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Abstract

Using data collected by the HERA-B experiment, we have measured the fraction ofJ/ψ ’s produced via radiativeχc decays
in interactions of 920 GeV protons with carbon and titanium targets. We obtainedRχc = 0.32± 0.06stat± 0.04sys for the
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nt with
fraction ofJ/ψ from χc decays averaged over proton–carbon and proton–titanium collisions. This result is in agreeme
previous measurements and is compared with theoretical predictions.
 2003 Published by Elsevier Science B.V.
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1. Introduction

The mechanism by which quarkonium states
produced in hadronic collisions is not understood a
is a subject of current interest. At present, seve
models exist. The color singlet model (CSM) [1] r
quires that theqq̄ pair be produced in a color sin
glet state with the quantum numbers of the final m
son. The non-relativistic QCD factorization approa
(NRQCD) [2,3] assumes that a color singlet or co
octet quark pair evolves towards the final bound s
via exchange of soft gluons. The nonperturbative p
of the process is described by long distance matrix
ments which are extracted from data. Finally, the co
evaporation model (CEM) [4,5] assumes the excha
of many soft gluons during the formation process s
that the final meson carries no information about
production process of theqq̄ pair.

Charmonium production is an attractive test cas
the quarks are heavy enough for perturbative calc
tions of theqq̄ production process, yet the cross s
tions are large enough to be measured with good
tistics. The dependence of the ratio of production cr
sections for different states, e.g., the ratio ofχc

22 and
J/ψ production cross sectionsσ(χc)/σ(J/ψ), on

√
s

or the projectile allows one to distinguish among d
ferent models. From the experimental point of vie
the specific decayχc → J/ψγ is advantageous sinc
the decay signatureJ/ψ → �+�− (� = µ,e) can be
used as trigger requirement. Furthermore, several
tematic errors cancel in the ratio, and the only s
nificant difference in the detection of theχc and the
J/ψ is the photon reconstruction. Due to the sm
branching ratio ofχc0 → J/ψγ , (6.6 ± 1.8)× 10−3

[6], theχc0 contribution to the reconstructedχc signal
can be neglected. Theχc1 andχc2 states, with radiative
branching ratios of 0.273± 0.016 and 0.135± 0.011
[6], respectively, are separated by 46 MeV/c2. In most
experiments the energy resolution is insufficient to
solve these two states, so that one usually quotes

22 In the following, the notation “χc” indicates the sum of the
three statesχc0, χc1 andχc2.
ratio

(1)Rχc =
∑2

i=1σ(χci)Br(χci → J/ψγ )

σ(J/ψ)
.

Here,σ(J/ψ) is the sum of production cross sectio
for directJ/ψ ’s andJ/ψ ’s produced in decays ofχc
andψ ′. In the same way,σ(χci) includes directχc
production and the feed-down from theψ ′. Contribu-
tions fromη′

c , hc and heavier charmonia are neglect
While this “inclusive”Rχc ratio is usually quoted

in the literature, one can define the ratio for directχc
production over directJ/ψ production

(2)Rdir
χc

=
∑2

i=1σ(χci)dir Br(χci → J/ψγ )

σ(J/ψ)dir
.

Rdir
χc

can be derived fromRχc and the known ratio o
ψ ′ to J/ψ production cross sections [7] and know
branching ratios [6].

The experimental situation is unclear, and the
certainties are large particularly for proton induc
reactions where the few existing measurements
Rχc [8] differ strongly. Measurements made with pi
beams [9] have higher precision but still do not
low to distinguish between a flat and positive

√
s de-

pendence. For photon and electron-induced reacti
only upper limits forRχc have been reported [10].

We report here a new determination ofRχc in
interactions of 920 GeV protons with carbon a
titanium nuclei. Theχc is observed in the decayχc →
J/ψγ → �+�−γ (� = µ,e) using the value�M,
which is the difference between the invariant m
of the (�+�−γ ) system and the invariant mass of t
lepton pair�+�−:

(3)�M =M
(
�+�−γ

) −M
(
�+�−

)
.

