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a b s t r a c t

Several efforts have been made to study gait stability using measures derived from nonlinear time-

series analysis. The maximum finite time Lyapunov exponent (lmax) quantifies how a system responds

to an infinitesimally small perturbation. Recent studies suggested that slow walking leads to lower lmax

values, and thus is more stable than fast walking, but these studies suffer from methodological

limitations. We studied the effects of walking speed on the amount of kinematic variability and stability

in human walking. Trunk motions of 15 healthy volunteers were recorded in 3D during 2 min

of treadmill walking at different speeds. From those time series, maximum Lyapunov exponents,

indicating short-term and long-term divergence (lS-stride and lL-stride), and mean standard deviation

(MeanSD) were calculated. lS-stride showed a linear decrease with increasing speed for forward–back-

ward (AP) movements and quadratic effects (inverted U-shaped) for medio-lateral (ML) and up–down

(VT) movements. lL-stride showed a quadratic effect (inverted U-shaped) of walking speed for AP

movements, a linear decrease for ML movements, and a linear increase for VT movements. Moreover,

positive correlations between lS and MeanSD were found for all directions, while lL-stride and MeanSD

were correlated negatively in the AP direction. The different effects of walking speed on lS-stride and

lL-stride for the different planes suggest that slow walking is not necessarily more stable than fast

walking. The absence of a consistent pattern of correlations between lL-stride and MeanSD over the three

directions suggests that variability and stability reflect, at least to a degree, different properties of the

dynamics of walking.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

With their high incidence and associated costs, falls form a
considerable problem in modern society (Rubenstein, 2006).
Consequently, there is a rapidly growing body of research on
(in)stability of posture and gait in both the elderly and selected
patient groups (i.e. Buzzi et al., 2003; Calandre et al., 2005;
Dingwell et al., 2000, 2007; Hausdorff et al., 1996; Hurmuzlu
et al., 1996; Stergiou et al., 2004).

Unfortunately, stability ‘‘yappears to have unstable definitions’’
(Reeves et al., 2007, p. 266, italics added). Several efforts have
been made to study gait stability using measures derived from
nonlinear time-series analysis (Buzzi et al., 2003; Dingwell et al.,
2000, 2007; Dingwell and Marin, 2006; Hurmuzlu and Basdogan,
1994; Hurmuzlu et al., 1996; Kang and Dingwell, 2006a, b;
Stergiou et al., 2004). In the current study, we focus on gait
stability defined as inverse of the rate of divergence from the
intended trajectory after a small perturbation. This may be
quantified using the maximum finite time Lyapunov exponent

(lmax), which estimates a system’s local dynamic stability
(Rosenstein et al., 1993).

There are several other nonlinear methods to analyze gait
stability, such as the assessment of scaling behavior of stride
parameters (Hausdorff, 2005). While we acknowledge the value of
such methods in view of their potential practical applications
(Hausdorff, 2005; Jordan et al., 2007a), we sought to quantify
stability by estimating the rate of divergence of kinematic
variables within a time series, as captured by maximum time
finite Lyapunov exponents. The maximum finite time Lyapunov
exponent represents the average logarithmic rate of divergence of
infinitesimally close trajectories, and thus indexes how a system
responds to an infinitesimally small perturbation. For a process to
be stable, lmax should be p0, implying that infinitesimally close
trajectories will, on average, not diverge. Positive values of lmax

imply that such trajectories will on average diverge, indicating
less stable patterns. In most gait research, two values of lmax are
reported (Fig. 1): one reflecting how the system responds over a
shorter time period (often 1 stride cycle, termed lS) and the other
reflecting how the system responds over a longer time period
(usually 4–10 stride cycles, termed lL).

Several recent studies have examined the effects of walking
speed on local dynamic stability (Dingwell and Marin, 2006;
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England and Granata, 2007; Stergiou et al., 2004). Most of
these studies suggested that slow walking is more stable than
fast walking, which could explain why patients with different
locomotor pathologies walk slower. This appears to stand in
contrast with suggestions that passive dynamic walkers are more
stable at higher walking speeds (Wisse and Schwab, 2005;
Hobbelen and Wisse, 2007). Moreover, the variability of interlimb
coordination during human walking has been found to decrease
with increasing walking speed (Donker and Beek, 2002; Donker
et al., 2001), which was interpreted to imply that stability
increases with walking speed.

