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Abstract. We investigate the notion of ‘infinitary strong normalization’
(SN∞), introduced in [6], the analogue of termination when rewriting in-
finite terms. A (possibly infinite) term is SN∞ if along every rewrite
sequence each fixed position is rewritten only finitely often. In [9], SN∞

has been investigated as a system-wide property, i.e. SN∞ for all terms
of a given rewrite system. This global property frequently fails for trivial
reasons. For example, in the presence of the collapsing rule tail(x:σ) → σ,
the infinite term t = tail(0:t) rewrites to itself only. Moreover, in practice
one usually is interested in SN∞ of a certain set of initial terms. We give
a complete characterization of this (more general) ‘local version’ of SN∞

using interpretations into weakly monotone algebras (as employed in [9]).
Actually, we strengthen this notion to continuous weakly monotone al-
gebras (somewhat akin to [5]). We show that tree automata can be used
as an automatable instance of our framework; an actual implementation
is made available along with this paper.

1 Introduction

In first-order term rewriting a major concern is how to prove termination, or
in another terminology, originating in the tradition of the λ-calculus, how to
prove strong normalization (SN), i.e. the property that all rewrite sequences
must end eventually in a normal form. Numerous advanced techniques and tools
have been developed to prove SN, including interpretations of terms in monotone
algebras [7,8] and in weakly monotone algebras [4].

Another development in term rewriting, in line with the increased attention
for coalgebraic and coinductive notions and techniques, was concerned with the
generalization of finitary to infinitary rewriting, where normal forms are infinite
objects such as streams or infinite trees. Such trees need not be well-founded.
At first sight, termination is then no longer an issue. But a notion analogous to
strong normalization emerges, bearing in mind the same goal of reaching normal
forms. This is infinitary normalization, SN∞, stating that eventually always a
normal form will be reached, although, depending on the chosen rewriting strat-
egy, this may take an infinite or even a transfinitely infinite number of steps.

S. Berardi, F. Damiani, and U. de’Liguoro (Eds.): TYPES 2008, LNCS 5497, pp. 64–82, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The property SN∞ has been investigated in Klop and de Vrijer [6], where it is
shown that it can be rephrased as: all transfinite rewrite sequences converge, or,
equivalently, along every transfinite rewrite sequence each fixed term position is
rewritten only finitely often.

Zantema [9] initiated the development of proof methods for infinitary normal-
ization by adapting the weakly monotone algebras to the infinitary setting. As a
matter of fact, Zantema also studies a weaker notion than SN∞, which he calls
SNω, and which states that all rewrite sequences of length ω are convergent,
in the sense that throughout the infinite reduction any position is rewritten at
most finitely often.1

The properties SN∞ and SNω can be viewed locally, as properties of individual
terms or of sets of terms in a TRS, or globally: the entire TRS is SN∞ (or SNω)
if all its terms are. In [9] only the global versions are investigated, obtaining
characterization theorems for the global properties SNω and SN∞.

The first objective of this paper is to adapt the method of weakly monotone
algebras for proving local versions of SN∞ and SNω, which means that we can
parametrize these properties to arbitrary sets S of finite or infinite terms. The
gain is that the global system-wide version may fail, whereas the local version
for a set S of intended terms may still succeed. Thus we are able to fine-tune the
infinitary termination result for just the terms we want, removing the spoiling
effect of unintended terms. Note that the global properties are special cases of
the local ones. In that sense our results generalize those of [9].

The characterization theorems in [9] impose a certain continuity requirement
on the algebras. However, we found that for the characterization of the stronger
property SN∞ that requirement does not suffice. In order to obtain a full char-
acterization of SN∞ we will strengthen the requirement to what we call below
continuous weakly monotone algebras. They appear to be connected to an early
study of continuous algebraic semantics by Goguen et al. [5].

The second contribution of this paper is the employment of tree automata
to actually prove SN∞ for a set S of infinite terms. Here the tree automaton
T plays a double role: first, it specifies the set S of intended terms, namely
as those infinite terms generated by T , and second, it provides a ‘termination
certificate’ for S. Moreover, and here is the bridge between this second part and
the first part described above, the tree automaton T gives rise to a continuous
weakly monotone algebra that guarantees the property SN∞ for S. Thus the tree
automata method is an ‘instance’ of the general set-up using continuous weakly
monotone algebras.

An explicit goal of our study is finding automatable methods to establish
infinitary normalization properties. Indeed, finding such a tree automaton can
be automated, and we provide and discuss the actual implementation of the
search process using SAT solvers. The implementation is available via the web
page: http://infinity.few.vu.nl/sni/

1 This property SNω does not imply that in ω many steps a normal form will always be
reached (see Remark 2.5). Therefore “ω-convergence” would seem a more appropriate
name. To keep consistency we stick here to the terminology used in [9].
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2 Infinitary Rewriting

We will consider a finite or infinite term as a function on a prefix-closed subset
of N

∗ taking values in a first-order signature. A signature Σ is a finite set of
symbols each having a fixed arity �(f) ∈ N. We use Σn := {f ∈ Σ | �(f) = n}
for the set of n-ary function symbols.

Let X be a set of symbols, called variables, such that X ∩ Σ = ∅. Then,
a term over Σ is a partial map t : N

∗ → Σ ∪ X such that the root is defined,
t(ε) ∈ Σ ∪X , and for all p ∈ N

∗ and all i ∈ N we have t(pi) ∈ Σ ∪X if and only
if t(p) ∈ Σn for some n ∈ N and 1 ≤ i ≤ n. The set of (not necessarily well-
founded) terms over Σ and X is denoted by Ter∞(Σ,X ). Usually we will write
Ter∞(Σ) for the set of terms over Σ and a countably infinite set of variables,
which is assumed to be fixed as underlying the definition of terms.

The set of positions Pos(t) of a term t ∈ Ter∞(Σ) is the domain of t, that
is, the set of values p ∈ N

∗ such that t(p) is defined: Pos(t) := {p ∈ N
∗ | t(p) ∈

Σ ∪ X}. Note that, by the definition of terms, the set Pos(t) is prefix closed. A
term t is called finite if the set Pos(t) is finite. We write Ter (Σ) for the set of
finite terms. For positions p ∈ Pos(t) we use t|p to denote the subterm of t at
position p, defined by t|p(q) := t(pq) for all q ∈ N

∗.
For f ∈ Σn and terms t1, . . . , tn ∈ Ter∞(Σ) we write f(t1, . . . , tn) to denote

the term t defined by t(ε) = f , and t(ip) = ti(p) for all 1 ≤ i ≤ n and p ∈ N
∗.

For constants c ∈ Σ0 we simply write c instead of c(). We use x, y, z, . . . to range
over variables. We write s ≡ t for syntactic equivalence of terms s and t, that is,
if ∀p ∈ N

∗. s(p) = t(p) and s ≡≤n t for syntactic equivalence up to depth n, that
is, if for all positions p with length |p| ≤ n we have s(p) = t(p).

A substitution is a map σ : X → Ter∞(Σ,X ). For terms t ∈ Ter∞(Σ,X ) and
substitutions σ we define tσ as the result of replacing each x ∈ X in t by σ(x).
Formally, tσ is defined, for all p ∈ N

∗, by: tσ(p) = σ(t(p0))(p1) if there exist
p0, p1 ∈ N

∗ such that p = p0p1 and t(p0) ∈ X , and tσ(p) = t(p), otherwise. Let
� be a fresh symbol, � 	∈ Σ ∪X . A context C is a term from Ter∞(Σ,X ∪{�})
containing precisely one occurrence of �. By C[s] we denote the term Cσ where
σ(�) = s and σ(x) = x for all x ∈ X .

