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Non-collinearity in high energy processes

P J MULDERS
Department of Physics and Astronomy, VU University, De Boelelaan 1081,
1081 HV Amsterdam, Netherlands
E-mail: mulders@few.vu.nl

Abstract. We discuss the treatment of intrinsic transverse momenta in high energy scat-
tering processes. Within the field theoretical framework of QCD, the process is described
in terms of correlators containing quark and gluon fields. The correlators, parametrized
in terms of distribution and fragmentation functions, contain matrix elements of nonlo-
cal field configurations requiring a careful treatment to assure colour gauge invariance. It
leads to nontrivial gauge links connecting the parton fields. For the transverse momentum-
dependent correlators the gauge links give rise to time reversal odd phenomena, showing
up as single spin and azimuthal asymmetries. The gauge links, arising from multi-gluon
initial and final state interactions, depend on the colour flow in the process, challenging
universality.

Keywords. Partons; intrinsic transverse momentum; universality.

PACS Nos 13.85.Ni; 12.38.Cy; 12.39.St; 11.15.Tk

1. Introduction

The basic degrees of freedom that feel the strong interactions, quarks and gluons,
are confined into hadrons, strongly interacting particles. Considering the nucle-
ons (light hadrons), the characteristic energy and distance scales are given by the
nucleon mass MN, or taking into account the colour degrees of freedom one may
prefer a scale MN/Nc ∼ 300 MeV. We refer to this as O(M) or O(Q0) if we consider
high-energy processes. Such processes are characterized by hard kinematical vari-
ables that are of order Q with Q2 À M2

N. Depending on details, the high-energy
scale Q can be the CM energy, Q ∼ √

s or it can be a measure of the exchanged
momentum.

The basic framework for the strong interactions is quantum chromodynamics
(QCD). Hadrons, however, do not correspond to free particle states created via
the quark and gluon operators in QCD. The situation thus differs from that of
QED with physical electrons and photons. In the latter case, one knows how in the
calculation of an S-matrix element contraction of annihilation and creation operator
in the field and particle state leads to the spinor wave function. For positive times
ξ0 = t, one has

〈0|ψi(ξ)|p〉 = 〈0|ψi(ξ) b†(p)|0〉 = 〈0|ψi(0)|p〉 e−i p·ξ = ui(p) e−ip·ξ, (1)

83



P J Mulders

with p0 = Ep =
√

p2 + m2. Such a matrix element is ‘untruncated’ as seen from

〈0|ψi(ξ)|p〉 θ(t) = θ(t)
∫

d4k

(2π)4
e−ik·ξ i(k + m)

k2 −m2 + iε

×ui(p)
2m

(2π)3 2Ep δ3(k− p). (2)

In a process involving a composite hadronic state |P 〉, contractions with one or
several of the quark and gluon operators may be involved, leading to nonzero matrix
elements for a quark between the hadron state and a remainder, but also to nonzero
matrix elements involving multi-parton field combinations,

〈X|ψi(ξ)|P 〉, 〈X|Aµ(η)ψ(ξ)|P 〉, . . . .

For a particular hadron and a parton field combination, one may collect those
operators that involve hadron |P 〉 into (distribution) correlators

Φij(p;P ) =
∑

X

∫
d3PX

(2π)3 2EX
〈P |ψ̄j(0)|X〉 〈X|ψi(0)|P 〉 δ4(p + PX − P )

=
1

(2π)4

∫
d4ξ ei p·ξ 〈P |ψ̄j(0) ψi(ξ)|P 〉, (3)

or correlators involving matrix elements of the form

Φµ
ij(p, p1; P ) =

1
(2π)8

∫
d4ξ d4η ei (p−p1)·ξ

×ei p1·η 〈P |ψ̄j(0) Aµ(η) ψi(ξ)|P 〉, (4)

pictorially,

i j
p p

P P

Φ(p;P,S)

or

p−p1
p1

(p,p−p ;P,S)ΦA 1

P P

p

.