Here, the uncertainty in the determination of theJ/ψ
mass essentially cancels. An excess of events
respect to the combinatorial background determi
the number ofχc candidatesNχc , from which the
“inclusive” value,Rχc , can be calculated as follows:

(4)Rχc = Nχc

NJ/ψεγ
ρε,
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where NJ/ψ is the total number of reconstructe
J/ψ → �+�− decays used for theχc search. The fac
tor εγ is the photon detection efficiency. The valueρε
represents the ratio of trigger and reconstruction e
ciencies forJ/ψ ’s from χc decays and for allJ/ψ ’s:

(5)ρε = ε
J/ψ

trig

ε
χc
trig

ε
J/ψ
reco

ε
χc
reco

.

Since the kinematics, triggering and reconstruction
directJ/ψ ’s andJ/ψ ’s from χc decays are very sim
ilar, ρε is close to unity.

2. Detector, trigger and data sample

HERA-B is a fixed target experiment operating
the HERA storage ring at DESY. Charmonium a
other heavy flavor states are produced in inela
collisions by inserting wire targets into the halo of t
920 GeV proton beam circulating in HERA. ThepN
(N = p,n) c.m.s. energy is

√
s = 41.6 GeV.

The detector is a magnetic spectrometer emp
sizing vertexing, tracking and particle identificatio
with a dedicatedJ/ψ-trigger. The components of th
HERA-B detector used for this analysis include
silicon strip vertex detector (VDS), honeycomb dr
chambers (OTR), a large acceptance 2.13 T m m
net, a finely segmented “shashlik” electromagne
calorimeter (ECAL), and a muon system (MUON
consisting of wire chambers interleaved with ir
shielding which detects muons with momenta lar
than 5 GeV/c. The ECAL is divided into three ra
dial parts with decreasing granularities, of which tw
the “inner” and “middle” sections, are used for t
measurement described here. The performance o
calorimeter is described in Ref. [11]. The HERA-B

detector allows an efficient reconstruction of partic
with momenta larger than 1 GeV/c, includingγ ’s and
π0’s, within the acceptance. A detailed description
the apparatus is given in Ref. [12].

The HERA-B target station houses 8 target wir
which can be moved independently into the be
halo. Their positions are steered such that the pro
interaction rates are equalized for the targets in u
The data presented here were obtained using a ca
wire and a titanium wire separated by 3.3 cm alo
the beam direction. The resolution of the reconstruc
dilepton vertices of 0.6 mm along the beam direct
[13] allows a clear association of the interaction to
specific target wire. The analysis presented is ba
on data collected during a short commissioning
in summer 2000. About half of the data was tak
with a single carbon wire; the second half was tak
with carbon and titanium wires together. The proto
nucleus interaction rate was approximately 5 MHz.

The trigger selectsµ+µ− ande+e− pairs, the lat-
ter with an invariant mass larger than 2 GeV/c2.
For a muon candidate the trigger requires at lea
MUON hits in coincidence with 9 OTR hits consi
tent with a particle track with a transverse mome
tum between 0.7 GeV/c and 2.5 GeV/c. The electron
trigger requires that the transverse energy deposite
the calorimeter23 by the electron candidates be grea
than 1.0 GeV and that at least 9 OTR hits confi
the track hypothesis. Both muon and electron ca
dates have to be confirmed by a track segment in
vertex detector with at least 6 hits. For the data
scribed here, the trigger acceptance forJ/ψ ’s was
limited to thexF range−0.25< xF < 0.15,xF being
Feynman’sx variable. For more details concerning t
trigger and the data sample of the year 2000 run,
Ref. [14].

The data is divided into four separate samp
µ+µ− or e+e− final states, each originating from e
ther carbon or titanium target wires (µ–C, e–C,µ–Ti
ande–Ti).

3. Monte Carlo simulation

At present, NRQCD is the favored approach to
scribe charmonium formation. It is therefore used
generate our signal Monte Carlo sample. To estim
the model dependence systematics we use the C
Since the CEM does not make any conclusive pre
tions for the differential charmonium production cro
sections, we have not used it in the simulations.

