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Musculoskeletal properties, coordination and performance in explosive 
movements 

 
Maarten F. Bobbert 

Research Institute MOVE, VU University Amsterdam, Amsterdam, The Netherlands. 
m.bobbert@fbw.vu.nl 

 
The purpose of this paper is to explain how and why performance in explosive movements depends on musculoskeletal 

properties and coordination.  First, a musculoskeletal model is presented that has muscle stimulation as only 

independent input, and allows for forward simulation of explosive movements.  Subsequently, a theoretical framework 

is presented for analyzing simulation results: performance depends on muscle work and efficacy, and muscle work 

production can best be analyzed by looking at contractile element force over shortening distance.  To illustrate the 

approach, it is used to explain how and why performance in vertical squat jumping depends on muscle strength and 

coordination. 
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Introduction 

 
Performance in many sports activities depends on the ability of athletes to impart in a single 

movement high velocity to their hand, foot, or body itself.  Examples are punching, throwing, 
kicking and jumping.  Such movements will be referred to as explosive movements in this paper.  
When asked what factors contribute to performance in explosive movements, athletes, trainers and 
scientists will immediately answer that both musculoskeletal properties and coordination are 
important, but there is still a lot of confusion about how and why this is so.  The purpose of this 
paper is to provide a theoretical framework for analyzing performance in explosive movements and 
for understanding how and why it depends on musculoskeletal properties and coordination. It will 
become clear that for application of this framework we need access to variables that cannot be 
measured during actual performances of athletes.  Furthermore, manipulations are necessary that 
cannot be performed in vivo.  Full access to all variables of interest, and full control over all 
variables to be manipulated, can only be achieved if movements are simulated using models of the 
musculoskeletal system that have muscle stimulation as a function of time as their only input.  
Below, we shall review the steps involved in making such models and in using them to simulate 
movements.  Subsequently, a theoretical framework will be presented for analyzing simulation 
results.  Finally, the simulation approach and the theoretical framework will be used to try and 
explain how and why performance in an explosive task, squat jumping, depends on muscle strength 
and coordination. 

 
Simulation of movements using musculoskeletal models 

 
The main reason for resorting to movement simulation is that it allows one to investigate the 

effects of manipulations or experiments that cannot be performed in vivo.  The steps involved in the 
movement simulation approach that we have developed in previous studies are detailed below.  
References to original sources are provided elsewhere (Bobbert et al. 2008). 

 
1. Formulating a musculoskeletal model that has muscle stimulation as a function of time as 

the only input 
 
The model that will be used in this paper is shown in Fig. 1.  It is a planar model consisting 

of four rigid segments representing a HAT segment (head, arms and trunk), thighs, shanks and feet.  
The segments are interconnected by hinge joints representing hip, knee and ankle joints, and the 
distal part of the foot is connected to the ground in a hinge joint.  The model is actuated by six 
major muscle tendon complexes (MTCs) of the lower extremity: hamstrings, gluteus maximus, 



rectus femoris, monoarticular vasti, gastrocnemius and soleus.  Each MTC is represented using a 
Hill type muscle model.  This muscle model consists of a contractile element (CE), a series elastic 
element (SE) and a parallel elastic element (PE).  The only input of the model is muscle stimulation 
STIM  as a function of time.  STIM is a one dimensional representation of the effects of 
recruitment and firing rate of α-motoneurons, and ranges between 0 and 1. 

Mathematically, the model comprises three sets of differential equations (Fig. 2).  The first 
set describes the excitation dynamics, i.e. how stimulation leads to active state.  The formulation of 
these equations was adopted from Hatze (Hatze 1977).  For each MTC, there is one first order 
differential equation: 1f ( STIM , )  , where   is the free calcium concentration.  The latter is 
algebraically related to active state q , the relative amount of calcium bound to troponin, taking into 
account that CE length CE  affects the sensitivity of the contractile machinery to calcium: 

2 CEq f ( , )  .   
The second set of differential equations describes the contraction dynamics, i.e. the 

interaction between contractile elements and series elastic elements.  For each MTC, we have some 
formulation of how force depends algebraically on CE , CE velocity CE

 , and q : 

CE 3 CE CEF f ( , ,q )   .  Also, we have a relationship between the force of SE and length of SE: 

SE 4 SE 4 OI CEF f ( ) f ( )     , where OI  is origin-to-insertion distance, i.e. total length of the 
MTC.  If we ignore the mass of the MTC itself, CEF  must equal SEF , so we obtain for each MTC 
one first order differential equation: CE 5 CE OIf ( , ,q )   .  

