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Infrared dynamic polarizability of HD+ rovibrational states

J.C.J. Koelemeij∗,†

A calculation of dynamic polarizabilities of rovibrational states with vibrational quantum numberv = 0 − 7 and rotational
quantum numberJ = 0, 1 in the 1sσg ground-state potential of HD+ is presented. Polarizability contributions by transitions
involving other 1sσg rovibrational states are explicitly calculated, whereas contributions by electronic transitions are treated
quasi-statically and partially derived from existing data[R.E. Moss and L. Valenzano,Molec. Phys., 2002,100, 1527]. Our
model is valid for wavelengths> 4 µm and is used to to assess level shifts due to the blackbody radiation (BBR) electric field
encountered in experimental high-resolution laser spectroscopy of trapped HD+ ions. Polarizabilities of 1sσg rovibrational states
obtained here agree with available existing accurateab initio results. It is shown that the Stark effect due to BBR is dynamic
and cannot be treated quasi-statically, as is often done in the case of atomic ions. Furthermore it is pointed out that thedynamic
Stark shifts have tensorial character and depend strongly on the polarization state of the electric field. Numerical results of BBR-
induced Stark shifts are presented, showing that Lamb-Dicke spectroscopy of narrow vibrational optical lines (∼ 10 Hz natural
linewidth) in HD+ will become affected by BBR shifts only at the10−16 level.

1 Introduction

The molecular hydrogen ion (H+2 ) and its isotopomers
(HD+, D+

2 , HT+, etc.) are the simplest naturally occurring
molecules. As such they are amenable to high-accuracyab ini-
tio level structure calculations, which are currently approach-
ing 0.1 ppb for rovibrational levels in the electronic ground
potential1. The inclusion of high-order QED terms in these
calculations makes molecular hydrogen ions an attractive sub-
ject for experiments aimed at comparison with theory and tests
of QED. With rovibrational states having lifetimes exceeding
10 ms it has long been recognized that optical (infrared) spec-
troscopy could provide accurate experimental input, and sev-
eral experimental studies were undertaken2,3 or are currently
in progress4. The highest accuracy that has hitherto been
achieved is 2 ppb for a Doppler-broadened vibrational over-
tone transition at1.4 µm in trapped HD+ molecular ions, sym-
pathetically cooled to 50 mK3. By comparison, the highest ac-
curacy achieved in laser spectroscopy of laser-cooled atomic
ions, tightly confined in the optical Lamb-Dicke regime, is
∼ 1 × 10−17 in the case of the Al+ optical clock at NIST
Boulder, USA.5. The Al+ optical clock employs quantum-
logic spectroscopy (QLS) which utilizes entangled quantum
states of two trapped ions, one of which is used for (ground-
state) laser cooling and efficient state detection, whereasthe
other ion contains the transitions of spectroscopic interest6. It
has been pointed that Doppler-free spectroscopy may be per-
formed on HD+ as well3, and also that QLS may be used for
spectroscopy of molecular ions7.

∗ LaserLaB, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam,
Netherlands. Fax: +31 (0)20 598 7992; Tel: +31 (0)20 589 7903; E-mail:
koel@few.vu.nl
† Acknowledges the Netherlands Organisation for Scientific Research for sup-
port.

Fig. 1 (Color online)(a) Potential energy curves of the 1sσg and
2pσu electronic sates. Indicated energy values are binding energies
of the molecule. Shown also are radial nuclear (vibrational)
wavefunctions,χv(R), for v = 0, 4 as well as one dissociating
nuclear wavefunction in the 2pσu state. The red arrow represents a
purely rovibrational transition within 1sσg ; the blue arrow
exemplifies a transition between different electronic states. (b)
Dipole moment functionD1(R) used in the calculation of radial
dipole matrix elements (solid curve), shown together with the
approximate function used by Colbourn and Bunker8 (dashed line)
and the fullyg/u symmetry-broken dipole moment function, valid at
long internuclear range (dot-dashed line).

Accurate results of laser spectroscopy of HD+ are of inter-
est for the determination of the value of the proton-electron
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mass ratio,mp/me
2, and for the search for a variation of

mp/me with time9. The former may be achieved by combin-
ing ab initio theoretical results with results from spectroscopy
at an accuracy level of∼ 10−10; for the latter spectroscopic
results with an accuracy of∼ 10−15 are required to improve
on the current most stringent bounds10,11. In both cases spec-
troscopy of optical transitions is faced with level shifts due to
magnetic and electric fields and, to a lesser extent, shifts due to
collisions and relativistic effects. The Zeeman effect of HD+

was recently considered by Bakalovet al., and level shifts to
second order in the magnetic field were given for a large set of
rovibrational states12,13. Static polarizabilities of vibrational
states with rotational quantum numberJ = 0, 1 were calcu-
lated and reported by several authors14,15, while dynamic po-
larizabilities of HD+ vibrational states withJ = 0 were eval-
uated for a discrete set of two-photon transition wavelengths
in the 1–18µm wavelength range15. However, to our knowl-
edge, no results on dynamic polarizabilities of HD+ for vi-
brational states withJ > 0 are available in literature. Polar-
izabilities of such states for a wide range of infrared wave-
lengths are required for the calculation of differential Stark
shifts due to blackbody radiation (BBR). Moreover, since the
BBR spectrum encompasses several rovibrational transitions
of the HD+ ion, it is expected that the quasi-static treatment of
BBR-induced Stark shifts as often done in the case of atomic
ion species is not valid for HD+. Rather, the case of HD+

will be analogous to that of neutral polar molecules, for which
BBR-induced Stark shifts were evaluated using dynamic po-
larizabilities16.