The Monte Carlo simulation (MC) of events is do
in three steps. First, aJ/ψ or χc is generated usin
PYTHIA 5.7 [15]. In the simulations, the CTEQ2
parton density function [15] and thec quark mass

23 The transverse energy is defined as cluster energy multiplie
the transverse distance to the beam axis and divided by the clu
target distance.
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mc = 1.48 GeV/c2 are used. The sum of the tran
verse momenta of the reaction products must exc
0.5 GeV/c. For NRQCD, the differential cross se
tions and long distance matrix elements are taken f
Ref. [3]. For CSM, the differential cross sections a
taken from Ref. [1]. During the second step, the ene
remaining after the charmonium generation is use
simulate the rest of thepA interaction using FRITIOF
7.02 [16]. Finally, theJ/ψ event is combined withn
other inelastic interactions to simulate several inter
tions per event, as observed in the data. The num
n is distributed according to Poisson statistics wit
mean value of 0.5 determined from the mean exp
mental interaction rate.

The detector response is simulated using GEA
3.21 [17] and includes the measured hit resolution,
mapping of inefficient channels, and electronic no
The simulated events are processed by the same tr
and reconstruction codes as the data. The simula
has been checked to ensure that it accurately desc
the detector, both in terms of geometric accepta
and material composition (see Section 4.6). From
MC we expect a mass resolution for theχc signal of
45 MeV/c2, which is insufficient to separate theχc1
andχc2 states.

MC studies show that the trigger and reconstruct
efficiencies forJ/ψ → �+�− are indeed similar fo
both directJ/ψ ’s and for those originating fromχc →
J/ψγ decays. We obtainρε = 0.95 ± 0.02 for the
NRQCD andρε = 0.97± 0.01 for the CSM. For the
measurement we use the NRQCD valueρε = 0.95
and consider the difference between the two val
as a measure of the systematic uncertainty ofρε (see
Section 4.6).

The Monte Carlo sample used in the analysis
about six times larger than the data sample.

4. Data analysis

4.1. Method and selection criteria

The analysis consists of the reconstruction of
J/ψ events, the search for the photon candidates in
ECAL, and the determination of the invariant mass
theJ/ψ and photon candidates within the event. T
selection criteria for theχc are tuned to maximize th
significance of theχc signal in the�M distribution.
r

s

Taking the number ofχc events as well as the num
ber of background events from the data would bias
result toward a higher number ofχc events. There
fore we take the number of background events fr
data. The number of expectedχc events for a given se
of cuts is estimated fromNJ/ψεγ . Here,NJ/ψ is the
number ofJ/ψ candidates above background fou
in data, while the photon reconstruction efficiencyεγ
is taken from the MC. The quantity on which the s
lection criteria have been optimized isNJ/ψεγ /

√
N ,

whereN is the number of all events found in the me
sured�M distribution within a window of two stan
dard deviations, determined from the MC, around
expectedχc position. The procedure is applied for a
cuts described below.

4.2. J/ψ selection

In the offline analysis, a track is selected as
muon candidate if its transverse momentum is gre
than 0.7 GeV/c and the muon likelihood probability
derived from the ratio of the expected and fou
MUON hits, is greater than 0.001. The latter remo
hit combinatorics which satisfy the trigger whi
keeping nearly all good muons.

A track is identified as an electron candidate
(a) the transverse energy (ET ) is greater than 1 GeV
and (b) it has|E/p− 1|< 0.3, whereE is the energy
deposited in the calorimeter andp is the track momen
tum. The cut onE/p corresponds to about 3.3 sta
dard deviations of the electronE/p distribution. To
further reject the background from hadrons, a sea
for associated bremsstrahlung photons emitted in
region upstream of, or inside, the magnet is perform
for each electron candidate. Thus, an isolated e
tromagnetic cluster is required in the area where
bremsstrahlung would hit the ECAL. The energy
the bremsstrahlung cluster is added to the energy o
electron candidate. The requirement of an associ
bremsstrahlung photon candidate for each of the
electron candidates of theJ/ψ → e+e− decay has an
efficiency εbrem of about 20% (about 45% per ele
tron) and suppresses the background by a factor o
These values are obtained by comparing theJ/ψ and
background rates under this requirement with those
the case that at least one of the two electrons is a
ciated with a bremsstrahlung cluster, and they are
confirmed by MC studies (see also Section 4.6).
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Fig. 1. Dilepton invariant mass spectrum for each of the f
samples (µ–C, µ–Ti, e–C, e–Ti). The dashed lines show th
estimated background under theJ/ψ signal. See text for the detail
on the fits (solid lines). The selection criteria are described
Sections 4.2 and 4.3.

