response. 

 
Figure 10.6 - Armchair at central floor position represented by the Chair-2 model. 

 
Having selected the chair model, a parametric survey was performed by 

prescribing different values of pure real admittance to the chair surfaces in the 

numerical model, corresponding to frequency invariant absorption coefficients of 

30%, 50%, and 70%. The results were obtained for the chair placed at the centre wall 

position. Fig. 10.9 presents level differences obtained in 1/12th octave bands between 

measurement and predictions for Chair-2 model with α = 30%, α = 50% and α = 70% 

assigned to the chair boundaries, respectively. The figure shows that, despite a 

variation in α, the level difference was not significantly altered over the observed 

frequency range, particularly up to 37 Hz. Above this frequency, the results still 

presented strong similarities with a variation not larger than 4 dB (at 140 Hz) between 

the two extreme cases. In general the parametric survey indicates that the chair 

absorption is playing no significant role in modifying the room frequency response, 

and the intermediary absorption coefficient of 50% assigned to the chair boundaries 

was adopted in the investigation of the effect of the armchair on the reference FRF. 
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Figure 10.7 - Armchair at central floor position results. Comparison between (____) measured and (____) 

predicted level differences for the ‘Chair-2’ model. 
 

 

 
Figure 10.8 - Level differences between measurement and prediction of room with armchair in the 

centre of the room floor. (__
Ο

__) Chair-1 model, and  (__ __) Chair-2 model. 
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Figure 10.9 - Level differences between measurement and prediction of Chair-2 model at centre wall 

position. (__
Ο

__) α = 30%, (__ __) α = 50%, and (__ __) α = 70%. 

 
 

10.3 Results 

Figs. 10.10, 10.11, and 10.12 present the level difference (measurement and 

prediction) in 1/12th octave bands for the armchair placed within the room at central 

floor, centre wall, and corner positions, respectively. 
 

 
Figure 10.10 - Results for the armchair in the centre of the room floor: comparison between (__ __) 

measured and (__ __) predicted level differences in 1/12th octave bands. 
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Figure 10.11 - Results for the armchair in the centre wall position: comparison between (__ __) 

measured and (__ __) predicted level differences in 1/12th octave bands. 
 

 
Figure 10.12 - Results for the armchair in the corner position: comparison between (__ __) measured 

and (__ __) predicted level differences in 1/12th octave bands. 
 

For the armchair at the central floor position (Fig. 10.10) both measured and 

predicted levels indicate that below 90 Hz the presence of the armchair has no 

significant effect on the room frequency response (considering the empty room 

results as a reference). For such interval the average level difference is 0 dB ±1 dB. 

Above 90 Hz, the measured level difference presents a mean value of approximately 

2 dB with a variation 0 dB to +5 dB. The predicted level difference did not present 
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similar behaviour below 90 Hz, overestimating measurements by 2 dB on 

average. Above 90 Hz the numerical results matched measurements. 

The one-twelfth octave band results for the armchair in the centre wall position 

(Fig. 10.11) indicate an average level difference of 0 dB ±1 dB below 66 Hz. Above 

this frequency, the measured level difference is on average 3 dB with a variation 0 dB 

to +8 dB, whereas the predicted level difference is on average 4 dB with a variation -

1 dB to +10 dB. The results for the armchair in the corner position (Fig. 10.12) show 

that the room response is altered above 50 Hz by an average value of 2 dB with a 

variation 0 dB to +6 dB for the measured level difference. In general, the predicted 

level difference was observed to match measurements. 

Fig. 10.13 shows the effect of the armchair on the reference FRF, this time in 

one-third octave bands. The measured level differences to this resolution are on 

average 0 dB up to 63 Hz, 50 Hz, and 40 Hz for the chair placed in the central floor 

(Fig. 10.13-a), centre wall (Fig. 10.13-b), and corner position (Fig. 10.13-c), 

respectively. Fig. 10.13-a shows that above 63 Hz the average difference is 1.5 dB 

with a variation +1 dB to +2 dB when the armchair was centrally located. For the 

centre wall position, Fig. 10.13-b shows that above 50 Hz the average difference is 

2.5 dB with a variation +2 dB to +4 dB. Fig. 10.13-c shows that when the chair was 

located in a room corner the average difference is of the order of 2 dB with a 

variation +1 dB to +3.5 dB. Independently of the chair position, the agreement 

between predicted and measured level differences was observed to improve with 

increasing frequency, and one possible reason for the observed discrepancies below 

80 Hz is the used approach, in which a frequency invariant absorption coefficient of 

50% was assigned to the chair boundaries. While such value may be representative 

of the chair absorption at frequencies above 100 Hz, it is likely to overestimate the 

absorption process at lower frequencies. 