 
 
Figure 1.  Schematic drawing of the model of the musculoskeletal system used for forward dynamic simulations. 
The model consists of four interconnected rigid segments and six muscle groups of the lower extremity, all 
represented by Hill-type muscle models. 

 
 
Figure 2.  Schematic representation of the mathematical formulation of the musculoskeletal model, which has 
muscle stimulation STIM as only input.  Fext: external forces acting on the system; see text for explanation of other 
variables used. 



The third set of differential equations describes the skeletal dynamics.  For each segment 
there are three equations of motion: x cF m x   , y cF m y    and M j   , where m  is the 
mass of the segment, cx  and cy  are the horizontal and vertical components of the acceleration of 
the segment’s center of mass, respectively, xF  and yF are the sums of forces acting on the 
segments in horizontal and vertical direction, respectively, j  is the moment of inertia of the 
segment about its mass center,   is the segment’s angular acceleration and M  is the sum of 
moments acting on the segment.  The equations of motion are formulated in such a way that we can 
solve for the angular accelerations of the segments (see Casius et al. 2004 for a user-friendly 
approach) and if we split up the second-order differential equations into pairs of first-order 
differential equations, we obtain a total of 8 differential equations for the skeletal system shown in 
Fig. 1, as long as it is in contact with the ground at the toe. 

The final step in the formulation of the model is to describe the interaction between the 
skeleton and the MTCs.  Motion of the skeleton affects the MTCs by changing OI , an input in the 
differential equations describing contraction dynamics ( 5f ).  Thus, we need to formulate for each 
MTC an algebraic relation describing how OI  depends on joint angles: OI 6 1 2 3f ( , , )   .  
Each MTC, in turn, affects the motion of the whole skeleton by generating a moment about one or 
more joints, with muscle moment being the product of MTC force and the moment arm at the joint 
spanned.  At each point in time we have the state of the MTCs so we can calculate their force using 

3f , and the moment arms about the joints can be derived directly from 6f  using d’Alembert’s 
principle of virtual work (An et al. 1984). 

This then concludes our formulation of a musculoskeletal model that has muscle stimulation 
as a function of time as the only input.  To generate a movement on the basis of a chosen 
stimulation-time input to the muscles, henceforth referred to as ‘control’, we simply define an initial 
state for the model and integrate the differential equations for excitation dynamics, contraction 
dynamics and skeletal dynamics simultaneously using an Ordinary Differential Equation solver. 

 
2. Choosing parameter values for the model to make it represent human subjects 

 
Values for inertial parameters of body segments can be estimated from mass and 

anthropometrics of subjects using scaling rules (e.g. Yeadon and Morlock 1989).  The dependence 
of OI  on joint angles in the model ( 6f ) is currently based on results obtained in cadaver studies 
(e.g. Visser et al. 1990) using the tendon displacement method first proposed by An and coworkers 
(An et al. 1984).  In the future, it may be possible to obtain such information in vivo using 
ultrasound (Maganaris et al. 1998).  Hatze’s formulation of how STIM  leads to active state ( 1f  and 