Dropping in the definition of terms the requirement that the number of sub-
terms coincides with the arity of the symbols, we obtain the general notion of
labelled trees. For trees we reuse the notation introduced above for terms.

Definition 2.1. An infinitary term rewrite system (TRS) is a set R of rewrite
rules over a first-order signature Σ (and a set of variables X ): a rewrite rule is
a pair 〈�, r〉 of terms �, r ∈ Ter∞(Σ), usually written as � → r, such that for
left-hand side � and right-hand side r we have �(ε) 	∈ X and Var(r) ⊆ Var(�).

Restriction. In this paper we restrict attention to TRSs R in which for all rules
� → r ∈ R both � and r are finite terms.

Definition 2.2. On the set of terms Ter∞(Σ) we define a metric d by d(s, t) = 0
whenever s ≡ t, and d(s, t) = 2−k otherwise, where k ∈ N is the least length of
all positions p ∈ N

∗ such that s(p) 	= t(p).
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Definition 2.3. Let R be a TRS over Σ. For terms s, t ∈ Ter∞(Σ) and p ∈ N
∗

we write s →R,p t if there exist � → r ∈ R, a substitution σ and a context C
with C(p) = � such that s ≡ C[�σ] and t ≡ C[rσ]. A step s →R,ε t is called a
root step. We write s →R t if there exists a position p such that s →R,p t.

A transfinite rewrite sequence (of length α) is a sequence of rewrite steps
(tβ →R,pβ

tβ+1)β<α such that for every limit ordinal λ < α we have that if
β approaches λ from below (i) the distance d(tβ , tλ) tends to 0 and, moreover,
(ii) the depth of the rewrite action, i.e. the length of the position pβ , tends to
infinity. The sequence is called strongly convergent if the conditions (i) and (ii)
are fulfilled for every limit ordinal λ ≤ α. In this case we write t0 ��R tα, or
t0 →α tα to explicitly indicate the length α of the sequence. Note that this
ordinal will always be countable (see [6,7]). In the sequel we will use the familiar
fact that countable limit ordinals have cofinality ω.

A transfinite rewrite sequence that is not strongly convergent will be called
divergent. Note that all proper initial segments of a divergent reduction are yet
strongly convergent.

Definition 2.4. A TRS R is infinitary strongly normalizing on S ⊆ Ter∞(Σ),
denoted SN∞

R (S), if every rewrite sequence starting from a term t ∈ S is strongly
convergent. We write SNω

R(S) if all rewrite sequences of length ≤ ω starting from
a term t ∈ S are strongly convergent. We write SN∞

R shortly for SN∞
R (Ter∞(Σ)),

that is, infinitary normalization on all terms. Likewise SNω
R. Furthermore, the

subscript R may be suppressed if it is clear from the context.

Remark 2.5. The notion SNω was introduced in [9]. Note that it does not imply
that every reduction of length ω converges to a normal form, as examplified by
a reduction f(a, b) →ω f(gω, gω) in the TRS {a → g(a), b → g(b), f(x, x) → c}.
For the TRS R obtained by adding the extra rewrite rule c → c we will even have
SNω

R without SN∞
R . For this reason the terminology SNω seems a bit deceptive.

We suggest to call it ω-convergence. For rewrite systems with rules that are
left-linear and have finite left-hand sides the notions SNω and SN∞ coincide.

Infinitary strong normalization is related to root termination, as follows.

Definition 2.6. Let R be a TRS over Σ and S ⊆ Ter∞(Σ). The ω-family
Fω

R(S) of S is the set of all subterms of �R-reducts of terms t ∈ S. Likewise the
∞-family F∞

R (S) of S is the set of all subterms of ��R-reducts of terms t ∈ S.
We suppress the subscript R whenver R is clear from the context.

Definition 2.7. We call a term t ∈ Ter∞(Σ) root terminating if t admits no
rewrite sequence of length ≤ ω which contains infinitely many root steps. Like-
wise, t is called ∞-root terminating if t does not admit a transfinite reduction
containing infinitely many root steps.

We obtain the following lemma, a refinement of Theorem 2 in [6].

Lemma 2.8. A set of terms S ⊆ Ter∞(Σ) is SN∞
R (S) if and only if all ∞-

family members t ∈ F∞(S) are ∞-root terminating. Likewise we have SNω
R(S)

if and only if all ω-family members t ∈ Fω(S) are root terminating.
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Proof. For the ‘only if’-direction, assume there exists a term t ∈ F∞(S) which
admits a rewrite sequence t �� containing infinitely many root steps. Then there
exists a divergent rewrite sequence s �� C[t] �� for some s ∈ S.

For the ‘if’-direction, assume that SN∞
R (S) does not hold. Then there exists

a rewrite sequence σ : s �� for some s ∈ S which is not strongly convergent.
Then for some depth d ∈ N there are infinitely many rewrite steps at depth d in
σ; let d be minimal with this property. There are only finitely many steps above
depth d and therefore σ factors into σ : s �� s′ �� such that after s′ there are
no rewrite steps above depth d (but infinitely many steps at depth d). The term
s′ has only finitely many subterms at depth d, and by the Pigeonhole Principle
one of these subterms admits a rewrite sequence containing infinitely many root
steps. Hence there exists a term t ∈ F∞(S) which is not root terminating.

The proof for SNω
R(S) proceeds analogously. ��

3 Characterizations of Local SNω and Local SN∞

We give a complete characterization of the local version of SN∞, based on an
extension of the monotone algebra approach of [9].

Definition 3.1. A Σ-algebra 〈A, [·]〉 consists of a non-empty set A and for each
n-ary f ∈ Σ a function [f ] : An → A, the interpretation of f .

Let A = 〈A, [·]〉 be a Σ-algebra, and α : X → A be an assignment of variables.
The interpretation of finite terms t ∈ Ter(Σ) is inductively defined as follows:

[x]α := α(x) [f(t1, . . . , tn)]α := [f ]([t1]α, . . . , [tn]α)

For ground terms t ∈ Ter(Σ, ∅) we write [t] for short, since the interpretation
does not depend on α. We define the interpretation [t] of infinite terms t as the
limit of the interpretations of finite terms converging towards t. In the sequel we
assume (without loss of generality) that the signature Σ contains at least one
constant symbol; in case it does not, we add one. This ensures that every infinite
term is indeed the limit of a sequence of finite terms.

Let Ai, A be sets equipped with metrics. A function f : A1 × . . .×An → A is
continuous if whenever for i = 1, . . . , n the sequence ai,1, ai,2, . . . in Ai converges
with limit ai, then limj→∞ f(a1,j , . . . , an,j) exists and is equal to f(a1, . . . , an).

Definition 3.2. A Σ-algebra 〈A, [·], d〉 equipped with a metric d : A×A → R
+
0

is called continuous if:

(i) for every f ∈ Σ the function [f ] is continuous, and
(ii) for every sequence {ti}i∈N of finite ground terms ti ∈ Ter(Σ, ∅) that is

convergent in Ter∞(Σ, ∅), the sequence {[ti]}i∈N is convergent.

Note that clause (ii) of Definition 3.2 is a necessary and sufficient condition for
the existence of a unique continuous extension [·] : Ter∞(Σ) → A to (possibly)
infinite terms of the interpretation [·] : Ter(Σ) → A. As a matter of fact this
observation motivates the definition.
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Lemma 3.3. Let A = 〈A, [·]〉 be a continuous Σ-algebra. Let t ∈ Ter(Σ,X ) be
a finite term, and σ : X → Ter∞(Σ, ∅) a ground substitution. We define the
map α : X → A for all x ∈ X by α(x) = [σ(x)]. Then we have [tσ] = [t]α.