This Article addresses the (BBR-induced) dynamic Stark
effect of HD+ and is organized as follows. In Sec. 2 we
present our model to calculate dynamic polarizabilities and
BBR-induced Stark shifts, followed by a discussion of the re-
sults for several rovibrational states in the 1sσg ground-state
potential of HD+ in Sec. 3. Conclusions are presented in
Sec. 4. Throughout this Article, the terms ’Stark effect’ and
’polarizability’ will be used interchangeably, and SI units will
be used.

2 Theory

Figure 1(a) shows a partial energy level diagram of the HD+

molecular ion including the electronic ground-state poten-
tial, 1sσg, and the first electronically excited potential, 2pσu.
Note that in HD+ the g/u symmetry quantum labels are only
approximately good quantum labels as the nonidentical nu-
clei introduceg/u symmetry breaking at large internuclear
range. The potential energy curves shown are interpolations
of data published by Esry and Sadeghpour17, who present the
potential energy as the sum of a nonrelativistic, fully adia-
batic curve, and a diagonal nonadiabatic correction. We use
these curves to obtain (real-valued) radial wavefunctionsof

nuclear motion,χvJ(R), by numerical solution of the radial
Schrödinger equation including the centrifugal term due to the
molecular rotation:

−
h̄2

2µ

d2

dR2
χvJ (R)+

[

Vi(R) +
h̄2J(J + 1)

2µR2

]

χvJ(R) = EvJχvJ (R),

(1)
whereR denotes the internuclear separation,µ stands for the
nuclear reduced mass of the molecule,v labels the vibrational
state,J is the rotational angular momentum of the molecule,
andEv,J is the rovibrational energy.Vi(R) are the potential
energy curves for thei = 1sσg, 2pσu states taken from Esry
and Sadeghpour17, who also provide dipole moment functions
D1(R) andD12(R). These correspond to the dipole moment
of the 1sσg state and the dipole moment of electronic transi-
tions between 1sσg and 2pσu, respectively.

The dynamic polarizability corresponds to the ability of the
HD+ molecule to deform under the influence of an oscillating
electric field, and depends on the strengths and frequencies
of many electric dipole transitions in both the nuclear and the
electronic degrees of freedom. Laser spectroscopy on HD+

is typically performed on transitions between low-lying rovi-
brational levels in the 1sσg state, and it is the dynamic polar-
izability of these levels that we will focus on here. The dy-
namic polarizability,α(ω), is defined as follows. A quantum
state with quantum numbers(v, J,M) (with M corresponding
to the projection ofJ on the space-fixedz-axis) and energy
EvJM will undergo an energy shift∆E due to the interaction
with a monochromatic electric field with amplitudeE , polar-
ization stateq, and angular frequencyω equal to

∆E = −
1

4
αq
vJM (ω)E2 (2)

In the remainder of this Article, the polarization stateq ∈
(−1, 0, 1) will be takenq = 0 (i.e. linear polarization parallel
to the space-fixedz-axis) and we will omit the labelq alto-
gether; see Sec. 2.1. The dynamic polarizability can be written
asαvJM (ω) = αrv

vJM (ω)+αe
vJM (ω), whereαrv

vJM (ω) stands
for the contribution by transitions coupling to other 1sσg rovi-
brational states, andαe

vJM (ω) accounts for the contributions
by all transitions connecting to electronically excited states.
To simplify the calculation, we will restrict ourselves to the
two strongest sets of transitions from the rovibrational states of
interest. These are (1) purely rovibrational transitions within
the electronic ground state 1sσg, and (2) electronic dipole tran-
sitions to dissociating states in 2pσu.

2.1 Dynamic polarizability due to rovibrational transi-
tions in 1sσg

As a starting point we will use the energy shift derived using
time-dependent second-order perturbation theory, [Eq. (7.73)]

2 | 1–9



Table 1 Static polarizabilities (in units of4πǫ0a3
0) for vibrational

states withJ = 0. Total polarizabilitiesαvJM (0) were taken from
Moss and Valenzano14. Individual rovibrational and electronic
contributionsαrv

vJM (0) andαe
vJM (0), respectively, are also

specified. Entries in the rightmost column are obtained fromthose
in the other columns asαvJM (0)− αrv

vJM (0)

v αvJM (0) (Ref. [14]) αrv
vJM (0) (this work) αe

vJM (0)

0 395.306 392.2 3.1
1 462.65 458.9 3.8
2 540.69 536.2 4.5
3 631.4 625.9 5.5
4 737.3 730.7 6.6
5 861.7 853.5 8.2
6 1008 998.6 9.4
7 1184 1171 13