 

10.4 Summary 

In this chapter a description is given of an investigation of the effect of a real 

element of furniture on room frequency responses. From the previous investigations 

described in Chapters 7, 8, and 9, it was assumed initially that, at low frequencies, 

real furniture would in general behave as solid objects covered by a layer of 

absorption. 
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Figure 10.13 - Level difference (__ __) between measured values and (__ __) between predicted 

values. Results shown in one-third octave bands. a) Central floor position, b) centre wall position, and 

c) corner position. 
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However, experimental results presented in this chapter indicate that the 

introduction of an armchair at different positions within a reference room does not 

significantly alter the room frequency response. This was also confirmed by 

numerical results, where a parametric survey showed that similar FRFs are obtained, 

even though the boundary absorption characteristics of the modelled chair were 

increased up to 117% of the initial value. Thus, a detailed modelling of an absorptive 

element of furniture within an enclosure is not justified. Also, independently of the 

armchair position, no significant eigenfrequency shift was observed in the results. 

However, as found for the investigations with the standard unit (see Chapters 7, 8, 

and 9), the centre wall position was found to be, once again, the most influential, 

despite the overall small effect. 

Because of the small measured effect of the introducing chair, it was not 

necessary to use the refined model of furniture absorption, described in chapter 9. 

However, the refined model is available for rooms of large volume and more furniture 

such as in commercial situations. 

 

10.5 References 

ESTORFF, O., KARSTEDT, W. Representation of seats in numerical models for 
vehicle acoustics. Rieter Automotive Systems, 1999. 

KIHLMAN, T., KROPP, W., PIETRZYK, A. Sound insulation at low frequencies. 

1994. 

 
 



CHAPTER 11 

CONCLUDING REMARKS 

 

11.1 Introduction 

The general objective of the thesis work was to characterise room absorption at 

low frequencies. In particular, the sound absorption at room surfaces and that due to 

room contents such as furniture was to be assessed with respect to their effect on 

steady-state sound level and therefore on sound level difference between rooms. 

The specific objectives of the thesis work were to: 

• Develop a model of surface absorption appropriate for a modal description of 

contained sound fields at low frequencies. 

• Develop a model of contents absorption for the same modal description. 

• Investigate experimentally, theoretically and numerically the effect of contents 

such as furniture on the frequency response of small rooms at low 

frequencies. 

A FEM model was developed to describe the relationship between the sound 

absorption characteristics of the internal surfaces of an enclosure, and its frequency 

response, for the frequency range from 20 Hz to 200 Hz. The developed numerical 

models were validated by comparison with experimental results for a small 

reverberant chamber. In addition, the effect of inserting absorbent furniture was 

considered. The effect of furniture location was also investigated. 

 

11.2 Conclusions 

1. Prior to the investigation, various analytical and numerical approaches were 

considered. The Finite Element Method was selected as the most 

appropriate for modelling the frequency response of a room. It is better suited 

than the Boundary Element Method for the determination of natural 

frequencies and mode shapes of cavities. It is able to deal with non-
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rectangular geometries and uneven distribution of absorption, unlike 

analytical models. 

2. A preliminary FEM model was developed of an empty rectangular test room, 

which did not involve excessive computer processing time and storage. The 

computed eigenfrequencies agreed with analytical values within 0.05% in the 

frequency range of interest (20-200 Hz). 

3. It has been demonstrated that in modelling rooms there is a need to account 

for even small irregularities in the room geometry. 

4. Measurement of room wall vibrational behaviour shows that these vibrations 

contribute to the whole room absorption mechanism at very low frequencies. 

A parametric survey was conducted where surface admittance was varied to 

give a best agreement between predicted and measured frequency 

response. It is shown that a local reaction need only be assumed and an 

equivalent value of absorption coefficient of 2% gave the best agreement for 

heavy masonry walls. The resultant predicted FRFs agreed with 

measurement within 2 dB ±5 dB. 