Proof. We use induction on the term structure of t. The case of t being a variable
is trivial, hence assume t = f(t1, . . . , tn). For i = 1, . . . , n let {ti,j}j∈N be a
sequence of finite terms converging towards tiσ. Then we have:

[tσ] = limj→∞[f(t1,j , . . . , tn,j)] by continuity of [·]
= [f ](limj→∞[t1,j ], . . . , limj→∞[tn,j ]) by continuity of f

= [f ]([t1σ], . . . , [tnσ]) = [f ]([t1]α, . . . , [tn]α) = [t]α by IH ��

Let R be a binary relation on A. A function f : An → A is monotone with
respect to R if a R b implies f(. . . , a, . . .) R f(. . . , b, . . .) for every a, b ∈ A.

Definition 3.4. A weakly monotone Σ-algebra A = 〈A, [·],�,�〉 is a Σ-algebra
〈A, [·]〉 where � is a strict partial order, and � a quasi-order, on A such that:

(i) � is well-founded,
(ii) ∀xyz. (x � y � z ⇒ x � z) and ∀xy. (x � y ⇒ x � y) (compatibility), and
(iii) for every symbol f ∈ Σ the function [f ] is monotone with respect to �.

A weakly monotone Σ-algebra with undefined elements is a weakly monotone
Σ-algebra A = 〈A, [·],�,�〉 with a set Ω ⊆ A of undefined elements for which:

(iv) for every b ∈ Ω and a ∈ A \ Ω we have b � a (maximality), and
(v) for every f ∈ Σ and b ∈ Ω we have [f ](. . . , b, . . .) ∈ Ω (strictness).

All of the results in this paper remain valid if instead of requiring � to be a strict
partial order and � a quasi-order we allow arbitrary binary relations fulfilling
conditions (i)–(v) of Definition 3.4.

Remark 3.5. The reason to consider weakly monotone algebras with more than
just one undefined element is the following. For every TRS R, we want to be
able to build a continuous weakly monotone algebra from the term algebra with
carrier-set Ter∞(Σ) by interpreting the terms t with SN∞

R ({t}) by themselves,
and the other terms by suitably chosen undefined objects. However, by just
dropping the terms t that are not SN∞

R , and replacing them by a single undefined
element usually a continuous algebra is not obtained.

For example, let Σ = {I, J, c}, where I, J are unary function symbols and c
a constant. Let R be the (orthogonal) TRS over Σ with the rules I(x) → x
and J(x) → x. Here the terms t ∈ Ter∞(Σ) with SN∞

R ({t}) are precisely the
finite terms, the terms t ∈ Ter(Σ). Now suppose that A = 〈A, [·], dA,�,�〉
is a continuous, weakly monotone algebra with A ⊇ Ter(Σ), an interpreta-
tion [·] : Σ → A with the property that [f ]([t1], . . . , [tn]) = [f(t1, . . . , tn)] for
all f ∈ Ter(Σ), and dA an extension of the metric in Definition 2.2. Then
we find that A \ Ter(Σ) contains more than one element (and in fact un-
countably many elements). Note that for the induced interpretation function
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[·] : Ter∞(Σ) → A it holds that [t] = t for all t ∈ Ter(Σ). We find that
[Iω] = [I(I(I(. . .)))] = [lim In(x)] = lim[In(x)] = lim In(x) ∈ A \ Ter(Σ), and
similarly, [Jω] = lim Jn(x) ∈ A \ Ter(Σ). From this we conclude that the inter-
pretations [Iω] and [Jω] of the infinite terms Iω and Jω are different elements in
A \ Ter∞(Σ): [Iω] 	= [Jω] follows from dA([Iω ], [Jω]) = dA(lim In(x), lim Jn(x)) =
lim dA(In(x), Jn(x)) = lim d(In(x), Jn(x)) = 1.

Definition 3.6. Let A = 〈A, [·],�,�〉 be a weakly monotone Σ-algebra with
undefined elements Ω.

(i) A set S ⊆ Ter∞(Σ, ∅) is called defined w.r.t. Ω if, for all s ∈ S, [s] /∈ Ω.
(ii) A TRS R over Σ is called (weakly) decreasing w.r.t. Ω if for all � → r ∈ R

and every assignment α : X → A, [�]α 	∈ Ω implies [�]α � [r]α ([�]α � [r]α).

Theorem 3.7. Let R be a TRS over Σ, and S ⊆ Ter∞(Σ, ∅). Then the fol-
lowing statements are equivalent:

(i) SNω
R(S).

(ii) There exists a continuous weakly monotone Σ-algebra A = 〈A, [·], d,�,�〉
with a set Ω of undefined elements such that S is defined w.r.t. Ω, and R
is decreasing with respect to Ω.

Proof. For (i) ⇒ (ii) assume that SNω
R(S) holds. We define A := 〈A, [·], d,�,�〉

with A := Ter∞(Σ, ∅), equipped with the metric d on A from Definition 2.2,
and let Ω := A\Fω(S) be the set of undefined elements. We define the relations
� := (→R,ε · →∗) ∩ (Fω(S) × Fω(S)) and � := →∗, extended by s � t for all
s ∈ Ω, t ∈ Fω(S) and s � t for all s ∈ Ω, t ∈ A. The interpretation [·] is defined
for all f ∈ Σ by [f ](t1, . . . , tn) = f(t1, . . . , tn).

Clearly A is a continuous Σ-algebra; we check that A is a weakly monotone Σ-
algebra with undefined elements Ω. Assume that � would not be well-founded.
Then there exists a term t ∈ Fω(S) admitting an ω-rewrite sequence containing
infinitely many root steps, contradicting SNω

R(S). The compatibility � · � ⊆ �
and � ⊆ � holds by definition. For every b ∈ Ω and a ∈ A \Ω we have b � a by
definition. Furthermore b ∈ Ω implies [f ](. . . , b, . . .) = f(. . . , b, . . .) ∈ Ω, since
the family Fω(S) is closed under subterms. For monotonicity with respect to �,
we consider f ∈ Σ and s, t ∈ A with s � t. If s ∈ Ω then [f ](. . . , s, . . .) ∈ Ω �
[f ](. . . , t, . . .). If s ∈ Fω(S), then [f ](. . . , s, . . .) � [f ](. . . , t, . . .) as a consequence
of the closure of rewriting →∗ under contexts.

We check the remaining requirements of the theorem. For all s ∈ S we have
[s] 	∈ Ω by definition. Consider � → r ∈ R and α : X → AI such that [�]α 	∈ Ω.
Then [�]α ∈ Fω(S) and hence α(x) ∈ Fω(S) for all x ∈ Var(�). Therefore we
obtain [�]α ≡ �α →R,ε rα ≡ [r]α and [r]α ∈ Fω(S), hence [�]α � [r]α.

For (ii) ⇒ (i) assume that A := 〈A, [·],�,�〉 and Ω fulfilling the requirements
of the theorem are given. We show the following auxiliary lemmas:

∀s, t ∈ Ter∞(Σ). [s] 	∈ Ω ∧ s → t ⇒ [t] 	∈ Ω ∧ [s] � [t] (∗)
∀s. [s] 	∈ Ω ⇒ ∀t ∈ Fω(s). [t] 	∈ Ω (∗∗)
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Let s, t ∈ Ter∞(Σ) with [s] 	∈ Ω and s → t. There exist a context C, a rule
� → r ∈ R and a substitution σ such that s ≡ C[�σ] → C[rσ] ≡ t. By Lemma 3.3
together with the assumptions we obtain [�σ] = [�]α � [r]α = [rσ] where the map
α : X → A is defined by α(x) = [σ(x)] for all x ∈ X . Since � ⊆ � and [f ] is
monotone with respect to � for f ∈ Σ, we obtain [s] � [t]. Furthermore [t] 	∈ Ω,
otherwise [t] ∈ Ω � [s] � [t] and hence [t] � [t], contradicting well-foundedness
of �. We obtain (∗∗) by induction together with ‘monotonicity’ of Ω.