The assignment of theJ/ψ candidates to a targe
wire is based on the position of the reconstruc
dilepton vertex. Theχ2 probability of this vertex is
required to be larger than 0.005 to eliminate spuri
events.

The invariant mass is calculated for each oppos
charge lepton pair. The resulting mass distributions
ter all cuts, including the conditions put on the m
tiplicities described in the next section, are sho
in Fig. 1 for each of the four samples. The s
nal observed forJ/ψ → µ+µ− events is Gaussia
while the J/ψ → e+e− signal has an asymmetr
bremsstrahlung tail. In both cases the background
derneath the signal comes mainly from misidentifi
hadrons and conversions. The background shape
ther described by an exponential distribution (µ+µ−)
or by an exponential multiplied by a second ord
polynomial distribution (e+e−). The shape is con
firmed by the invariant mass distribution of the sa
sign candidates in the muon case, and by fitting the
tribution that results from using all trigger candida
(mostly hadrons) in the electron case. OnlyJ/ψ can-
didates within a two standard deviation (2σ ) window
around theJ/ψ mass are considered for the analys
In the electron case,σ is taken from the high mas
part of the signal which is Gaussian. The shape
the bremsstrahlung tail is taken from MC and con
luted with the observed mass resolution. The numb
of J/ψ candidates obtained from the fit and correc
for the mass window are shown in Table 1 for the fo
samples.

4.3. Particle multiplicities

Detector occupancies have a considerable im
on theχc reconstruction: large calorimeter occupa
cies lead to more combinatorial background. Howe
detector occupancies are correlated with particle m
tiplicities and thus depend on the underlying phys
of the event. Since the cross section forJ/ψ andχc
production are of the same order of magnitude,
the kinematic dependence of directJ/ψ and those
from χc decays are similar, we assume both types
events to have similar particle multiplicities exclu
ing the decay products of charmonium. The char
particle multiplicity is proportional to the number o
tracks reconstructed in the VDS. We eliminate es
cially “busy” events which tend to contribute more
the background than to the signal. Based on the m
plicity distributions we require that there are not mo
he
Table 1
The number of selectedJ/ψ events (Nselected

J/ψ ), the number ofJ/ψ ’s passing the multiplicity cut (NJ/ψ ), the number ofχc ’s observed (Nχc ),
χ2 per degree of freedom for the�M fit, photon detection efficiency (εγ ), and the result forRχc , for each of the four event samples. T
quoted error onRχc is statistical, excluding the systematic uncertainty inεγ

µ–C e–C µ–Ti e–Ti

Nselected
J/ψ

1760± 48 1380± 69 765± 31 512± 41

NJ/ψ 1510± 44 1180± 59 643± 29 382± 32
Nχc 159± 47 121± 38 59± 33 31± 27

χ2/n.d.f. 28/35 34/35 27/35 48/35
εγ (%) 27.3± 1.1 32.8± 1.5 24.4± 1.8 32.7± 2.6

Rχc 0.37± 0.11 0.30± 0.09 0.36± 0.20 0.23± 0.21
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than 30 (34) VDS tracks in events with aJ/ψ can-
didate originating from the carbon (titanium) targ
We also require less than 19 clusters in the ECA
The upper limit on the number of tracks reduces
background under theJ/ψ signal while the cut on
the number of clusters limits the combinatorial ba
ground under theχc. The numbers ofJ/ψ ’s passing
the multiplicity cuts are given in Table 1. The syste
atics due to these cuts are discussed in Section 4.6

4.4. Photon selection

Each cluster in the ECAL withET > 0.1 GeV that
is not associated with the leptons from theJ/ψ , is
considered as a photon candidate. The area of
ECAL closest to the proton beam pipex2/4 + y2 <

484 cm2 (or equivalently:θ2
x /4 + θ2

y < 265 mrad2) is
excluded, as the occupancy in this region is high
to 30%). Hadronic background is reduced by requir
that the ratio of the central cell energy to the to
cluster energy (Ecentr/E) be greater than 0.6. In orde
to suppress background due to soft secondary part
and noise clusters, an energy cutE > 3.0 GeV is
applied. A charged track veto is not applied, d
to a 44% probability of the photon to convert
the detector material downstream of the magnet.
material of the detector in front of the ECAL caus
photon conversion, and thus losses of photons f
χc ’s. We determine these losses using MC simulatio

