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Dynamical pruning of static localized basis sets in time-dependent
quantum dynamics
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Amsterdam, The Netherlands

(Received 23 February 2006; accepted 24 March 2006; published online 22 May 2006)

We investigate the viability of dynamical pruning of localized basis sets in time-dependent quantum
wave packet methods. Basis functions that have a very small population at any given time are
removed from the active set. The basis functions themselves are time independent, but the set of
active functions changes in time. Two different types of localized basis functions are tested: discrete
variable representation (DVR) functions, which are localized in position space, and phase-space
localized (PSL) functions, which are localized in both position and momentum. The number of
functions active at each point in time can be as much as an order of magnitude less for dynamical
pruning than for static pruning, in reactive scattering calculations of H, on the Pt(211) stepped
surface. Scaling of the dynamically pruned PSL (DP-PSL) bases with dimension is considerably
more favorable than for either the primitive (direct product) or DVR bases, and the DP-PSL basis
set is predicted to be three orders of magnitude smaller than the primitive basis set in the current
state-of-the-art six-dimensional reactive scattering calculations. © 2006 American Institute of

Physics. [DOI: 10.1063/1.2196889]

I. INTRODUCTION

Time-Dependent wave packet (TDWP) methods are
widely used to study quantum molecular dynamics, but are
generally only applicable to small chemical systems. A mul-
tidimensional wave packet is typically represented by a di-
rect product of reduced-dimensional basis functions or grids;
the size of such representations grows exponentially with
dimension, limiting TDWP methods to around six degrees of
freedom (DOFs) on currently available computer hardware.'
(Calculations for higher dimensions have been performed in
certain favorable cases,” but are not generally tractable.) In-
creasing computational resources only allow this effective
ceiling on dimensionality to rise slowly over time, so algo-
rithmic improvements are all the more important.

There are two ways in which a representation can be
made more compact in a wave packet calculation: The first is
to adapt it to the problem at hand, by improving the quality
of the reduced-dimensional basis functions, or pruning the
multidimensional, direct-product basis set.’ Examples of
these approaches include using contracted basis functions, as
in the potential-optimized discrete variable representation
(PODVR),* applying a projection operator formalism in or-
der to utilize different basis functions for different regions of
space,5 and discarding basis functions that fall outside the
energetic range of interest.®

The second way to reduce the size of a representation is
to make it time dependent, evolving with the changing wave
packet. An example is the time-dependent self-consistent-
field (TDSCF) method, which represents the wave packet at
each point in time by a Hartree product of one-dimensional,
time-dependent functions.” A completely different approach
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is to utilize an adaptive grids_” or basis set'>"? that moves

with the wave packet, following classical trajectories, for ex-
ample.

Probably the best-scaling quantum wave packet method
currently available is the multiconfiguration time-dependent
Hartree (MCTDH) method,” which applies both of the ap-
proaches discussed above, representing the wave packet by a
direct product of reduced-dimension, time-dependent
functions.”' The single-particle functions, as they are known,
are optimally contracted to represent the wave packet at each
point in time. MCTDH has facilitated studies well beyond
what has been possible with conventional TDWP methods.
In a recent study, several thousands of degrees of freedom
were treated with a model potential,22 and studies on realistic
potential energy surfaces (PESs) have included up to 12
DOFs.”

MCTDH is a highly successful method, but not a pana-
cea. It is effective because it exploits structure in the wave
packet, namely, weak correlation between DOFs.?' If the
wave packet becomes strongly correlated, due to trapping,
for example, the MCTDH may actually be more expensive
than a traditional TDWP method. In recently performed four-
DOF calculations with a general PES, Crespos et al. found
MCTDH to be only slightly more efficient than a standard
TDWP method,24 and in six-DOF calculations on a model
PES, van Harrevelt and Manthe did not observe any of the
resonance structure arising from long-time recurrences.”

A compact direct-product basis set can be constructed
for systems with weak correlation—as demonstrated by
MCTDH—but direct-product bases are generally an ineffi-
cient means of representing a multidimensional function.
Direct-product representations are usually used in TDWP
methods because they lead to simple sparse matrix represen-
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tations of quantum operators, which reduce the complexity
of the algorithms and programs needed to solve the equations
of motion. The price paid for this simplicity is the immensity
of the resulting basis set. However, a direct-product basis can
be made considerably more compact through “pruning:”
multidimensional basis functions that are irrelevant to the
problem at hand can be discarded. Dawes and Carrington
have recently applied this technique in time-independent
quantum calculations.’

In this paper, we investigate dynamical pruning of basis
sets comprised of static functions. We exploit both of the
tactics discussed earlier in order to reduce the overall size of
the basis set: The basis functions used here are localized,
with only those that significantly overlap with the wave
packet being retained, and the basis sets are time dependent,
though the basis functions themselves do not vary. (In other
words, the active space varies in time.)