Table 2 Comparison of purely electronic static polarizabilities
αe
vJM (0)(in units of4πǫ0a3

0) for vibrational states withJ = 0 of
HD+ with accurate values for vibrational states withJ = 0 of H+

2

and D+

2 , calculated by Hilicoet al. 18 Note that for H+2 and D+

2 the
static polarizability stems from electronic transitions only

v H+

2
18 HD+ (this work) D+

2
18

0 3.168 725 803 3.1 3.071 988 696
1 3.897 563 360 3.8 3.553 025 791
2 4.821 500 365 4.5 4.119 581 678
3 6.009 327 479 5.5 4.791 282 711
4 7.560 453 090 6.6 5.593 314 877
5 9.621 773 445 8.2 6.558 318 701
6 12.41 599 987 9.4 7.729 054 615
7 16.290 999 14 13 9.162 209 589

in the textbook by Sobelman19,

∆EvJM (ω) =
1

2h̄
E2

∑

v′,J′,M ′

ωvv′JJ′

ω2
vv′JJ′ − ω2

|Dvv′JJ′MM ′q|
2,

(3)
wherev, J,M andv′, J ′,M ′ are the quantum numbers of the
initial and final states, respectively. Here we assume that the
states(v, J,M) are degenerate in the quantum numberM . It
is furthermore important to note the role of the sign in the
definition ofωvv′JJ′ :

ωvv′JJ′ = (Ev′J′ − EvJ )/h̄. (4)

Hence,ωvv′JJ′ > 0 for transitions to more highly-excited
states andωvv′LL′ < 0 for transitions to lower states. For
purely rovibrational transitions, the squared dipole transition

matrix element|Dvv′JJ′MM ′q|
2 reduces to20

|Dvv′JJ′MM ′q|
2 = |〈JM |D∗

−q0(ωE)|J
′M ′〉|2µ2

vv′JJ′

= (2J + 1)(2J ′ + 1)

(

J 1 J ′

0 0 0

)2

×

(

J 1 J ′

−M −q M ′

)2

µ2
vv′JJ′ , (5)

with

µ2
vv′JJ′ = |

∫ ∞

0

χv′J′(R)D1(R)χvJ (R)dR|2. (6)

The dipole matrix elementµvv′JJ′ is a vector oriented along
the internuclear axis of the HD+ molecule. Therefore, in or-
der to evaluate the matrix elements,µvv′JJ′ needs to be trans-
formed from the molecule-fixed to the space-fixed frame by
rotation about the set of Euler anglesωE, which is imple-
mented through the rotation operatorD∗

−q0(ωE) in the first
factor in Eq. (5). In arriving at the second line of Eq. (5) we
use the fact that for states withΛ = 0 (like for 1sσg, while
ignoring the spins of the proton, deuteron and electron) the
projection ofJ on the internuclear axis is zero. As stated in
Sec. 2, we will consider the caseq = 0 only.

The squared matrix elementsµ2
vv′JJ′ are readily evalu-

ated using the numerical expressions for wavefunctions and
dipole moment functions introduced above. The expression
for αrv

vJM (ω) is obtained after inserting Eqs. (4) and (5) into
Eq. (3), followed by equating Eq. (3) to Eq. (2) and solving for
αrv
vJM (ω) (momentarily assuming thatαe

vJM (ω) = 0). As we
here focus on low-lying vibrational levels and dipole transi-
tions only, we will truncate the summation in Eq. (3) tov = 9,
and also ignore the contribution by purely rovibrational tran-
sitions to continuum states above the 1sσg dissociation limit.
This is justified as the line strength of vibrational overtones
decreases rapidly with increasing order of the overtone. The
summation is furthermore limited to terms obeying the selec-
tion ruleJ ′ = J ± 1.

2.2 Polarizability due to electronic transitions

For static electric fields(ω → 0), it is known thatαrv
vJM (ω) ≫

αe
vJM (ω)14. This may not necessarily be the case for infrared

frequencies, for whichαrv
vJM (ω) is expected to be smaller as

spectrally nearby vibrational overtones are generally weak,
whereas the detuning from strong rotational transitions and
fundamental vibrations is large. Thus, there may be spectral
regions whereαe

vJM (ω) becomes comparable in magnitude to
αrv
vJM (ω). However, transitions from low-lying 1sσg rovibra-

tional states to 2pσu states are located in the ultraviolet (UV)
or even in the vacuum-ultraviolet (VUV) spectral range. Since
the frequencies present in theT = 300 K BBR spectrum are
in the infrared (peak emission wavelength∼ 10 µm), it seems

1–9 | 3



Table 3 Static polarizabilities (in units of4πǫ0a3
0) for vibrational states withJ = 1. Total polarizabilitiesαvJM (0) were taken from Moss

and Valenzano14. Individual rovibrational and electronic contributionsαrv
vJM (0) andαe

vJM (0), respectively, are also specified. For eachM
value, entries in the rightmost column are obtained from those in the other columns asαvJM (0)− αrv

vJM (0)