Assume SNω
R(S) would not hold. By Lemma 2.8 there exists a term t0 ∈ Fω(S)

which admits an ω-reduction t0 → t1 → . . . containing infinitely many root steps.
Then t0 ∈ Fω(s) for some s ∈ S and by assumption [s] 	∈ Ω, hence by (∗∗) we
obtain ti 	∈ Ω for all i ∈ N. Furthermore by (∗) if follows [ti] � [ti+1] for all
i ∈ N. Moreover for root steps ti →R,ε ti+1 we get [ti] � [ti+1] since then the
context C in the proof of (∗) is empty. As a consequence we have infinitely often
a strict decrease � in the sequence [t0] � [t1] . . ., and by applying � · � ⊆ � we
can remove all � between them; giving rise to an infinite decreasing �-sequence,
contradicting well-foundedness of �. ��

Remark 3.8. A close inspection of the above proof yields that for Theorem 3.7
the requirement on the algebra to be continuous can be weakened. It suffices to
require that for every infinite ground term t the sequence [trunc(t, n)] converges
for n → ∞. Here trunc(t, n) stands for the truncation of t at depth n defined
for all p ∈ N

∗ by trunc(t, n)(p) is t(p) if |p| < n, ⊥ if |p| = n, and undefined,
otherwise; where ⊥ is an arbitrary, fixed constant symbol from the signature Σ.

However, we emphasise that for the characterization of SN∞
R (S) this weaker

condition is not sufficient. Continuity of [·] : Ter∞(Σ) → A is essential for the
correctness of Theorem 3.10. It guarantees that for the limit steps in transfinite
rewrite sequences, the limit of the interpretations coincides with the interpreta-
tion of the limit term.

We note that the weaker continuity condition used in [9, Theorem 3] does not
suffice; see Example 3.9. Strengthening the condition to full continuity of the
interpretation mapping would validate the theorem.

Example 3.9. We consider a TRS R which is SNω but not SN∞. Interestingly,
although the TRS is SNω, we display a term of which a normal form cannot be
reached in ω many steps. Let R be the TRS consisting of the following rules:

f(x, x) → f(A, B) A → s(A) B → s(B) .

It is not difficult to verify that R is indeed SNω, but SN∞ does not hold:

f(A, B) → f(s(A), B) → f(s(A), s(B)) �� f(sω, sω) → f(A, B) → . . . .

Note that the TRS R forms a counterexample to [9, Theorem 3], as the fol-
lowing Σ-algebra A fulfills all requirements of the theorem, but SN∞ does not
hold. We choose the Σ-algebra A = {A, B, F, a, b, f} with A � a, B � b, F � f
and � := � ∪ =. The interpretation [·] is defined as follows:
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[A] = A

[B] = B

[s](A | a) = a [s](B | b) = b [s](F | f) = f

[f ](A | a, B | b) = f [f ](otherwise) = F

where | denotes ‘ or’ and as truncation symbol c we chose c := A. Furthermore,
for the metric we choose d(x, y) = 0 if x = y and 1 otherwise. Then for all
variable interpretations α : X → A we have:

[f(x, x)]α = F > f = [f(A, B)]α

[A]α = A > a = [s(A)]α

[B]α = B > b = [s(B)]α .

Thus all rules are strictly decreasing. It is straightforward to verify that all func-
tions [g] are continuous, for every infinite ground term t the sequence [trunc(t, n)]
converges (with limit in A) for n → ∞, and for every descending sequence
a1 � a2 � · · · for which limn→∞ ai exists we have a1 � limn→∞ ai.

Let A be a set equipped with a metric d and let � be a binary relation on A.
We call the relation � compatible with limits if for every converging sequence
{ai}i∈N with a0 � a1 � . . . we have a0 � limi→∞ ai.

Theorem 3.10. Let R be a TRS over Σ and S ⊆ Ter∞(Σ, ∅). Then the fol-
lowing statements are equivalent:

(i) SN∞
R (S).

(ii) There exists a continuous weakly monotone Σ-algebra A = 〈A, [·], d,�,�〉
with a set Ω of undefined elements such that S is defined w.r.t. Ω, R is
decreasing with respect to Ω, and � is compatible with limits.

Proof. We give the crucial steps for both directions. The remainder of the proof
proceeds analogously to the proof of Theorem 3.7.

For (i) ⇒ (ii) assume that SN∞
R (S) holds. We define A := 〈A, [·], d,�,�〉 with

A := Ter∞(Σ, ∅), d the metric from Definition 2.2, and Ω := A \ F∞(S); we
define the relations � := (→R,ε · ��)∩ (F∞(S)×F∞(S)), � := ��∩ (F∞(S)×
F∞(S)), extended by s � t for all s ∈ Ω, t ∈ F∞(S) and s � t for all s ∈ Ω, t ∈
A. The interpretation [·] is defined for all f ∈ Σ by [f ](t1, . . . , tn) = f(t1, . . . , tn).
Consider a sequence a0 � a1 � . . . with a0 ∈ F∞(S). Then a0 �� a1 �� . . . by
definition and by SN∞

R (S) we obtain that a := limi→∞ ai exists, a0 �� a and
a0 � a. Hence � is compatible with limits.

For the implication (ii) ⇒ (i), the crucial step is to show that s �� t implies
s � t. We use induction on the length of the rewrite sequence s →α t. Note that
the length α of a reduction is a countable ordinal, c.f. [6]. For α = β+1 we obtain
s � t by induction hypothesis together with (∗) from the proof of Theorem 3.7.
Assume that α is a (countable) limit ordinal. Then there exists a non-decreasing
sequence {βi}i∈N of ordinals βi < α such that α = limi→∞ βi. Let sγ denote
the term before the γ-th rewrite step in s →α t. Then s �� sβ1 �� sβ2 . . .
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and t = limi→∞ sβi . Hence by induction hypothesis s � sβ1 � sβ2 . . .; and by
compatibility of � with limits we obtain s � t. This gives us a handle for limit
steps; the rest of the proof is analogous to the proof of Theorem 3.7. ��

Finally, we generalize the Theorems 3.7 and 3.10 together with the concept of
‘root termination’ allowing for simpler, stepwise proofs of SN∞

R (S). This facility is
incorporated in our tool. The following definition and theorem allow for modular
proofs of SN∞ and root termination of infinite terms. This is reminiscent to
modular proofs of finitary root termination [1] (the dependency pairs method).

Definition 3.11. Let R1 and R2 be TRS over Σ, and S ⊆ Ter∞(Σ). We say
that R1 is ∞-root terminating relative to R2 on S, denoted RT∞

R1/R2
(S), if no

s ∈ S admits a →R1,ε ∪ →R2-reduction containing infinitely many →R1,ε-steps.
We say R1 is root terminating relative to R2 on S, denoted RTω

R1/R2
(S), if

the condition holds for rewrite sequences of length ≤ ω.

The following lemma is a direct consequence of Lemma 2.8 and Definition 3.11.

Lemma 3.12. (i) SN∞
R (S) ⇔ RT∞

R/R(F∞(S)); (ii) SNω
R(S) ⇔ RTω

R/R(Fω(S)).

