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Amplitude analysis of B — K* 7~ 7* and evidence of direct CP violation in B — K * 77 decays
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We analyze the decay B® — K+ 77~ 7° with a sample of 4.54 X 108 BB events collected by the BABAR
detector at the PEP-II asymmetric-energy B factory at SLAC, and extract the complex amplitudes of seven
interfering resonances over the Dalitz plot. These results are combined with amplitudes measured in B —
K277'Jr 7~ decays to construct isospin amplitudes from B® — K*7 and B® — pK decays. We measure the
phase of the isospin amplitude ®;/,, useful in constraining the Cabibbo-Kobayashi-Maskawa unitarity
triangle angle y and evaluate a CP rate asymmetry sum rule sensitive to the presence of new physics
operators. We measure direct CP violation in B® — K** 77~ decays at the level of 30 when measurements
from both B® — K7~ 7% and B — K)7* 7~ decays are combined.

DOI: 10.1103/PhysRevD.83.112010 PACS numbers: 11.30.Er, 11.30.Hv, 13.25.Hw

L. INTRODUCTION

— o . . In the standard model (SM), CP violation in weak
JZ?W at ‘Tlfmllj)le' Un%\t’?fSC{Fy,I) Phlla_deu]))h}a,rEA 19t122d,_UFSA interactions is parametrized by an irreducible complex
Pemg?g I";’;ly niversita direrugia, Diparimento ditisica, phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark
*Now at University of South Alabama, Mobile, AL 36688, ~ MiXing matrix [1,2]. The unitarity of the CKM matrix is
USA typically expressed as a triangular relationship among its

¥Also with Universita di Sassari, Sassari, Italy parameters such that decay amplitudes are sensitive to the
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angles of the triangle denoted «, B, y. Redundant mea-
surements of the parameters of the CKM matrix provide an
important test of the SM, since violation of the unitarity
condition would be a signature of new physics. The angle y
remains the least well measured of the CKM angles. Tree
amplitudes in B — K™ decays are sensitive to y but are
Cabibbo-suppressed relative to loop-order (penguin)
contributions involving radiation of either a gluon (QCD
penguins) or a photon (electroweak penguins or EWPs)
from the loop.

It has been shown that QCD penguin contributions can
be eliminated by constructing a linear combination of
B — K*"7r~ and B — K*7° weak decay amplitudes
that is pure (isospin) I = 3/2 [3],

A (K ) =%ﬂ(30—»1<*+ )+ A(B— K070)
(D

Since a transition from / = % to I = 3/2 is possible only
via AI =1 operators, A5/, must be free of Al =0,
namely, QCD contributions. The weak phase of A/,
given by @3, = —3 Arg(A;/ As)p), is equal to the
CKM angle y in the absence of EWP operators [4].
Here, A, /2 denotes the CP conjugate of the amplitude
in Eq. (1).

The relative magnitudes and phases of the B — K** 7~
and B® — K*7° amplitudes in Eq. (1) are measured from
their interference over the available decay phase space
(Dalitz plot or DP) to the common final state B’ —
K"z~ 7% The phase difference between B® — K** 7~
and B — K*~ 7" is measured in the DP analysis of the
self-conjugate final state B® — K27T+ 7~ [5] where the
strong phases cancel. This argument is extended to B® —
pK decay amplitudes [6,7] where an isospin decomposi-
tion of amplitudes gives

1
2

Here, the B — p~ K" and B — p°K° decays do not
decay to a common final state preventing a direct measure-
ment of their relative phase. The amplitudes in Eq. (2) do,
however, interfere with the B — K** 7~ amplitude in
their decays to B — K* 7~ 7% and B® — K7 " 7~ final
states so that an indirect measurement of their relative
phase is possible.

The CP rate asymmetries of the isospin amplitudes
A5 (K*m) and Aj;»(pK) have been shown to obey a
sum rule [8],

|jl3/2(K*7T)|2 — | A3 p(K*m)? = | Az (pK)I?
— 1 A5(K)P. )

This sum rule is exact in the limit of SU(3) symmetry
and large deviations could be an indication of new
strangeness  violating operators. Measurements of

Asp(pK)=—2AB°—p K")+ AB"— p°K°). (2)
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B? — K*m and B — pK amplitudes are used to evaluate
Eq. (3).

We present an update of the DP analysis of the flavor-
specific B — K7~ 7r° decay from Ref. [9] with a sample
of 4.54 X 10 BB events. The isobar model used to pa-
rametrize the complex amplitudes of the intermediate
resonances contributing to the final state is presented in
Sec. II. The BABAR detector and data set are briefly
described in Sec. III. The efficient selection of signal
candidates is described in Sec. IV and the unbinned maxi-
mum likelihood (ML) fit performed with the selected
events is presented in Sec. V. The complex amplitudes of
the intermediate resonances contributing to the B? —
K7~ 7° decay are extracted from the result of the ML
fitin Sec. VI together with the accounting of the systematic
uncertainties in Sec. VII. Several important results are
discussed in Sec. VIII. Measurements of B — pK from
this article and Ref. [5] are used to produce a measurement
of ®3,, using Eq. (2). It is shown that the large phase
difference between B°— K**(892)7w~ and B’—
K*9(892)7° amplitudes makes a similar measurement us-
ing Eq. (1) impossible with the available data set. We find
that the sum rule in Eq. (3) holds within the experimental
uncertainty. Additionally, we find evidence for a direct CP
asymmetry in B — K*" 7~ decays when the results of
Ref. [5] are combined with measurements in this article.
The conventions and results of Ref. [5] are summarized
where necessary. Finally in Sec. IX, we summarize our
results.

I1. ANALYSIS OVERVIEW

We present a DP analysis of the B — K* 77~ 770 decay
in which we measure the magnitudes and relative phases
of five resonant amplitudes: p(770)" K", p(1450)" K™,
p(1700)" K™, K*(892)"#w~, K*(892)°#°, two Km
S-waves: (Km)i?, (K7r)3*, and a nonresonant (NR) con-
tribution, allowing for CP violation. The notation for the
S-waves denotes phenomenological amplitudes described
by coherent superpositions of an elastic effective-range
term and the K;(1430) resonances [10]. Here, we describe
the decay amplitude formalism and conventions used in
this analysis.

The B® — K™ 7~ 7° decay amplitude is a function of
two independent kinematic variables: we use the squares of
the invariant masses of the pairs of particles K* 7~ and
K% x=m%, andy= miwm The total decay am-
plitude is a linear combination of k isobars, each having
amplitude A, given by

=) =) P
Ai="abe™ [ plsndsay @)

where

=1 (5)

| [ 710 x vy
DP
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Here, A, denotes the CP conjugate amplitude and
“)
(a)keiq’k is the complex coefficient of the isobar. The
normalized decay dynamics of the intermediate state are
specified by the functions f that for a spin-J resonance in
the K* 7~ decay channel describe the angular dependence
T:(J, x, y), Blatt-Weisskopf centrifugal barrier factor [11]

B.(J, x), and mass distribution of the resonance L;(J, x),
il x,y) = Tp(J, x,y) X Bi(J,x) X Li(J, x). ~ (6)

_ The branching fractions B, (CP averaged over B° and
B%), and CP asymmetry, Acp(k), are given by

|‘jzlk|2 + |~itk|2 Nsig

= = , (7)
CIZALP+IZA P Npslee
j j
AR - AL - a2
A = LT IAL_d—a g
| A+ [ AL ai + ay
where N, is the number of B — K* 7~ 7 events se-

lected from a sample of N3 B-meson decays. The average
DP efficiency, (€)pp, is given by

|Z(akei®k + ékei&)k) f])p f(x’ y)fk(Jr X, y)dXdyl
k

|Z(akei¢k + 6_Zkei(i)k) IDP fi(J, x, y)dxdyl
k

()]

where e(x,y) is the DP-dependent signal selection
efficiency.

We use the Zemach tensor formalism [12] for the angu-
lar distribution 7'(J, x, y) of a process by which a pseudo-
scalar B-meson produces a spin-J resonance in association
with a bachelor pseudoscalar meson. We define p and g as
the momentum vectors of the bachelor particle and reso-
nance decay product, respectively, in the rest frame of the
resonance k. The choice of the resonance decay product
defines the helicity convention for each resonance where
the cosine of the helicity angle is cos@y = p - ¢/(1pllg).
We choose the resonance decay product with momentum ¢
to be the 7~ for Kt 7~ resonances, the 7° for 7 7°
resonances, and the K+ for 7°K™ resonances (see Fig. 1).