M = 0 |M | = 1
v αvJM (0) (Ref. [14]) αrv

vJM (0) (this work) αe
vJM (0) αvJM (0) (Ref. [14]) αrv

vJM (0) (this work) αe
vJM (0)

0 -229.986 -234.1 4.2 120.979 118.4 2.6
1 -268.90 -274.0 5.1 141.50 138.5 3.0
2 -313.87 -320.2 6.4 165.29 161.7 3.6
3 -366.00 -373.9 7.9 192.95 188.8 4.2
4 -426.66 -436.6 9.9 225.26 220.3 4.9
5 -497.57 -510.0 12 263.22 257.3 5.9
6 -580.99 -596.7 16 308.11 301.0 7.1
7 -679.82 -699.9 20 361.66 353.0 8.7

justified to regard the BBR electric field as static where it con-
cernsαe

vJM (ω). In Sec. 3.3.1 it will be further justified that for
this reason,αe

vJM (0) is a good approximation toαe
vJM (ω).

Rather than deriving the static polarizabilityαe
vJM (0)

from second-order perturbation theory, we extract its values
from previously published and accurate static polarizabilities
αrv
vJM (0), obtained by a full nonadiabatic calculation by Moss

and Valenzano14, as follows. From each of the total static po-
larizabilitiesαvJM (0) tabulated by Moss and Valenzano, we
subtract our value forαrv

vJM (0) calculated using the procedure
described in Sec. 2.1 to obtainαe

vJM (0).

3 Results and discussion

3.1 Rovibrational wavefunctions and dipole matrix ele-
ments

Before discussing the results of our method to obtain
αvJM (ω), it will be worthwhile to investigate the accuracy
of the wavefunctionsχvJ (R) and energy levelsEvJ obtained
from Eq. (1), as well as the accuracy of the radial dipole matrix
elementsµvv′JJ′ calculated using Eq. (6). From comparisons
with more accurate nonrelativistic level calculations forHD+ 9

the inaccuracy of the energiesEvJ calculated here is found to
be a few parts in105 (or less than0.5 cm−1), in correspon-
dence with the accuracy specified by Esry and Sadeghpour17.
The accuracy of the energy levels also gives an indication of
the accuracy of the wavefunctionsχvJ(R).

In order to check the accuracy of the radial matrix elements
µvv′JJ′ , a comparison can be made with values calculated by
Colbourn and Bunker8. Here it is important to note, how-
ever, that Colbourn and Bunker ignore effects ofg/u symmetry
breaking by using a dipole moment functionDCB(R) ≈ eR/6
(with e the electron charge)§. This functional form is valid

§This expression follows from evaluating the HD+ 1sσg dipole moment with
respect to the center of mass at the equilibrium internuclear separation, for
which the electron on average sits halfway the two nuclei.

at short internuclear range, where effects ofg/u symmetry
breaking are small. However, for large internuclear separa-
tion in the 1sσg state of HD+, the electron sits primarily at the
deuteron, which leads to a dipole moment function varying
for largeR as≈ (2/3)eR. The functionD1(R) provided by
Esry and Sadeghpour includes effects ofg/u symmetry break-
ing, as illustrated in Fig. 1(b). To compare with the resultsby
Colbourn and Bunker, we first use ourχvJ (R) with DCB(R)
to obtain matrix elementsµCB

vv′JJ′ . We find agreement at the
level of a few times10−5, consistent with the accuracy of both
our wavefunctionsχvJ (R) and those used by Colbourn and
Bunker, which produce energy levels with similar accuracy.A
second calculation usingD1(R) instead ofDCB(R) leads to
radial matrix elements differing from those by Colbourn and
Bunker at the level of2×10−3 for transitionsv′ = 1−v = 0,
and4× 10−3 for v′ = 5− v = 4. This difference we attribute
to the inclusion ofg/u symmetry-breaking effects inD1(R),
and may be considered an improvement over the values by
Colbourn and Bunker. We put an conservative error margin
of 25% on this difference, thereby placing an upper bound of
1× 10−3 on the accuracy of the matrix elementsµvv′JJ′ .

3.2 Static polarizability results

3.2.1 Accuracy of αrv
vJM (0). The results of Sec. 2.1 en-

able us to calculate dynamic polarizabilitiesαrv
vJM (ω). To as-

sess the accuracy of these calculations, we have checked the
dependence of the static polarizabilityαrv

vJM (0) on the accu-
racy of both the energy levels and the radial matrix elements
used. Computingαrv

vJM (0) once with the eigenvaluesEvJ

of Eq. (1), and once with accurate energy levels published
by Moss21 (accuracy better than 0.001 cm−1), we find that
αrv
vJM (0) varies by∼ 1 × 10−4. A similar check is done by

using values|µvv′JJ′ |2 computed usingDCB(R) andD1(R),
respectively. The effect of the improved values onαrv

vJM (0)
is a few times10−3. Placing again a conservative bound of
25% on the accuracy of this improvement, the accuracy of our
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Fig. 2 (Color online) Dynamic polarizabilities versus wavelength (λ = 2πc/ω) for states withJ = 0 and, from bottom to top,v = 0, 1, 7,
respectively. The curves were produced using Eq. (7). For each curve, dashed segments correspond to negative values, while solid segments
correspond to positive values. Each ’dip’ or ’peak’ in a curve corresponds to a zero crossing of the polarizability. Vertical dashed lines indicate
the position of rovibrational transitions(v, J)− (v′, J ′) coupling toJ ′ = 1 states. The dots show the more accurate values calculated for
specific wavelengths by Karret al. 15, which agree with our result to within 3%.