5. The influence of furniture on low frequency room response was investigated 

by first considering a solid standard unit of dimensions lx = 1.53 m, ly = 0.88 

m, and lz = 0.75 m. The results obtained for the empty test room were used 

as a reference. For each location of the standard unit, eigenfrequency shifts 

and selective modal damping were observed throughout the frequency range 

of interest. Preliminary simulations were performed using different values of 

surface absorption coefficient (2%, 5%, and 20%) applied to the box 

surfaces, and showed practically identical results. Thus, it was decided to 

employ the simplest of these configurations, and the standard unit was 

modelled as a change in room geometry with a surface absorption equal to 

that of the other room surfaces. The agreement between predicted and 

measured frequency response was within 2 dB with a variation ±3 dB up to 

160 Hz. 

6. It has been shown that when a large solid item is introduced into the room, 

there is little effect on the room frequency response for frequencies below 50 

Hz. This corresponds to a ratio of wavelength to largest obstacle dimension 

of 4.5. This is despite the fact that the first three normal room modes occur in 
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this frequency range. This insensitivity was observed regardless of location of 

the obstacle. 

7. Above 50 Hz, the effect of including a solid item within the enclosure is more 

pronounced. In addition, the influence of location becomes apparent. 

Obstacles placed along a wall or in room corners will produce a higher 

change in room response, if compared with a central location. Furthermore, 

the eigenfrequency shifts are the principal reason for the observed changes 

in the room responses. The obstacle surface absorption characteristics 

causes little change in the room frequency response (at most 5 dB at 125 Hz 

third octave band) and need not to be taken into account. 

8. Measurements and numerical simulations were repeated for the standard 

unit, covered with 150 mm of foam having a known sound absorption 

coefficient. An analysis of the results has confirmed the greater effect the 

lined standard unit has on room responses, when compared with the 

uncovered case. The results confirmed two controlling factors: the ratio of 

wavelength to absorbent thickness plus obstacle size, and the onset of 

tangential and oblique room modes. Both are frequency dependant but only 

the second is room dependant. 

9. With respect to the first factor, the results for the covered unit are consistent 

with those for the solid standard unit in that room obstacles can be assumed 

‘transparent’ to sound if the wavelength:obstacle ratio is greater than 4.5. 

This was the case for the standard unit below 50 Hz where the average 

change in FRF is of the order of 2 dB. Similarly, consideration of the results 

for the 150 mm foam when covering the floor indicate little influence on FRF 

below 71 Hz. It can be expected therefore that the effect of covering the 

obstacle with 150 mm foam will have little effect below 50 Hz and this was 

confirmed experimentally. 

10. With respect to the second factor, surface and obstacle absorption might be 

expected to have an enhanced effect with the onset of tangential and oblique 

room modes (except for the case when a covered surface is perpendicular to 

an axial mode). The reference room displayed an onset of tangential modes 

at approximately 49 Hz, which corresponds to the onset of effectiveness of 

the obstacle and/or absorber. This has practical implications. Dwelling rooms 
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typically are of smaller dimensions than the reference room used in this 

investigation, and the modal density below 100 Hz will be less. In particular, 

tangential modes will onset at frequencies higher than 80 Hz and obstruction 

absorption effects may be negligible below 100 Hz. Future standards that are 

required to measure in the frequency range 50 –100 Hz therefore may be 

simplified since absorption (measured as reverberation time, for example) 

need not to be considered. 

11. The measured and predicted FRFs for the soft absorber are very similar to 

those for the covered standard unit. In general, experimental and theoretical 

results indicated that there is an increase of the absorption coefficient as a 

function of the material thickness only up to a limiting depth, which seems to 

be about 150 mm for frequencies below 110 Hz. Above this value the 

material absorption characteristics seem to saturate, no matter how thick it 

may be. 

12. Numerical results have shown an overall good agreement with 

measurements when the intermediary core size (1.40 m x 0.84 m x 0.84 m) 

was used, up to 170 Hz. Above this frequency the largest core size (1.68 m x 

1.12 m x 1.12 m) provided the minimum discrepancies with measurements, 

indicating that the sound was penetrating less in the absorber, as would be 

expected at higher frequencies. 