For proving SN∞
R (S) using Theorem 3.10 we have to make all rules in R decreas-

ing at once. For practical purposes it is often desirable to prove SN∞
R (S) stepwise,

by repeatedly removing rules until no top-rules remain, that is, RT∞
∅/R(F∞(S))

trivially holds. The following theorem enables us to do this, we can remove all
decreasing rules, as long as the remaining rules are weakly decreasing.

Theorem 3.13. Let R1 ⊆ R2, R′
1 ⊆ R2 be TRS over Σ, and S ⊆ Ter∞(Σ, ∅).

Let A = 〈A, [·], d,�,�〉 be a continuous weakly monotone Σ-algebra with a set
Ω of undefined elements such that S is defined w.r.t. Ω and it holds:

(i) R1 ∪ R2 is weakly decreasing with respect to Ω, and
(ii) R′

1 is decreasing with respect to Ω.

Then RTω
R1/R2

(Fω
R2

(S)) implies RTω
(R1∪R′

1)/R2
(Fω

R2
(S)). If additionally � is

compatible with limits, then RT∞
R1/R2

(F∞
R2

(S)) implies RT∞
(R1∪R′

1)/R2
(F∞

R2
(S)).

Proof. Minor modification of the proofs of Theorem 3.7 and 3.10, respectively. ��

4 Tree Automata

We now come to the second contribution of our note, consisting of an application
of tree automata to prove infinitary strong normalization, SN∞, and a connection
of tree automata with the algebraic framework treated above. For the notion of
tree automata the reader is referred to [2]. We repeat the main definitions, for
the sake of completeness, and to fix notations.

Definition 4.1. A (finite nondeterministic top-down) tree automaton T over a
signature Σ is a tuple T = 〈Q, Σ, I, Δ〉 where Q is a finite set of states, disjoint
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from Σ; I ⊆ Q is a set of initial states, and Δ ⊆ Ter(Σ ∪ Q, ∅)2 is a ground
term rewriting system over Σ ∪ Q with rules, or transitions, of the form:

q → f(q1, . . . , qn)

for n-ary f ∈ Σ, n ≥ 0, and q, q1, . . . , qn ∈ Q.

We define the notion of ‘run’ of an automaton on a term. For terms containing
variables, we assume that a map α : X → 2Q is given, so that each variable
x ∈ X can be generated by any state from α(x).

Definition 4.2. Let T = 〈Q,Σ, I, Δ〉 be a tree automaton. Let t ∈ Ter∞(Σ,X )
be a term, α : Var(t) → 2Q a map from variables to sets of states, and q ∈ Q.
Then a q-run of T on t with respect to α is a tree ρ : Pos(t) → Q such that:

(i) ρ(ε) = q, and
(ii) ρ(p) → t(p)(ρ(p1), . . . , ρ(pn)) ∈ Δ for all p ∈ Pos(t) with t(p) ∈ Σn, and
(iii) ρ(p) ∈ α(t(p)) for all p ∈ Pos(t) with t(p) ∈ X .

We define Qα(t) := {q ∈ Q | there exists a q-run of T on t with respect to α} .

For ground terms t the above notions are independent of α. Then we say T has
a q-run on a term t and write Q(t) in place of Qα(t). Moreover, we say that an
automaton T generates a ground term t if T has a q-run on t such that q ∈ I.
The language of an automaton is the set of ground terms it generates.

Definition 4.3. The language L(T ) of a tree automaton T is defined by:

L(T ) := {t ∈ Ter∞(Σ, ∅) | Q(t) ∩ I 	= ∅} .

T is called complete if it generates all ground terms, i.e. if L(T ) = Ter∞(Σ, ∅).

Example 4.4. Consider the tree automaton T = 〈Q,Σ, I, Δ〉 with Q := {0, 1},

0 1
c

a
a

b I := {0}, and with Δ consisting of the rules:

0 → a(1) | c 1 → a(0) | b(1)

where � → r1 | . . . | rn is shorthand for rules (� → ri)1≤i≤n.
The language of T is L(T ) = (a b∗a)∗c | (a b∗a)ω | (a b∗a)∗a bω.

The following lemma states a continuity property of tree automata.

Lemma 4.5. Let T = 〈Q,Σ, I, Δ〉 be a tree automaton, q∈Q, and t∈Ter∞(Σ).
Then q ∈ Q(t) if and only if for all n ∈ N exists tn with q ∈ Q(tn) and t ≡≤n tn.

Proof. The ‘only if’-direction is trivial, take tn := t for all n ∈ N.
For the ‘if’-direction, we prove q ∈ Q(t) by constructing a q-run ρ : Pos(t) → Q

of T on t. For ever i ∈ N there exists a q-run ρti of T on ti by assumption. Define
T0 := {ti | i ∈ N}. In case T0 is finite, then it follows that t ∈ T0 and q ∈ Q(t).
Hence assume that T0 is infinite.
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First we define a decreasing sequence T0 ⊇ T1 ⊇ T2 ⊇ . . . of infinite subsets
of T0 by induction as follows. Assume that Ti has already been obtained. By the
Pigeonhole Principle there exists an infinite subset Ti+1 ⊆ Ti such that for all
v1, v2 ∈ Ti+1 we have v1 ≡≤i v2 and ρv1 ≡≤i ρv2 .

We define the q-run ρ on t as follows. For each i ∈ N we pick a term si ∈ Ti+1

and define ρ(p) := ρsi(p) for all p ∈ Pos(t) with |p| = i. Note that the definition of
ρ does not depend no the choice of si. Furthermore note that for every i ∈ N the
term si coincides with the term si+1 on all positions p ∈ Pos(t) with |p| = i + 1.
Therefore the condition ρ(p) → t(p)(ρ(p1), . . . , ρ(pn)) ∈ Δ for every p ∈ Pos(t)
follows from s|p| fulfilling this condition. Hence ρ is a q-run on t and q ∈ Q(t). ��

Lemma 4.6. Each of the following properties imply completeness of a tree au-
tomaton T = 〈Q,Σ, I, Δ〉:

(i) there exists a single core state qc ∈ I such that:

∀n ∈ N. ∀f ∈ Σn. qc → f(qc, . . . , qc) ∈ Δ ;

(ii) there exists a set of core states Qc ∩ I 	= ∅ such that for all core inputs
q ∈ Qc there exist a tuple of core outputs q1, . . . , qn ∈ Qc:

∀n ∈ N. ∀f ∈ Σn. ∀q ∈ Qc. ∃q1, . . . , qn ∈ Qc. q → f(q1, . . . , qn) ∈ Δ ;

(iii) there exists a set of core states Qc ⊆ I such that for all tuples of core
outputs q1, . . . , qn ∈ Qc there exists a core input q ∈ Qc:

∀n ∈ N. ∀f ∈ Σn. ∀q1, . . . , qn ∈ Qc. ∃q ∈ Qc. q → f(q1, . . . , qn) ∈ Δ .

Proof. Note that (i) is an instance of (ii). For (ii) let Δ′ ⊆ Δ be such that the set
Δ′ contains for every q ∈ Q exactly one transition of the form 〈q, f(q1, . . . , qn)〉.
We define ρ(t, q) coinductively: ρ(f(t1, . . . , tn), q) := q(ρ(t1, q1), . . . , ρ(tn, qn))
where 〈q, f(q1, . . . , qn)〉 ∈ Δ′. By construction ρ(t, q) is a q-run on t. For (iii) it
follows by induction that for every finite term t ∈ Ter(Σ, ∅) has a q-run for some
q ∈ Qc. For infinite terms t take a sequence {ti}i∈N of finite terms converging
towards t. By the Pigeonhole Principle there exists q ∈ Qc and a subsequence
{si}i∈N of {ti}i∈N such that every si has a q-run. Then by Lemma 4.5 we conclude
that t has a q-run. ��

5 Tree Automata as Certificates for SN∞

We are now ready to use tree automata as ‘certificates’ for SN∞.