Introducing time dependence into the basis set, but not
the individual basis functions, has some advantages over let-
ting the functions themselves vary in time. First, it is not
necessary to reformulate equations of motion or utilize spe-
cialized propagators; the standard algorithms of TDWP
methods can be applied. Methods with time-dependent basis
functions, such as MCTDH, usually have more complex,
nonlinear equations of motion.”’ These have to be solved
using general-purpose differential equation solvers, which
are often less efficient than those purposely developed to
solve the time-dependent Schrodinger equation.

The second advantage of using static basis functions is
that the basis set is “well behaved.” It cannot become over-
complete or too sparse to adequately represent the wave
packet. Methods in which basis functions follow trajectories
in time suffer particularly from these problems, and often
require workarounds (see, for example, Ref. 16). With fixed
basis functions, an orthogonal basis set can be set up that is
appropriately distributed throughout the region of relevance,
and will remain so throughout the propagation.

The last benefit of the approach adopted here is that no
implicit assumptions need to be made about the form of the
wave packet in constructing a basis set. By contrast,
MCTDH is based on the assumption of weak correlation, and
is inefficient in strongly correlated systems. The pruning
technique tested here will be less efficient than MCTDH in
weakly correlated systems, but should be more generally ap-
plicable.

Two different types of localized basis functions are uti-
lized. The first is based on the ubiquitous DVR.*® A primitive
basis is formed as the direct product of one-dimensional
DVR functions; DVR functions are maximally localized in
position space. Functions of the second type are localized in
phase space, and are referred to here as phase-space localized
(PSL) functions. They are less localized in position space
than DVR functions, but are nonetheless well localized in
both the position and momentum representations. The benefit
of a basis of PSL functions is that potentially fewer functions
need to be included, because a PSL basis function can be
“culled” based not only on its position (potential energy) but
also on its range of momentum (Kinetic energy).

PSL functions come in various forms, coherent-state
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functions being one well-known example,27’29 and wavelets
being another.”®>* Wavelets are localized in both the posi-
tion and momentum representations, and are commonly used
for spectral analysis, but have also found application to
quantum dynamics.33 43638 Here we use a different ap-
proach to generating PSL functions, one that has recently
been introduced by Dawes and Carrington.3’39 They use the
method of simultaneous diagonalization (SD), which seeks a
single set of eigenfunctions that diagonalize the position and
momentum operator matrices. It can be shown that this is
equivalent to simultaneously localizing a set of basis func-
tions in the position and momentum representations. It is not
actually possible to completely diagonalize the matrices, but
it is possible to nearly diagonalize them, and thereby obtain a
basis of localized functions. Dawes and Carrington have
shown that a basis set generated in this way can be very
effective for time-independent quantum dynarnics.3’39

In this study, we test the SD technique of Dawes and
Carrington, along with dynamical pruning of the basis set, in
reduced-dimensional, time-dependent wave packet calcula-
tions for reactive scattering of H, on a Pt(211) stepped sur-
face. This system has recently been the subject of classical
traject01ry40_42 and quantum wave packet calculations,” and
is thus a suitable test bed for new quantum dynamics meth-
ods.

We will focus here not only on the efficiency of dynami-
cal culling of localized basis functions in quantum wave
packet methods but also on the implied inefficiency of stan-
dard TDWP methods. We will show that, even for low-
dimensional calculations, a pruned basis can be several or-
ders of magnitude more compact than a primitive direct-
product basis, implying that of all the information
encapsulated in a direct-product basis set, only a fraction of a
percent may be relevant to the wave packet at any given
time. This realization will hopefully stimulate other research-
ers to seek new ways of improving upon direct-product rep-
resentations.

In Sec. II, the SD algorithm used to localize PSL basis
functions is introduced, and various aspects of the wave
packet method detailed. The approach taken to culling basis
functions is also discussed. In Sec. III, the results are pre-
sented for wave packet calculations on the H,+Pt(211) sys-
tem, with dynamically pruned DVR and PSL basis sets. Sec-
tion IV concludes.

Il. METHOD
A. Potential energy surfaces

Calculations of varying dimensionality were performed
on the H,+Pt(211) PES.*> One-dimensional (1D) calcula-
tions were performed that only treated the molecule-surface
distance coordinate (Z), with the molecule parallel to the
surface above the top-of-step Pt atom. In these calculations,
the bond length (r) was fixed, so reaction was not possible.
Although this 1D PES is predominantly repulsive, it does
include an attractive well.

Two different two-dimensional (2D) systems were tested
(Fig. 1). The first was for the same top-of-step site and mo-
lecular geometry as in the 1D calculations, but with the bond
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FIG. 1. The H,+Pt(211) potential energy surfaces (PES) used in the 2D
scattering calculations. (a) Two-dimensional PES cut for the H, molecule
parallel to the surface, above a step atom, and perpendicular to the step
edge. This is a nonactivated site, with no barrier to reaction. (b) Cut for the
same orientation as (a), but with the molecule located above the center of
the terrace. This site is activated, with a barrier around 0.15 eV high.

length allowed to vary. The second was for the molecule
centered over a terrace site atom, rather than atop a step
atom. The PES for the step site is barrierless [Fig. 1(a)] lead-
ing most molecules to react, while the terrace site PES ex-
hibits an early barrier of around 0.15 eV [Fig. 1(b)], which
causes many molecules to be scattered.