We will not attempt to calculate these, but leave them as the soft parts, requiring
nonperturbative QCD methods to calculate them. In particular, although being
‘untruncated’ in the quark legs, they will no longer exhibit poles corresponding to
free quarks. These are fully unintegrated parton correlators for initial state hadrons,
in general quite problematic quantities. For example, they are by themselves not
even colour gauge-invariant, an issue to be discussed below. When more hadrons are
involved, one could consider two-hadron correlators, involving two-hadron states (or
correlators involving hadronic states in initial and final state), etc. If the hadrons
are well-separated in momentum phase-space with Pi · Pj ∼ Q2, one expects on
dimensional grounds that incoherent contributions are suppressed by 1/(Pi−Pj)2 ∼
1/Q2 and one can (at least naively) factorize using forward correlators for single
hadrons, connected by a hard partonic subprocess. Such a separation in momentum
space requires a hard inclusive scattering process (Q2 ∼ s). The inclusive character
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is needed to assure that partons originate from one hadron, leaving a (target) jet.
In turn, final state partons decay into a jet, in which we also consider a single
identified hadron, which can straightforwardly be extended to a multi-particle, e.g.
two-pion, state. For the fragmentation process of a parton (with momentum k)
into hadrons (with momentum Ph) we combine the decay matrix elements in the
(fragmentation) correlator, for quarks

∆ij(k, Ph) =
∑

X

1
(2π)4

∫
d4ξ eik·ξ 〈0|ψi(ξ)|Ph, X〉〈Ph, X|ψ̄j(0)|0〉

=
1

(2π)4

∫
d4ξ eik·ξ 〈0|ψi(ξ)a

†
hahψ̄j(0)|0〉, (5)

where an averaging over colour indices is implicit. Pictorially we have

Ph Ph

(k;P  ,S  )hh∆

k k

In particular, we note that in fragmentation correlators one no longer deals with
plane-wave hadronic states, but with out-states |Ph, X〉. In all of the hadronic
states mentioned before, one can also consider polarized hadronic states. The spin
of quarks is contained in Dirac structure and that of gluons in the Lorentz structure
of correlators.

The basic idea in the diagrammatic approach is to realize that the correlator
involves both hadronic states and quark and gluon operators. The correlators can
be studied independent of the hard process, provided we have dealt with the issue
of colour gauge invariance. The correlator is the Fourier transform in the space-
time arguments of the quark and gluon fields. In the correlators, all momenta of
hadrons and quarks and gluons (partons) inside the hadrons are soft which means
that p2 ∼ p · P ∼ P 2 = M2

N ¿ Q2 ∼ s. The off-shellness being of hadronic order
implies that in the hard process partons are in essence on-shell. Consistency of this
may be checked using QCD interactions to give partons a large off-shellness of O(Q)
and check the behaviour as a function of the momenta. In these considerations one
must also realize that beyond tree-level one has to distinguish bare and renormalized
fields.

2. Collinear and transverse momentum-dependent correlators

In a hard process, the parton fields that appear in different correlators correspond
to partons in the subprocess for which the momenta satisfy pi · pj ∼ Q2. In the
study of a particular correlator it implies the presence of a ‘hard’ environment. To
connect the correlator to the hard part of the process, it is useful to introduce for
each correlator with hadron momentum P , a null-vector n, such that P · n ∼ Q.
Using this relation, n would be dimensionless. It is actually more convenient to
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replace n/(P · n) by a dimensionful null-vector n ∼ 1/Q, such that P · n = 1. The
vectors P and n can be used to keep track of the importance of various terms in
the correlators and in the components of momentum and spin vectors [1a]. The
n-vector will acquire a meaning in the explicit applications or play an intermediary
role. At leading order, it will turn out that the precise form of n does not matter,
but at subleading (1/Q) order one needs to be careful.