2f ) has been tested in human calf muscles using electrical stimulation of the tibial nerve and has 
proven to produce satisfactory results (van Zandwijk et al. 1998).  The biggest challenge is to derive 
the relationships describing how MTC force depends on active state, length and shortening velocity 
of CE ( 3f ), and how SE force depends on SE length ( 4f ).  Currently, the relationships in the model 
are based on what may be called a building-block approach.  The idea is to simplify each MTC to a 
set of parallel units, with each unit consisting of a muscle fiber and a ‘tendon fiber’ spanning the 
distance between the ends of the muscle fibers and the bony insertions (Fig. 3).  The ‘tendon fiber’ 
is taken to behave like a series elastic element SE, and the muscle fibers are taken to behave like a 
contractile element CE (myofilaments and cross bridges) parallel to an elastic element PE 
(sarcolemma).  The force-length relationship of CE is derived from the sliding filament theory using 
myofilament lengths measured in human muscle fibers (Walker and Schrodt 1974) and numbers of 
sarcomeres in series in human cadaver muscle fibers. PE always has the same length as CE and its 
force-length relationship is derived from measurements on single muscle fibers (ter Keurs et al. 
1978); in the model it merely serves to prevent CE from becoming overextended.  SE is assumed to 
have a strain of 4% at maximal MTC force, and SE rest lengths are chosen such that MTCs attain 
their optimum length at joint angles where human subjects produce their maximum isometric joint 
moments.  The force-velocity relationship of CE is obviously a crucial relationship.  The 
relationships in the model (see van Soest and Bobbert 1993) are currently based on concentric and 



eccentric force-velocity relationships measured in isolated muscles of animals, which have first 
been reduced to sarcomere force-length relationships of these animals muscles and subsequently 
have been scaled for human muscles using again numbers of sarcomeres in series in human cadaver 
muscle fibers.  Finally, the maximal isometric force of each MTC is obtained by measuring joint 
moments that human subjects produce during maximum voluntary isometric contractions, and 
distributing them over the agonists using the relative physiological cross-sectional areas (PCSAs) 
and moment arms determined in cadaver studies (Out et al. 1996).  This approach assumes that the 
ratio of PCSAs of muscles spanning a joint and numbers of sarcomeres in series in muscle fibers are 
similar in human cadavers and in living subjects. 

 
3. Finding the optimal muscle stimulation-time histories and the corresponding maximal 

performance 
 
This step requires us to reduce the performance of the model to a single criterion number to 

be maximized or minimized.  In studies of vertical jumping, it seems reasonable to use as criterion 
the height achieved by the center of mass (CM) at the apex of the jump ( CM ,apexy ).  For the model 
depicted in Fig. 1 the optimization problem then becomes:  

CM ,apex 7 1 2 3 4 5 6y f ( STIM ( t ), STIM ( t ), STIM ( t ), STIM ( t ), STIM ( t ), STIM ( t ))   

(note that optimization routines typically search for the minimum value of an objective function; for 
this reason, CM ,apexy  is preceded by a minus-sign).  Since STIM of each muscle can vary 
continuously over time, the solution space is infinite and needs to be constrained to find a unique 
solution.  For example, to find the solution for a maximum height squat jump, one may put the 
model in the squatted posture, find initial STIM  levels that yield equilibrium in this posture, and 
then allow STIM of each muscle to switch once from the initial level to its maximum.  The 
optimization problem now reduces to: 

CM ,apex 8 switch,1 switch,2 switch,3 switch,4 switch,5 switch,6y f ( t , t , t , t , t , t )    

(as a matter of fact, since the model starts out in equilibrium, switcht  of one muscle may be fixed and 
only five switching times need to be optimized).  This optimization problem can be solved using a 
simplex search algorithm, simulated annealing, a genetic algorithm, etc.  Of these, the genetic 

 
 
Figure 3.  Conceptual steps in simplifying a muscle-tendon complex.  a) actual muscle-tendon complex;  b) it is 
assumed that each of the muscle fibers (only three fibers are depicted) is in series with a proximal and a distal 
portion of a ‘tendon fibre’;  c) it is assumed that the angle between muscle fibers and the line of pull of the muscle-
tendon complex is negligible;  d) similar to (c), but this time with the muscle fibers grouped together;  e) in the 
mathematical formulation, the ‘tendon fibers’ form a series elastic element (SE), and the muscle fibers behave as an 
elastic element (PE) parallel to a contractile element (CE). 



algorithm approach is attractive because the solution can be searched using multiple computers in 
parallel (van Soest and Casius 2003). 