Thus, there are suggestions that the stability of walking
increases with walking speed, but these were not confirmed
when stability was defined in terms of maximum Lyapunov
exponents. Actual human walking and passive dynamic walking
are not the same, and variability cannot simply be equated with
(in)stability (Dingwell and Marin, 2006). On the other hand, the
observed effects of walking speed on local dynamic stability may
(partly) reflect the consequence of methodological choices, rather
than changes in stability per se. A first concern when estimating
maximum finite time Lyapunov exponents from experimental

data is the length of the time-series analyzed, which is known
to affect lmax (Bruijn et al., 2009; Kang and Dingwell, 2006b;
Rosenstein et al., 1993). Dingwell and Marin (2006) used the same
time-series length for all speeds tested. However, time series
at higher speeds include more strides than time series at lower
speeds, which may affect the estimate of lmax. Accordingly,
England and Granata (2007) estimated lS for the same number of
strides for all walking speeds, but instead of expressing lS as lS

per stride (lS-stride), which would appear appropriate (Dingwell
and Cusumano, 2000; Dingwell et al., 2001; Dingwell and Marin,
2006; Kang and Dingwell, 2006b), they estimated lS per second
(lS-second), and thus introduced an unwanted dependency of lS

upon stride time.
In the present study, we investigated the effects of walking

speed on local dynamic stability of the trunk (operationalized as
maximum Lyapunov exponents), while taking into account the
methodological issues mentioned in the preceding. In doing so,
we additionally addressed the relationship between local dynamic
stability and the amount of variability of the trunk kinematics
between strides (operationalized as mean standard deviation
between strides) in human walking because this relationship is of
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Fig. 1. Schematic representation of the calculation of maximum time finite Lyapunov exponents. (A) original velocity time-series data. (B) The 3D reconstructed state space

using S(t) ¼ [q(t),q(t+t),y, q(t+(dE�1)t)], where S(t) is the dE dimensional state space, constructed from the original signal q(t) and copies with a delay of t. (Note that

calculations were carried out on a 5D state space, which cannot be visualized). (C) Expanded view of a section of B; for each point on the attractor, the nearest neighbour

was calculated, and divergence from this point was calculated as dj (i). (D) Average logarithmic rate of divergence, from which maximum time finite Lyapunov exponents, lS-

stride and lL-stride, can be calculated as the slope of the curve at 0–0.5 strides and at 4–10 strides, respectively.
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general interest to theories of motor control (Riley and Turvey,
2002; Scholz and Schoner, 1999). Based on a previous methodo-
logical study (Bruijn et al., 2009), we hypothesized that increasing
walking speed would differentially affect local dynamic stability,
depending upon plane of analysis and type of Lyapunov exponent
used (i.e. lS versus lL).

2. Methods

2.1. Subjects

Fifteen healthy volunteers (4 men and 11 women, mean age 23.6 years, SD 2.9,

mean weight 66.7 kg, SD 9.0, and mean height 1.74 m, SD 0.08) participated in the

experiment. Exclusion criteria were any orthopaedic or neurological disorders that

could interfere with gait. Subjects gave their informed consent and the local

ethical committee approved the protocol before the experiment was conducted.

2.2. Procedure

A neoprene band with a cluster of three infrared light-emitting diodes (LED’s)

was attached to the back of the trunk (over the spine) at the level of T6 and at

the right heel. The LED’s were used for movement registration with an active

3D movement registration system (Optotraks Northern Digital Inc., Waterloo,

Ontario). Sample rate was set at 50 samples per second.

During the experiment, subjects walked on a treadmill (Biostar GiantTM,

Biometrics, Almere, The Netherlands) at different speeds (from 0.62 to 1.72 m/s, in

increments of 0.22 m/s). At each speed, 2 min of measurement started after 3 min

of warm-up. Between speeds, subjects were allowed a break of maximum 5 min, if

they felt they required one.