For parton momenta we write the Sudakov decomposition

p = xP + pT + (p · P − xM2)︸ ︷︷ ︸
σ

n, (6)

where the term xP ∼ Q, pT ∼ M and σ n ∼ M2/Q. We have the exact relations
p · pT = p2

T = (p− xP )2. The momentum fraction x = p · n is O(1).
In a hard process, the importance of the various components allows up to specific

orders in 1/Q, an integration over some components of the parton momenta. The
fact that the main contribution in Φ(p; P ) is assumed to come from regions where
p·P ≤ M2, whereas the momenta have characteristic scale Q, allows performing the
σ-integration up to M2/Q2 contributions (and possible contributions from nonin-
tegrable tails). The resulting transverse momentum-dependent (TMD) correlators
are light-front correlators,

Φij(x, pT;n) =
∫

d(p · P )Φij(p; P )

=
∫

d(ξ · P ) d2ξT

(2π)3
ei p·ξ 〈P |ψ̄j(0)ψi(ξ)|P 〉

∣∣∣∣
LF

, (7)

where we have suppressed the dependence on hadron momentum P . The subscript
LF refers to light-front, implying ξ · n = 0. The light-cone correlators are the
correlators containing the parton distribution functions depending only on the light-
cone momentum fraction x,

Φij(x; n) =
∫

d(p · P ) d2pTΦij(p;P )

=
∫

d(ξ · P )
(2π)

ei p·ξ 〈P |ψ̄j(0)ψi(ξ)|P 〉
∣∣∣∣
LC

, (8)

where the subscript LC refers to light-cone, implying ξ·n = ξT = 0. This integration
is generally allowed (again up to M2/Q2 contributions and contributions coming
from tails, e.g. logarithmic corrections from 1/p2

T tails) if we are interested in hard
processes, in which only hard scales (large invariants ∼ Q2 or ratios thereof, angles,
rapidities) are measured. If one considers hadronic scale observables (correlations
or transverse momenta in jets, slightly off-collinear configurations) one will need
the TMD correlators.

The correlators encompass the information on the soft parts. They depend on
the hadron and (contained) quark momenta P and p (and spin vectors). The
structure of the correlator is reproduced from these momenta incorporating the
required Dirac and Lorentz structure. Clearly, it is advantageous to maximize the
number of components along the momentum (collinear). For the soft scalar objects

86 Pramana – J. Phys., Vol. 72, No. 1, January 2009



Non-collinearity in high energy processes

this means maximizing the number of contractions with n. This leads for nonlocal
operators to the dominance of the twist-2 operators

ψ̄(0)/nψ(ξ) and FnαFnβ(ξ) (9)

(the latter with transverse indices α and β). Twist in this case is just equal to the
canonical dimension of the operator combination (remember that dim(n) = −1).

Of course the appearance of the field strength tensor rather than the gauge field
is a requirement of gauge invariance. Besides the field tensor, we need the inclusion
of gauge links

U
[n]
[0,ξ] = P exp

(
−i

∫ ξ

0

d(η · P )n ·A(η)

)
, (10)

connecting coloured parton fields. In the case of the collinear correlators, the gauge
links can be built from the O(1) gauge fields A+ = An = n · A, giving a link
along the light-cone (ξ+ = n · ξ = ξT = 0). The colour gauge-invariant light-cone
correlators for quarks and gluons are

Φij(x; n) =
∫

d(ξ · P )
(2π)

ei p·ξ〈P |ψ̄j(0)U
[n]
[0,ξ] ψi(ξ)|P 〉

∣∣∣∣
LC

, (11)

Γαβ(x;n) =
∫

d(ξ · P )
(2π)

ei p·ξ〈P |Tr
(
Fnβ(0)U

[n]
[0,ξ] F

nα(ξ)U
[n]
[ξ,0]

)
|P 〉

∣∣∣∣
LC

.