 
4. Evaluating the performance of the model by comparing it to that of human subjects 

 
Once the optimal solution for the chosen task has been found, the crucial question is, of 

course, whether the corresponding movement is similar to the movement displayed by human 
subjects.  If this is not the case, the reason may be that the musculoskeletal model is not valid (it 
may be missing crucial components or properties), that the optimization criterion chosen is not the 
criterion that human subjects use, or both.  Vertical jumping is an attractive task to study because 
there will be hardly any discussion about the optimization criterion: maximizing the height of CM 
at the apex of the jump.  And in fact, if squat jumping is chosen as the task of interest, if the 
optimization problem is reduced to finding only one switcht  per muscle, and if CM ,apexy  is used as 
criterion, optimal solutions are found that closely resemble the motion pattern found in human 
subjects performing squat jumps.  We did observe that human subjects vary in the rate at which they 
increase their muscle stimulation, and for this reason we made STIM  in our model increase in a 
ramp-like fashion rather than instantaneously, with the slope of the ramp affecting the duration of 
the push-off (Bobbert et al. 2008).  Fig. 4 presents stick diagrams for experimental and simulated 
squat jumps.  Not only these stick diagrams, but also detailed kinematics and kinetics of the model 
correspond well to those observed in human subjects; in fact, there even seems to be a reasonably 
good correspondence between the optimal combination of switch times and onset times of muscle 
stimulation estimated from EMG in human subjects (Bobbert et al. 2008).  For the remainder of this 
paper we will assume that the model is a valid representation of the parts of the musculoskeletal 
system that are important in vertical jumping, and that human subjects are indeed trying to 
maximize CM ,apexy . 

 
5. Carrying out the desired manipulation in the model 

 
The model described in the preceding paragraphs give us full control over all variables.  One 

can change morphological and physiological properties of the model; for example, compliance of 
SE can be changed, biarticular muscles such as gastrocnemius can be turned into monoarticular 
muscles, and maximal force and physiological properties of selected muscles can be changed.  

 
 
Figure 4.  Stick diagrams of average body postures of 8 subjects and of the simulation model for the push off in 
maximum height squat jumps.  Arrows pointing upward represent the ground reaction force vector plotted with the 
origin in the center of pressure; arrows pointing downward represent the force of gravity, and are plotted with their 
origin in the center of mass (open circles). Time is expressed in ms relative to the instant of takeoff (time=0).



Furthermore, one can manipulate initial postures and external constraints, and obviously, one can 
also set out to study the effects of making a countermovement, pushing off with one leg instead of 
with two legs, and so on.  

 
6. Finding the new optimal muscle stimulation-time histories and the corresponding maximal 

performance 
 
It needs no argument that the theoretical maximum performance that can be achieved by the 

model in a given task depends on the musculoskeletal properties.  This theoretical maximum 
performance is only achieved, however, if control is optimized.  Thus, if one first finds the optimal 
solution for the model to perform a task and then changes the model without re-optimizing control, 
the new performance will be submaximal (Bobbert and Van Soest 1994). 

 
7. Analyzing the simulation results to explain why maximal performance has changed 

 
It is straightforward to determine to what extent the maximum performance in a given task 

depends on a given property of the model, on initial conditions, or on other factors.  However, the 
ultimate purpose is to understand why this dependence exists, and this requires an in-depth analysis 
of simulation results.  Below, a theoretical framework will be presented that has proven to be useful 
in analyzing results of simulation of explosive movements. 