13. The effect of the soft unit on the reference FRF was at most 8.5 dB at 125 

Hz. At frequencies lower than 50 Hz there was no significant effect on the 

reference room frequency response, and the obstacle may be simply 

neglected in the room model, without incurring in large errors. 

14. Experimental results indicate that the introduction of an armchair at different 

positions within a reference room does not significantly alter the room 

frequency response (at most 3.7 dB at 125 Hz). This was also confirmed by 

numerical results, where a parametric survey showed that practically 

unaltered FRFs are obtained, even though the absorption characteristics of 

the modelled chair were increased. Thus, a detailed modelling of an 

absorptive element of furniture within an enclosure is not justified. 

15. Though not shown here, numerical simulations considering obstacles 

occupying an entire room dimension have shown large effects on room 
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frequency responses, even at very low frequencies. This will be the case in 

small enclosures such as a car cabin, airplanes, or even ducts with 

blockages. This situation may be also representative of enclosures having 

columns or similar obstacles inside it. In these cases, larger eigenfrequency 

shifts may be expected when compared to those presented in this work. An 

example of that was provided by the change in angle at the door position of 

the investigated room, which proved to be very influential in correctly 

modelling the latter, despite of being a small perturbation in the room 

geometry. 

 

11.3 Topics for further research 

Based on previous considerations, the present work may be complemented and 

further developed. The suggested topics for future research are to: 

• Model the absorption material as bulk modulus, and not only as superficial 

impedance value. This would allow the angular sound incidence to be taken into 

account. However, it would require measurements of material properties, such as 

flow resistance, and tortuosity. 

• Investigate rooms also of lightweight construction, which are representative of 

modern buildings. Such rooms are likely to have modally reactive boundaries, and 

should be fully modelled using the theory of boundaries of extended reaction, 

introduced in Chapter 5. 

• Obtain field measurements of sound transmission at low frequencies of ‘typical’ 

Brazilian dwellings and compare the results with those on the literature, in order to 

establish general trends. 

• Establish criteria and recommendations, regarding sound transmission of 

Brazilian buildings, for the local authorities. 

• Investigate the effect of flanking transmission on the sound transmission between 

rooms. 
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Abstract. It is recognised that low frequency (below 100Hz) sound transmission into and 
between dwellings is an increasing contribution to nuisance. This is due to a proliferation of 
hi-fi systems of high power and enhanced bass response, increased use of domestic 
mechanical services and devices, and increasing traffic noise break-in. A Finite element (FE) 
model of the sound transmission between dwellings has been developed which demonstrates 
the modal characteristics of the pressure and vibration fields of the rooms and separating 
wall, respectively. The work has highlighted the need for an appropriate model of sound 
absorption in small furnished rooms at low frequencies. In this paper, a new FE model is 
used to describe the relationship between the sound absorption characteristics of the internal 
surfaces of an enclosure, and its frequency response, for the frequency range below 200Hz. In 
addition, the effect of furniture as solid obstacles is explored, in order to check for eigenmode 
shifts and selective damping of modes. The effect of furniture location is also investigated. 
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1   INTRODUCTION 
 

In the area of sound transmission in buildings, a recent emphasis has been given to the 
study of the audible frequencies below 100 Hz. This is due to the increase in sources of low 
frequency noise, e.g., proliferation in hi-fi systems of high power and enhanced bass 
response, increased use of mechanical services and devices, and increasing traffic noise 
break-in. 

A review of the main low frequency noise sources can be found in the work of Berglund et 
al.1 There is a special concern about low frequency noise because of its efficient propagation 
in air, and because of the reduced ability of structures such as hearing protectors or separating 
walls to attenuate sound at these frequencies. 

Unfortunately, it is at such low frequencies that existing theories of room acoustics and the 
relationships between sound level difference and sound reduction index are most tenuous. 
Current standards deal only with the frequency range from 100 Hz to 3150 Hz, and despite 
the introduction of Annex F in ISO 140/3, for sound insulation measurements at low 
frequencies,2 there is still a poor repeatability between measurement results.3 Diffuse sound 
field assumptions must be replaced with that which incorporates acoustic and vibration mode 
distributions.  