Since the relative momenta of theJ/ψ and the pho-
ton from theχc decay are correlated, a cut in the a
ceptance of theJ/ψ affects the acceptance for th
photon as well. The electron sample, with a sligh
larger acceptance close to the beam as compare
the muon sample, also contains more energetic p
tons than the muon sample. The different samples h
different kinematics and acceptances, leading to dif
ent photon detection efficiencies which are determi
for each sample separately using MC simulations (
Table 1). The uncertainty in the photon detection
ficiency arises mainly from the finite MC statistic
however, this uncertainty is insignificant compared
the statistical error onNχc .

4.5. χc reconstruction

The�M distributions for all combinations ofJ/ψ
and photon candidates for the carbon samples
shown in Fig. 2. The distributions show a signal cor
sponding to the sum of the two charmonium statesχc1
andχc2.

Possible sources of background are random c
binations ofJ/ψ and photon candidates, decays
heavier mesons intoJ/ψX, and the radiative deca
J/ψ → e+e−γ . The fraction ofJ/ψ ’s originating
from ψ ′ decays is about 8% [8]. The fraction
photons arising fromψ ′ → J/ψπ0π0 decays which
pass the energy cutE > 3.0 GeV is negligible, as is
the fraction of pions misidentified as photons fro
ψ ′ → J/ψπ−π+ decays. The fraction ofJ/ψ ’s re-
sulting from decays ofB-mesons,Υ , χb, η′

c, andχc0
is negligible as well. The photon from the radiati
decayJ/ψ → e+e−γ , mostly oriented along the d
rection of one of the leptons, is indistinguishable fro
bremsstrahlung and, as such, is taken into accoun
the muon sample, bremsstrahlung clusters are ne
expected nor found above background. The fractio
such radiative decays is considered to be negligi
Thus the background consists mainly of random co
binations ofJ/ψ and photon candidates.

The shape of the dominantly combinatorial ba
ground in the�M distribution is obtained by com
bining J/ψ candidates with photon candidates fro

Fig. 2. The�M =M(�+�−γ )−M(�+�−) distribution for samples
µ–C ande–C. In the left-most plots, the points represent data
the solid lines represent the combinatorial background estimate
event mixing. The right-most plots show the signal after backgro
subtraction. See text and Table 1 for the details on the fit.
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Fig. 3. Same as in Fig. 2 for theµ–Ti ande–Ti samples.

different events with similar multiplicity and applyin
the standard selection cuts. These “mixed events”
produce the shape of the�M distribution everywhere
except in theχc signal region (see solid line in Fig. 2
left panel). Similar results are obtained when eve
in the sidebands of theJ/ψ mass region are com
bined with photon candidates. Since the experim
tal resolution is of the same order as the mass dif
ence betweenχc1 andχc2 states and the statistics
limited, we use a single Gaussian to describe the
nal. In the fit, the position and normalization of t
Gaussian, as well as the normalization of the ba
ground, are left free. The width of the Gaussian is fix
to the value predicted by MC based on the NRQCD
proach (45 MeV/c2), where the production cross se
tion ratio of χc1 andχc2 is approximately 0.65. Th
position of the Gaussian agrees well with the va
expected from MC. The background normalization
also treated as a free parameter when we fit the num
of χc → J/ψγ decays. The background subtract
distributions are shown in the right panel of Fig.
The significance of the signals seen in theµ–C and
e–C samples is about three standard deviations.
obtained number ofχc events as well as the numb
of J/ψ events and the photon detection efficiency
summarized in Table 1.

Taking into account the high background level a
the ratio of Nχc to NJ/ψ observed in the carbo
r

Fig. 4. Same as in Fig. 2 for all data combined.

samples, we do not expect to see a significantχc signal
in the smaller titanium samples. The results obtai
for the titanium sample with the same procedure
shown in Fig. 3. The starting value for the pe
position has been taken from the fit of the carb
data. Although the signals are marginal, theRχc values
obtained from them are compatible with estima
from the carbon samples (see Table 1).