7

On

—

—-q

FIG. 1. The helicity angle (6;) and momenta of particles
(g, p) in the rest frame of a resonance k.
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TABLE I. The angular distributions 7'(J,x,y), and Blatt-
Weisskopf barrier factors B(J, x), for a resonance of spin-J
decaying to two pseudoscalar mesons.

Spin-J T, x,y) B(J, x)
0 1 1

S 1+22

1 —2|pll§l costy e

> > 9 3‘2 ‘4

2 $15P12Beos?0y — 1) e

The decay of a spin-J resonance into two pseudoscalars
is damped by a Blatt-Weisskopf barrier factor, character-
ized by the phenomenological radius R of the resonance.
The Blatt-Weisskopf barrier factors B(J, x) are normalized
to 1 when +/x equals the pole mass M of the resonance. We
parametrize the barrier factors in terms of z = |g|R and
20 = |go|R, where |g,| is the value of |g| when /x = M.
The angular distributions and Blatt-Weisskopf barrier
factors for the resonance spins used in this analysis are
summarized in Table L.

We use the relativistic Breit-Wigner (RBW) line shape
to describe the K*(892)™° resonances,

1
M? — x—iMT(J, x)’
Here, the mass-dependent width I'(J, x) is defined by

LRBW (], x) =

(10)

M |q| 2J+1
FMﬁzW—<ﬁ) B, (D)
NEAT

where I is the natural width of the resonance.

The Gounaris-Sakurai (GS) parametrization [13] is used
to describe the line shape of the broad p(770)~, p(1450)~
and p(1700)~ resonances decaying to two pions,

1+ dl/Mm

LGS J, — ,
. %) M? + g(x) — x — iMT'(J, x)

12)

where I'(J, x) is defined in Eq. (11). Expressions for the
constant d and the function g(x) in terms of M and I'° are
given in Ref. [13]. The parameters of the p line shapes, M,
and I'° are taken from Ref. [14] using updated line-shape
fits with data from e™ e~ annihilation [15] and 7 decays
[16].

An effective-range parametrization was suggested [17]
for the K7 scalar amplitudes, (K#);" and (K#);? which
dominate for mg, <2 GeV/c?, to describe the slowly
increasing phase as a function of the K7 mass. We use
the parametrization chosen in the LASS experiment [18],
tuned for B-meson decays [10],

Vx/M?

|G| cotdp — ilgl

/1l
M? — x —iMT(0, x)’
(13)

LLASS(y) = + Q2005

with
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1 1
cotdy = — + = rlql, (14)
algl 2

where a is the scattering length and r the effective range
(see Table II). We impose a cutoff for the K7 S-waves so
that LSS is given only by the second term in Eq. (13) for
Jx > 1.8 GeV/c?. Finally, the NR K* 7~ 7% amplitude is
taken to be constant across the DP.

In addition to the seven resonant amplitudes and the NR
component described above we model the contributions to
the K*7 7" final state from B — D°7° and B’ —
D~ K* with a double Gaussian distribution given by

TABLE II. The model for the B — K" 7~ #° decay com-
prises a nonresonant (NR) amplitude and seven intermediate
states listed below. The three line shapes are described in the
text and the citations reference the parameters used in the fit. We
use the same LASS parameters [18] for both neutral and charged
K systems.

Resonance Line shape Parameters
Spin-J = 1
p(770)~ GS [14] =1775.5 = 0.6 MeV/c?
FO 148.2 = 0.8 MeV
— 0+1 5 (GeV/c) 1
p(1450)~ GS [14] 1409 + 12 MeV/c?
FO =500 = 37 MeV
— 0+1 5 (GeV/c) 1
p(1700)~ GS [14] 1749 +20 MeV/c?
FO 235 = 60 MeV
=073 (GeV/e)™!
K*(892)* RBW [19] = 891.6 = 0.26 MeV/c?
FO =50+ 0.9 MeV
R=134=+0.7(GeV/c)™!
K*(892)° RBW [19] M = 896.1 = 0.27 MeV/c?
% =505+ 0.6 MeV
R=34=*0.7 (GeV/c)™!
Spin-J =0
(Km)y™, (Km)y?  LASS [18] = 1412 = 3 MeV/c?
I =294 + 6 MeV
a=12.07*0.10 (GeV/c)™!
r=23.32%034 (GeV/c)™!
NR Constant

Noninterfering components

D° DG M, = 1862.3 MeV/c?
oy =17.1 MeV
M, = 1860.1 MeV/c?
oy = 22.4 MeV
=012

D~ DG M, = 1864.4 MeV/c?
o = 9.9 MeV
M, = 1860.6 MeV/c?
oy =21.3 MeV
=032
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1- M 2
LDG(X) _ f exp[ ( 1 \/—) ]
g

20'1
f (M, — /x)?
—+ 0_—2 exp[ 20_2 ] (15)

The fraction f is the relative weight of the two Gaussian
distributions parametrized by the masses M;, M, and
widths o, 0,. The D-mesons are modeled as noninterfer-
ing isobars and are distinct from the charmless signal
events.

III. THE BABAR DETECTOR AND DATA SET

The data used in this analysis were collected with the
BABAR detector at the PEP-II asymmetric energy e*e™
storage rings between October 1999 and September 2007.
This corresponds to an integrated luminosity of 413 fb™!
or approximately Ngz = 4.54 = 0.05 X 108 BB pairs
taken on the peak of the Y(4S) resonance (on resonance)
and 41 fb~! recorded at a center-of-mass (CM) energy
40 MeV below (off resonance).

A detailed description of the BABAR detector is given in
Ref. [20]. Charged-particle trajectories are measured by a
five-layer, double-sided silicon vertex tracker (SVT) and
a 40-layer drift chamber (DCH) coaxial with a 1.5 T
magnetic field. Charged-particle identification is achieved
by combining the information from a ring-imaging
Cherenkov device (DIRC) and the ionization energy loss
(dE/dx) measurements from the DCH and SVT. Photons
are detected, and their energies are measured in a CsI(TI)
electromagnetic calorimeter (EMC) inside the coil. Muon
candidates are identified in the instrumented flux return of
the solenoid. We use GEANT4-based [21] software to
simulate the detector response and account for the varying
beam and environmental conditions. Using this software,
we generate signal and background Monte Carlo (MC)
event samples in order to estimate the efficiencies and
expected backgrounds in this analysis.

IV. EVENT SELECTION AND BACKGROUNDS

We reconstruct B — K™ 7~ 7 candidates from a 7°

candidate and pairs of oppositely charged tracks that are
required to form a good quality vertex. The charged-
particle candidates are required to have transverse mo-
menta above 100 MeV/c and at least 12 hits in the DCH.
We use information from the tracking system, EMC, and
DIRC to select charged tracks consistent with either a kaon
or pion hypothesis. The 770 candidate is built from a pair of
photons, each with an energy greater than 50 MeV in the
laboratory frame and a lateral energy deposition profile in
the EMC consistent with that expected for an electromag-
netic shower. The invariant mass of each 7° candidate,
mo, must be within 3 times the associated mass error,
o(m o), of the nominal 7° mass 134.9766 MeV/c? [19].
We also require | cosf’”, |, the modulus of the cosine of the
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angle between the decay photon and the 7° momentum
vector in 7V rest frame, to be less than 0.95.
A B%-meson candidate is characterized kinema-

tically by the energy-substituted mass mgg

\/(s/z +p, - pp)?/E? — p3 and the energy difference
AE = E; —1./s, where (Ep, pp) and (E;p,) are the
four-vectors of the B candidate and the initial electron-
positron system in the lab frame, respectively. The asterisk
denotes the Y(4S) frame, and s is the square of the invari-
ant mass of the electron-positron system. We require
5.2720 GeV/c? < mpg < 5.2875 GeV/c?. To avoid a
bias in the DP from the dependence on the 7° energy of
the resolution in AE, we introduce the dimensionless
quantity

AE 2 3
. 5B + my + myx + myx” + mxx

AE = —

3 (16)
wo T wix + wox® + wix

where o(AE) is the per event AE error and the coefficients,
m;, w; given in Table III, are determined from fits
to signal MC in bins of x = m%, _(GeV/c?)?. We require
|AE/| = 2.1. Following the calculation of these kinematic
variables, each of the B candidates is refitted with its mass
constrained to the world average value of the B-meson
mass [19] in order to improve the DP position resolution
and ensure that candidates occupy the physical region of
the DP.