(12)

Using the Taylor expansion of the colour gauge-invariant nonlocal operators,

ψ†(0) U[0,ξ]ψ(ξ) =
∞∑

n=0

(−i)n xµ1 . . . xµn

n!
ψ†(0) iDµ1 . . . iDµn ψ(0)

one recovers the irreducible set of symmetric traceless local operators relevant in
the operator product expansion (OPE) approach to describe Φij(x) and Γαβ(x),
namely

Oµ1...µn

quarks ij = ψ̄j(0) γ{µ1 iDµ2 . . . iDµn} ψi(0)− traces,

Oµ1...µn

gluons αβ = −F
{µ1

β (0) iDµ2 . . . iDµn−1 Fµn}
α(0)− traces,

in which the spin n represents the number of symmetrized indices. Subtracting
traces is needed to have an irreducible set. The TMD light-front correlators

Φ[C]
ij (x, pT; n) =

∫
d(ξ · P ) d2ξT

(2π)3
ei p·ξ 〈P |ψ̄j(0) U

[n,C]
[0,ξ] ψi(ξ)|P 〉

∣∣∣∣
LF

,

(13)
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ψ̄(0)

ψ(ξ)

λ n

(a) Φ[+] ∝ 〈ψ̄(0) U [+]ψ(ξ)〉
ψ̄(0)

ψ(ξ)

λ n

(b) Φ[−] ∝ 〈ψ̄(0) U [−]ψ(ξ)〉

F (0)

F (ξ)

λ n

(c)
Γ[+,+] ∝ Tr 〈F (0)U [+]F (ξ)U [+]†〉

F (0)

F (ξ)

λ n

(d)
Γ[−,−] ∝ Tr 〈F (0)U [−]F (ξ)U [−]†〉

F (0)

F (ξ)

λ n

(e)
Γ[+,−] ∝ Tr 〈F (0)U [+]F (ξ)U [−]†〉

F (0)

F (ξ)

λ n

(f)
Γ[−,+] ∝ Tr 〈F (0)U [−]F (ξ)U [+]†〉

Figure 1. Simplest structures (without loops) for gauge links and operators
in quark correlators (a)–(b) and gluon correlators (c)–(f).

Γ[C,C′]
αβ (x, pT;n) =

∫
d(ξ · P ) d2ξT

(2π)3
ei p·ξ

×〈P |Tr
(
Fn

β (0) U
[n,C]
[0,ξ] Fn

α (ξ)U
[n,C′]
[ξ,0]

)
|P 〉

∣∣∣∣
LF

, (14)

involve a more complex link structure, leading to a path dependence in the defini-
tions (indicated by the arguments C and C ′). This arises because of the (necessary)
transverse piece(s) in the gauge link. The simplest possibilities for the links in the
case of quark and gluon correlators are shown in figure 1 [1].

3. The observables

An important aspect of incorporating intrinsic transverse momenta is the possibility
to access them in experiments. Consider the subprocess γ∗(q) + q(p) → q(k) which
dominates at leading order the inclusive deep inelastic scattering (DIS) process
γ∗(q) + N(P ) → X. In collinear approximation (p ≈ xP ) one finds for the mo-
mentum fraction x the well-known relation x = xB = Q2/2P · q, i.e. the fraction
is identified with the Bjorken scaling variable. For the semi-inclusive deep inelastic
scattering (SIDIS) process γ∗(q) + N(P ) → h(Ph) + X with the same subprocess
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P

P2

1

K

K 2

1

k

k2

1

2

1
p

p H

Figure 2. Schematic illustration of the contribution of a hard subprocess,
parton (p1) + parton (p2) → parton (k1) + parton (k2), to the (2-particle
inclusive) scattering process hadron (P1) + hadron (P2) → hadron (K1) +
hadron (K2) + X, at the level of the amplitude. The process being hard
implies for the hadronic momenta P1 · P2 ∼ P1 ·K1 ∼ Q2, etc.

one has in collinear approximation (k ≈ Ph/z), the relation z = zh = P · Ph/P · q.
The non-collinearity in this process is determined by

qT = q + xB P − 1
zh

Ph, (15)

which is taken as zero in collinear approximation. First of all, we note that qT is
experimentally measurable being a difference of vectors of O(Q). This difference
is meaningful at O(M ) or higher because mass corrections, coming from the iden-
tification of x with xB and z with zh, appear only at O(1/Q2). The vector qT is
the transverse momentum of q in a frame in which P and Ph are chosen parallel or
(experimentally more useful) it is the transverse momentum −Ph⊥/zh in a frame
in which q and P are chosen parallel. We write Q2