Three-dimensional calculations were performed for the
same geometry as the 2D step site calculations, but with
translational motion also possible along the step edge, which
is the X coordinate direction. This PES includes the attractive
site in the 2D PES [Fig. 1(a)], but additionally includes re-
pulsive intermediate sites where no reaction is possible.42

Four-dimensional calculations were as for the 2D calcu-
lations, but with motion possible in both translational coor-
dinates parallel to the surface, the X and Y coordinate direc-
tions. The four-dimensional (4D) PES includes the reactive
step and terrace sites, and many unreactive sites. Shallow
chemisorption wells also exist, which can lead molecules to
become trapped for some time on the surface.

B. Time-dependent wave packet method

A standard TDWP method was used to propagate two
wave packets for each calculation: the first was the so-called
“exact” wave packet (EWP), which was represented entirely
in the primitive direct-product basis set; the second was the
wave packet propagated in the pruned basis set, which we
will term the pruned-basis wave packet (PBWP).

The Hamiltonians used for the various calculations were
very simple, including only the potential energy, and the
translational and vibrational terms. For example, the Hamil-
tonian for the 4D calculations was given by

1i PP

H= -— | —=+—=+—=|+Vy(rXY.2),
2 2M<ax2 Jay? azz) anlr )

(1)

where V, is the 4D potential energy, M is the molecular
mass, and u is the reduced mass corresponding to the mo-

_Zﬁr
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lecular bond length coordinate. Hamiltonians for other di-
mensionalities were similar to Eq. (1), but with inapplicable
terms removed.

The initial state of the wave packet in all calculations
was the product of a Gaussian coherent-state function for the
scattering coordinate, Z, and the ground state of any other
degrees of freedom. For example, for the 4D calculations, the
initial state was

1
Wr,X,Y,Z;t=0) = L— L—‘ﬁy—o(’”)G(Z) (2)

VLx VLy

with Ly and Ly the lattice constants for the X and Y coordi-
nates, respectively, ¢,_o(r) the ground vibrational state, and
G(Z) the coherent-state function. Parameters for G(Z) were
chosen such that the wave packets were initially centered at
Z=8.0 bohrs, and moving toward the surface with 95% prob-
ability of having a kinetic energy in the range of 0.1-0.3 eV.

A 1D DVR derived from sinusoidal functions was used
as the primitive representation for each DOFE.*** The grid
points in this DVR are equally spaced, but the spacing was
chosen differently for each DOF, according to the conver-
gence tests performed recently for a six-dimensional (6D)
quantum study.43 For Z, a spacing of 0.150 bohr was used;
for r, 0.208 bohr; for X, 0.175 bohr; and for Y, 0.160 bohr.

Each wave packet was propagated with the third-order
split operator propagator, > using a time step of 5.0 a.u. Ap-
plying the split operator propagator involves continually op-
erating on the wave function with exponential operators for
the kinetic energy and potential energy,

lﬂ(l =t =1, + AZ) — e‘ikAl/ze_iVA’e_iKA’/zlﬁ(t — tn)’ (3)

where n is the time step index, At is the propagatlon time

step, K is the kinetic energy operator, and V is the potential
energy operator.

For the wave packets represented in the DVR basis sets,
the exponential kinetic energy operator was factorized into
1D operators in the standard way, before being applied to the
wave function coefficients. For example, in the 4D calcula-
tions, the kinetic exponential operator was factorized as

oIKA2 _ Ky A2 ~iKy A2 ,~iK /A2 e—il%,At/z, (4)
with IA(X, ky, kz, and IA(, the various 1D kinetic operators.
Each exponential kinetic energy operator was formed in the
kinetic energy matrix eigenspace, where it is diagonal, before
being transformed to the DVR representation. The exponen-
tial potential operator was simply a pointwise multiplication,
because the potential operator is diagonal in the DVR repre-
sentation.

For the PSL basis sets, the exponential kinetic operator
was applied in the same way as for the DVR basis sets, but a
different approach was used for the exponential potential op-
erator matrix, because it is not diagonal in the PSL basis set.
The wave function coefficients were transformed to the DVR
representation, and the operation performed there, before
transforming the coefficients back to the PSL representation.
Of course, this is very inefficient, and any practical imple-

Downloaded 30 Mar 2011 to 130.37.129.78. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



204101-4 Drew A. McCormack

mentation utilizing PSL basis functions would need to in-
clude a better approach to performing the potential operation.
This will be discussed further in Sec. III.

Complex absorbing potentials46 were used in the Z and r
coordinates to absorb the wave packet as it approached the
edge of the grid, after being scattered or having reacted. This
avoids unphysical reflections from the grid edge.

C. Localized basis functions

PSL functions were generated from the primitive DVR
for each DOF using the Jacobi method of SD, adopted from
the work of Dawes and Carrington.3’39’47 The method was
used here to generate near diagonal matrices, rather than
completely diagonal matrices, because full diagonalization is
not possible for noncommuting matrices.