value ofαrv
vJM (0) is found to be≤ 1 × 10−3. We also moni-

tored the effect of the truncation of Eq. (3) tov′ = 9. This has
no noticeable effect at the1× 10−3 level for statesv ≤ 7.

3.2.2 Accuracy of αe
vJM (0). As described in Sec. 2.2,

the valuesαrv
vJM (0) may be combined with previously pub-

lished valuesαvJM (0) to extractαe
vJM (0). Thus-found val-

ues ofαe
vJM (0) are presented in Tables 1 and 3. We find that

αe
vJM (0) contributes toαvJM (0) at the1% level. Given the

≤ 1× 10−3 accuracy of our results forαrv
vJM (0), we are lead

to believe that the values ofαe
vJM (0) inferred here are accu-

rate to within10%.
It is furthermore interesting to compare the values of

αe
vJM (0) obtained here with static polarizabilities of the iso-

topomers H+2 and D+2 , which were calculated with high accu-
racy for vibrational states withJ = 0 by Hilico et al.18. In
Table 2 it can be seen that for each vibrational state, the HD+

value lies in between the values for H+
2 and D+2 . This is ex-

plained by the fact that the energy of a given vibrational state
scales as

√

1/µ, with µ the reduced nuclear mass of the iso-
topomer. Thus, for large reduced mass, vibrational levels are
more deeply bound and therefore exhibit a smaller static polar-
izability. As the variation of binding energy is small compared
to the typical energies of transitions to 2pσu states, the mass
scaling of the polarizability is approximately linear, andthe
value for HD+ should be located halfway the values for H+

2

and D+2 as in Table 2.

3.3 Dynamic polarizability results

3.3.1 Accuracy of the approximation. As discussed
in Sec. 2.2, we will approximate the dynamic polarizability

αvJM (ω) = αrv
vJM (ω) + αe

vJM (ω) by the expression

αvJM (ω) ≈ αrv
vJM (ω) + αe

vJM (0). (7)

For the infrared spectral range of interest here (λ ≥ 4 µm)
we believe that by approximatingαe

vJM (ω) by αe
vJM (0) we

systematically underestimate the magnitude of the shift due
to αe

vJM (ω) alone by less than10% (details of this estimate
are postponed to the Appendix). This is comparable to the
uncertainty of the valuesαe

vJM (0) reported in Tables 1 and
3. In order to verify the accuracy, we compare the result of
Eq. (7) with the more accurate values calculated by Karret al.
for a discrete set of wavelengths for states withJ = 0 (Fig. 2).
The results of the two methods are found to agree within 1%
for v = 0 and within 3% forv = 7. As the comparison is made
for relatively short wavelengths, for which the polarizability
stems almost entirely fromαe

vJM (ω), the level of agreement
is consistent with the estimated error of≤ 10% in the value of
αe
vJM (0).
The result forαe

vJM (0) obtained here is more useful than
one would expect on the basis of its error margin for two rea-
sons. First, for dynamic Stark shifts due to BBR (found by
integrating the dynamic Stark shift over the BBR electric field
spectral density; see Eq. (9) and the Appendix), we estimate
the error introduced by the quasi-static approximation to be
even smaller,≤ 3%. Second, for spectroscopy one is primar-
ily concerned with differential level shifts, for which thesys-
tematic errors inαvJM (ω) will partially cancel.

3.3.2 Dependence on |M | and polarization state. It was
mentioned in Sec. 2.1 that Eq. (7) tacitly assumes linearly po-
larized electric fields. For obtaining the shift due to unpolar-
ized, incoherent BBR, it is necessary to average over the three
independent polarization statesq = −1, 0, 1. It may be shown

1–9 | 5



Fig. 3 (Color online) (a) Dynamic polarizabilities versus wavelength(λ = 2πc/ω) for various states withv = 0, J = 1, computed using
Eq. (7). For each curve, dashed segments correspond to negative values, while solid segments correspond to positive values. Each ’dip’ or
’peak’ in a curve corresponds to a zero crossing of the polarizability. Vertical dashed lines indicate the position of rovibrational transitions
(v, J)− (v′, J ′) coupling toJ ′ = 0, 2 states. The curves show marked tensorial differences between differentM -states for polarized electric
fields. It is also seen that for shorter wavelengths the contribution by rovibrational transitions becomes less significant, and that the electronic
contribution becomes dominant instead. Furthermore, the magnitude of the average polarizability is seen to decrease towards longer
wavelengths, which can be interpreted as an geometric averaging effect of the molecular rotation. (b) Mean-square electric field spectral
density of the BBR atT = 300 K. The BBR spectrum encompasses several rovibrational transitions, which implies that the Stark effect due to
BBR is dynamic. Furthermore, the BBR spectrum covers both the rovibrationally-dominated (long-wavelength) polarizability range and the
electronically-dominated (short-wavelength) range. This illustrates the need to include both rovibrational and electronic polarizabilities in a
calculation of dynamic Stark shifts due to BBR.

