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Abstract It has been reported that anterior cruciate lig-

ament (ACL)-deficient subjects increase the level of ham-

strings activation and this has been interpreted as a means

to cope with increased anterior tibial laxity in the knee.

This study aimed to establish to what extent co-activation

strategies in ACL-deficient subjects are load level and knee

angle dependent. Eleven chronic ACL-deficient and 15

control subjects were positioned in a range of postures and

asked to exert a feedback controlled vertical ground reac-

tion force (GRF; 30, 60% and maximum), while horizontal

forces were not constrained. Surface electromyography of

the leg muscles and GRF were measured. In postures with

the knee over and in front of the ankle, ACL-deficient

subjects generated, respectively, 2.4 and 5.1% MVC more

hamstrings activation than control subjects. Enhanced

hamstrings co-activation in ACL-deficient subjects was

more apparent in extended than in flexed knee angles. For

both ACL-deficient and control subjects, hamstrings co-

activation was larger in males than in females. It is con-

cluded that ACL-deficient subjects show a task dependent

increase in hamstrings co-activation, but its clinical sig-

nificance remains to be shown.

Keywords Anterior cruciate ligament � Biomechanics �
Electromyography � Co-activation

Introduction

Following the rupture of the anterior cruciate ligament

(ACL), the laxity of the knee joint increases and patients

often experience dynamic instability during daily activities.

Although reconstructive surgery is frequently applied,

some recent studies suggest that it neither improves rota-

tional knee stability [29] nor it reduces the risk of devel-

oping osteoarthritis [21]. Therefore, conservative treatment

may remain an important treatment option, at least in the

near future. Understanding adaptation in muscle activation

patterns in ACL-deficient subjects may help to improve

conservative treatment strategies.

Besides providing a knee extension moment, quadriceps

activation causes an anterior shear force on the tibia rela-

tive to the femur and, therefore, strains the ACL at knee

angles between 0� and 50� [6, 10, 14]. Electrical [11] as

well as mechanical [27] stimulation of the intact ACL is

known to elicit hamstring activation, which suggests that

the hamstrings might aid the ACL or compensate for its

absence [28]. Indeed, many authors reported enhanced

hamstrings co-activation in ACL-deficient subjects during

functional activities such as gait [8, 18, 25, 31].

Larger knee extension moments will induce larger shear

challenges to the knee joint and are thus likely to cause

enhanced hamstrings co-activation in ACL-deficient sub-

jects. Furthermore, co-activation may change with knee

flexion because, with increasing knee flexion, the backward

angle of the hamstrings tendons increases, whereas the

forward angle of the patellar tendon decreases relative to

the tibial shaft [3, 24]. It should be noted that, unless

reduced knee extension moments are accepted, enhanced

co-activation requires not just increased activation of the

hamstrings, but also of the quadriceps. It has been pre-

dicted that pure co-activation of the hamstrings and
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Research Institute Move, Faculty of Human Movement Sciences,

VU University Amsterdam, Van der Boechorststraat 9,

1081 BT Amsterdam, The Netherlands

e-mail: i_kingma@fbw.vu.nl

123

Knee Surg Sports Traumatol Arthrosc (2009) 17:946–955

DOI 10.1007/s00167-009-0802-4



quadriceps cannot directly reduce anterior tibial shear

forces in the knee at small (up to 22�) angles [7, 24], since,

at these joint angles, the angle of the patellar tendon is

larger than the angle of the hamstring tendons [3]. There-

fore, close to full extension, ACL-deficient subjects may

need to reduce quadriceps activation [5] in order to reduce

shear forces in the knee.

In gait, kinematics, knee moments and muscle activation

may all differ between ACL-deficient and healthy subjects

[8, 9, 26]. This renders it difficult to determine to what

extent the adaptation of muscle activation depends on knee

angle and on knee moment level.

Studying muscle activation strategies under isokinetic or

isometric conditions in single joint exertions decreases the

complexity and may, therefore, be useful to examine con-

trol strategies in more detail [1, 2, 13]. The disadvantage of

single joint exertions is, however, that subjects are unable

to compensate a moment reduction in one joint by an

increase in another joint. To allow compensation over

joints, while increasing the level of experimental control

relative to functional activities, the current study was

designed to investigate knee and hip extension moments,

and hamstrings and quadriceps activation in an isometric

task involving whole-leg extensions in a functional range

of leg positions. We hypothesized that ACL-deficient

subjects would show a posture and load magnitude

dependent increase in hamstrings co-activation.