Various operators can be used in the near diagonaliza-
tion, but in this study we chose the position operator and the
kinetic energy operator, because both are real valued. With
this choice, near diagonalization of the operator matrices in-
volves maximizing the following function of diagonal matrix
elements:

2 [UxUT;+ 2 [UK,UT;, (5)

where U is a unitary transformation, x is the position opera-
tor matrix, and K, is the kinetic energy matrix for coordinate
x. (The problem can also be formulated as a minimization of
the square of the off-diagonal matrix elements.) The unitary
transformation matrix U is the product of Jacobi rotation
matrices J(i,/), which can be determined from expressions
given in Ref. 48.

The choice of the matrices x and K, is somewhat arbi-
trary. Multiplying either matrix by a constant factor leads to
an equally valid choice. In this study, we chose a standard
scaling for the matrices: First, each matrix was scaled such
that the magnitude of the maximum matrix element was
unity, giving the matrices X and K,. Next, a constant factor
was introduced to control the contribution of each matrix to
the optimization function,

a2 [U'RUL} + (1 - @) 2 [UK, U}, ©

The bias factor a ranges from O to 1, and can be used to
change the priority of each operator in the diagonalization
process. If « is 0, the position operator term plays no part,
and only the kinetic energy matrix is diagonalized. This ex-
treme gives the sinusoidal basis functions, which are eigen-
functions of the kinetic energy operator. If « is 1, the kinetic
energy term in Eq. (6) becomes zero, and only the position
operator is diagonalized, giving the DVR basis. For values of
a in between, each matrix will become near diagonal, with
the value of a determining how close each matrix is to full
diagonality.

Optimization of the function in Eq. (6) was achieved
with the Jacobi method.* This entails performing “sweeps”
of the matrices, visiting each element in turn, and performing
unitary Jacobi rotations in order to reduce the magnitude of
off-diagonal elements. Unfortunately, this process does not

J. Chem. Phys. 124, 204101 (2006)

always converge rapidly, and can be adversely affected by
so-called “fixed points.” Others have utilized a Newton-
Raphson (NR) algorithm to improve convergence in cases
where fixed points arise.

In this study, we utilized a rescaling scheme similar to
that implemented by Dawes and Carrington,3 7 in order to
address the fixed-point problem, but this did not always re-
sult in good convergence. Nonetheless, we took no further
steps to improve the optimization method, because the con-
vergence was found to be adequate for our purposes, and
other authors have noted that poor convergence has very
little impact on the quality of the localized basis functions.”

D. Basis set pruning

We have not attempted to develop a particular algorithm
for dynamical pruning in this study, nor have we developed
specialized software that efficiently implements dynamical
pruning in wave packet calculations. Instead, a standard
TDWP method has been used to investigate the potential
gains of dynamical pruning, without providing a practical
implementation.

Rather than removing basis functions from a basis set,
we propagated each wave packet in the full-unpruned basis
set, but set small coefficients to zero after each time step.
This has a similar effect to removing the corresponding basis
functions from the calculation for that time step. The number
of coefficients that were zeroed was monitored as a function
of time.

Two different types of culling threshold were used in
determining what constituted a “small” coefficient. The first
involved a fixed, absolute minimum on the absolute square
of any coefficient,

cici=e, (7)

where c; is a complex coefficient, and & the culling threshold.
Any coefficient for which Eq. (7) was not true was set to
zero, effectively culling the corresponding basis function
from the basis set.

The second type of threshold used was time variant. This
culling threshold was adopted where coefficients could vary
significantly in magnitude from one wave packet to the next,
as arises when comparing systems with different dimension-
alities. In this case, the threshold in Eq. (7) was recalculated
each time step according to

&(1) = £r01C (D (1), (8)

where c¢,.(2) is the coefficient with the largest absolute
value at time ¢, and g, is a relative threshold. Using this
time-dependent threshold also means that the general de-
crease in coefficient values that occurs due to the spread of a
wave packet does not lead to excessive culling of basis func-
tions toward the end of a propagation.

It is important to recognize that as & goes to zero, the
number of culled basis functions also goes to zero, and the
pruned-basis calculation becomes as accurate as the primi-
tive basis set calculation. The localization of the basis func-
tions in the PSL basis set introduces no extra approxima-
tions: the PSL basis and the primitive DVR basis are
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isomorphic. The only approximation introduced in the prun-
ing method is that arising from pruning itself.

lll. RESULTS AND DISCUSSION
A. One-dimensional scattering

We begin our analysis by considering how the set of
culled PSL basis functions evolves in time in 1D scattering.
Figure 2 shows the evolution of the wave packet in time, and
the PSL basis functions used to represent it. The position of
each PSL basis function is assumed to be given by the pair of
diagonal matrix elements corresponding to the basis function
in the near diagonal kinetic and position matrices arising
from the SD procedure. In this case, the SD bias parameter «
was set to 0.5, favoring neither the kinetic matrix nor posi-
tion matrix in the near diagonalization.