 
A theoretical framework for analyzing performance in explosive movements 

 
Outline of the framework 

 
In explosive movement, a large amount of muscle work is produced in a short time.  Hence, 

it is tempting to analyze simulation results in terms of power over time.  However, this approach is 
hampered by the fact that differences tend to occur in the duration of the movement.  For this 
reason, it is more helpful to use a work-energy approach.  Taking vertical jumping as an example: 
what are the requirements of projecting CM to as great a height as possible?  First, we need to 
realize that a subject can only change the total mechanical energy of CM by pushing against the 
ground.  In the airborne phase, the subject is, by definition, no longer exerting force on the ground, 
and the total energy of CM remains constant.  The total energy of CM may be subdivided into 
potential energy, vertical kinetic energy (i.e. kinetic energy due to the vertical velocity of CM) and 
horizontal kinetic energy (i.e. kinetic energy due to the horizontal velocity of CM).  In the airborne 
phase, vertical kinetic energy is transformed into potential energy by the force of gravity.  This 
means that to maximize jump height, we need to maximize the effective energy, i.e. the sum of 
potential energy and vertical kinetic energy of CM.  During the push-off, the muscles perform 
mechanical work on the segments, thereby increasing the segmental energies, but only part of the 
segmental energies contributes to effective energy.  The rest, horizontal kinetic energy of CM, 
rotational energy of the segments, and energy due to the velocity of segmental mass centers relative 
to CM, does not contribute. The ratio of effective energy to total muscle work (total mechanical 
energy) will be called the efficacy ratio.  Let us first focus on the efficacy ratio and then on the 
factors determining work production by muscles. 

 
The efficacy ratio 

 
The concept of efficacy can best be explained with the help of the simple physical model 

(Bobbert et al. 1987) schematically shown in Fig. 5.  The model consists of four rigid links, just like 
the model presented in Fig. 1, but the top link can only translate vertically along a rail.  There is 
only one actuator in the model: the spring that crosses the knee joint.  The spring may be loaded by 
pushing the model downwards so that the knee joint becomes flexed, and when the model is 



released the spring force drives the system.  There is also a passive element in the model: an 
inextensible wire, which is embedded like gastrocnemius and may be set at different lengths.  When 
the wire is set at a length at which it does not become engaged during the movement, it obviously 
has no effect on the motion of the system.  When wire length is adjusted so that the wire does 
become engaged before the knee is fully extended, knee extension becomes coupled to plantar 
flexion.  Experiments with the model demonstrate that when the model is released from a fixed 
initial height, jump height varies with the length of the rope; there exists an optimum length that 
maximizes jump height, and jump height decreases both at values above and below optimum length.  
This result is purely due to the effect of wire length on efficacy, because in all cases the amount of 
energy released from the spring is the same: at non-optimum wire length, a smaller fraction of the 
energy released from the spring ends up as effective energy and a greater fraction ends up as 
rotational energy of the segments at take-off, hence the efficacy ratio becomes smaller. 

 
Factors determining the work produced by muscles 

 
The contractile elements of MTCs are the only elements producing work in the 

musculoskeletal system.  The amount of work contributed by CE of an MTC during a movement is 
the integral of CE force with respect to CE shortening distance. CE force depends on CE length, 
velocity, and active state ( 5f ).  One of the fundamental muscle properties is that force decreases 
with shortening velocity, everything else being equal (Hill 1938).  Thus, in order to maximize the 
work produced by a fully activated muscle during a single contraction, it’s shortening distance and 
active state should be made as large as possible and it’s shortening velocity as low as possible.  If 
the muscle is not pre-activated, active state should be built up as fast as possible during shortening.  
After all, if part of the shortening range is traveled at sub-maximal active state, the force is sub-
maximal and so is the work produced.  Because building up active state takes time, work production 
during shortening will benefit if this building up can be done during a preparatory 
countermovement (Bobbert and Casius 2005).  Finally, a muscle can be forcibly lengthened.  When 
CE lengthens while producing force, work output is negative; the energy absorbed by the muscle is 
converted into heat. 

 
The dependence of squat jump height on knee extensor strength and 
coordination 

 
Let us now apply the framework presented above to try and understand how and why 

performance in an explosive task, squat jumping, depends on muscle strength and coordination.  

 
 

Figure 5.  Model demonstrating that performance depends on efficacy. 