Backgrounds arise primarily from random combinations
in ete™ — ¢g (continuum) events. To enhance discrimi-
nation between signal and continuum, we use a neural
network (NN) [22] to combine five discriminating varia-
bles: the angles with respect to the beam axis of the B
momentum and B thrust axis in the Y'(4S) frame, the zeroth
and second order monomials L, of the energy flow about
the B thrust axis, and Az/o(Az), the significance of the
flight distance between the two B-mesons. The monomials
are definedby L, = Y, p; X | cosf;|", where 6, is the angle
with respect to the B thrust axis of the track or neutral
cluster i and p; is the magnitude of its momentum. The
sum excludes the tracks and neutral clusters comprising the
B candidate. All quantities are calculated in the Y(4S)
frame. The NN is trained using off-resonance data and
simulated signal events, all of which passed the selection
criteria. The final sample of signal candidates is selected

TABLE III. Fitted values of m; and w; which minimize corre-
lations of AE’ with the DP position. The m;, w; have units of
(GeV/c?)72.

i m;(X107) w;(X1073)
0 246.36 1055.09
1 —-2.73 6.86
2 1.14 0.66
3 —0.05 —0.03
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with a requirement on the NN output that retains 81% of
the signal and rejects 90% of continuum events.

Approximately 17% of the signal MC events which have
B candidates passing all selection criteria except that on
mgg, contain multiple B candidates. Since the continuum
DP is modeled from the mpgg sideband (5.200 GeV/c? =
mps = 5.272 GeV/c?) of on-peak data, the mpg require-
ment is not applied in selecting the best B candidate. We
select the candidate with the minimum value of

a7)

Vertex’

) (m,,o — 134.9766 GeV/c2)2 )
X = +
O'(m,n.n)

where 3., is the vertex x? of the kinematic fit to the
particles that form the B-meson candidate.

With the above selection criteria, we determine the
average signal efficiency over the DP, (€)pp =
(21.0 = 0.2)%, with MC simulated data generated using
the model described in Ref. [9]. There are 23 683 events in
the data sample after the selection shown in Fig. 2.

Approximately 10% of the selected signal events are
misreconstructed. Misreconstructed signal events, known
as self-cross-feed (SCF), occur when a track or neutral
cluster from the other B is assigned to the reconstructed
signal candidate. This occurs most often for low-momentum
tracks and neutral pions; hence the misreconstructed
events are concentrated in the corners of the DP. Since
these regions are also where the low-mass resonances
overlap significantly with each other, it is important
to model the misreconstructed events correctly. We
account for misreconstructed events with a resolution
function described in Sec. V.

MC events are used to study the background from other
B decays (B background). We group the B backgrounds
into 19 different classes with similar kinematic and topo-
logical properties, collecting those decays where less than
8 events are expected into a single generic class. The B
background classes used in this analysis are summarized in

)
S

.98 7 2 P
1

m2., (GeV/c*?
> o
i 1

W
T
|

0:....|....'|....|~..~..|..f.-‘* il
0 5 10 15 20 25

m2. . (GeV/c?)

FIG. 2. The DP of the selected data sample of 23 633 events.
The selection criteria are described in Sec. IV. The B® — D7
decay is visible as a band near m%. = 3.5 (GeV/c?). The

remaining resonances populate the borders of the DP.
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TABLE IV. Summary of B background modes included in the
fit model. The expected number of B background events for each
mode listed includes the branching fraction and selection effi-
ciency. The D°X and D*X classes do not include B® — D7
and B — D™ K" decays which are modeled as noninterfering
isobars.

Class B decay Events

1 generic 660 * 122 varied
2 DX 627 = 60 varied
3 D*X 370 = 80 varied
4 K*(892)°y, K*(1430)%y 187 = 14

5 K o m* 164 =9

6 ataad 109 = 13

7 K*a® 65+ 3

8 K" o~ 53+2

9 p P At af 70 50+ 13

10 fo(980)K™, K** 70 48 £ 12

11 pTp T afm 27 +3

12 n'K* 22 =1

13 K p~ 216

14 KOp™ 15+6

15 K"K~ 1410

16 ptrad 11+2

17 K**ay, K*p° 9+2

18 mtamt 8§+ 1

19 Ktmm™ 8§+ 1

Table IV. When the yield of a class is varied in the ML fit
the quoted number of events corresponds to the fit results,
otherwise the expected numbers of selected events are
computed by multiplying the MC selection efficiencies
by the world average branching fractions [19,23] scaled
to the data-set luminosity.

The decay B — K* 7~ 7 is flavor specific (the charge
of the kaon identifies the B flavor), so the flavor of the
opposite B produced in the decay of the Y (4S) can be used
as additional input in the analysis. Events where the oppo-
site B flavor has been reliably determined are less likely to
be either continuum background or SCF. A neural network

PHYSICAL REVIEW D 83, 112010 (2011)

is trained using a large sample of MC events with ouput
into seven exclusive tagging categories identifying the
flavor of the B meson [24]. Those events where the oppo-
site B flavor could not be determined are included in an
untagged category. Each B — K77~ 7 decay in the data
set is identified with the tagging category of the opposite B
determined from the neural network.

V. THE MAXIMUM-LIKELIHOOD FIT

We perform an unbinned extended maximum-likelihood
fit to extract the B — K7~ 77° event yield and the reso-
nant amplitudes. The fit uses the variables mgg, AE’, the
NN output, and the DP to discriminate signal from back-
ground. The selected on-resonance data sample consists of
signal, continuum background, and B background compo-
nents. The signal likelihood consists of the sum of a
correctly reconstructed (truth-matched or TM) and SCF
term. The background contributions and fraction of SCF
events vary with the tagging category of the opposite B
decay. We therefore separate the components of the fit by
the tagging category of the opposite B decay.

The likelihood L¢ for an event i in tagging category c is
the sum of the probability densities of all components,

L§ = Ngio féol (1 = {fscrdbp) Pim: + (Fserbp Pécr,i]

1 < 1
TNy (1A Py + Z;NB_/fgji(l +Ap)Pj
=

(18)

Here, j is the B background class number and the (%) is
evaluated to be the charge sign of the kaon in the event i. A
complete summary of the variables in Eq. (18) is given in
Table V.

The probability distribution functions (PDFs) P§ (X =
TM, SCF, qg, B;) are the product of the four PDFs of
the discriminating variables, d; = mgs, d, = AE/, d3 =
NN, and the DP, d, = {x, y},

TABLE V. Definitions of the different variables in the likelihood function given in Eq. (18).

Variable Definition
N total number of K7~ 7° signal events in the data sample
. fraction of signal events that are tagged in category ¢
(fscrop fraction of SCF events in tagging category c, averaged over the DP
Pl product of PDFs of the discriminating variables used in tagging category ¢ for TM events
Pcri product of PDFs of the discriminating variables used in tagging category ¢ for SCF events
Ng; number of continuum events that are tagged in category ¢
Ayg parametrizes a possible asymmetry in continuum events
’P;qj product of PDFs of the discriminating variables used in tagging category ¢ for continuum events
Np, number of expected B background events in class j
l’;j fraction of B background events that are tagged in category ¢
A B, parametrizes a possible asymmetry in the charged B background in class j
P product of PDFs of the discriminating variables used in tagging category ¢ for B background class j
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4
P, = l_[Pg'(,i(dk). (19)
k=1

In the fit, the DP coordinates, (x, y), are transformed to
square DP coordinates described in Ref. [9]. The extended
likelihood over all tagging categories is given by

7 N¢
£=Tle" 1L 20
c=1 i

where N°¢ is the total number of events in tagging category
c. The parametrizations of the PDFs are described in
Sec. VA and Sec. VB.

A. The Dalitz plot PDFs

Since the decay B — K7~ 7 is flavor specific, the BY
and B° DP distributions are independent of each other and
in general can differ due to CP violating effects. The
backgrounds, however, are largely independent of the B
flavor, hence a more reliable estimate of their contribution
is obtained by fitting the B® and B° DP distributions
simultaneously. We describe only the B° DP PDF, since a
change from A to A accompanied by the interchange of

Events/(48.00 MeV/c?)

0 05 1 15 2 25 3 35 4 45 5
m_ (GeV/c?

500 |
400 F
300 F

200 F

Events/(32.00 MeV/c?)

100 F

02 04 06 08 1 12 14 16 18
m,., (GeV/c?)

FIG. 3 (color online). The m_- o invariant mass distributions
in the entire kinematic range (top) and below 1.8 GeV/c?
(bottom) for all selected events. The p(770)” is visible as a
broad peak near 0.77 GeV/c?. The data are shown as points with
error bars. The solid histograms show the projection of the fit
result for charmless signal and D events (white), B background
(medium), and continuum (dark).
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the charges of the kaon and pion gives the B° PDF.
Projections of the DP are shown for each of the invariant
masses m - o in Fig. 3, mg+ o in Fig. 4, and mg+ - in
Fig. 5 along with the data.