The wave packet approaches the interaction region, gath-
ering momentum in the attractive well, before reflecting back
to the asymptotic region. Oscillations in the wave function
can be seen in Fig. 2(e), which are due to interference be-
tween the incoming and outgoing components. The wave
packet is significantly broadened when it leaves the interac-
tion region in Fig. 2(f).

Position (a,)

Figure 2(a) shows that only a small portion of the PSL
basis functions are needed to represent the initial wave
packet. The region mapped out by the basis functions in the
kinetic energy-position space is approximately elliptical. In-
terestingly, functions corresponding to low kinetic energies
are excluded near the edges of the wave packet. This is due
to the fact that the wave packet is not stationary, but moving
toward the surface; this translates the elliptical region occu-
pied by the wave packet upward in kinetic energy. Figure 3
clarifies this effect diagrammatically.

In Fig. 2(e), the wave packet is located in the attractive
well, causing an increase in kinetic energy. This is mirrored
in the basis set pruning of Fig. 2(b): the set of used basis
functions extends higher up the kinetic energy scale than it
does in Fig. 2(a), and is localized in position near the poten-
tial well.

In Fig. 2(c), with the wave packet scattering back [Fig.
2(f)], only the basis functions falling in a narrow range of
kinetic energies are occupied in the asymptotic region. The
reflected wave packet is broader in position space, and nar-
rower in momentum, leading to the long thin “dagger” form
seen in Fig. 2(c).

The results in Fig. 2 are for a PSL basis set generated

Downloaded 30 Mar 2011 to 130.37.129.78. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



204101-6 Drew A. McCormack
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FIG. 3. Diagram depicting the region of phase space occupied by a moving
1D coherent-state wave packet. The motion of the wave packet results in the
occupied region, which is elliptical, being translated along the momentum
axis, away from the position axis. This causes low-momentum regions near
the edges of the coordinate range to be unoccupied, which can be observed
in the pattern of basis set pruning in Fig. 2(a).

with a bias parameter of @=0.5. Figure 4 demonstrates the
effect of varying « on basis set pruning. The time depen-
dence of the percentage of culled functions for a=0.5 re-
mains relatively constant at just below 50%. Increasing « to
1, which corresponds to a DVR basis set, causes more basis
functions to be culled at the beginning of the propagation,
but fewer later, as the wave packet spreads in the position
space. The other extreme, @=0, which corresponds to a basis
set of delocalized sinusoidal functions, is even more variable
in time, with virtually no culling at all occurring while the
wave packet is in the interaction region (i.e., between 2000
and 3000 a.u.).

The stability of pruning with a@=0.5 is favorable, be-
cause the likelihood of extremes is reduced. In practical com-
putations, if the culling percentage were to drop to zero, as it
does for a=0, a computational bottleneck could arise, with
increased memory and CPU time requirements. Choosing
a=0.5 also results in basis functions that are well localized
in both position and momentum, which increases the effec-

Percentage of Functions Culled

L I TR R S R [ R N
0 2000 4000 6000 8000 10000

Time (au)

FIG. 4. The time dependence of the percentage of basis functions culled for
different values of the simultaneous diagonalization bias parameter a, in 1D
wave packet calculations. Curves are labeled by the value of « used in the
derivation of the PSL basis set. A static culling threshold of e=10"% was
used in the calculations.
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FIG. 5. Accuracy of 1D wave packets propagated in pruned PSL basis sets.
(a) Time dependence of the relative overlap of the exact and approximate
wave packets for various values of the culling threshold, . (b) Time depen-
dence of the percentage of PSL basis functions culled for the same culling
thresholds used in (a).

tiveness of pruning in multidimensional systems, as we will
show later. Given these considerations, we have chosen to
use a SD bias of a=0.5 for all PSL basis sets from this point
onwards.

With the SD bias parameter established, only the choice
of culling threshold (e) still remains to be addressed. Figure
5 shows the time dependence of the normalized overlap of
the exact and approximate wave packets, for various values
of the threshold. The normalized overlap is defined here as

_ < wapprox(t) | wexact(t»
<¢exact(t)|¢exact(t)> '

where ¢« 18 the wave function propagated in the pruned
basis set, and ¥, 1S the wave packet propagated in the
primitive direct-product basis set.

Figure 5 shows that the threshold must be quite low for
accuracy to be maintained; wave packets are surprisingly
sensitive to changes in small coefficients. For a threshold of
1075, the overlap drops off quite rapidly to less than 0.9.
High accuracy is really only achieved with a threshold of
1077, for which the overlap remains well above 0.99 for most
of the propagation, only dropping below at the end, when the
wave packet has been mostly absorbed by the optical poten-
tial at the edge of the grid.

Even with low culling thresholds, a considerable portion
of the PSL basis can still be pruned at each point in time
[Fig. 5(b)]. For a threshold of 1077, around 50% of functions
are culled, and for 1078, about 40%. As was also observed in

p(1) ©)
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FIG. 6. Time dependence of PSL basis set pruning for 2D scattering. (a)
Semilog plot of the normalized overlap for H, scattering at the step and
terrace sites of Pt(211). Also shown is the norm of the wave packet propa-
gated in the primitive direct-product basis, for each surface site. (b) The
percentage of culled PSL basis functions vs time for scattering from the step
and terrace sites. A static culling threshold of 1078 was used in the
calculations.