T = −q2
T. When QT ∼ O(M)

one easily sees that the Sudakov expansions for the quark momenta, p ≈ xP + pT

and k ≈ 1
z Ph + kT, imply that qT = kT − pT and the qT-dependence is attributed

to the (convoluted effect of the) intrinsic transverse momenta in the fragmentation
and distribution correlators. When QT ∼ O(Q) a collinear description involving a
subprocess with one additional parton radiated off is needed, but for consistency
one also wants a match with the TMD description [2].

Not only in electroweak processes like SIDIS or the Drell–Yan process transverse
momenta can be accessed. This can also be achieved for hadron–hadron scattering.
Also here the identification of the transverse momentum is only possible together
with the identification of the hard subprocess (as shown in figure 2). We define

qT =
1
z1

K1 +
1
z2

K2 − x1 P1 − x2 P2 = p1T + p2T − k1T − k2T, (16)

a relation valid up to O(M). The momenta involved to find qT are in principle
all O(Q) and using at leading order qT ≈ 0 yields relations for the momentum
fractions in terms of the external hadron momenta (up to 1/Q2 corrections). The
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determination of qT at O(M) gives access to the transverse momenta. Experimen-
tally one component of qT is found as the non-collinearity of the produced particles
K1 and K2 in the plane perpendicular to the colliding particles P1 and P2, outlined
in detail in [3].

Accessing intrinsic transverse momenta in most cases requires a careful study of
azimuthal dependence in high energy processes. Although the effects are in principle
not suppressed by powers of the hard scale in comparison with the leading collinear
treatment, it requires measuring hadronic scale quantities (transverse momenta)
in a high momentum environment. Symmetries, in particular time reversal (T)
invariance play an important role:

• The theory of QCD is T-invariant. This makes it sensible to distinguish quan-
tities and observables according to their T-behaviour.

• For distribution correlators involving plane-wave hadronic states in the defini-
tion, combination of the T-operation and hermiticity, shows that the collinear
correlators Φ(x) and Γ(x) must be T-even. For the TMD correlators, how-
ever, the T-operation interchanges Φ[+](x, pT) ↔ Φ[−](x, pT) (and similar
relations for gluon TMD correlators). This allows to construct T-even and
T-odd combinations.

• For fragmentation functions the appearance of a hadronic out-state in the
definition, prohibits the use of T-symmetry as a constraint and one has always
both T-even and T-odd parts in the correlator (one can refer to T-even or
T-odd in as far as the operator structure is concerned, referred to as naive
T-even or naive T-odd).

• In a scattering process, in which T-symmetry can be used as a constraint,
single spin asymmetries would be forbidden. In fact the only real example of
this is DIS (omitting electromagnetic interaction effects). For hadron–hadron
scattering, e.g. the Drell–Yan process, one has a two-hadron initial state and
only the assumption of a factorized description would imply the absence of
single spin asymmetries. We now know that this assumption is not valid, even
not at leading order! Similarly, for processes with identified hadrons in the
final state T-invariance does not give constraints.

• At leading order in αs, however, it is possible to connect single spin asymme-
tries (T-odd observable) to the T-odd soft parts, since the hard process will
be T-even at this leading order. Collins and Sivers effects as explanation for
single spin asymmetries are the best-known examples.