As a cross check, all four samples are combi
together as shown in Fig. 4. The value ofNχc = 380±
74 obtained from this distribution agrees within t
errors with the sum of theNχc values obtained from
the individual samples.

4.6. Study of the systematic uncertainties

The systematic uncertainty in the yield ofJ/ψ →
e+e− candidates due to the background descrip
is estimated to be 5%, whereas the uncertainty
negligible in the muon case.

The model dependence of the relative efficiencyρε
for all J/ψ ’s and J/ψ ’s from χc has been studied
A 2% difference ofρε is found for the two models
(NRQCD and CSM) for each of theJ/ψ leptonic de-
cay modes. For the same models a difference of
photon detection efficiencyεγ integrated over allχc
states is found to be 4%. In both cases the obse
difference is treated as an estimate of the corresp
ing systematic uncertainty. The overall systematic
ror accounting for the model dependence of the se
tion efficiency is 5%.

To confirm the MC description of the detector m
terial composition and acceptance which affects
photon detection efficiency, we compare the bre
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data and MC. The values obtained, 0.44± 0.02 and
0.43 ± 0.01 for the data and MC, respectively, a
compatible within one standard deviation. The syste
atic uncertainty due to photon losses is conservativ
taken to be 2%.

The effect of systematic uncertainties of the EC
calibration is studied by using MC simulations. T
level of possible uncertainties is determined from
data using theπ0 signal. The uncertainty of theπ0

calibration is used then in the MC simulations
determine its effect on the detection of theχc. The
systematic uncertainty onRχc due to this effect is
estimated to be 1%.

Correlated electronic noise in the calorimeter c
shift and widen the�M distribution of theχc sig-
nal. A cluster reconstruction procedure based on
known correlation between channels is develope
compensate for this effect. The numbers of events
served with and without this algorithm in the da
agree with each other within the statistical errors. M
studies show that the corresponding relative syst
atic uncertainty is 3%.

The width of theχc signal in the�M distribution
depends on the ratio ofχc1 andχc2 and on the detecto
resolution, mainly that of the ECAL. When the wid
is left free to vary in the carbon data fit, the resulti
width agrees within one standard deviation with
nominal one. A systematic error onRχc of 6% is
assigned based on an MC study of the signal resolu
dependence on theχc1 to χc2 ratio and the ECAL
resolution.

The stability of our results with respect to variatio
in the selection criteria is studied separately for the
ferent samples. The ratioRχc is measured as a functio
of the cuts on VDS track multiplicity, ECAL cluste
multiplicity, photon energyE, and ratioEcentr/E. The
variation of the cut on the photon energyE results in
a variation ofRχc of 6%, which is taken as an est
mate for the systematic uncertainty. The depende
on other cuts is negligible.

The systematic uncertainty onεγ due to the finite
MC statistics is 3% as estimated from the weigh
average of the values in Table 1.

Possible polarization of theχc states might affec
our result, however, with the present statistics we
not able to determine it. Moreover no clear and relia
predictions from the theoretical models are availa
Table 2
Contributions to the relative systematic uncertainty

Uncertainty (%)

J/ψ background shape (e–C, e–Ti only) 5
Model dependence 5
Photon losses 2
ECAL calibration 1
Correlated noise in ECAL 3
�M resolution 6
Dependence on cuts 6
Finite MC statistics (εγ ) 3

Total 11

in ourpT range. Therefore, like previous experimen
we have assumed unpolarizedχc production.

Assuming that all individual sources of the syste
atic errors are uncorrelated, an estimate of the t
systematic uncertainty onRχc is 11% (see Table 2).

5. Results

The values ofRχc obtained for all four sample
are listed in Table 1. The results for the two carb
samples agree with each other within the statist
errors. The results obtained from the titanium data
consistent with those obtained from the carbon dat

Although nuclear dependence effects might
present inRχc at the few percent level for the targe
used here [19], they are beyond the statistical accu
of the present measurement. We therefore averag
results for the four samples obtaining:

(6)〈Rχc 〉 = 0.321± 0.064stat± 0.035sys.

The first uncertainty listed is statistical only, where
the second uncertainty is systematic.