Fig. 4, the portion of the basis set pruned at each time is
reasonably constant for any one value of the culling thresh-
old.

B. Two-dimensional reactive scattering

Significant benefits of pruned PSL basis sets are really
only realized in multidimensional calculations, where the ba-
sis set is expected to scale more favorably with dimension
than a direct-product basis. We begin our exploration of mul-
tidimensional systems by considering the two different 2D
scattering systems described earlier: one for the nonactivated
step site, and one for the activated terrace site (Fig. 1).

Figure 6 shows the time dependence of the PSL basis set
pruning for the two surface sites. The nonactivated step site
is very reactive, with the wave packet absorbed relatively
quickly [Fig. 6(a)]. The norm becomes very small after only
around 4000 a.u. The normalized overlap [Eq. (9)] of the
step wave packet remains close to 1 up to this point, and then
begins to decrease as coefficients become small.

Scattering at the terrace site proceeds much more slowly,
because a significant portion of the wave packet is scattered
back. The norm of the wave packet reacting at the terrace
only drops to around 107! over the course of the propagation,
and the normalized overlap remains close to unity [Fig. 6(a)].

The percentage of basis functions culled remains rela-
tively constant for the activated terrace site, but varies some-
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FIG. 7. Time dependence of basis set pruning for 3D scattering of H, from
the step edge of Pt(211). (a) The normalized overlaps of wave packets
propagated in the DVR and PSL dynamically pruned basis sets, and the
norm of the wave packet propagated in the primitive direct-product basis
set. (b) The number of basis functions used to represent the wave packets in
the DVR and PSL basis sets as a function of time. The size of the unpruned
basis sets was 108 000. A static culling threshold of 107! was used in each
calculation.

what at the step [Fig. 6(b)]. As the wave packet gets accel-
erated toward the surface by the attractive potential, it
spreads out in position space, and includes higher compo-
nents of momentum. This apparently leads to a net increase
in the number of basis functions needed to describe the wave
packet. The number of culled basis functions begins to in-
crease again as the high momentum components start to be
absorbed at around 2000 a.u. of time [Fig. 6(a)]. By the end
of the propagation, the pruned basis set for the wave packet
at the step includes very few functions [Fig. 6(b)], because
most of the wave packet has been absorbed, and the remain-
ing coefficients are small, most falling below the culling
threshold.

C. Three-dimensional reactive scattering

The three-dimensional (3D) PES, for reaction at the step
of the Pt(211) surface, includes both nonactivated reaction
sites and repulsive sites where no reaction is possible. Figure
7 presents the results for dynamical pruning of PSL and
DVR basis sets for this system. Figure 7(a) shows that both
basis sets accurately represent the wave packet, with the nor-
malized overlap only deviating significantly from unity after
the norm is small.

Both basis sets are around an order of magnitude smaller
at each point in time than the primitive direct-product basis
set [Fig. 7(b)]. In this case, the DVR and PSL basis sets are
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FIG. 8. Scaling of basis set sizes with dimensionality. The results are pre-
sented for dynamically pruned DVR bases (solid red circles), statically
pruned DVR bases (open red circles), dynamically pruned PSL bases (solid
blue squares), statically-pruned PSL bases (open blue squares), and the
primitive direct-product bases (black crosses). Each series of points has been
fit with a straight line, corresponding to exponential scaling. The method
used to establish basis set sizes is described in the text.

very similar in size, though the DVR basis does include sig-
nificantly more basis functions at longer times, when the
wave packet is more spread out in position space. In the PSL
basis, this spread is apparently compensated by narrowing in
momentum, which arises due to high kinetic energy compo-
nents of the wave packet getting absorbed.

D. Scaling with dimension

In the previous section, the DVR and PSL dynamically
pruned (DP) basis sets were similar in size, posing the ques-
tion of whether the PSL basis set has any inherent advan-
tages. Given that the potential energy operation is easier to
perform in the DVR basis, the PSL basis needs to be signifi-
cantly smaller to warrant its use. For the 3D calculations,
that was not the case [Fig. 7(b)].

To address this issue, we now consider the scaling of
basis size with dimension in more detail, including up to four
dimensions. Figure 8 shows time-averaged basis set sizes as
a function of dimensionality. In order to make it possible to
fairly compare different basis sets and dimensionalities, a
dynamic culling threshold was used, as described in Sec. II.
Moreover, the relative culling threshold e, was adjusted
such that the time-averaged error in the wave packet was
approximately the same in each calculation. The error was
defined as

Jolt = p(0)dr
o= Joll = plD)ldt

T ; (10)

with 7, the time over which the averaging occurs, taken to be
3500 a.u. For each basis set and dimensionality, a series of
calculations was performed for different values of &,,. The
values of &, used were 107, 107, 1077, 1078, and 107°. The
results of the calculation for which the error (e) was closest
to 5 107* are presented in Fig. 8.
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TABLE I. Parameters used in the curve fits shown in Fig. 8. The parameters
are defined by Eq. (11).