4. The TMD master formula

The description of a hard process is obtained by writing down hard processes in-
volving quarks and gluons and connecting these to the soft parts corresponding to
initial state hadrons and observed hadrons in the final state. In the region where
the hadrons are separated far enough in phase space (Pi · Pj ∼ Q2, as discussed
in the Introduction) one can have a soft part for each of the hadrons. For the de-
termination of the relevant multi-parton matrix elements that need to be included
in the calculation one can use the twist analysis alluded to in §2. At leading or-
der one needs the leading twist matrix elements 〈ψ̄ψ〉 and 〈ATAT〉, but also the
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multi-parton matrix elements 〈ψ̄ A+ . . . A+ψ〉 and 〈AT A+ . . . A+AT〉 (all having
the same twist). The various matrix elements are resummed into colour-gauge
invariants combinations. Inclusion of the transverse pieces at infinity requires a
careful analysis [4]. The links that arise are process-dependent. They arise from
diagrammatic contributions where collinear gluons A · n belonging to a particular
soft part are attached to parton lines belonging to a different soft part (which are
precisely the external parton lines of the linking hard subprocess). The link struc-
ture, thus, is not affected by inclusion of QCD corrections. On the other hand, the
link structure depends on the colour-flow in the specific diagram.

The resulting expression for a hard cross-section at measured qT is

dσ

d2qT
∼

∑

D,abc...

Φ[C1(D)]
a (x1, p1T)Φ[C2(D)]

b

×(x2, p2T) σ̂
[D]
ab→c...∆

C′1(D)]
c (z1, k1T) · · ·+ · · · , (17)

where the sum D runs over diagrams distinguishing also the particular colour flow
and abc . . . is the summation over quark and antiquark flavours and gluons. All
Dirac and Lorentz indices, traces, etc. are suppressed. The ellipsis at the end
indicate contributions of other hard processes.

We illustrate this master formula in the following example, taken from [5], de-
scribing the contribution in a hard scattering process coming from the qq → qq
subprocess (with both quarks having the same flavour). There are four diagram-
matic contributions (see table 1), the result of which can be denoted as σ̂

[D]
qq→qq

with D running over the diagrams. For the first diagram, there are two different
possibilities for the colour flow, which absorbing the overall colour factor in σ̂ have
strengths (N2

c + 1)/(N2
c − 1) and −2/(N2

c − 1), respectively. The second diagram
has the same colour flow possibilities. The third and fourth diagrams also have
identical colour flow possibilities but different from the first two diagrams. In this
case each of the diagrams contributes two terms to the sum in eq. (17), e.g. the
first diagram yields

dσ

d2qT
∼ Φ[(2)+]

q (1)Φ[(2)+]
q (2)

N2
c + 1

N2
c − 1

σ̂[D1]
qq→qq

︸ ︷︷ ︸
∆[(2)−†]

q (1′)∆[(2)−†]
q (2′)

+Φ[2+]
q (1)Φ[2+]

q (2)
−2

N2
c − 1

σ̂[D1]
qq→qq

︸ ︷︷ ︸
∆[2−†]

q (1′)∆[2−†]
q (2′) + · · · , (18)

where the underbraced items are separate σ̂[D]-entries in the D-summation of
eq. (17).

5. Integrated and weighted cross-section

The results for cross-sections after integration over the transverse momenta qT

involve the path-independent integrated correlators Φ(x) rather than the path-
dependent TMD correlators Φ[C(D)](x, pT). Thus, from eq. (17) one gets the well-
known result
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Φq ∝
〈

ψ(0)
{

N2

c
+1

N2
c
−1

Tr
[

U
[�]

]

Nc

U [+] −
2

N2
c
−1

U [�]U [+]
}

ψ(ξ)
〉

∆q ∝
〈

ψ(ξ)
{

N2

c
+1

N2
c
−1

Tr
[

U
[�]

]

Nc

U [−]† −
2

N2
c
−1

U [�]U [−]†
}

ψ(0)
〉

Φq ∝
〈

ψ(0)
{

2N2

c

N2
c
−1

Tr
[

U [�]
]

Nc

U
[+]

−
N2

c
+1

N2
c
−1

U
[�]

U
[+]

}

ψ(ξ)
〉

∆q ∝
〈

ψ(ξ)
{

2N2

c

N2
c
−1

Tr
[

U [�]
]

Nc

U
[−]†

−
N2

c
+1

N2
c
−1

U
[�]

U
[−]†

}

ψ(0)
〉

Table 1. Gauge-links appearing in the soft parts connected to the qq → qq
subprocess depend on the specific diagrams. The paths for Φq(x, pT) are shown
in figure 3.