1. Signal

The total B® — K* 77~ 7% amplitude is given by

*/,Zl (.X, y) = Zakeiq)kfk(‘]’ X, y)r (21)
k

where k runs over all of components in the model described
in Sec. II. The amplitudes and phases are measured relative
to the p(770) K™ amplitude so that the phases ® ,(779)- g+
and ® p(770)* k- are fixed to 0 and the isobar, a,;70)- g+, is
fixed to 1. The TM signal DP PDF is

| Al
Pry(x, y) = €(x, Y)(1 = fscp(x, ¥) 7o (22)
|NTml
where
INTml?> = ReD a,a, e PNTMIf  frdpe,  (23)

K,0

Events/(46.80 MeV/c?)

1 15 2 25 3 35 4 45 5
Mo (GeV/c?)

300
250
200
150

100

Events/(24.00 MeV/c?)

50

0
06 08 1 12 14 16 18

my. (GeV/c?)

FIG. 4 (color online). The my+ o invariant mass distributions
in the entire kinematic range (top) and below 1.8 GeV/c?
(bottom) for all selected events. The K*(892)% is visible as a
narrow peak near 0.89 GeV/c? while the broad distribution near
1.40 GeV/c? is the (Kar);". The data are shown as points with
error bars. The solid histograms show the projection of the fit
result for charmless signal and D events (white), B background
(medium), and continuum (dark).
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FIG. 5 (color online). The mg+,- invariant mass distributions
in the entire kinematic range (top) and below 1.8 GeV/c?
(bottom) for all selected events. The K*(892)° is visible as a
narrow peak near 0.89 GeV/c? while the broad distribution near
1.40 GeV/c? is the (K 7). The narrow peak near 1.8 GeV/c? is
the D° meson. The data are shown as points with error bars. The
solid histograms show the projection of the fit result for charm-
less signal and D events (white), B background (medium), and
continuum (dark).

and

(TMIf . f &) = fDP €(x, y)(1 = fscr(x, ) f o fodxdy. (24)

Here, €(x, y) and fycp(x, y) are the DP-dependent signal
selection efficiency and SCF fraction. These are imple-
mented as histograms in the square DP coordinates. The
indices k, o run over all components of the signal model.
Equation (24) is evaluated numerically for the line shapes
described in Sec. II.

The PDF for signal SCF is given by

| Al* ® Rscr

—— (25)
INscrl* ® Rscr

Pscr(x, y) = €(x, y)fscr(x, y)

where |Ngcg|? is given by Eq. (23) with the replacement
TM — SCF, and

(SCEIf of%)pp = ﬁ) o) fscrlx D fpdxdy. Q6)

Convolution with a resolution function is denoted
by ®Rgcg. In contrast with TM events, a convolution is

PHYSICAL REVIEW D 83, 112010 (2011)

necessary for SCF, since misreconstructed events often
incur large migrations over the DP, i.e. the reconstructed
coordinates (x,, y,) are far from the true values (x,, y;). MC
data sets are used to study this effect and we find that
misreconstructed resonances can be broadened by as
much as 800 MeV. We introduce a resolution function,
Rscr(x,, v, X, y,), which represents the probability to re-
construct at the coordinates (x,, y,) a SCF event that has the
true coordinate (x,, y;). The resolution function is normal-
ized so that

[DP RSCF(xrr Yrs Xt yt)dxrdyr = IV()C,, yt)r (27)

and is implemented as an array of two-dimensional histo-
grams that store the probabilities as a function of the DP
coordinates. Ry is convolved with the signal model in the
expression of Pgcp in Eq. (25) to correct for broadening of
the SCF events.

The normalization of the total signal PDF is guaranteed
by the DP averaged fraction of SCF events,

_ Jop €0 ) fscr (e (LA + | AIP)dxdy
Jop e(x, y) (| A? + | Al*)dxdy
This quantity is decay dynamics-dependent, and in prin-

ciple must be computed iteratively. Typically, (fscp)op =
9% converging rapidly after a small number of fits.

(fscr)pp (28)

2. Background

The continuum DP distribution is extracted from a
combination of off-resonance data and an mgg
sideband (5.200GeV/c? = mpg =5.272GeV/c?) of the
on-resonance data from which the B background has been
subtracted. The DP is divided into eight regions where differ-
ent smoothing parameters are applied in order to optimally
reproduce the observed wide and narrow structures by using
atwo-dimensional kernel estimation technique [25]. A finely
binned histogram is used to describe the peak from the
narrow D° continuum production. Most B background DP
PDFs are smoothed two-dimensional histograms obtained
from MC. The backgrounds due to b — ¢ decays with D°
mesons (class 2 in Table ['V) are modeled with a finely binned
histogram around the D° mass.

B. Description of the other variables
1. Signal

The mgg distribution for TM-signal events is parame-
trized by a modified Gaussian distribution given by

(dy — m)2
20% + a.(d, — m)?

Pygera(ds) = exp| - ] @

The peak of the distribution is given by m and the
asymmetric width of the distribution o is given by o,
for d; <m and o_ for m <d,. The asymmetric modulation
a4 is similarly given by «a, for d; <m and «_ for
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FIG. 6 (color online).
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Distributions of AE/ (left), mgg (center), and NN output (right) for all selected events. The data are shown as

points with error bars. The solid histograms show the projection of the fit result for charmless signal and D events (white), B

background (medium) and continuum (dark).

m < d;. The parameters in Eq. (29) are determined in the
data fit. The mgg distribution for SCF-signal events is a
smoothed histogram produced with a Gaussian kernel
estimation technique from MC.

The AE’ distribution for TM-signal events is parame-
trized by the sum of a Gaussian and a first-order polyno-
mial PDF,

_ (dy — m)?

1
P.._ = _
sig TM(dZ) P CXP[ 20_2

]+a@+b.(%)

The parameters m, o, a given in Eq. (30) are described
by linear functions of x = mit .+ with slopes and inter-
cepts determined in the fit in order to account for a small
residual correlation of AE’ with the DP position. A
smoothed histogram taken from MC is used for the SCF-
signal AE’ PDF. The NN PDFs for signal events are

smoothed histograms taken from MC.

2. Background
We use the ARGUS function [26]

d —
qu?(z T m : ) R 31

max

ES
as the continuum mgg PDF. The end point mgé* is fixed to
5.2897 GeV/c? and £ is determined in the fit. The contin-
uum AE’ PDF is a linear function with slope determined in
the fit. The shape of the continuum NN distribution is
correlated with the DP position and is described by a
function that varies with the closest distance between the

point representing the event and the boundary of the DP
ADPa

Pg(dy; App) = (1 — d3)1(kod} + kydy + k). (32)

Here, k; = q; + p; - App, where ¢;, p; are determined in
the fit. We use smoothed histograms taken from MC to
describe mgg, AE’/, and NN distributions for the B back-
ground classes in Table IV. Projections of the mgg, AE/,

and NN PDFs are shown in Fig. 6 for signal, B background,
and continuum events along with the data.

VI. RESULTS

The ML fit results in a charmless signal yield of Ng, =
3670 * 96(stat) = 94(syst) events and total branching
fraction for charmless B — K* 7~ 7% decays of By, =
38.5 = 1.0(stat) = 3.9(syst) X 10°. We find the yields for
BY — D°7° and B — D™ K™ events are consistent with
the expectations based on their world average branching
fractions. The sources of systematic uncertainty, including
those related to the composition of the DP, are discussed in
Sec. VII. When the fit is repeated starting from input
parameter values randomly distributed within the statisti-
cal uncertainty of the values obtained from the ML fit for
the magnitudes, and within the [—, 7] interval for the
phases, we observe convergence toward four minima of
the negative log-likelihood function (NLL = —log[).
The best solution is separated by 5.4 units of NLL (3.30)
from the next best solution. The event yield we quote is for
the best solution; the spread of signal yields between the
four solutions is less than five events. The phases ® and ®,
CP asymmetries and branching fractions determined by
the ML fit are given for the best solution in Table VI. We
quote the total branching fractions in Table VI assuming all
K* — K and p — 7" 7~ branching fractions to be 100%
and isospin conservation in K* — K7 decays. In the
Appendix we list the fitted magnitudes and phases for
the four solutions together with the correlation matrix for
the best solution.