A study has been undertaken in Liverpool, where a FE model was validated by comparison 
with scale model measurement.4 The associated model of transmission between rooms 
demonstrates that the modal characteristics of the pressure and vibration fields of the rooms 
and separating wall, respectively, strongly influence the sound level difference. The work has 
identified important outstanding issues to be addressed: the need for an appropriate model of 
sound absorption in small furnished rooms at low frequencies, and the consideration of 
modally reactive absorption due to the vibration of the walls. 

In this paper, a new FE model is used to describe the relationship between the sound 
absorption characteristics of the internal surfaces of an enclosure, and its frequency response, 
for the frequency range from 20 Hz to 200 Hz. The numerical model is validated by 
comparison with experimental results for a small reverberant chamber. In addition, the effect 
of inserting absorbent furniture is explored. The effect of furniture location is also 
investigated. 
 
2   FINITE ELEMENT METHOD 
 

Interior acoustic problems, involving boundary conditions, can be effectively simulated 
through the FE method.5,6 A physical model of the initial problem is created and then a 
model, which will allow the physical problem to be described in terms of mathematical 
equations. From these equations it is possible to obtain an analytical or numerical solution. 
However, when transforming the real problem into a mathematical model, a series of 
approximations is introduced which will produce an associated error. Thus, when constructing 
the mathematical model one must follow certain criteria (e.g., sufficient discretization of the 
model and characteristics of the elements used), which will minimise the error in the 
approximated solution. 
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3   EMPTY ROOM 
 
3.1   Measurement system 
 

The room investigated was a small reverberant chamber of the Acoustics Research Unit of 
the University of Liverpool. The room dimensions are Lx = 5.78 m, Ly = 3.04 m, and Lz = 4.24 
m. The room was not completely rectangular, having a change in angle at the door position 
(see Figures 1 and 4). 

Measurements were carried out with a loudspeaker and two microphones placed at 
different corners of the enclosure, in order to excite and measure as many acoustic modes as 
possible, as shown in Figure 1. 

 
 

Figure 1: Loudspeaker and microphone positions inside the investigated room 
 

The measured frequency response (sound pressure level versus frequency) was obtained 
using a Maximum Length Sequence based system (MLSSA) in the Power Spectrum mode.7 A 
schematic of the experimental set-up is shown in Figure 2. 

 
3.2   Discretization of the acoustic field model 
 

The element size to be used in the numerical model is dependent upon the upper frequency 
of interest, with the assumption that at least six elements would be required to properly 
represent the pressure field over the governing wavelength. In the present work, the upper 
frequency of interest is 200 Hz, which gives an element size around 0.28 m. The element type 
used was HEX20.8 
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Figure 2: Experimental set-up  
 

In order to verify the accuracy of the model, a second one of a completely rectangular 
room was created, with the same overall dimensions. It then was possible to compare the 
numerical and analytical results for the eigenfrequencies of the room. 

The analytical eigenfrequencies are given by: 
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where c is the speed of sound in the air, and nx, ny and nz are integers. 
To evaluate the error due to the FE discretization, an error E was calculated according to: 

 

100⋅
−

=
AE

AENEE ,     (2) 
 

where NE and AE are the numerical eigenfrequency and analytical eigenfrequency, 
respectively. The results obtained showed that the error was less than 0.05% for all the 
eigenfrequencies inside the frequency range of interest (see Figure 3). 
 

 
 

Figure 3: Percentile error between the numerical and analytical eigenfrequencies 
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The small change in angle at the door position was initially thought not to be influential. 
However, comparison of the rectangular model with measurement highlighted discrepancies 
throughout the frequency range. Thus, the room was modelled exactly and its mesh is 
visualised in Figure 4. 

 

 

 
Figure 4: Isometric view of the FE model of the small reverberant chamber 

 
A parametric study was carried out to determine the value of surface absorption that would 

provide the best fit with measurements. It was found that a surface absorption coefficient of  
α = 0.02, to all frequencies, gave the best overall agreement. The model was refined to 
account for loudspeaker roll-off at the lower frequencies. 

The results in Figure 5 show good agreement between measurement and prediction, and 
justify the choice of this FE model. 