from Eq. (5) that this is equivalent to averaging Eq. (7) over
all M states:

αvJ (ω) =
1

(2J + 1)

∑

M

αvJM (ω), (8)

leading to a shift∆EBBR
vJ (T ) due to the BBR mean-square

electric field density〈E2
BBR(ω, T )〉 of

∆EBBR
vJ (T ) = −

1

2

∫ ∞

0

αvJ(ω) 〈E
2
BBR(ω, T )〉dω. (9)

In our model,αvJ (ω) involves a summation over terms which
diverge for frequencies equal to their respective rovibrational
transition frequencies (Eqs. (2) and (3)). The integrationover
this sum is performed as follows. First, the convergence prop-
erties of the sum and BBR density function (Eq. (A.5) in the
Appendix) allow to interchange the summation and integral
signs, after which Eq. (9) is evaluated as a series of Cauchy
principal value integrals.

We stress that the average polarizability (Eq. (8)) can be ap-
plied to unpolarized, incoherent electric fields only. To illus-

trate this, we plot (forv = 0 andJ = 1) both the average po-
larizability αvJ (ω) and the polarizabilities for linearly polar-
ized electric fieldsαvJM (ω) and|M | = 0, 1 in Fig. 3(a). For
long wavelengths,αvJM (ω) is dominated by purely rovibra-
tional transitions. This contrasts the situation forαvJ(ω), in
which the rovibrational contributions to the polarizability av-
erage out due to the molecular rotation (see also Fig. 4). Sev-
eral rotational and vibrational transitions occur which decay
by spontaneous emission (spontaneous lifetime∼ 10 ms22).
Hyperfine structure (which is ignored in our model) of these
transitions covers a spectral range of about 1 GHz13, which
would not be visible on the scale of Fig. 3(a). For wavelengths
shorter than20 µm, electronic transitions start to dominate the
dynamic polarizability, except for narrow spectral regions near
vibrational transitions where the rovibrational polarizability
diverges. Another remarkable feature is the absence of cer-
tain divergences in theJ = 1, |M | = 1 polarizabilities which
do appear in theJ = 1,M = 0 polarizability. This is due to
the selection ruleM ′ −M = 0 appertaining to electric fields
linearly polarized along thez-axis (as assumed here). As a
consequence, states withJ = 1,M = 0 are coupled to states
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Table 4 Dynamic Stark shifts (in mHz) due toT = 300 K BBR for various vibrational states withJ = 0, 1

J = 0 J = 1

v Contributionαrv
vJ (ω) Contributionαe

vJ (ω) Total Contributionαrv
vJ (ω) Contributionαe

vJ(ω) Total
0 35 -27 8.3 32 -27 4.6
1 38 -33 5.5 34 -32 1.9
2 41 -39 1.6 37 -39 -1.9
3 43 -47 -3.5 40 -47 -7.1
4 46 -57 -11 43 -57 -14
5 49 -70 -21 46 -70 -24
6 52 -81 -29 49 -86 -37
7 55 -111 -56 52 -107 -55
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Fig. 4 (Color online) Long-range wavelength behavior of the
v = 0, J = 1 polarizabilities shown in Fig. 3(a). Dashed segments
of each curve correspond to negative-valued polarizabilities, solid
segments to positive values. Vertical dashed lines indicate the
position of rovibrational transitions(v, J)− (v′, J ′) coupling to
J = 0, 2 states. In addition, the polarizability of the (v = 0, J = 0)
state is shown, which is strictly scalar. Due to the absence of
rotation, for this state the average polarizability due to rovibrational
transitions does not average out as forJ = 1 states.

with J ′ = 0, whereas states withJ = 1, |M | = 1 are not,
which explains the absence ofJ ′ = 0 − J = 1 divergences
for |M | = 1 polarizabilities. As expected, the average polar-
izability αvJ (ω) contains all divergences.

Figure 4 shows the behavior of the dynamic polarizabili-
ties ofJ = 0, 1 states at very long wavelengths (electric field
frequency approaching dc). Here, it is clearly visible thatthe
’rotationless’J = 0 state has large polarizability as there is
no averaging effect by the rotation. In general, the dynamic
polarizabilities display strong tensorial behavior, in particular
in cases where the electric field is polarized. This is an im-
portant feature to bear in mind if Stark shifts due to the radio-
frequency electric fields used in ion traps are to be considered,
as these fields have a well-defined polarization.