Definition 5.1. Let R be a TRS over Σ, and let S ⊆ Ter∞(Σ). A certificate
for SN∞

R (S) is a tree automaton T = 〈Q,Σ, I, Δ〉 such that:

(i) T generates S, i.e. S ⊆ L(T ), and
(ii) Qα(�) � Qα(r) if Qα(�) 	= ∅, for all � → r ∈ R, and α : Var(�) → 2Q.
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Theorem 5.2. Let R be a TRS over Σ, and S ⊆ Ter∞(Σ). Then SN∞
R (S)

holds if there exists a certificate for SN∞
R (S).

The proof will be based on Theorem 3.10, the characterization of SN∞ in terms of
interpretability in a continuous algebra. For this purpose we establish a bridge
between tree automata certificates and continuous algebras. This bridge may
need some intuitive explanation first. This concerns our use of tree automata
states q decorated with a real numbers r ∈ [0, 1] = {r ∈ R | 0 ≤ r ≤ 1}, to be
perceived as the degree of accuracy with which q can generate a certain term.
Here ‘accuracy’ refers to the distance d in Definition 2.2. An example may be
helpful.

Example 5.3. Consider the tree automaton T with the transitions

0 → a 1 → b 0 → c(0) 1 → c(1)

First we consider the ‘run’-semantics Q(·) from Definition 4.1. Then for all n ∈ N

we have Q(cn(a)) = {0}, meaning that cn(a) can be generated by state 0, and
likewise Q(cn(b)) = {1}. However, Q(cω) = {0, 1}, and since cω is both the limit
of cn(a) and cn(b), we face a problem if we aim at a continuous interpretation.

We redo this example, now with the accuracies r mentioned as superscripts of
states 0, 1. More precisely, we use the continuous Σ-algebra AT defined below.
Then [cn(a)] = {01, 11−2−n}, meaning that cn(a) can be generated from state 1
with accuracy 1, and also from state 0 but only with accuracy 1 − 2−n. Like-
wise, [cn(b)] = {01−2−n

, 11}. Furthermore [cω] = {01, 11}, which is indeed the
limit of both {01, 11−2−n} and {01−2−n

, 11}, thereby resolving the clash with the
continuity requirement.

Definition 5.4. Let T = 〈Q, Σ, I, Δ〉 be a tree automaton. We define a contin-
uous weakly monotone Σ-algebra AT = 〈A, [·], d,�,�〉 as follows. We let A :=
{γ | γ : Q → [0, 1]} with undefined elements ΩT := {γ ∈ A | ∀q ∈ Q. γ(q) < 1}.

For every f ∈ Σ with arity n we define the interpretation [f ] by:

[f ](γ1, . . . , γn) := λq. sup
{
0.5 + 0.5 · min(γ1(q1), . . . , γn(qn)) |
q → f(q1, . . . , qn) ∈ Δ

}

where sup ∅ := 0.
For γ ∈ A define Q(γ) := {q ∈ Q | γ(q) = 1}. Then � and � on A are defined

by: γ1 � γ2 := Q(γ1) � Q(γ2) and γ1 � γ2 := Q(γ1) ⊆ Q(γ2). As the metric d
on A we choose d(γ1, γ2) := max{|γ1(q) − γ2(q)| | q ∈ Q}.

The definition gives rise to a natural, continuous semantics associated with tree
automata.

Lemma 5.5. The algebra AT from Definition 5.4 is a continuous weakly mono-
tone Σ-algebra with undefined elements Ω.

Proof. We have � · � ⊆ �, and � is well-founded since Q is finite. Consider a
state q ∈ Q for which [f ](γ1, . . . , γn)(q) = 1, then there is q → f(q1, . . . , qn) ∈ Δ
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such that γ1(q1) = 1,. . . ,γn(qn) = 1. Whenever additionally γj � γ′
j for some

1 ≤ j ≤ n, then γ′
j(qj) = 1 and therefore [f ](. . . , γ′

j , . . .)(q) = 1. Hence [f ] is
monotone with respect to � for all f ∈ Σ. Using the same reasoning it follows
that Ω fulfills both requirements imposed on undefined elements. Hence AT is
a weakly monotone Σ-algebra with undefine elements Ω.

For every f ∈ Σ with arity n and every γ1, γ
′
1, . . . , γn, γ′

n ∈ A we have

d([f ](γ1, . . . , γn), [f ](γ′
1, . . . , γ

′
n)) ≤ 0.5 · max {d(γi, γ

′
i) | 1 ≤ i ≤ n} .

As a consequence, for the interpretation [·] : Ter(Σ, ∅) → A of finite terms we
have d([s], [t]) ≤ d(s, t) for all s, t ∈ Ter(Σ, ∅). As a uniformly continuous map
on the metric space 〈Ter(Σ, ∅), d〉, this interpretation can be extended to a con-
tinuous function [·] : Ter∞(Σ, ∅) → A on the completion space 〈Ter∞(Σ, ∅), d〉.
Hence AT is a continuous Σ-algebra. ��

The following lemma connects the standard semantics of tree automata with the
continuous algebra AT . Roughly, in the continuous algebra the automaton can
be found back, when considering only states with ‘accuracy’ 1 (γ(q) = 1).

Lemma 5.6. Let AT = 〈A, [·], d,�,�〉 be the Σ-algebra as in Definition 5.4.
Then for all t ∈ Ter∞(Σ, ∅), and α : Var(t) → 2Q, β : Var(t) → A such that
∀x ∈ Var(t). α(x) = Q(β(x)), it holds Qα(t) = Q([t]β).

Proof. For the case t ∈ X , there is nothing to be shown. Thus let t ≡ f(t1, . . . , tn).
For ‘⊇’, assume q ∈ Q([t]β). Then there exists q → f(q1, . . . , qn) ∈ Δ such that for
i = 1, . . . , n we have qi ∈ Q([ti]β). Applying this argument (coinductively) to the
subterms ti we obtain a q-run ρ := q(ρ1, . . . , ρn) of T on t (with respect to α) where
ρi is a qi-run of T on ti for i = 1, . . . , n. For ‘⊆’, we show that [t]β(q) ≥ 1 − 0.5d

for all t ∈ Ter∞(Σ), d ∈ N and q ∈ Q with q ∈ Qα(t). Assume contrary this claim
would not hold. Consider a counterexample with minimal d ∈ N. Since q ∈ Qα(t)
there exists q → f(q1, . . . , qn) ∈ Δ such that qi ∈ Qα(ti) for i = 1, . . . , n. This
implies d ≥ 1 and from minimality of d we obtain ∀i. [ti]β(qi) ≥ 1 − 0.5d−1. But
then [t]β(q) ≥ 0.5 + 0.5 · min([ti]β(qi)) ≥ 1 − 0.5d, contradicting the assumption.
Hence [t]β(q) = 1, and q ∈ Q([t]β). ��

Using AT we now give the proof of Theorem 5.2.

Proof (Theorem 5.2). Let T = 〈Q, Σ, I, Δ〉 be a certificate for SN∞
R (S). Let

AT = 〈A, [·], d,�,�〉 and Ω as defined in Definition 5.4. According to Lemma
5.5 AT is a continuous weakly monotone Σ-algebra with undefined elements Ω.
We prove that AT fulfills the requirements of Theorem 3.10.