Materials and methods

Subjects

Eleven chronic ACL-deficient subjects (four males, seven

females) participated in this study. Ten ACL-deficient

subjects had an ACL injury of the right knee and one had

an ACL injury of the left knee. The interval between injury

and testing ranged from 0.5 to 20 years (median 9.0 year).

The rupture of the ACL was diagnosed by MRI scan,

arthroscopy or clinical examination by independent ortho-

pedic surgeons. The ACL-deficient subjects were asked to

fill out the Lysholm score [30] and the International Knee

Documentation Committee (IKDC) subjective question-

naire [17] to rate knee symptoms. The ACL-deficient

subjects had a median score of 83 (range 63–92; a score of

100–95 means excellent and \65 means poor) on the

Lysholm and 71 (range 52–91; a score of 100 means no

limitation or symptoms) on the IKDC. None of the ACL-

deficient subjects had knee pain or swelling at the time of

testing. The control group consisted of 15 healthy subjects

(10 males, 5 females) without a history of knee problems.

In the control subjects, the right leg was tested. Subject

characteristics did not differ significantly from the ACL-

deficient group except for age (Table 1). Nevertheless,

potential confounding factors were taken into account by

normalizing variables to body proportions where appro-

priate and by taking gender into account in the statistical

model.

All subjects signed a written informed consent form

before the measurements. The Medical Ethics Review

Committee of the VU University Medical Center approved

the protocol.

Experimental set-up

The subjects were sitting on a custom-built seat (Fig. 1)

supporting the back and tuber ischiadicum. Two supports

over the shoulders prevented vertical movement of the

trunk. The subjects received sensory feedback of the knee

position through a rod at the back of the knee. They were

not allowed to exert force against this rod during the

measurements. When the subject pushed against the rod,

the rod bent and the trial was repeated. The bare foot of the

injured leg, or for the control subjects the bare foot of the

right leg, was placed on a force plate. Isometric whole-leg

extensions were performed with the knee in front of, over

Table 1 Relevant anthropometric characteristics of ACL-deficient and control subjects participating in the present study

Median ACL-deficient (n = 11) Median Control (n = 15) P value

Minimum Maximum Minimum Maximum

Age (years) 35.0 20.0 46.0 23.0 18.0 51.0 0.023

Body height (cm) 173.5 167.0 186.5 178.0 164.5 190.0 n.s.

Body weight (kg) 74.6 61.0 120.1 72.3 49.3 93.6 n.s.

Total leg length (cm) 90.2 79.0 94.8 91.0 85.3 97.5 n.s.

Upper leg length (cm) 41.2 33.0 45.5 39.7 37.1 43.4 n.s.

Lower leg length (cm) 50.0 44.7 52.3 49.9 41.2 54.8 n.s.

Foot length (cm) 25.0 23.0 29.2 27.0 23.0 30.0 n.s.

P values indicate significant differences between ACL-deficient and control subjects according to a non-parametric Kolmogorov–Smirnov test
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and behind the ankle joint, because the position of the knee

relative to the ankle highly affects the required knee and

hip moment during the whole-leg extensions. For each of

those knee positions (in front of, over, and behind the

ankle, with shank angles being 70�, 90� and 108� relative to

the forward horizontal, respectively), three knee flexion

angles were used, such that whole-leg extensions were

performed in nine different postures (Fig. 1), thereby

covering a wide and functional range of combinations of

knee and ankle joint angle. Physical limitations of the

experimental set-up prevented application of the same

three knee flexion angles at each knee position. For

instance, \30� of knee flexion could not be reached with

the knee in front of the ankle. For each experimental

position, a 10-s baseline measurement of the vertical force

was performed with the subject resting on the chair with

the foot on the force plate. Following the baseline mea-

surement, the subject was asked to exert a maximum force

by pushing against the force plate with the entire foot for

10 s. The other foot was not on the force plate and only

used for balance control. After the maximum force trial,

two target levels of 30 and 60% of the difference between

maximum and baseline vertical force were calculated and

only the vertical force component was displayed on a

computer screen in front of the subject. The subject was

then asked to go to the target vertical force level in

approximately 2 s and maintain the force level for 8 s.