We measure the relative phase between the narrow B —
K*(892)* 7~ and B°— K*(892)°7° resonances despite
their lack of kinematic overlap due to significant contribu-
tions from the B® — (K )’ #°, (Kar);" 7w~ S-waves, B —
p(770)"K*, and NR components. Each of these compo-
nents interferes with both the B° — K*(892)* 7~ and
B — K*(892)°7° resonances, providing a mechanism for
their coherence. The relative phases among the resonances
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TABLE VI. CP averaged branching fractions By, phases ® and ® for B® and B decays, respectively, measured relative to BY(B%) —
p(770)* K=, and CP asymmetries, Acp, defined in Eq. (7). The first error is statistical and the second is systematic. When the elastic
range term is separated from the K7 S-wave we determine the total NR branching fraction Byg = 7.6 *+ 0.5(stat) * 1.0(syst) X 107°
and the resonant K;;(1430)7r branching fractions Bi: 1430y = 278 % 2.5(stat) = 3.3(syst) X 107, B K;430070 = 7.0 = 0.5(stat) =

1.1(syst) X 1076,

Isobar B (X 1079 D[] ®[°] Acp
p(770)"K* 6.6 +0.5*0.8 0 (fixed) 0 (fixed) 0.20 = 0.09 * 0.08
p(1450)" K+ 24+1.0%06 75+19+9 126 =25 =26 —0.10 = 0.32 = 0.09
p(1700)"K* 0.6 £ 0.6 = 0.4 18 £ 36 = 16 50 =38 =20 —0.36 = 0.57 % 0.23
K*(892)" 7~ 8.0+ 1.1+0.8 33+£22+20 39 +25 +20 —-0.29 = 0.11 = 0.02
K*(892)° 70 33+05+04 20+ 186 17+20+38 —0.15+0.12 = 0.04
(Km)yt ™ 342*24x41 —167 = 16 = 37 —130 £22+22 0.07 = 0.14 = 0.01
(Km)m® 8.6 1.1*13 13+17*12 101716 —0.15 = 0.10 = 0.04
NR 28*£0.5*04 48+ 146 90 +21 %15 0.10 + 0.16 * 0.08

are consequently sensitive to the models for their kinematic
shapes. We discuss the systematic uncertainty associated
with mismodeling of the resonance shapes in Sec. VIIL.
The quality of the fit to the DP is appraised from a y? of
745 for 628 bins where at least 16 events exist in each bin.
The relatively poor fit appears to be due to mismodeling of
the continuum background which comprises 69% of the
23683 events. A signal enhanced subsample of 3232
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FIG. 7 (color online). Distributions of the log-likelihood for all
events (top) and for events excluding the D° region
1.8 GeV/c? < mg+,- <1.9 GeV/c? (bottom). The data are
shown as points with error bars. The solid histograms show
the projection of the fit result for charmless signal and D events
(white), B background (medium), and continuum (dark).

events is selected by requiring the signal likelihood of
events to be greater than 20% as determined by the product
of the NN, AE/, and mpg PDFs. Using the signal enhanced
subsample we find a x> of 149 for 140 bins where at least
16 events exist in each bin. The excess events near
0.8 GeV/c? seen in Fig. 5 are not observed in the signal
enhanced subsample. The systematic uncertainty associ-
ated with continuum mismodeling is described in Sec. VII.

We validate the fit model by generating 100 data sample
sized pseudoexperiments with the same isobar values as the
best solution, and observe that the NLL of the data fit falls
within the NLL distribution of the pseudoexperiments.
The distributions of log-likelihood ratio, log( L,/ L) [see
Eq. (18)], are shown in Fig. 7. The distributions show good
agreement of the data with the fit model. The agreement
remains good when events near the DY region of the DP
(1.8 GeV/c* < mg+,- < 1.9 GeV/c?) are removed from
the log-likelihood distribution.

VIL. SYSTEMATIC UNCERTAINTIES

Since the amount of time required for the likelihood fit
to converge dramatically increases with the number of
isobar parameters to determine, we limit our isobar model
to only those resonances with significant branching frac-
tions. The dominant systematic uncertainty in this analysis
is due to contributions from intermediate resonances not
included in the isobar model. We include the K*(1680)m
and tensor K;(1430)7 resonances with line shapes de-
scribed in Table VII in a fit to data. The result of this fit
is used to generate high statistics samples of MC including
these resonances. These samples are then fitted with the
nominal isobar model and the observed shifts in the isobar
parameters are listed as the Isobar model systematic un-
certainty in the Appendix. We find the K*(1680)7 and
K3(1430)7r amplitudes each to contribute less than 1% of
the charmless signal yield.

Mismodeling of the continuum DP (CDP) distribution is
the second most significant source of systematic uncer-
tainty in the isobar parameters of the signal DP model.
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TABLE VII. The line shape parameters of the additional
K5(1430)°, K5(1430)", K*(1680)° and K*(1680)" resonances.
Resonance Line shape Parameters
Spin-J =1
K*(1680)° RBW [19] M = 1717 MeV/c?
I =322 MeV
R=15(GeV)™!
K*(1680)* RBW [19] M = 1717 MeV/c?
I =322 MeV
R =15 (GeV)™!
Spin J =2
K;(1430)° RBW [19] M = 1432 MeV/c?
I’ = 109 MeV
R =15 (GeV)™!
K5(1430)" RBW [19] M = 1425 MeV/c?
% = 98.5 MeV
R =15 (GeV)™!

Because of the limited amount of off-resonance events
recorded at BABAR, the CDP distribution is modeled
from the mgg sideband as described in Sec. I'V. Events in
the mgg sideband have necessarily higher momentum than
those near the signal peak and hence have a different DP
distribution. To quantify the effect of modeling the mgg on-
resonance CDP with off-resonance events we use a high
statistics sample of gg MC to create a model of the CDP
from the mgg signal region. We then generate 100 pseu-
doexperiments with the mgg signal region CDP model and
fit each of these with both the on-resonance and off-
resonance models of the CDP. The average difference
observed in the isobar parameters between fits with each
of the CDP models is recorded as the Continuum DP
systematic uncertainty in the Appendix. In order to quan-
tify the effect of mismodeling of the shape of the contin-
uum DP with the nominal smoothing parameter, we
recreate the continuum DP PDF with various smoothing
parameters. We refit the data using these alternate contin-
uum DP PDFs and record the variations in the isobars as
the PDF shape systematic uncertainty in the Appendix.
Other sources of systematic uncertainty include: the
uncertainty in the masses and widths of the resonances,
the uncertainty in the fixed B background yields, the
intrinsic bias in the fitting procedure, and the misestimation
of SCF and particle identification (PID) efficiencies in MC.
We vary the masses, widths, and other resonance parame-
ters within the uncertainties quoted in Table II, and assign
the observed differences in the measured amplitudes as
systematic uncertainties (Line shape systematic uncer-
tainty in the Appendix). We find that variations of the
radius R do not significantly change the fitted values of
the isobar parameters. To estimate the systematic uncer-
tainty due to fixing the B background yields, we float each
of the B background contributions in a series of fits to data.
We record the variation in the isobar parameters as the B
background systematic uncertainty in the Appendix.

PHYSICAL REVIEW D 83, 112010 (2011)

The intrinsic fit bias is estimated from the average devia-
tion in the fitted isobar parameters from their generated
values in an ensemble of fits to MC data sets generated
with the expected yields of signal, continuum and B back-
ground events. The average deviation in the isobar parame-
ters from their generated values in MC data sets is recorded
as the Fit bias systematic uncertainty in the Appendix.

The average fraction of misreconstructed signal events
predicted by MC has been verified with fully reconstructed
B — Dp events [27]. No significant differences between
data and the simulation are found. We estimate the effect of
misestimating the SCF fractions in MC by varying their
nominal values relatively by £10% in a pair of fits to data.
The average shift in the isobar parameters is recorded as
the SCF fraction systematic uncertainty in the Appendix.

The efficiency to identify a particle correctly in the
detector differs slightly for MC and data. Since the effi-
ciency across the DP is measured using MC samples, we
must apply a PID weighting to each reconstructed event in
order to produce a corrected DP efficiency. We refit the
data set with the PID corrected DP and record the shift
in the isobar parameters as the PID systematic uncertainty
in the Appendix.

VIII. INTERPRETATION

Here, we use the results of this analysis and that pre-
sented for B® — K7+ o~ [5] to construct isospin ampli-
tudes as described by Egs. (1) and (2). Individually, the
phases of these amplitudes provide sensitivity to the CKM
angle y while together they have been shown to obey the
sum rule defined in Eq. (3) in the limit of SU(3) symmetry.