2.3. Calculations

2.3.1. Pre-processing

Given the difficulties associated with filtering nonlinear signals (Kantz and

Schreiber, 1997; Mees and Judd, 1993), data were analyzed without filtering. To

overcome non-stationarities (cf. Dingwell and Marin, 2006), the first derivative

of the anterior posterior (AP), medio-lateral (ML) and vertical (VT) position time

series of the average movements of the thorax markers was used to estimate

the stability and variability measures of interest (see below). Since estimates

of maximum finite time Lyapunov exponents may be biased by time-series length

and number of strides (cf. Bruijn et al., 2009; Kang and Dingwell, 2006b), we

analyzed the first 50 consecutive strides of each time series. Time series were time

normalized, using a shape-preserving spline interpolation, so that each time series

of 50 strides had a total length of 5000 samples (England and Granata, 2007). For

the purpose of calculating normalized stride cycles, heel strikes were determined

from the minimum vertical position of the average of the three heel markers.

2.3.2. Local dynamic stability

From the time-normalized time-series and their time-delayed copies, state

spaces were reconstructed using

SðtÞ ¼ ½qðtÞ; qðt þ tÞ; . . . ; qðt þ ðdE � 1ÞtÞ� (1)

with S(t) representing the dE-dimensional state vector, q(t) the original

1-dimensional data, t the selected time delay and dE the embedding dimension.

An embedding dimension of dE ¼ 5 was used, because 5 dimensions proved to be

sufficient to capture most of the dynamics of human walking (Dingwell and

Cusumano, 2000), and because global false nearest neighbour analysis (Kennel

et al., 1992) of our own data suggested that dE ¼ 5 was appropriate. Time delays

were estimated using the first minimum of the average mutual information

function (Fraser, 1986). We found delays ranging from 4 to 22 samples, but since all

time series had the same frequency after normalization (i.e. 50 strides in 5000

samples), we used a standard embedding delay of 10 samples for all time series

(cf. England and Granata, 2007).

From the thus constructed state spaces, Euclidean distances between

neighbouring trajectories in state space were calculated as a function of time

and averaged over all original nearest neighbour pairs to obtain the average

logarithmic rate of divergence

yðiÞ ¼
1

Dt
hlnðdjðiÞÞi (2)

where dj(i) represents the Euclidean distance between the jth pair of nearest

neighbours after i discrete time steps (i.e. iDt) and /�S denotes the average over

all values of j. The slope of the resulting divergence curves provides an estimate of

the maximum finite time Lyapunov exponent (Rosenstein et al., 1993). This slope

was estimated for two intervals: from 0 to 50 samples (approximately 0–0.5 stride,

lS-stride, see Fig. 1) and from 400 to 1000 samples (approximately 4–10 strides, lL-

stride). We chose to estimate lS-stride from 0 to 50 samples, rather than 0–100

samples, because we noticed that the divergence curve often was clearly nonlinear

after about 75 samples. All calculations were done using custom made Matlab

(The MathWorks, Inc. Natick, MA) programs.

2.3.3. Variability

To quantify the amount of variability of the AP, ML and VT time series, data of

each stride within a given time series were first time normalized to 101 samples

(0–100%). At each percent of the stride cycle, standard deviations between strides

were calculated, and then averaged over the stride cycle (MeanSD).

2.3.4. Statistical analysis

For the maximum finite time Lyapunov exponents, the effect of speed was

tested using generalized estimation equations (GEE, cf. Liang and Zeger, 1986;

Zeger and Liang, 1986). GEE is a regression technique that takes repeated measures

(dependent observations) into account. The relationship between local dynamic

stability and amount of variability was tested using this procedure. The R package

for statistical analysis (http://www.r-project.org/, Halekoh et al., 2006) was used

for all statistics, and Po0.05 was considered significant.

3. Results

Some subjects did not produce enough strides at some speeds;
for 0.62, 0.84, 1.5, and 1.72 m/s we had complete data sets for 14
subjects, while for 1.06 and 1.28 m/s data sets for all 15 subjects
were available for analysis. Time series of an insufficient number
of strides were omitted from the analysis.