Since the kinematics and kinetics of a jump are ultimately determined by muscle stimulation as a 
function of time, it seems safe to equate coordination with control.  To illustrate all arguments 
presented above, let us devise the following thought experiment that we may simulate with the 
model (Fig. 6): an athlete has found optimal control for jumping (‘reference model’) but wants to 
jump higher.  The athlete spends 8 weeks in the gym performing leg extension exercises and 
achieves a 20% increase in quadriceps strength, with all other musculoskeletal properties remaining 
unchanged.  After training, the subject performs a maximum-effort jump, but the ‘old’ control is no 
longer optimal for the ‘new’ musculoskeletal system (‘stronger model, not re-opt.’).  By means of 
practice, the subject finds the new optimal control solution (‘stronger model, re-opt.’).  First of all, 
we observe that jump height after training but before re-optimization of control is actually less than 
in the reference model, despite the increased quadriceps strength.  The reduction is caused by an 8 J 
drop in the total work produced by the MTCs (Table 1) and a drop in the efficacy ratio from 87% to 

 
 

Figure 6.  Stick diagrams of the simulation model for the push off in vertical squat jumps for three conditions. 
‘Reference model’: a reference set of parameter values was used and control was optimized; ‘Stronger model, not 
re-opt.’: vasti and rectus femoris were strengthened by 20% compared to reference but control was not re-optimized; 
‘Stronger model, re-opt.’: vasti and rectus femoris were strengthened by 20% compared to reference and control was 
re-optimized.  Time is expressed in ms relative to the instant of takeoff (time=0). 

 
Table 1.  Work of muscle-tendon complexes (in J) during the push-off in simulated vertical squat jumps.  Values of 
left and right leg have been added.  Conditions are the same as those in Fig. 6.  

 soleus gastrocnemius vasti 
Rectus 
femoris 

gluteus 
maximus 

hamstrings total 

Reference model 85 49 166 8 246 106 659 
Stronger model, not re-opt. 70 28 189 26 232 106 651 
Stronger model, opt. 86 51 184 12 243 106 682 
Reference model: a reference set of parameter values was used and control was optimized; 
Stronger model, not re-opt.: vasti and rectus femoris were strengthened by 20% but control was not re-optimized; 
Stronger model, re-opt.: vasti and rectus femoris were strengthened by 20% and control was re-optimized.   



86%.  Some MTCs produce extra work, but other muscles produce less work (Table 1).  The 
changes in MTC work are almost completely due to changes in CE work and Fig. 7 allows for an 
analysis of the CE work of vasti and soleus.  The increase in CE work of vasti is explained by the 
fact that these muscles have been strengthened.  However, the system now takes off at a smaller 
plantar flexion angle, so CE shortening distance of soleus is smaller and CE shortening velocity is 
higher, causing a loss of CE force and CE work.  Figure 7 also shows the isometric CE force as a 
function of CE length, and comparing this isometric force with the actual force it becomes clear that 
the force-velocity relationship has a major effect on force and therewith work of CE, which is 
typical for explosive movements.  Re-optimization, which primarily results in a slight delay in 

switcht  of the knee extensors, leads to restoration of CE shortening distance and CE shortening 
velocity of soleus to the values observed in the reference condition.   

 
Conclusions 

The musculoskeletal modeling and optimization approach described in this paper leads to 
simulated vertical jumps that closely resemble vertical jumps performed by human subjects.  The 
theoretical framework presented provides a clear understanding of simulation results: performance 
depends on muscle work and efficacy, and variations in muscle work production can be explained 
by examining contractile element force and its determinants, active state and contraction velocity, 
as a function of shortening distance.  The results support the idea that in explosive movements, 

 
 

Figure 7.  Active state, shortening velocity, force and work of contractile elements (CE) of vasti and soleus as a 
function of contractile element length for the push off in simulated vertical squat jumps.  Values for force and work 
of left and right legs have been added.  Conditions are the same as those in Fig. 6.   The parabola labeled ‘isometric’ 
represents the force that can be produced at maximum active state and zero shortening velocity. Arrows indicate the 
direction of time. 



coordination benefits force and work production by helping to prevent that the shortening velocities 
of some muscles become disproportionally high (Bobbert and van Soest 2001). 
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