A. Measurement of ®;/,
1. B— K" decays

The weak phase of A5, in Eq. (1), expressed as a
function of the phases and magnitudes of isobar ampli-
tudes, is given by [6]

1 _
Gy = 5(5 — 0+ Adger) (33)
Here,

(=) _
\/Qlﬂk*oﬂo(s)

(=)
5 = arctan( >, (34)
* N
Lﬂ]{*ﬂ,—l + \/zl./q,(*oﬂ.ol c
(=) (=)
and A g0, A, are the isobar amplitudes given in
Eq. (4). We define
(-) (=) (=)
= D), (35

s = Sin(CDK*oﬂ.o

- (=) ()

¢ = cos(D g0 — Dges ), (36)
Adger = Dpor — Dy . (37)
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FIG. 8. Likelihood scans illustrating the measurements of
D00 — Pper - = —22 = 24(stat) = 18(syst)°  (top) and
D00 — Dgo v = —4 + 24(stat) + 19(syst)° (bottom). The
solid (dashed) line shows the 2A log(L) for the total (statistical)
uncertainty.

Likelihood scans illustrating the measurements of
® K00 — ((I))KH - are shown in Fig. 8. We measure
D00 — Pgor - = —22 & 24(stat) *+ 18(syst)° and
D00 — Dy = —4 + 24(stat) + 19(syst)® using the
helicity convention defined in Fig. 1. We use A¢g-, =
58 = 33(stat) = 9(syst)° [5] and subtract the mixing phase
contribution 23 = 42.2 = 1.8° [23] to evaluate Eq. (33).

It is important to note that for vector resonances the
helicity convention defines an ordering of particles in the
final state via the angular dependence T(J, x, y) (Table I).
This means that care must be taken to use a consistent
helicity convention when evaluating an isospin decompo-
sition of vector amplitudes [28]. In this analysis the helicity
angle for K** 7~ is measured between the K and 7~
while the helicity angle for K*77° is measured between the
7~ and 7°. This results in a sign flip between the 24) K020
(J’Zl) k- amplitudes when Eq. (1) is evaluated with
K*(892)7 amplitudes measured as in Table VI. The

=)

Ajpp(K* ) isospin triangles described by Eq. (1) are
shown in Fig. 9 for the K*(892)7 amplitudes measured
in Table VI. The destructive interference between

PHYSICAL REVIEW D 83, 112010 (2011)

FIG. 9. Isospin triangles drawn to scale for B — K" decays.
The isobar amplitudes are summarized in Table VIII as
solution I. Note that the isospin triangle for B decays is relatively
flat and A ;,,(K* ) is consistent with 0.

K*(892)7 amplitudes in the isospin decomposition

(Fig. 9) is expected, since these amplitudes are penguin-
(=)

dominated while A, ) is penguin-free by construction

[28]. We find that Eizl)3 /Z(K*ﬂ') is consistent with 0 and
consequently that the uncertainty in § is too large to permit
a measurement of @5, using K*(892)7 amplitudes as
originally suggested in Ref. [3].

2. B— pK decays

It is also possible to obtain a CKM constraint using B —
pK decay amplitudes as in Eq. (2). Here, the p~ K" and
p°K° amplitudes do not decay to a common final state,
making a direct measurement of their relative phase im-
possible. Interference between p~ K+ and p°K°® ampli-
tudes and K*" 7~ can be observed using B® decays to
both K* 77~ 7% and K97 " 7™, permitting an indirect mea-
surement of their relative phase. The weak phase of
Ajp(pK) is given by Eq. (33), where now

C ) N
) )

) )
|ﬂp*K+| C _ + \/zlﬂpﬂKﬂl C 0

). (38)

Here we define

(=) (=)

- =sin(® g+ — s o), (39)
o ) )

c-= C(>S((I),f1<+ = Dyeig), (40)
o ) )

s 0 = sin(®@ g0 — D g o), 41)
o ) )

c o= cos(P g0 = P g o). (42)
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FIG. 10. Likelihood scans illustrating the measurements of
D, g+ — Py - = —33 £ 22(stat) = 20(syst)®  (top)  and
D — Py v = —39 £ 25(stat) = 20(syst)° (bottom). The
solid (dashed) line shows the 2A log(L) for the total (statistical)
uncertainty.

We use the K*(892)* 7~ amplitude in the evaluation
of these expressions. Likelihood scans of the phase
differences (tb)pf Kt~ (CI))KH,T— are shown in Fig. 10. We
measure ® - g+ — Pgor - = —33 = 22(stat) = 20(syst)°
and <i>p+K7 — @pe .+ = —39 *+ 25(stat) + 20(syst)°.

We use the measurements q)poKo — Pper - = 174%
28(stat) = 15(syst)°  and ¢_>po,<o — D = —148 =
25(stat) = 16(syst)® given in Ref. [5]. Before evaluating
Eq. (38) we must account for any discrepancy in helicity
conventions used in this analysis and Ref. [5]. Here we
must consider the helicity conventions used not only
by the pK amplitudes but also the intermediate
K*(892)" 77~ amplitude. In this analysis the helicity
angle is measured between the 7° and K for p K+
amplitudes while the helicity angle is measured
between the 7~ and Kg in Ref. [5]. It is also the case
that the helicity angle is measured between the 77+ and 77~
for K** decays in Ref. [5], and is measured between the
K* and 7~ in this analysis. Since there are a total of two
sign flips due to these differences there is no net sign flip
between A ogo and A ,-x+ when Eq. (2) is evaluated
using the measurements presented in this article and in
Ref. [5].
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FIG. 11. Likelihood scans illustrating the measurement of

D5/, = —107})(stat) "7, (syst)°. The solid (dashed) line shows
the 2A log(L) for the total (statistical) uncertainty.

A

p°K®

FIG. 12. Isospin triangles drawn to scale for B — pK decays.
The isobar amplitudes are summarized in Table VIII as solution I
and in Ref. [5].

We evaluate Eq. (33) using Eq. (38) and produce a
measurement of @3, illustrated in Fig. 11. The

(=)

Aj ) (pK) isospin triangles described by Eq. (2) are shown
in Fig. 12 for the B — pK amplitudes measured in this
analysis and Ref. [5]. In contrast to the K*7 isospin

triangles (Fig. 9) both f54)3 2(pK) are significantly different
from O permitting a measurement of @3, =
—10*15(stat) * 7, (syst)°. This measurement is defined mod-
ulo 180° [see Eq. (33)] and we quote only the value
between *90°. The likelihood constraint shown in
Fig. 11 becomes flat, since sufficiently large deviations
of the B — pK amplitudes will result in a flat isospin
triangle and consequently an arbitrary value of ® ;.

B. Evaluation of the amplitude sum rule

The sum rule given in Eq. (3) motivates the definition
of the dimensionless quantity
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2Alog(L)

FIG. 13. Likelihood scan for ;/,. The solid (dashed) line
shows the 2Alog(L) for the total (statistical) uncertainty. We
measure 3/, = 0.827018(stat) 7011 (syst).

7 * 2 _ * 2
Soh = | As(K 7T)|2 | A (K 77')2| S @)
|J’Zl3/2(pK)| - |543/2(PK)|

The asymmetry parameter 23/, will be 0 in the limit of
exact SU(3) symmetry. Deviations from exact SU(3) sym-
metry or contributions from new physics operators can be
quantified, if 23/, is measured to be significantly different
from 0. We use the amplitudes and phase differences
among B’ — K*7m and B°— pK amplitudes as
described in Sec. VIIIA to produce a likelihood
scan of 23, as shown in Fig. 13. We measure
35, = 0.8270 88 (stat) T2 1 (syst), consistent with 0. The
large statistical and systematic uncertainties are due to
the poorly measured phase differences between the pK
and K*7 amplitudes.

C. Evidence of direct CP violation
in B —» K*" 77~ decays

Measurements of direct CP violation are made
in both the analyses of B’ — K"7 7% and B’ —
K27T+ 7r~. Since these analyses are statistically indepen-
dent, the measurements of Ac-p may be combined for
intermediate resonances common to both. The combined
measurement of direct CP violation for B?—
K*(892)" 77~ decays is found to be Acp(K* 77) =
—0.24 * 0.07(stat) = 0.02(syst) and is significant at
3.10. Likelihood scans illustrating the measurement of
Acp(K**77) in B> —» K" 7~ 7° and the combined result
including the measurement in B® — K)7* 7~ are shown
in Fig. 14.