During all force exertions, subjects pushed themselves

against the shoulder support (which was padded to prevent

discomfort) and against the back support. Fatigue was

prevented by allowing about 5 min of rest between pos-

tures. The order of postures was randomized over subjects.

Measurements

Five LED markers were placed on the following locations:

the trochanter major, the lateral femoral condyle, the lateral

malleolus, lateral side of the calcaneus and on the base of

the fifth metatarsal bone. An opto-electronic movement

recording system (Optotrak, Northern Digital Inc., Water-

loo, ON, Canada) was used to record the position of the

markers during the measurements, at a rate of 100 samples/

s. A Kistler force plate (Kistler Instrument Corp., Amherst,

NY, USA) was used to measure the ground reaction force

(GRF) in the vertical and anterior–posterior direction. The

total GRF was calculated as the vector sum of vertical and

horizontal components. The sample rate was set at 100

samples/s. A pulse generated by Optotrak started the force

plate recordings. The Optotrak and force plate data were

averaged over a 5-s isotonic part of each trial. An inverse

dynamics approach was used to calculate knee and hip

moments in the sagittal plane. Knee extension moments

and hip flexion moments are expressed as positive values.

Because moments scale with mass and length, moments

were normalized to the product of subject’s body mass and

leg length (yielding units of m s-2). The GRF was nor-

malized to the subject’s body mass (yielding units of

m s-2).

EMG was recorded from seven muscles (vastus media-

lis, VM; rectus femoris, RF; vastus lateralis, VL; semi-

membranosus, SM; semitendinosus, ST; biceps femoris,

BF; gastrocnemius medialis, GM). The skin was shaved,

abraded and cleaned before electrode placement (Ag/AgCl;

square 5 mm 9 5 mm pick-up area). The center-to-center

electrode distance was 2.5 cm. Surface EMG locations

were based on the Seniam guidelines [15]. The electrodes

on the SM were placed on the distal part of the muscle,

where the muscle is located just below the skin surface. All

EMG signals were sampled at 1,000 samples/s (Porti-17TM,

TMS, Enschede, The Netherlands; 22 bits AD conversion

after 209 amplification, input impedance[1012 X, CMRR

[90 dB) and band-pass filtered with 10 and 250 Hz cut-off

feedback
screen

rod

GRF

shoulder
support

Fig. 1 Schematic overview of the experimental set-up. The subject

was positioned in nine different postures. Pos posture, a ankle angle,

b knee angle, GRF ground reaction force. Dots indicate the locations

of the Optotrak markers
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frequencies. A pulse generated by Optotrak was used to

synchronize EMG and Optotrak data. The EMG signals

were band-stop filtered between 48.5 and 51.5 Hz, rectified

and averaged over the same 5 s as the Optotrak and force

plate data.

Prior to the measurements, subjects performed three

maximum voluntary isometric contractions (MVIC) for

both the quadriceps and the hamstrings at 90� of knee

flexion. Another series of three MVIC was performed for

the GM muscle at 90� of ankle flexion. The EMG signals

measured during MVIC were band-pass filtered with 10 and

250 Hz cut-off frequencies, band-stop filtered between 48.5

and 51.5 Hz, rectified and averaged over 0.5 s sliding

windows. For each muscle, the window with the highest

value was used to normalize the EMG of that muscle. The

normalized EMG signals of the VM, RF and VL were

summed proportional to their cross-sectional areas [4], to

obtain an indication of the overall quadriceps activation.

Similarly, the SM, ST and BF were summed to obtain an

indication of the overall hamstrings activation. A co-acti-

vation index (CI) was defined according to Kellis et al. [20]:

CI ¼ 2 � ham

quaþ ham

where, qua and ham are the quadriceps and hamstrings

activation, respectively. An index of 1 means pure co-

activation and 0 means no co-activation.

Statistics

Because of physical limitations, our experimental design

did not allow to employ the same three knee angles in each

knee joint position relative to the ankle joint. As a result,

the experimental design was not balanced. Therefore, a

separate repeated measure ANOVA was applied for each of

the three knee joint positions. In each ANOVA, gender and

ACL status (ACL-deficient vs. control group) were used as

between-subject factors. Force level (30, 60% and maxi-

mum force) and knee angle (three angles) were used as

within-subject factors. Significant interactions with ACL

status were further explored with follow-up ANOVAs on

subsets of the data. The variables tested were the normal-

ized values (averaged over 5 s) of the magnitudes of

backward GRF, the total GRF (vector sum of vertical and

horizontal components), knee moment, hip moment, CI and

the activation of the quadriceps, hamstrings and GM. For

almost all of these variables, the data appeared to be pos-

itively skewed, due to the fact that some subjects pushed, in

some conditions, in a direction that substantially deviated

from the pushing direction generated by most other sub-

jects. Therefore, we applied a log-transformation to all data

prior to application of the ANOVAs.