As a consequence of Lemma 5.6 we obtain that [s] 	∈ Ω for all s ∈ S, since by
assumption S ⊆ L(T ); and [�]α 	∈ Ω implies [�]α � [r]α, for all rules � → r ∈ R
and every α : X → A. Finally, we check compatibility of � with limits. Let
{γi}i∈N be a converging sequence with γ0 � γ1 � . . ., and define γ := limi→∞ γi.
Note that Q(γi) ⊆ Q(γi+1) for all i ∈ N. For every q ∈ Q with γ0(q) = 1 we
have γi(q) = 1 for all i ∈ N and therefore γ(q) = 1. Hence γ0 � γ.

The algebra AT fulfills all requirements of Theorem 3.10, hence SN∞
R (S)

holds. ��
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Example 5.7. Let Σ := {a, b, c} and R := {a(c) → a(b(c)), b(b(c)) → c} where
a and b are unary symbols, and c is a constant. We are interested in SN∞

R , that
is, in infinitary normalization of R on the set of all (possibly infinite) terms.
Consider the tree automaton T = 〈Q,Σ, I, Δ〉 depicted below:

0 1 2
c c

a

b,a

b,a

b

a

where Q := {0, 1, 2}, I := Q and Δ consists of the following rules:

0 → a(1) | c 1 → a(0) | a(1) | a(2) | b(0) | b(2) 2 → b(1) | c

We show that T is a certificate for SN∞
R , by checking the conditions of Defini-

tion 5.1. Completeness of T follows from Lemma 4.6 (iii), take Qc = Q. Second,
as both rules of R have no variables, we do not have to consider assignments α.
We verify that Q(�) � Q(r) for both rules. For the rule a(c) → a(b(c)) we com-
pute Q(a(c)) = {1}, for only from state 1 we can generate a(c): 1 → a(2) → a(c)
(or 1 → a(0) → a(c)). From state 2 there is no ‘a-transition’, and from state 0 we
get stuck at a(1), for there is no rule 1 → c. Similarly we find Q(a(b(c))) = {0, 1},
hence Q(a(c)) � Q(a(b(c))). For the second rule of R we find Q(b(b(c))) = {2} �

{0, 2} = Q(c). Thus we have shown T to be a certificate, and by Theorem 5.2
we may conclude SN∞

R .

6 Improving Efficiency: Strict Certificates

The second requirement for an automaton to be a certificate for SN∞ (item (ii) of
Definition 5.1) is computationally expensive to check, since there are 2|Q|·|Var(�)|

different maps α : Var(�) → 2Q, leading to an exponential explosion in the
number of states when searching for such an automaton.

Remark 6.1. For Theorem 5.2 it is not sufficient to check that the second condi-
tion holds for maps from variables to single states, that is, maps α : Var(�) → 2Q

with |α(x)| = 1 for all x ∈ X .
To see this, consider the TRS R := {f(x) → f(a(x))} with the tree automaton

T = 〈Q, Σ, I, Δ〉 where Q := I := {0, 1} and Δ consists of 0 → f(0), 1 → f(1),
0 → a(0), 0 → a(1), 1 → a(0), and 1 → a(1). Then L(T ) = Ter∞(Σ) and for
every map α := x �→ {q} with q ∈ Q we get Qα(�) = {q} � Q = Qα(r). Both
conditions seem to be fulfilled, however SN∞

R does not hold, since R admits an
infinite root rewrite sequence f(aω) →R,ε f(aω) →R,ε . . ..

For the purpose of efficient implementations and the envisaged SAT encoding,
we define the notion of ‘strict certificates’, and show that they have the same
theoretical strength while being easier to check.

Definition 6.2. Let R be a TRS over Σ, and S ⊆ Ter∞(Σ). A strict certificate
for SN∞

R (S) is a tree automaton T = 〈Q, Σ, I, Δ〉 with a strict total order
< ⊆ Q × Q such that:
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(i) S ⊆ L(T ), and
(ii) for every � → r ∈ R and α : Var(�) → 2Q with 1 ≤ |α(x)| ≤ #x(�), for all

x ∈ Var(�), where #x(�) ∈ N the number of occurrences of x in �, it holds:

Qα(�) 	= ∅ =⇒ Qα(�) ⊆ Qα(r) and
∀q ∈ Qα(�). ∃q′ ∈ Qα(r). q′ < q .

That strict certificates are certificates, the next theorem, will be proved below.

Theorem 6.3. Let R be a TRS over Σ, and S ⊆ Ter∞(Σ). Then every strict
certificate for SN∞

R (S) is a certificate for SN∞
R (S).

In the search for certificates, the computational complexity is improved when
restricting the search to strict certicates, because the number of maps α which
have to be considered is reduced to:

∏
x∈Var(�)(

∑#x(�)
i=1

(|Q|
i

)
)

which is polynomial in the number of states |Q|. In particular if � is linear then
we need to consider |Q||Var(�)| maps α.

Remark 6.4. Note that, in the definition of strict certificates, we cannot replace
the condition 1 ≤ |α(x)| ≤ #x(�) by |α(x)| = 1. To see this, we consider the non-
left-linear TRS R := {f(x, x) → f(a(x), a(x))} together with the tree automaton
T = 〈Q, Σ, I, Δ〉 where Q := I := {0, 1} and Δ consists of 1 → f(q, q), 0 → f(q, q)
and q → a(q′) for all q, q′ ∈ Q where q = 1 − q. Then L(T ) = Ter∞(Σ) and for
every map α := x �→ {q} with q ∈ Q we get Qα(�) = {1} and Qα(r) = {0, 1};
thus Qα(�) ⊆ Qα(r) and 0 < 1 with 0 ∈ Qα(r). However R admits an infinite
root rewrite sequence f(aω, aω) →R,ε f(aω, aω) →R,ε . . ..

Note that the theorem holds even if one allows a partial order < in the defi-
nition of strict certificates. However, that would not make the notion of strict
certificates more general, because such a partial order can always be extended
to a total order. The advantage of the definition as it stands is that we get the
order for free. For every strict certificate with n states there exists an isomor-
phic automaton with states Q := {1, . . . , n} and < being the natural order on
integers. Thus, we can narrow the search for certificates to such automata.

Lemma 6.5. Let T = 〈Q,Σ, I, Δ〉 be a tree automaton, s ∈ Ter∞(Σ) and
α : Var(s) → 2Q. Let B consist of all maps β : Var(s) → 2Q with β(x) ⊆ α(x)
and 1 ≤ |β(x)| ≤ #x(s) for all x ∈ Var(s). Then Qα(s) =

⋃
β∈B Qβ(s).

Proof. The part ‘⊇’ is trivial, all maps β ∈ B are a restriction of α. For ‘⊆’ let ρ
be a q-run with respect to α on s. Let β := λx.{ρ(p) | p ∈ Pos(s) with s(p) = x},
then ρ is also a q-run with respect to β and ∀x ∈ Var(s).1 ≤ |β(x)| ≤ #x(s). ��

Now we prove Theorem 6.3.
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Proof (Theorem 6.3). Let R be a TRS over Σ, S ⊆ Ter∞(Σ) a set of terms, and
T = 〈Q, Σ, I, Δ〉 a strict certificate for SN∞

R (S) with a strict total order < on the
states. We show that T satisfies the conditions of Definition 5.1. Let � → r ∈ R
and α : Var(�) → 2Q with Qα(�) 	= ∅. Let B consist of all maps β : Var(�) → 2Q

with β(x) ⊆ α(x) and 1 ≤ |β(x)| ≤ #x(�) for all x ∈ Var(�). Then Qα(�) =⋃
β∈B Qβ(�) and Qα(r) =

⋃
β∈B Qβ(r) by Lemma 6.5. Note that we have Qβ(�) ⊆

Qβ(r) for all β ∈ B by assumption, hence Qα(�) ⊆ Qα(r). Take the least q ∈ Qα(�)
with respect to <. Then there exists β ∈ B with q ∈ Qβ(�) and by assumption
∃q′ ∈ Qβ(r). q′ < q. Hence q′ ∈ Qα(r) and Qα(�) � Qα(r). ��

The additional requirement of an ordering < on the states is not a weakening.
Indeed, we can show that any certificate can be transformed into a strict one.