− 

ξ T

ξ − 

ξ T

ξ

Figure 3. The paths in the gauge links in Φq(x, pT). They involve a loop U [2]

= U [+] U [−]†, which in the path shown in the left figure is closed (colour-trace)
and in the right figure is followed by a [+]-path. We will use the short-hand
notations Φ[(2)+] and Φ[2+] respectively with (2) indicating the colour-tracing
and averaging.

σ ∼
∑

abc...

Φa(x1)Φb(x2) σ̂ab→c...∆c(z1) · · ·+ · · · , (19)

where

σ̂ab→c... =
∑

D

σ̂
[D]
ab→c... (20)

is the partonic cross-section.
Constructing a weighted cross-section (azimuthal asymmetry) by including a

weight qα
T in the qT-integration leads, with the help of the relation between the

observable qT and the intrinsic transverse momenta (e.g. the relation qT = pT− kT

in SIDIS), to soft correlators of the form

Φα [C]
∂ (x) =

∫
d2pT pα

TΦ[C](x, pT). (21)

These still contain a path dependence, and so eq. (17) cannot be simplified im-
mediately. However, it turns out that the correlator in eq. (21) can be expressed
as
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Φα [C]
∂ (x) = Φ̃α

∂ (x) + C
[U(C)]
G πΦα

G(x, x). (22)

Here Φ̃∂(x) is a collinear correlator containing matrix elements with T-even opera-
tors, while ΦG(x, x1) is a collinear correlator with a structure like the quark–gluon–
quark correlator shown in eq. (4) involving the gluon field Fnα. In eq. (22) one
needs the zero-momentum (x1 = 0) limit for the gluon momentum. This matrix
element is known as the gluonic pole matrix element. The operators involved are
T-odd. Both collinear correlators on the RHS in eq. (22) are link-independent. The
gluonic pole factors CG multiplying the gluonic pole correlator in eq. (22), however,
do depend on the gauge link. They can be easily calculated. We have for instance
C

[±]
G = ±1, C

[2+]
G = 3 and C

[(2)+]
G = 1. Thus, one can write for the single-weighted

cross-section

〈qα
Tσ〉 =

∫
d2qTqα

T

d2σ

d2qT

=
∑

D,abc...

Φα [C]
∂ a (x1)Φb(x2) σ̂

[D]
ab→c...∆c(z1) · · ·+ · · ·

=
∑

abc...

Φ̃α
∂ a(x1)Φb(x2)σ̂ab→c...∆c(z1) · · ·+ · · ·

+
∑

abc...

πΦα
G a(x1, x1)Φb(x2) σ̂[a]b→c...∆c(z1) · · ·+ · · · , (23)

where the first term is multiplied by the normal parton cross-section (eq. (20)) and
the second one involves the gluonic pole cross-section,

σ̂[a]b→c... =
∑

D

C
[U(C(D))]
G σ̂

[D]
ab→c... . (24)

Noteworthy is the fact that these gluonic pole cross-sections like the normal partonic
cross-sections also constitute gauge invariant combinations of the squared ampli-
tudes. While for the electroweak processes like SIDIS and DY one has a simple
factor, σ̂`[q]→`q = +σ̂`q→`q and σ̂[q]q̄→`¯̀ = −σ̂qq̄→`¯̀, the result for qq → qq is more
complex,

σ̂qq→qq = σ̂[D1] + σ̂[D2] + σ̂[D3] + σ̂[D4], (25)

σ̂[q]q→qq =
N2

c − 5
N2

c − 1
(σ̂[D1] + σ̂[D2])− N2

c + 3
N2

c − 1
(σ̂[D3] + σ̂[D4]), (26)

where σ̂[Di] refer to the contributions coming from the diagrams in table 1. Actually
the results simplify in the limit Nc →∞ in which case the colour flow is unique for
each diagram. Explicit results for gluonic pole cross-sections are given in ref. [8].