 
4   FURNISHED ROOM 
 

Furniture in a room acts both as an obstruction and an additional absorption. Akil and 
Oldham9,10 have demonstrated that machines in factories can be treated as point scatters at 
high frequencies, where ray tracing can be employed.11 
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Figure 5: Comparison between measurement ( ____ ) and simulation ( ____ ) for the empty room 
 

At low frequencies, the inclusion of furniture may generate additional eigenmodes, mode 
shifts and selective damping of modes. Such effects will depend on the construction of the 
furniture (how hard or soft), and its location. 

In a preliminary study of the influence of furniture on the room response, a “standard 
unit”, constructed of lightweight concrete blocks, was positioned as shown in Figure 6. The 
unit was of dimensions lx = 1.53 m, ly = 0.88m, and lz = 0.75 m. 

 

 
Figure 6: Top view of the standard unit positions within the room. a) Central and b) centre wall position 

 
Measured frequency responses indicated that the unit did not appear to generate additional 

acoustic modes, but a shift of eigenfrequencies is observed and some of the modes were 
surprisingly damped (see Figures 7-a and 8-a for the unit placed at central and centre wall 
positions, respectively). 

The predicted frequency responses have also presented similar characteristics (Figures 7-b 
and 8-b), showing eigenmode shifts and selective modal damping, after the inclusion of the 
unit in the numerical model. 

The measured and predicted changes (expressed as level differences) on the room 
frequency response, as a result of the introduction of the solid unit, are shown in Figures 7-c 
and 8-c. Again, predictions are in good agreement with experimental results, showing that the 
developed numerical model can be used with confidence. 
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Figure 7: Effect of obstruction on room response. Unit at central position. a) Measurement for ( ___ ) empty 
room and ( ____ ) obstructed room. b) Prediction for ( ____ ) empty room and ( ____ ) obstructed room.           

c) Level difference ( ____ ) between measured values and ( ____ ) between predicted values 
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Figure 8: Effect of obstruction on room response. Unit at centre wall position. a) Measurement for ( ___ ) empty 
room and ( ____ ) obstructed room. b) Prediction for ( ____ ) empty room and ( ____ ) obstructed room.           

c) Level difference ( ____ ) between measured values and ( ____ ) between predicted values 
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5   DISCUSSION OF RESULTS 
 

Both measured and predicted level differences show that when the unit was centrally 
located, the effect of its inclusion is small (Figure 7-c). The change in level difference is of 
the order of ± 3 dB at frequencies below 50 Hz. Between 50 and 200 Hz the change is of the 
order of ± 8 dB. 

The effect of locating the unit along the wall is more pronounced (Figure 8-c). Again, the 
change is small below 50 Hz (of the order of ± 2 dB). Above 50 Hz, the variation is of the 
order of + 15 to – 8 dB. 

All the numerical results presented in this paper have being obtained considering only 
locally reactive boundaries. However, at low frequencies there is not only a locally reactive 
absorption due to the wall material, but also a modally reactive absorption due to the vibration 
of the walls, when the sound waves impinge on them. This phenomenon will be included into 
the model in the near future. 
 
6   CONCLUDING REMARKS 
 

A FE model of a small reverberant chamber was developed to investigate the influence of 
sound absorption on the room frequency response, at low frequencies. The process of 
modelling the empty room has highlighted the need to account for even small irregularities in 
the room geometry, in order to obtain a good agreement between prediction and 
measurement. 

A preliminary study of the influence of furniture on the room response was performed by 
means of the introduction of a “standard unit” at different positions within the enclosure. The 
numerical results showed good agreement with measurements in both cases. 

It has been shown that when a large solid item is introduced into the room centre, it causes 
little change in the frequency response below 50 Hz. This is despite the fact that the first three 
normal room modes occur in this frequency range. This might be expected since the major 
unit dimension is less than one quarter of the sound wavelength at 50 Hz. A similar situation 
is observed when the unit is located along a wall and, therefore, the room response is 
insensitive to location below 50 Hz. 

Above 50 Hz, the effect of including a solid item is more pronounced. In addition, the 
influence of location is apparent. Furniture placed along a wall will produce a higher change 
in room response compared with a central location. A similar behaviour was observed when 
the solid unit was located in a corner, although results are not presented here. 
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