3.1. Local dynamic stability

Different effects of speed on lS-stride were observed for the
different movement directions (Fig. 2, top panel). In the AP
direction, lS-stride decreased with increasing walking speed, with a
significant linear component for the effect of speed (Table 1, upper
panel). In the ML direction, lS-stride somewhat increased for speeds
up to 1.28 m/s, and then somewhat decrease, with significant
linear and quadratic components for the effect of speed. In the VT
direction, lS-stride increased with increasing walking speed, again
with significant linear and quadratic components for the effect
of speed.

As was the case for lS-stride, different effects of walking speed
on lL-stride were observed for the different directions (Fig. 2,
bottom panel). lL-stride increased linearly with increasing walking
speed for the AP and VT directions. These effects were significant,
with a significant quadratic component for the effect of speed in
the AP direction (Table 1, lower panel). For the ML direction,
lL-stride decreased linearly with increasing walking speed, and this
effect was significant.

3.2. Relationship between local dynamic stability and variability

With increasing speed, MeanSD showed a pattern similar to
that of lS-stride for all directions (Fig. 3). A consistent relationship
between lS-stride and MeanSD was found for all directions, with
higher lS-stride coinciding with higher MeanSD (Table 2). For
lL-stride, a weak negative relationship with MeanSD was found in
the AP direction, and no relationship in the other two directions.

4. Discussion and conclusion

In the present study, we examined the effects of walking speed
on local dynamic stability, taking into account methodological
issues that may hamper the estimation of these measures. In
doing so, we included an analysis of the relationship between
local dynamic stability and amount of variability.
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We found different effects of walking speed on both lS-stride

and lL-stride for the different directions of interest. For the anterior
posterior direction, lS-stride decreased with increasing speed while
lL-stride increased for speeds up to 1.5 m/s. For the medio-lateral
direction, lS-stride roughly showed an inverted U-shaped pattern,
while lL-stride showed a decrease with increasing speed. For the
vertical direction, both lS-stride and lL-stride increased markedly
with increasing speed.

Furthermore, we found a consistent relationship between lS-

stride and MeanSD, with higher lS-stride coinciding with higher
MeanSD. No consistent relationship was found between lL-stride

and MeanSD.

4.1. Limitations of the present study

We estimated stability during treadmill walking, which may
yield slightly lower values of maximum finite time Lyapunov
exponents than overground walking (Dingwell et al., 2001).
Moreover, walking speeds were not offered in random fashion,
which may have influenced our results.

We used rather brief data series (50 strides), which may
have limited the statistical precision of our estimates of the
maximum finite time Lyapunov exponents (Bruijn et al., 2009;
Kang and Dingwell, 2006b; Rosenstein et al., 1993). However, our
results showed smooth linear and quadratic effects of walking
speed on lS-stride and lL-stride, making it highly unlikely that the
observed effects of speed resulted from chance. Moreover,
our time-normalization procedure and the relatively low sample
rate used in the present study (50 samples/s) implied that
stride cycles at higher speeds were stretched out, which may
have rendered the stability estimates less reliable. However, when
we performed the same calculations without time normalization,
we found similar values. Furthermore, Rosenstein’s algorithm
requires an adequate selection of a ‘‘linear region’’ (Rosenstein
et al., 1993), which we set from 0 to 0.5 and from 4 to 10 strides.
Since these regions (especially the short-term region) may
influence the results, they should be chosen carefully. Lastly,
it has been suggested that Rosenstein’s algorithm does not
produce valid results for periodic motion (Franca and Savi,
2001). However, walking is not strictly periodic because time
series of stride intervals exhibit fractal-like fluctuations
(e.g. Hausdorff et al., 1995, 1996; Jordan et al., 2007a). Moreover,
even if one assumes walking to be periodic, maximum Lyapunov
exponents may still provide well-defined metrics for the

ARTICLE IN PRESS

Table 1
(GEE) Regression coefficients (b and c) and their standard errors (s.e.) for the

effects of walking speed on lS-stride (upper panel) and lL-stride (lower panel), for the

anterior posterior (AP), medio-lateral (ML) and vertical (VT) directions.

b (s.e.) P c (s.e.) P

lS-stride AP �0.067 (0.011)� o0.001

ML 0.151 (0.057)� 0.008 �0.014 (0.006)� 0.002

VT 0.260 (0.050)� o0.001 �0.017 (0.005)� 0.019

lL-stride AP 0.024 (0.007)� o0.001 �0.002 (0.001)� 0.007

ML �0.008 (0.121)� o0.001

VT 0.011 (0.002)� o0.001

Models used are lS-stride ¼ a+b� speed+c� speed2 and lL-stri-

de ¼ a+b� speed+c� speed2. The quadratic term was removed from the model if

it was not significant.
� Po0.05.