Basis set Prefactor (a) Base (n)
Primitive 1.43 48.99
Statically pruned DVR 0.94 35.76
Dynamically pruned DVR 0.23 37.41
Statically pruned PSL 14.81 14.06
Dynamically pruned PSL 11.85 9.41

Figure 8 shows that the DP bases are significantly
smaller than the corresponding primitive direct-product
bases. For example, for the 4D calculations, the DP-DVR
basis set is only around 5% of the size of the primitive basis,
and the DP-PSL basis is around 1% the size. Put another
way, even in a system with only four DOFs, at least 99% of
the functions in the direct-product basis set are irrelevant to
the wave packet at any point in time.

Figure 8 also presents the results for static pruning
schemes. Static pruning involves culling basis functions for
the duration of the calculation, usually according to an
energy-based criterion. For example, it is common to discard
DVR points for which the potential energy falls way outside
the range of interest. In this particular case, we have taken
each statically pruned (SP) basis set to be the union of all
functions active in the corresponding DP set at any point
during a propagation. In other words, any basis function that
appears in the DP basis set is added to the SP set. This
scheme could be considered an optimal means of generating
a static basis, because only functions that are relevant to the
wave packet at some point in time are included. (This is only
possible with the benefit of hindsight.)

Figure 8 shows that dynamical pruning can be as much
as an order of magnitude more effective at reducing basis set
size than static pruning. The plots for the SP-PSL and DP-
PSL bases run almost parallel, with the static curve shifted
upward. The same is true of the DVR bases.

The plots in Fig. 8 are fit with lines corresponding to
exponential growth,

N(D) = an®, (11)

where N is the number of functions in the basis set, D is the
dimensionality, and @ and n are constants. Table I gives the
values of the prefactor (a) and base (n) for each plot.

It should be clear from the values in Table I, and the
slopes of the fits in Fig. 8, that the PSL basis sets scale much
more favorably than either the primitive or DVR bases. Even
though the DP-DVR basis is approximately the same size as
the DP-PSL basis for the 3D system, as noted earlier, the
scaling of the DP-PSL basis means that in the 4D system it is
already less than a fifth the size of the DP-DVR basis set.
Increasing the dimensionality beyond 4D would only accen-
tuate this inequality.

The largest wave packet computations performed today
typically include no more than six DOFs. Recent 6D wave
packet calculations on the H,+Pt(211) PES used here re-
quired on the order of 10° basis functions.* Using the pa-
rameters from Table I to extrapolate to six dimensions, we
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arrive at a primitive basis size of 20 X 10°, which is some-
what high. The 6D wave packet calculations adopted various
measures to reduce basis size, including using 2D spherical
harmonic basis functions for rotational degrees of freedom,
and implementing a projection operator formalism to better
tailor the basis to particular regions of space, such as the
asymptotic region.43 These measures explain the smaller than
expected number of basis functions utilized in the 6D com-
putations.

The extrapolated size of the DP-PSL basis set for six
DOFs is 8.2 10%, only 0.041% as large as the extrapolated
primitive basis set. Restated, less than one in every thousand
primitive basis functions is relevant to the wave packet at
any given point in time. This is quite a shocking statistic, and
demonstrates how much there remains to be gained in time-
dependent wave packet methods through algorithmic im-
provements. The DP-DVR basis set is less favorable than the
DP-PSL set, but extrapolation predicts that it would only be
around 3.2% the size of the primitive basis.

Close attention to the data in Fig. 8 reveals that the DP-
PSL may actually scale less than exponentially in this case.
In particular, the point representing the basis size in the 4D
system lies considerably under a line drawn through the
points for 2D and 3D systems. This is despite the fact that
the primitive and DVR basis sets exhibit the opposite trend.

Recent studies of Poirier’* and Poirier and Salam®®*’
have established that subexponential scaling is possible in
quantum dynamics when using PSL basis functions. (Dawes
and Carrington have also observed subexponential scaling
with PSL basis sets.3’39) However, their analysis was based
on the assumption that the maximum energy for which the
results are sought is independent of dimensionality, which is
only reasonable in a time-independent eigensystem calcula-
tion. In time-dependent scattering calculations, it is more
reasonable to assume that the translational collision energy is
constant with respect to dimensionality, and that the total
energy thus increases with dimension. On this basis, we had
anticipated exponential scaling, and Fig. 8 thus comes as
something of a surprise.

One possible explanation is that the proportion of initial
translational energy available to each degree of freedom de-
creases on average with dimension. For example, for a 2D
system with a vibration, half of the translational energy could
be expected to redistribute into the vibrational mode at some
point during the reaction. For a 3D system, only a third of
the translational energy could be expected to distribute into
each nonscattering coordinate mode. Less energy for any
given node corresponds to fewer basis functions, so the scal-
ing may be subexponential for low dimensions.