Lemma 6.6. Let R be a TRS over Σ, and S ⊆ Ter∞(Σ). If there is a certificate
for SN∞

R (S) then there is a strict certificate for SN∞
R (S).

Proof. Let R be a TRS over Σ, S ⊆ Ter∞(Σ), and T = 〈Q,Σ, I, Δ〉 a certificate
for SN∞

R (S). We construct a tree automaton T ′ = 〈Q′, Σ, I ′, Δ′〉 and show that
it meets the requirements of Definition 6.2. Let Q′ := 2Q, and I ′ := {QI ⊆
Q | QI ∩ I 	= ∅}. We define Δ′ to consist of all transitions of the form Q0 →
f(Q1, . . . , Qn) with f ∈ Σ, Q0, . . . , Qn ⊆ Q such that ∅ 	= Q0 ⊆ Q′

0 where

Q′
0 := {q ∈ Q | exists q → f(q1, . . . , qn) ∈ Δ such that ∀i. qi ∈ Qi} .

Note that the construction is similar to the construction for making tree au-
tomata deterministic [2]. The main difference concerns the set Q0, which is
not uniquely defined as Q0 := Q′

0 in our setting (we allow subsets Q0 ⊆ Q′
0).

Therefore the automaton T ′ will in general not be deterministic. For all terms
s ∈ Ter(Σ) and maps α′ : Var(s) → 2Q′

we have:

Q′
α′(s) = {Q′

0 ⊆ Qα(s) | α : Var(s) → 2Q with ∀x. α(x) ∈ α′(x)} (∗)

This follows from the above-mentioned analogy; we refer to [2] for a proof.
From (∗) it immediately follows that L(T ) = L(T ′).

We define the strict order > on Q′ as �, arbitrarily extended to a total order.
Let � → r ∈ R and α′ : Var(�) → 2Q′

such that Q′
α′(�) 	= ∅. We know that for

every α : Var(s) → 2Q it holds Qα(�) � Qα(r) by assumption. Then together
with (∗) it follows that Q′

α′(�) ⊆ Q′
α′(r). Finally let Q′

0 be the least element with
respect to > from Q′

α′(�). Then there exists a map α : Var(s) → 2Q such that
∀x.α(x) ∈ α′(x) and Q′

0 ⊆ Qα(�), even Q′
0 = Qα(�), since otherwise Q′

0 > Qα(�)
would contradict minimality of Q′

0. Then we have Qα(�) � Qα(r) and therefore
Qα(r) ∈ Q′

α′(r) with ∀q′ ∈ Q′
α′(�). Qα(r) < q′. ��

7 Examples and Tool

Here we consider a few illustrating examples. We have implemented our method
into a tool that aims at proving SN∞

R (S) automatically. Actually, all certificates
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in this section have been found fully automatically by our tool. The program
is available via http://infinity.few.vu.nl/sni/, it may be used to try ex-
amples online. The tool shows the interpretation of all symbols and rules (with
respect to all variable assignments) in the form of transition tables such that
decreasingness can be recognized easily. The start language S can be specified
by providing a tree automaton T that generates S; the program then searches
an extension of T which fulfills the requirements of Theorem 6.3.

Example 7.1. Consider the following TRS R defining the sequence morse:

morse → cons(0, zip(inv(morse), tail(morse)))
zip(cons(x, y), z) → cons(x, zip(z, y))

inv(cons(0, x)) → cons(1, inv(x))
inv(cons(1, x)) → cons(0, inv(x))
tail(cons(x, y)) → y

Our tool proves SN∞
R ({morse}) fully automatically. First it instantiates y in the

rule tail(cons(x, y)) → y with non-variable terms covering all ground instances,
and then it finds the tree automaton T = 〈Q,Σ, I, Δ〉 with I = Q = {0, 1, 2}
where the set Δ consists of: 2 → morse, 1 | 2 → 0, 1 | 2 → 1, 2 → tail(0 | 2),
1 | 2 → inv(1 | 2), 0 | 1 | 2 → cons(1, 1), 1 | 2 → zip(1 | 2, 1), and 1 | 2 → zip(1, 2).
Note that with the productivity tool of [3] we could already prove productivity
of this specification fully automatically.

Example 7.2. Consider the term rewriting system R consisting of the rules:

c → f(a(b(c))) f(a(x)) → f(x) f(b(x)) → b(f(x))

and the tree automaton T = 〈Q,Σ, I, Δ〉 with (initial) states I = Q = {0, 1, 2, 3}
over the signature Σ = {c, a, b, f} where the set Δ of transition rules is given by:

0 1 2 3 C

f

f
f

f
f

f

f

b

b

b
b

b

a

We show that T is a strict certificate for SN∞
R ({c}). Clearly, we have {c} ⊆ L(T ).

To verify condition (ii) of Definition 6.2 for the first rule of R, observe that
Q(c) = {3} � {2, 3} = Q(f(a(b(c)))), and 2 < 3. For the second rule, we only
have to consider the map α given by α(x) = {2}, for only then Qα(f(a(x))) 	= ∅.
We observe Qα(f(a(x))) = {2, 3} � {1, 2, 3} = Qα(f(x)). For the third rule of R
we have to consider two assignments: α1 that maps x to {1}, and α3 that maps x
to {3}. We get that Qα1(f(b(x))) = {1, 2, 3} � Q = Qα1(b(f(x))) (and 0 < q for
all q ∈ {1, 2, 3}), and Qα3(f(b(x))) = {1, 2} � Q = Qα3(b(f(x))) (and 0 < 1, 2).
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Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (2007),
http://www.grappa.univ-lille3.fr/tata

3. Endrullis, J., Grabmayer, C., Hendriks, D., Isihara, A., Klop, J.W.: Productivity of
Stream Definitions. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639,
pp. 274–287. Springer, Heidelberg (2007)

4. Endrullis, J., Waldmann, J., Zantema, H.: Matrix Interpretations for Proving Ter-
mination of Term Rewriting. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130, pp. 574–588. Springer, Heidelberg (2006)

5. Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.B.: Initial Algebra Seman-
tics and Continuous Algebras. JACM 24(1), 68–95 (1977)

6. Klop, J.W., de Vrijer, R.C.: Infinitary Normalization. In: Artemov, S., Barringer,
H., d’Avila Garcez, A.S., Lamb, L.C., Woods, J. (eds.) We Will Show Them: Essays
in Honour of Dov Gabbay, vol. 2, pp. 169–192. College Publ. (2005)

7. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press, Cambridge (2003)

8. Zantema, H.: Termination of Term Rewriting: Interpretation and Type Elimination.
Journal of Symbolic Computation 17, 23–50 (1994)

9. Zantema, H.: Normalization of Infinite Terms. In: Voronkov, A. (ed.) RTA 2008.
LNCS, vol. 5117, pp. 441–455. Springer, Heidelberg (2008)


	Proving Infinitary Normalization
	Introduction
	Infinitary Rewriting
	Characterizations of Local ${\sf SN}^{\omega}$ and Local ${\sf SN}^{\infty}$
	Tree Automata
	Tree Automata as Certificates for ${\sf SN}^{\infty}$
	Improving Efficiency: Strict Certificates
	Examples and Tool
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