Fig. 2. The effects of walking speed on lS-stride (top panels) and lL-stride (bottom panels), for the anterior posterior (AP), medio-lateral (ML) and vertical (VT) directions. Lines

represent the fit of the (GEE) regression model (for coefficients see Table 1). Error bars represent standard errors.
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sensitivity of gait kinematics to small intrinsic perturbations
(e.g. Dingwell and Kang, 2007).

It should be kept in mind that maximum finite time Lyapunov
exponents quantify a dynamical system’s response to infinitesi-
mally small perturbations, not to large external perturbations
(Dingwell and Cusumano, 2000; Dingwell et al., 2001, 2000;
Dingwell and Marin, 2006). In this regard it is noteworthy that
some recent studies (Kang and Dingwell, 2008; Lockhart and Liu,
2008) found that maximum time finite Lyapunov exponents could
successfully discriminate elderly with a history of falling from
elderly without such a history. However, those results may have
been confounded by differences in walking speed (Lockhart and
Liu, 2008) or number of strides due to differences in cadence
(Kang and Dingwell, 2008). Using maximum Floquet multipliers,
which like Lyapunov exponents are based on infinitesimally small
perturbations, Granata and Lockhart (2008) could also discrimi-
nate between fallers and non-fallers. In this study, no potential
bias due to walking speed or cadence was reported, although
actual walking speeds and cadences were not reported. Thus,
it remains to be established how maximum finite time Lyapunov
exponents and maximum Floquet multipliers correlate with
real-life perturbation resistance (i.e. common-sense notions of
stability).

4.2. Local dynamic stability

The present results are different from those of Dingwell and
Marin (2006) and England and Granata (2007), who reported that
slow walking is more stable than fast walking. We believe that

those differences may be due to methodological differences.
Firstly, while Dingwell and Marin (2006) analyzed three minutes
of data at all walking speeds, we analyzed a fixed number of
strides (as suggested by England and Granata (2007)). Longer time
series lead to a larger maximum finite time Lyapunov exponent
(Bruijn et al., 2009; Kang and Dingwell, 2006b). Choosing a fixed
time interval implies that with increasing speed more strides
are analyzed, implying a larger maximum Lyapunov exponent.
While England and Granata (2007) recognized this problem, and
analyzed knee angle time series across 30 strides at all speeds
tested, they calculated maximum finite time Lyapunov exponents
as ln(divergence)/second, which introduces a dependency upon
stride time. In a study by Stergiou et al. (2004), in which the
maximum finite time Lyapunov exponent of knee angle time
series was estimated across 100 strides at different speeds as
ln(divergence)/stride, no significant change with increasing
speed was found. Although the methods used in the present
study resemble those of Stergiou et al. (2004), we did not replicate
their main results, perhaps because we analyzed thorax move-
ments, whereas Stergiou et al. (2004) analyzed knee angle time
series.

We found different effects of walking speed on walking
stability for the different directions. This finding may be some-
what puzzling and appears to be in conflict with previous findings
(Dingwell and Marin, 2006), but it is in line with research on
changes in trunk coordination with increasing walking speed,
showing different speed-dependent effects for different directions
(Van Emmerik et al., 2005). As a result, no definite answer can be
given to the question whether slow walking is more stable than
fast walking. Recently, a new stability measure was introduced in
the field of passive dynamic walking. This measure can accurately
predict failure to cope with an actual perturbation of a passive
dynamic walker since it: ‘‘weighs the relevance of the walker’s

eigenmodes with respect to actual failure modes’’ (Hobbelen and
Wisse, 2007, pp. 7, italics added), implying that information from
different sources (i.e. movements in different planes) is weighted
with respect to its importance. If we assume that also in human
walking some modes (or directions) are more relevant than others
when coping with a perturbation, the question arises which of
those directions contains the most useful information. While VT
movements appear to be the least relevant in this regard, work by
Hausdorff (2005) and Maki (1997) suggested that increased
variability in the ML direction is a predictor of falls, which could
imply that ML movements are more important than AP move-
ments. This conclusion would be consistent with the fact that in
walking the base of support is larger in the AP direction than in