The approach to understand T-odd observables like single spin asymmetries via
the TMD correlators and the non-trivial gauge link structure unifies a number of
approaches to understand such observables, in particular the collinear approach
of Qiu and Sterman [6] and the inclusion of soft gluon interactions by Brodsky
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and collaborators [7]. Although the treatment of fragmentation correlators also
separates into parts with T-even and T-odd operator structure, gluonic pole contri-
butions (T-odd parts) in the case of fragmentation might vanish. Indications come
from the soft-gluon approach [9] and a recent spectral analysis in a spectator model
approach [10].

6. Universality

Clearly the TMD master formula in eq. (17) breaks universality in the sense
that one needs to know TMD correlators Φ[U ](x, pT) with all sorts of gauge links
U . Certainly it would be desirable to perform a study of the effects on the soft
correlators caused by more complex gauge links than the simple ones given in
figure 1.

A useful procedure is to rewrite the TMD correlators in terms of T-even and
T-odd correlators constructed from those in figure 1 and a residual or junk part,

Φ[U ](x, pT) = Φ[even] + C
[U ]
G Φ[odd](x, pT) + δΦ[U ](x, pT), (27)

which by construction leads to

Φ[even](x) = Φ(x), Φα [even]
∂ (x) = Φ̃α

∂ (x) (28)

Φ[odd](x) = 0, Φα [odd]
∂ (x) = π Φα

G(x, x) (29)

δΦ[U ](x) = 0, δΦα [U ]
∂ (x) = 0. (30)

For the simple quark correlators one has δΦ[+] = δΦ[−] = 0 and the T-even and
T-odd combinations are

Φ[even](x, pT) =
1
2
(Φ[+](x, pT) + Φ[−](x, pT)) (31)

Φ[odd](x, pT) =
1
2
(Φ[+](x, pT)− Φ[−](x, pT)). (32)

Then one finds for instance

Φ[2+](x, pT) = Φ[even](x, pT) + 3Φ[odd](x, pT) + δΦ[2+](x, pT)

= 2 Φ[+](x, pT)− Φ[−](x, pT) + δΦ[2+](x, pT).

In [1] it was noted that some further nontrivial simplifications occur for quark junk
TMD while also the simple gluon correlators (figure 1) can be regrouped into T-even
and T-odd combinations,

Γ[even](x, pT) =
1
2

Γ[+,+](x, pT) +
1
2

Γ[−,−](x, pT), (33)

Γ[odd]
F (x, pT) =

1
2

Γ[+,+](x, pT)− 1
2

Γ[−,−](x, pT), (34)

Γ[odd]
D (x, pT) =

1
2

Γ[+,−](x, pT)− 1
2

Γ[−,+](x, pT). (35)

94 Pramana – J. Phys., Vol. 72, No. 1, January 2009



Non-collinearity in high energy processes

The two T-odd correlators reduce to the two three-gluon gluonic pole correlators
ΓF

G(x, x) and ΓD
G(x, x), which differ in the way the three colour octets are coupled

to a colour singlet.
The contributions δΦ and δΓ make the nonuniversality explicit, which is the first

step if one wants to study and possibly prove factorization in the case of TMD
correlators. For phenomenological studies a reasonable first step is to omit the
junk TMD, knowing that they will average to zero in a weighted asymmetry. This
approximation can be applied immediately in the TMD master formula (eq. (17)) in
which the colour flow possibilities are distinguished. This master formula remains
the basic starting point, used in recent analyses of photon-jet [11] and jet-jet [12]
production in hadron–hadron scattering. In the case of a linear weighting with
the transverse momentum one can conveniently cast the result into folding of T-
even and T-odd functions with normal and gluonic pole partonic cross-sections,
respectively. The procedure has been investigated for several processes [13], in
particular comparing the effect of using normal vs. gluonic pole cross-sections.
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