An equation that takes these considerations into account
is

N(D)=a(n + 1/n)P. (12)

It is not that difficult to arrive at this form. If we assume that
E|, is the initial energy of a vibrational mode, and E; is the
energy initially in the scattering DOF, then the energy avail-
able to the vibration is given by Ey+E /n. The accessible
area in phase space of a vibrational mode is proportional to
its energy, so the number of basis functions required to rep-
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resent the wave packet in that mode may actually decrease
with dimension roughly in proportion to 1+1/n. Accounting
for all modes leads to the scaling law given in Eq. (12).

Although Eq. (12) is subexponential, it approaches ex-
ponential scaling for large n, albeit with a smaller exponent
than would be measured for low dimensionality. It thus
seems possible that the results for the DP-PSL basis set in
Fig. 8 are representative of true subexponential scaling,
though without more data this cannot be confirmed. And
even if it were, it would seem likely that for higher dimen-
sionality the scaling would become exponential.

E. Possible pruning schemes

In this paper, we have not endeavored to present a prac-
tical scheme for dynamical pruning, but have instead chosen
to test the effectiveness of the approach in realistic scattering
calculations. The implementation used for these tests was not
efficient, and could only cull basis functions with the benefit
of hindsight, i.e., at each step the wave packet was propa-
gated in an unpruned basis set, and only then were small
coefficients zeroed. This is, of course, not a practical algo-
rithm for dynamical pruning of basis sets.

A number of possible approaches could be taken to de-
termine which localized basis functions should be culled be-
fore a given time step. One would be to set up a pruned basis
set for the known initial state, and then to include an extra
“shell” of basis functions around the occupied region before
each time step. This shell would allow unoccupied functions
to become occupied during the course of a propagation step,
and a scan of the basis set at the conclusion of the step could
remove any functions that become unoccupied. The thick-
ness of the shell would need to be such that the wave packet
could not move beyond its boundary in a single time step.

Another family of methods could fall under the heading
of “guided pruning.” In this scenario, a computationally
cheaper and less accurate method, such as classical trajectory
propagation—or even unconverged quantum wave packet
propagation—could be used to determine the occupied re-
gion of phase space at each point in time. The proximity of
an ensemble of classical trajectories to the set of all PSL
basis functions at any point in time would determine which
of those functions were included in the active basis set.

F. The potential energy operation

The last issue we would like to address is that of the
potential energy operation. This is one of the more difficult
aspects of quantum dynamics calculations, because the po-
tential typically cannot be factorized into reduced-
dimensional operators, as can the kinetic energy terms, and
can thus become very expensive. One implementation of the
MCTDH method, for example, requires that the PES be re-
fitted with a particular product form, which then can be fac-
torized and evaluated more cheaply.21 However, this ap-
proach does have its limitations.

DVRs are popular because the potential energy operator
is diagonal, and can be evaluated via a cheap pointwise mul-
tiplication. In contrast, the PSL functions are less spatially
localized, and the potential operator matrix is not diagonal.
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Nonetheless, the PSL functions are quite localized, and the
potential matrix should be sparse in practice. It should be
possible either to evaluate the potential matrix in the PSL
basis by transforming it from the DVR basis representation
where it is diagonal, or by transforming the wave packet
coefficients to the DVR representation each time step and
applying the potential operator before transforming back to
the PSL representation again. The matrix and coefficient
transforms in question would be sparse, with each PSL func-
tion only overlapping a handful of DVR points. Lombardini
and Poirier have recently investigated a similar quadrature-
based 3sgcheme in time-independent calculations with wavelet
bases.

IV. CONCLUSIONS

We have investigated the effectiveness of dynamically
pruning multidimensional basis sets of localized functions in
time-dependent wave packet calculations. Included were
functions optimally localized in position space (i.e., DVR
functions) and phase space (i.e., PSL functions). PSL basis
functions were generated using the technique of simulta-
neous diagonalization.

Time-dependent wave packet scattering calculations of
varying dimension were performed for H, dissociatively ad-
sorbing on the Pt(211) stepped surface. The PES used was
chemically realistic, based on a fit to density functional cal-
culations. Wave packet calculations showed that a direct-
product basis set, as is commonly used, can be extremely
inefficient. For example, it was predicted that in a six-
dimensional wave packet calculation, less than one in every
thousand basis functions is relevant to the propagation of the
wave packet at any given point in time.

Dynamical pruning, in which the active set of basis func-
tions used at each point in time can vary, was found to re-
duce basis set size by as much as an order of magnitude over
statically pruned sets, where the selection of basis functions
does not vary. Although the dynamically pruned DVR basis
set was smaller than the phase-space localized (PSL) basis in
2D calculations, the PSL basis set scaled much more favor-
ably with dimension, and in 4D calculations was around a
factor of 5 smaller. We even observed that the scaling of the
PSL basis may be subexponential for low dimensions, and
offered a possible explanation based on energy redistribution
arguments.

In this study, we have not presented an algorithm for
dynamical pruning of localized basis sets, but have quanti-
fied the potential benefits should a practical method be de-
veloped. We hope that this reemphasizes the inefficiency of
direct-product basis sets, and motivates the search for alter-
natives.
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