ARTICLE IN PRESS

Fig. 3. The effect of walking speed on MeanSD, for the anterior posterior (AP), medio-lateral (ML) and vertical (VT) directions. Error bars represent standard errors.

Table 2
(GEE) Regression coefficients and their standard errors for the relation between

stability (lS-stride, upper panel and lL-stride, lower panel) and variability (MeanSD,

for the anterior posterior (AP), medio-lateral (ML) and vertical (VT) directions.

MeanSD

b (s.e.) P

lS-stride AP 19.191 (2.573)� o0.001

ML 8.308 (3.292)� 0.011

VT 27.576 (5.838)� o0.001

lL-stride AP �1.119 (0.360)� 0.018

ML �0.319 (0.233) 0.291

VT 0.355 (0.336) 0.171

Models used are MeanSD ¼ a+b� lS-stride, and MeanSD ¼ a+b� lL-stride.
� Po0.05.
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the ML direction, as a result of which ML stability may be a
limiting factor in balance control (see also Dean et al., 2007). If we
take this as a starting point, the limited and inverted U-shaped
variation of lS-stride and the decrease in lL-stride with increasing
walking speed for the ML direction suggests that fast walking may
be more stable than slow walking. It must be noted that other
studies, using long range correlations as an indicator of stability,
reported opposite results, with the comfortable walking speed
appearing the most stable region (Jordan et al., 2007a, b).
However, our conclusion that faster walking may be more stable
than slow walking seems to be in agreement with the finding that
the ML center of mass movements decrease with increasing
walking speed (Orendurff et al., 2004), which may reflect a more
stable gait. Still, the precise meaning of lS-stride and lL-stride needs
to be determined, as need the mechanism(s) underlying the
walking speed effects.

4.3. Relationship between local dynamic stability and variability

Previous studies have demonstrated that stability and varia-
bility respond differently to changes in walking speed (Dingwell
and Marin, 2006), and there is an ongoing effort to elucidate the
relationship between stability and variability in human move-
ment. The positive relationship between lS-stride and MeanSD
found here indicates that the rate of divergence on the short term
is correlated with the amount of kinematic variability. Intuitively,
this is understandable if we view the MeanSD as an indication of
the spatial divergence of two nearest neigbours after one stride.
Similar findings were reported in a recent study of local dynamic
stability and amount of variability in a passive dynamic walker
descending a bumpy slope (Su and Dingwell, 2007). Surprisingly,
however, a study comparing treadmill and overground walking
(Dingwell et al., 2001) failed to find consistent correlations
between lS-stride and MeanSD. All in all, the exact correspondence
between lS-stride and MeanSD remains unclear, and deserving of
further study. The fact that we found no consistent relationship
between lL–stride and MeanSD (there was only a significant
relationship for the AP direction) seems to confirm that measures
of dynamic stability and amount of variability reflect different
properties of walking dynamics (Dingwell et al., 2001, 2007;
Dingwell and Marin, 2006; Dingwell et al., 2008), and may
intuitively be understood from the fact that not only spatial (i.e.
MeanSD), but also temporal variations (i.e. in stride times) as well
as their structure play a role in the divergence of two points after
several strides.

5. Conclusion

The present study suggests that slow walking is not necessarily
more stable than fast walking in terms of local dynamic stability.
Different conclusions pertain to different planes. The relationship
between local dynamic stability and amount of variability
observed here suggests that measures of stability and amount of
variability may, at least in part, reflect different properties of the
dynamics of walking. Moreover, in estimating maximum Lyapu-
nov exponents, great caution should be exerted to avoid
methodological pitfalls.
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