IX. SUMMARY

In summary, we analyze the DP distribution for B’ —
K" 7~ 7% decays from a sample of 4.54 X 103 BB pairs.
We determine branching fractions, CP asymmetries, and
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FIG. 14. Likelihood scans for A p(K*(892)" 7r~) using only
the B® — K7~ 7% analysis (top) and the combined measure-
ment with the B® — Kgfzr+ 7~ analysis (bottom). The solid
(dashed) line shows the 2Alog(L) for the total (statistical)
uncertainty. We measure Acp(K*"77) = —0.29 = 0.11(stat) *
0.02(syst) (Table VI) in B » K7~ 7° and Acp(K* 77 ) =
—0.24 = 0.07(stat) = 0.02(syst) when the measurement in B’ —
K7 * o~ is combined. The vertical line highlights Acp = 0 and
the horizontal line corresponds to 2A logL =9, i.e. 30.

phase differences of seven intermediate resonances in
addition to a NR contribution. We find that the isospin
amplitude constructed from B® — K*7r amplitudes is con-
sistent with 0, preventing the possibility of a useful
CKM constraint as originally suggested in Ref. [3].
A similar construction made with B® — pK amplitudes
provides sufficient sensitivity to measure the weak
phase of the isospin amplitude. We measure &3/, =
—10*10(stat) T2, (syst)° using B® — pK amplitudes.
Fundamentally, the sensitivity of B — K*7r and B° —
pK decay amplitudes to the CKM angle 7 is limited by
their QCD penguin dominance [28], the isopin amplitude
constructed from a linear combination of such amplitudes
being QCD penguin-free. We suggest that isospin combi-
nations of B, — K"7r and B; — pK amplitudes, which are
not QCD penguin-dominated, will provide a much more
sensitive CKM constraint [29]. We also produce the first
test of a CP rate asymmetry sum rule [Eq. (3)] using
isospin amplitudes. We find the violation of this sum
rule to be X3/, = 0.82708(stat) {11 (syst), consistent
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with 0. A significant violation of the sum rule could
indicate the presence of new physics operators [8], making
further study of the isospin amplitudes presented in this
paper an interesting area of study. Finally, we find evi-
dence of direct CP violation in B® — K** 7~ decays
shown in Fig. 14, A p(K*(892)T7~) = —0.24 *
0.07(stat) = 0.02(syst), when measurements from the
B’ — K*7~ 7" and B® — K07 " 7~ [5] DP analyses are
combined.
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TABLE VIII. Summary of fit results for the four solutions. The isobar parameters (a) and @ are defined in Eq. (4). The phases ® are

measured relative to B’(B%) — p(770)* K* in degrees and the @ are measured relative to B® — p(770)* K~ so that d, 70 g~ = 1.

The uncertainties are statistical only.

Amplitude Parameter Solution I Solution II Solution III Solution IV
ANLL 0.00 5.43 7.04 12.33
p(770)"K* a 0.82 = 0.08 0.82 * 0.09 0.83 = 0.07 0.84 +0.10
a 1 (fixed) 1 (fixed) 1 (fixed) 1 (fixed)
o 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed)
) 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed)
p(1450)" K" a 0.57 = 0.14 0.48 + 0.26 0.59 +0.12 0.49 + 0.20
a 0.52 +0.15 0.52 = 0.16 0.54 = 0.13 0.55 = 0.22
P 126 += 25 90 + 22 126 =25 89 + 22
d 74 + 19 74 + 18 72 * 20 71 =21
p(1700)"K* a 0.33 +0.15 0.11 = 0.31 0.34 = 0.13 0.11 = 0.31
a 0.23 = 0.12 0.23 +0.12 0.17 £ 0.12 0.17 = 0.17
d 50 + 38 35 + 164 50 * 34 34 + 159
0] 18 * 36 17 = 35 —15+48 —17 =57
K*(892) 7~ a 0.66 + 0.06 0.66 + 0.07 0.67 * 0.05 0.68 =+ 0.08
a 0.49 =+ 0.06 0.49 + 0.06 0.55 * 0.06 0.54 + 0.08
d 39 + 25 156 + 25 40 = 25 156 = 25
d 3322 33+22 172 =20 172 =21
K*(892)0 70 a 0.57 = 0.06 0.57 + 0.06 0.58 *= 0.06 0.58 *= 0.07
a 0.49 + 0.05 0.49 = 0.05 0.50 = 0.05 0.51 = 0.07
d 17 =20 17 =21 17 =21 16 = 21
d 29 + 18 29 + 18 9+ 18 9+ 19
(Km)ytar a 1.15 = 0.09 1.22 +0.10 1.18 = 0.07 1.24 +0.13
a 1.24 + 0.09 1.24 + 0.09 1.32 = 0.08 1.33 +0.14
d —130 =22 —19 =25 —130 =22 —-19+24
d —167 £ 16 —168 * 16 —38 + 18 —-38+19
(Km)yd a0 a 0.91 = 0.07 1.25 £ 0.10 0.93 +0.07 1.28 +0.13
a 0.78 = 0.08 0.78 = 0.09 1.11 =0.07 1.12 = 0.11
d 10 = 17 21 =17 10 =17 21+ 17
d 13+ 17 13+ 17 1+14 1+14
NR a 0.56 = 0.08 0.31 = 0.09 0.58 = 0.08 0.32 = 0.10
a 0.62 = 0.07 0.63 * 0.07 0.57 = 0.08 0.58 = 0.09
d 87 + 21 —61 £22 87 = 21 —61 =22
d 48 + 14 48 + 14 —65*+ 15 —65 *+ 17
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APPENDIX

The results of the four solutions found in the ML fit are
summarized in Table VIII. Only the statistical uncertainties
are quoted in this summary. The systematic uncertainties
are summarized in Tables IX and X. The CP averaged
interference fractions, I;;, among the intermediate decay
amplitudes are given in Table XI for solution I, expressed as
a percentage of the total charmless decay amplitude. Here,

_ | A+ |~5_Z\k|2_
13, Al + 15 AP

ki (A1)

for k = [ and

TABLE IX. Systematic uncertainties associated with the B — K*7r isobar parameters sum-
marized in Table VIII under solution I. Uncertainties in the phases are in degrees.

Amplitude o(a) o(a) a(D)[°] a(D)[°]

K*(892)" 7~ Isobar model 0.00 0.00 16 19
B Backgrounds 0.01 0.01 1 1

PDF shape parameters 0.03 0.01 3 1

SCF fraction 0.00 0.00 1 1

PID systematics 0.00 0.00 0 1

Line shapes 0.01 0.00 9 4

Fit bias 0.02 0.01 6 6

Continuum DP 0.00 0.00 2 1
Total 0.04 0.02 20 20

(Km)gt ™ Isobar model 0.02 0.02 19 36
B Backgrounds 0.01 0.01 1 1

PDF shape parameters 0.04 0.05 3 1

SCEF fraction 0.00 0.00 1 1

PID systematics 0.01 0.01 0 1

Line shapes 0.01 0.01 8 3

Fit bias 0.03 0.03 6 6

Continuum DP 0.03 0.03 4 5
Total 0.06 0.07 22 37

K*(892)0 70 Isobar model 0.02 0.01 2 0
B Backgrounds 0.01 0.01 1 1

PDF shape parameters 0.02 0.02 1 1

SCF fraction 0.00 0.00 0 0

PID systematics 0.00 0.00 1 0

Line shapes 0.01 0.00 4 4

Fit bias 0.01 0.00 1 1

Continuum DP 0.01 0.01 6 5

Total 0.03 0.02 8 6

(Km)da® Isobar model 0.02 0.03 14 9
B Backgrounds 0.01 0.02 1 1

PDF shape Parameters 0.03 0.02 1 1

SCF fraction 0.00 0.00 0 0

PID systematics 0.00 0.01 0 0

Line shapes 0.01 0.02 4 6

Fit bias 0.01 0.00 1 1

Continuum DP 0.01 0.03 6 4

Total 0.04 0.06 16 12
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TABLE X. Systematic uncertainties associated with the B — p~ K and nonresonant isobar
parameters summarized in Table VIII under solution I. Uncertainties in the phases are in degrees.