3.3.3 Results for BBR shift. As is obvious from
Fig. 3(b), the Stark effect due to BBR atT = 300 K is dy-

namic. This situation differs radically from that for atomic
ions, for which the Stark effect due to BBR radiation can
be often treated quasi-statically. Thus, the treatment of sys-
tematic shifts in spectroscopy of HD+ must be done with ex-
tra care, despite the fact that QLS of HD+ molecular ions in
the Lamb-Dicke regime may be done in a similar way as for
atomic ions3,7.

Dynamic Stark shifts due toT = 300 K BBR to several
rovibrational levels are calculated by numerical integration of
Eq. (9) using the Cauchy principal value package of theMath-
ematica computational program. Results are tabulated in Ta-
ble 4, in which we also specify the individual rovibrational
and electronic contributions. The rovibrational contributions
turn out to produce positive level shifts. This can understood
qualitatively from Figs. 3(a) and (b). Indeed, the BBR spec-
trum samples primarily the rovibrationally-dominatedspectral
region (λ > 20 µm) where the polarizability attains negative
values, leading to a positive level shift by virtue of Eq. (2).
On the other hand, BBR wavelengths below20 µm primarily
polarize the electronic structure of the molecule for whichthe
polarizability is positive, and which explains the negative shift
introduced by the electronic contribution (Table 4). We also
calculate differential BBR shifts to several transitions which
may be amenable to Lamb-Dicke spectroscopy (Table 5). For
optical transitions, the differential shifts are relatively small
and contribute at the level of10−16. Assuming that the tem-
perature of the BBR field in an experimental apparatus5 can
be determined to within±10 K, we find from Eq. (9) that the
BBR shift to optical transitions can be inferred from the polar-
izabilities derived here with relative accuracy better than 40%,
or well below10−16 relative to the transition frequency. It
should be noted that the shifts are much smaller than both the
HD+ hyperfine splittings23 and Zeeman shifts due to magnetic
fields typically encountered in experiments3. A more refined
analysis of BBR shifts should therefore include the Zeeman
effect as well as the hyperfine structure.
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Table 5 Differential dynamic Stark shifts (mHz) due to BBR atT = 300 K for various rovibrational transitions

(v′, J ′)− (v, J) Wavelength/µm Contributionαrv
vJ (ω) Contributionαe

vJ (ω) Total Relative /10−16

(0, 1)− (0, 0) 227.98 -3.9 0.2 -3.7 -28.2
(1, 0)− (0, 1) 5.3499 6.5 -5.5 0.9 0.16
(4, 1)− (0, 0) 1.4040 7.1 -30 -23 -1.1
(4, 0)− (0, 1) 1.4199 15 -30 -15 -0.72

4 Conclusion

The dynamic polarizability of rovibrational states in the 1sσg

electronic state of HD+ has been evaluated by combining ex-
isting data on static polarizabilities with numerical calcula-
tions done using a simplified model of the HD+ molecule. As
a result of these numerical calculations, new values for radial
dipole transition matrix elements were obtained which can be
regarded as an improvement over existing values8. The thus
found dynamic polarizabilities point out that the Stark effect
due to BBR – an important systematic effect in optical spec-
troscopy of atomic ions and optical clocks – is highly dynamic
for the molecular ion HD+, in contrast to BBR shifts to op-
tical transitions in atomic ions24. In this respect, the case
of HD+ is similar to that of neutral molecules16. It is fur-
thermore pointed out that the sign and magnitude of infrared
dynamic polarizabilities depend strongly on the polarization
state of the electric fields present. This insight is important for
the evaluation of another well-known systematic shift in high-
resolution spectroscopy of trapped ions, namely the Stark shift
due to the trapping electric fields25. Notwithstanding these
salient features of the HD+ polarizability, it is shown that
T = 300 K BBR shifts become important for optical spec-
troscopy of HD+ only at the10−16 level. The smallness of
the BBR level shifts furthermore suggests that future, more
refined polarizability calculations should take magnetic-field
interactions and hyperfine structure into account.

A Appendix

Here, we justify the approximations presented in Sec. 3.3.1.
We start by noting that except the 2pσu electronically excited
state, all excited-state potential energy curves are located at
large internuclear range, and that these excited states arecon-
nected to 1sσg states by VUV transitions having very poor
Franck-Condon overlap with 1sσg states with low vibrational
quantum number17. Therefore, it is reasonable to assume that
the larger part ofαe

vJM (ω) stems from bound-free transitions
from 1sσg to 2pσu, and that we can use the 2pσu potential en-
ergy curve of Esry and Sadeghpour17 to estimate the effect of
ignoring the dynamic part of the polarizabilityαe

vJM (ω). To
this end, we need to consider the dynamic Stark shift due to
bound-free transitions. A bound state, subject to an oscillating

electric field with photon energyE = h̄ω, will undergo an
energy shift̄h∆(E) due to off-resonant bound-free coupling,
with the corresponding frequency shift being given by26

∆(E) =
1

2π
PV

∫ ∞

0

Γ(E′)

E − E′
dE′. (A.1)