In order to extract the ratioRdir
χc

of the “direct” χc
andJ/ψ production, we use

(7)Rdir
χc

= 1−RψB1

1−Rχc −RψB1 +RψB2
− 1,

whereRψ = σ(ψ ′)/σ (J/ψ)= 0.094± 0.035 is taken
from Ref. [7] and corrected for the branching rat
[6]. B1 is the branching ratioBr(ψ ′ → J/ψX) and
B2 is the sum of branching ratios

∑2
i=1 Br(ψ ′ →

χciγ )Br(χci → J/ψγ ) [6]. We obtainRdir
χc

= 0.50±
0.15stat± 0.08sys.
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Table 3
PreviousπA [9], pA [8], pp̄ [18] and HERA-B measurements of theRχc value. The value quoted for exp. E771 has been calculated from
published cross sections [8] and branching ratios [6]

Exp. Coll.
√
s (GeV) Rχc

IHEP140 π−p 8.5 0.44± 0.16
WA11 π−Be 18.7 0.30± 0.05
E610 π−Be 18.9 0.31± 0.10
E673 π−H2, π−Be 20.2 0.70± 0.28
E369 π−Be 20.6 0.37± 0.09
E705 π−Li 23.8 0.37± 0.03
E705 π+Li 23.8 0.40± 0.04
E672/706 π−Be 31.1 0.443± 0.041± 0.035

E610 pBe 19.4, 21.7 0.47± 0.23
E705 pLi 23.8 0.30± 0.04
E771 pSi 38.8 0.74± 0.17
ISR pp 52, 63 0.15+0.10

−0.15
ISR pp 62 0.47± 0.08

CDF pp̄ 1800 0.297± 0.017± 0.057

HERA-B pC,pTi 41.6 0.32± 0.06± 0.04
its
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Fig. 5. Comparison of our measurement ofRχc (closed triangle)
with those of otherpp,pA [8] (closed circles) andπp,πA [9] (open
circles) experiments. The CDF result [18] is not shown, since
kinematic acceptance differs strongly from the other experime
The error bars include statistical and systematic uncertainties.
shown are predictions forpN andπN interactions obtained from
Monte Carlo based on the NRQCD [3] (solid), CSM [1] (dashe
(see Section 3). The CEM [4,5] predicts a constant value.
dot-dashed line is the average of all measurements.

Our result forRχc (Eq. (6)) is compatible with mos
of the previous data ([8,9,18]), as shown in Table
and Fig. 5. The value quoted for exp. E771 has b
calculated from the published cross sections [8]
branching ratios [6], and taking into account a fac
of 2 for the larger acceptance inxF . Due to the
relatively large uncertainties, especially for the data
proton induced reactions, a flat energy dependenc
predicted by CEM [5], cannot be ruled out. Similar
the slope of the energy dependence as predicted b
Monte Carlo based on NRQCD (see Section 3) is a
compatible with the data. However, the predictio
of NRQCD seem to fall below the other data. Th
might indicate that the parameters used for the pre
calculations need to be adjusted, and implies
a precise knowledge ofRχc can help to constrain
the input to the models. On the other hand, CS
predicts values forRχc which are larger than mos
of the data. More precise measurements, especial
proton induced reactions are needed to conclusi
discriminate among these models.

6. Conclusions

A measurement of the ratio ofJ/ψ produced via
radiativeχc decays to all producedJ/ψ allows one
to quantitatively test different models of quarkoniu
production. We present a new result from the HER
B experiment for the fraction ofJ/ψ ’s originating
from radiative decays ofχc1 andχc2 states produce
in pC andpTi interactions. The fraction ofJ/ψ ’s
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in the range of−0.25< xF < 0.15 originating from
radiativeχc decays is determined to beRχc = 0.32±
0.06stat± 0.04sys, and consequently, the ratio of th
cross section of directly producedχc ’s decaying into
J/ψ to the cross section of directly producedJ/ψ ’s
is Rdir

χc
= 0.50 ± 0.15stat ± 0.08sys in the abovexF

range. The result has been obtained with C
Ti targets and detecting theJ/ψ decay modes into
electrons and muons. Our result forRχc agrees with
most previous proton and pion beam measureme
neglecting any possible energy dependence. It ag
also with the predictions of the non-relativistic QC
factorization approach (NRQCD), whereas it fa
significantly below the predictions of the color sing
model (CSM).
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