PHYSICAL REVIEW D 83, 112010 (2011)

Amplitude o(a) o(a) o(®)[°] a(D)[°]
p(770)" K™ Isobar model 0.06 fixed fixed fixed
B backgrounds 0.01 fixed fixed fixed
PDF shape parameters 0.02 fixed fixed fixed
SCF fraction 0.00 fixed fixed fixed
PID systematics 0.01 fixed fixed fixed
Line shapes 0.01 fixed fixed fixed
Fit bias 0.01 fixed fixed fixed
Continuum DP 0.01 fixed fixed fixed
Total 0.07 fixed fixed fixed
p(1450)" K™ Isobar model 0.04 0.03 25 5
B backgrounds 0.03 0.04 1 1
PDF shape parameters 0.02 0.05 1 2
SCF fraction 0.00 0.01 0 1
PID systematics 0.00 0.02 1 0
Line shapes 0.03 0.02 5 5
Fit bias 0.02 0.01 2 4
Continuum DP 0.00 0.02 1 3
Total 0.07 0.08 26 9
p(1700)~K* Isobar model 0.01 0.02 16 12
B backgrounds 0.04 0.02 2 3
PDF shape parameters 0.02 0.02 3 0
SCF fraction 0.01 0.00 0 1
PID systematics 0.00 0.01 1 0
Line shapes 0.04 0.05 10 9
Fit bias 0.02 0.05 4 1
Continuum DP 0.00 0.01 0 4
Total 0.06 0.08 20 16
NR Isobar model 0.01 0.00 13 1
B backgrounds 0.01 0.01 1 1
SCF fraction 0.00 0.00 0 1
PID systematics 0.00 0.01 0 1
Line shapes 0.02 0.01 8 4
Fit bias 0.05 0.01 1 2
Continuum DP 0.02 0.02 1 3
Total 0.07 0.04 15 6

TABLE XI. The CP averaged interference fractions, /;;, among the intermediate decay amplitudes expressed as a percentage of the
total charmless decay amplitude. The interference fractions are calculated using the isobar amplitudes given in Table VIII as solution I.
p(770)"K*  p(1450)"K*  p(1700)"K*  K*(892)*w~  (Km)y*m~ K*(892)°#° (Km)'#n® NR
p(770)" K™ 17.61 7.22 0.88 0.47 —1.49 0.50 —0.78 0.00
p(1450)" K™ 6.34 —1.71 0.60 0.65 0.42 0.97 0.00
p(1700)” K™ 1.68 0.22 —0.72 0.23 -0.28 0.00
K*(892)* 7~ 7.05 0.00 —0.05 —0.10 0.00
(Km)gFar™ 30.30 —0.08 0.34 -0.08
K*(892)° 70 5.87 0.00 0.00
(Km)m® 15.29 1.16
NR 7.49
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TABLE XII. Correlation coefficients among the floated isobar parameters for B decays.
(Km)g T~ (Km)yd a0 K*(892) 7~
a ) a [ a [
(Km)ytar™ a 1.00 —0.07 0.65 —0.01 0.51 —0.06
) —0.07 1.00 0.17 0.56 0.03 0.94
(Km)yd a0 a 0.65 0.17 1.00 0.17 0.52 0.15
) —0.01 0.56 0.17 1.00 —0.01 051
K*(892) ™ a 051 0.03 0.52 —0.01 1.00 0.03
O] —0.06 0.94 0.15 0.51 0.03 1.00
K*(892) 70 a 0.56 0.01 0.36 —0.04 0.42 0.00
) 0.00 051 0.17 0.86 —0.01 0.46
NR a 0.43 —0.38 0.15 0.02 0.37 —0.36
) 0.07 0.63 0.18 0.68 —0.05 0.53
p(1450)"K* a 0.31 —0.19 0.14 —0.13 0.20 —0.20
) 0.06 0.52 0.11 0.58 0.04 0.46
p(1700)"K* a 0.23 —0.28 0.06 —0.20 0.14 —0.27
) —0.12 0.62 0.10 0.56 —0.03 0.56
p(770)" K+ a 0.56 0.17 0.56 0.20 0.45 0.16
TABLE XIII. Correlation coefficients among the floated isobar parameters for B decays.
K*0(892)7° NR p(1450) K+ p(1700)" K+ p(770)"K*
a ) a [} a [ a [ a
(Km)gtar™ a 0.56 0.00 0.43 0.07 0.31 0.06 0.23 —0.12 0.56
[} 0.01 0.51 —0.38 0.63 —0.19 0.52 —0.28 0.62 0.17
(Km0 a0 a 0.36 0.17 0.15 0.18 0.14 0.11 0.06 0.10 0.56
[} —0.04 0.86 0.02 0.68 —0.13 0.58 —0.20 0.56 0.20
K*(892)" 7~ a 042 —0.01 0.37 —0.05 0.20 0.04 0.14 —0.03 0.45
[ 0.00 0.46 —0.36 0.53 —0.20 0.46 —0.27 0.56 0.16
K*(892)079 a 1.00 —0.09 0.25 0.09 0.27 0.18 0.24 —0.10 0.42
[} —0.09 1.00 0.00 0.65 —0.15 0.54 —0.14 0.50 0.20
NR a 0.25 0.00 1.00 —0.26 0.24 —0.05 0.21 —0.23 0.27
[} 0.09 0.65 —0.26 1.00 —0.16 0.71 —0.22 0.63 0.24
p(1450)" K+ a 0.27 —0.15 0.24 —0.16 1.00 0.02 0.70 —0.67 —0.10
[} 0.18 0.54 —0.05 0.71 0.02 1.00 0.16 0.46 0.36
p(1700)"K* a 0.24 —0.14 0.21 —0.22 0.70 0.16 1.00 —0.61 —0.01
[} —0.10 0.50 -0.23 0.63 —0.67 0.46 —0.61 1.00 0.27
p(770)" K+ a 0.42 0.20 0.27 0.24 —0.10 0.36 —0.01 0.27 1.00
TABLE XIV. Correlation coefficients among the floated isobar parameters for B decays.
(Km)y~ ot (Km)y0 a0 K*(892) 7"
a ® a ® a ®
(Km)y~ ot a 1.00 0.09 —0.44 0.05 —0.39 0.10
) 0.09 1.00 0.01 0.35 0.12 0.86
(Km)yd a0 a —0.44 0.01 1.00 0.47 0.34 0.02
) 0.05 0.35 0.47 1.00 0.02 0.28
K*(892) 7+ a —0.39 0.12 0.34 0.02 1.00 0.14
) 0.10 0.86 0.02 0.28 0.14 1.00
K*(892) 7 a —0.49 0.01 0.24 0.03 031 —0.01
) 0.07 0.34 0.34 0.80 —0.02 0.28
NR a —0.49 —0.25 0.25 0.02 0.30 —0.23
) —0.09 0.33 —0.11 0.45 —0.08 0.18
p(1450)" K~ a —0.63 —0.19 041 —0.17 0.35 —0.18
) 0.02 0.48 0.02 0.50 0.02 0.37
p(1700)" K~ a —0.37 -0.17 0.24 —0.13 0.22 —0.16
) 0.30 0.49 —0.19 0.36 —0.14 0.39
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TABLE XV. Correlation coefficients among the floated isobar parameters for B decays.

PHYSICAL REVIEW D 83, 112010 (2011)

K*(892)7° NR p(1450)* K~ p(1700)* K~
a o} a o} a o} a @
(Km)g~ 7™ a —0.49 0.07 —0.49 —0.09 —0.63 0.02 —0.37 0.30
P 0.01 0.34 —0.25 0.33 —0.19 0.48 —0.17 0.49
(K)dm® a 0.24 0.34 0.25 —0.11 0.41 0.02 0.24 —0.19
P 0.03 0.80 0.02 0.45 —0.17 0.50 —0.13 0.36
K*(892)~ 7™ a 0.31 —0.02 0.30 —0.08 0.35 0.02 0.22 —0.14
P —0.01 0.28 —0.23 0.18 —0.18 0.37 —0.16 0.39
K*(892)°7° a 1.00 —0.05 0.25 0.05 0.35 0.03 0.23 —0.16
) —0.05 1.00 —0.01 0.49 —0.23 0.49 —0.18 0.35
NR a 0.25 —0.01 1.00 —0.05 0.31 0.01 0.23 —0.20
P 0.05 0.49 —-0.05 1.00 —-0.21 0.57 -0.23 0.45
p(1450)* K~ a 0.35 —0.23 0.31 —0.21 1.00 —0.24 0.57 —0.72
D 0.03 0.49 0.01 0.57 —-0.24 1.00 0.13 0.47
p(1700)* K~ a 0.23 —0.18 0.23 —0.23 0.57 0.13 1.00 —0.49
P —0.16 0.35 —0.20 0.45 —0.72 0.47 —0.49 1.00
AGAT+ ATA + AAF+ AL A, The full correlation matrix for solution I is given
Iy = > =— (A2)  in Tables XII, XIII, XIV, and XV. The tables are
1>, AP +1%;, Al - 5
separated by correlations among B and B decay
for k # 1. The A, are the amplitudes defined in Eq. (4). amplitudes.
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