Here,PV denotes the Cauchy principal value, which is eval-
uated numerically using the Cauchy principal value package
of the Mathematica computational program, andΓ(E)/(2π)
stands for the bound-free transition rate (in s−1) induced by
an electric field with photon energyE = h̄ω. This transi-
tion rate can be obtained using Fermi’s Golden Rule, an ap-
proach which was followed by Dunn27 to calculate cross sec-
tionsσvJ (E) for photodissociation of H+2 . These cross sec-
tions are proportional to bound-free radial matrix elements of
the form

σvJ (E) ∝
E

√

Ef

|

∫ ∞

0

χEfJ′(R)D12(R)χvJ (R)dR|2,

(A.2)
whereχEfJ′(R) represents a free (dissociating) state of nu-
clear motion in 2pσu with asymptotic energyEf . Ef is re-
lated toE and the dissociation energyEd

vJ of the bound state
(v, J) by

E = Ed
vJ + Ef , (A.3)

where we have neglected the small (29 cm−1) isotopic split-
ting between the 1sσg and 2pσu dissociation limits17. It is
important to note that the shape ofΓ(E) is governed by these
wavefunctions via Eq. (A.2), and that the ’dynamic’ content
of the shift∆(E) is therefore determined by these wavefunc-
tions. We calculateχEfJ′(R) for the case of HD+ by outward
numerical integration of Eq. (1) for given energyEf while us-
ing the 2pσu potential of Esry and Sadeghpour17. We normal-
ize the free-particle wavefunctions as done by Dunn27, after
which they may be used to find photodissociation cross sec-
tionsσvJ (E) for various states withv = 0 − 7 andJ = 0, 1.
These cross sections are averages overM levels and therefore
suited for a treatment of the shift due to BBR (Sec. 3.3.2).
Multiplying σvJ (E) with the flux of photons from the radia-
tion electric field yields the transition (photodissociation) rate
ΓvJ (E) of state(v, J):

ΓvJ (E) = 2πσvJ (E)
I

h̄ω
= 2πσvJ (E)

cǫ0〈E
2〉

E
. (A.4)
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Here, we used the definition of the irradianceI = cǫ0〈E
2〉. In-

sertingΓvJ(E) into Eq. (A.1) subsequently produces the level
shift∆vJ (E).

To test the validity of the approximations made in Sec. 3.3.1
we apply Eq. (A.1) to two cases. In the first case, we adopt
the approximation of Sec. 3.3.1 by first deriving the mean-
square value of the BBR electric field,〈E2

BBR(T )〉, inserting
it into Eq. (A.4), and subsequently calculating the level shift
in the limit thatE → 0 (i.e. assuming a static field). In the
second case, we obtain the level shift by proper integrationof
Eq. (A.1) over the BBR energy spectral density.

For the first case, we find〈E2
BBR(T )〉 from the equation

1

2
ǫ0〈E

2
BBR(T )〉 =

1

2
W (T ),

noting that only half of the integrated BBR energy density,
W (T ), is stored in the electric field.W (T ) is found by inte-
grating the BBR energy spectral densityw(ω, T )dω:

W (T ) =

∫ ∞

0

w(ω, T )dω

=
h̄

π2c3

∫ ∞

0

ω3

e
h̄ω

kBT − 1
dω

=
π2 (kBT )

4

15 (h̄c)3
. (A.5)

Inserting〈E2
BBR(T )〉 into Eq. (A.4), and inserting the resulting

transition rateΓvJ (E, T ) into Eq. (A.1), we obtain the quasi-
static approximation to the frequency shift∆static

vJ,BBR(T ) as

∆static
vJ,BBR(T ) = lim

E→0
∆vJ (E, T ).

For the second case, we rewrite the BBR mean-square elec-
tric field spectral density as

〈E2
BBR(ω, T )〉dω =

1

ǫ0
w(ω, T )dω

≡
1

h̄ǫ0
w̃(E, T )dE. (A.6)

After inserting Eq. (A.6) into Eq. (A.4) we obtain the spec-
trally integrated dynamic BBR shift∆dyn

vJ,BBR(T ) upon evalu-
ating the expression

∆dyn
vJ,BBR(T ) =

c

h̄
PV

∫ ∞

0

∫ ∞

0

σvJ (E
′) w̃(E′, T )

E′(E − E′)
dE′dE.

(A.7)
The errors introduced by the approximation in
Sec. 3.3.1 can now be simply evaluated from the ratio
∆static

vJ,BBR(T )/∆
dyn
vJ,BBR(T ) for various states(v, J) and

temperaturesT . This is possible even so Eq. (A.2) is incom-
plete; any numerical prefactor missing there will be common
to both methods to compute∆vJ,BBR(T ), and cancel out
in the ratio. For states withv ≤ 7, we find that the ratio
1−∆stat

vJ,BBR(T )/∆
dyn
vJ,BBR(T ) ≤ 0.03. Comparing shifts due

to monochromatic fields in a similar fashion, we observe that

that the ratio1 −∆vJ (0)/∆vJ(E) ≤ 0.1 for λ = 4 µm, and
decreases to 0 in the static-field limit. This translates directly
to the accuracy ofαvJM (ω) claimed in Sec. 3.3.1.
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