Results

Muscle activation

Consistent with the hypothesis, ACL-deficient subjects

showed adaptations in muscle activation that can be con-

sidered as a posture dependent, and to some extent load

magnitude dependent, increase in co-activation (Figs. 2, 3;

Table 2). In the posture requiring the smallest knee

extension moments, i.e., with the knee behind the ankle,

neither the muscle activation variables nor the moments

showed differences between ACL-deficient and control

subjects. In contrast, in the postures requiring larger knee

extension moments (i.e., with the knee in front of and over

the ankle, Fig. 4), a main effect of ACL status was found

for hamstrings activation and interactions of ACL status

with knee angle were found for hamstrings activation and

CI (Table 2). In postures with the knee in front of the

ankle, ACL-deficient subjects showed, averaged over three

force levels and three knee angles, a median activation

level of 6.6% MVC (range 3.2–12.3) hamstrings activation,

against 4.2% (range 1.8–17.4) in control subjects (Fig. 2).

In postures with the knee over the ankle those numbers

were 9.1% MVC (range 2.0–29.0) for ACL-deficient and

4.0% MVC (range 2.2–35.7) for control subjects. The

differences between ACL-deficient and control subjects

(2.4% MVC for postures with the knee in front of the ankle

and 5.1% MVC for postures with the knee over the ankle)

were significant.

Furthermore, a main effect (thus independent of ACL

status) of gender was found on hamstrings activation in that

male subjects showed more hamstrings activation than

female subjects in postures with the knee in front of and

over the ankle.

The overall effect of ACL status on the CI did not reach

significance. However, the ACL status interacted with knee

angle for postures with the knee in front of and over the

ankle in that the most pronounced difference between

ACL-deficient and control subjects was seen in knee angles

closer to full extension (Fig. 2). ACL status interacted with

force level for postures with the knee in front of the ankle

in that the most pronounced difference between ACL-

deficient and control subjects was seen at higher force

levels (Fig. 3).

The quadriceps activation did not show an overall dif-

ference between ACL-deficient and control subjects, but

ACL status interacted with gender in postures with the

knee in front of and over the ankle, and with force level in

postures with the knee in front of or behind the ankle

(Fig. 3; Table 2).

No main effect of ACL status or interaction with ACL

status was found for the GM activation in any posture.
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Fig. 2 Median activation levels

of quadriceps, hamstrings and

gastrocnemius muscles, and

median co-activation indices for

male (light gray bars, n = 10)

and female (black bars, n = 5)

control subjects and male

(white bars, n = 4) and female

(dark gray bars, n = 7)

ACL-deficient subjects

(ACLD). Data are presented for

isometric whole-leg extension

efforts in nine postures, varying

in knee angle and knee joint

position. Data are averaged over

three force levels. Error bars
represent the 25th and 75th

percentiles. Vertical lines
indicate separations between

ANOVAs
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Kinetics

Both subject groups closely matched the 30 and 60% target

force levels. The absolute average difference between

target and measured vertical GRF was not significantly

different between ACL-deficient subjects (median 3.4 N,

range 2.2–12.1) and control subjects (median 3.5 N, range

1.3–8.6).

For the normalized total GRF, main effects of ACL

status were seen for postures with the knee in front of and

over the ankle (Table 2). For the normalized backward

GRF, an interaction of ACL status with force level was

seen for postures with the knee over or behind the ankle,

with more pronounced differences between groups at

higher force levels (Fig. 5; Table 2). Furthermore, for both

the normalized backward and normalized total GRF, ACL

status interacted with gender for all postures in that reduced

forces were seen in ACL-deficient males and to a lesser

extent (backward GRF) or absent (total GRF) in ACL-

deficient females.

With the knee in front of the ankle, ACL-deficient

subjects generated smaller normalized knee moments

(Table 2). Furthermore, ACL status interacted with gender

and with force level for these postures. The interaction of

ACL status with force level showed that the reduced knee

moment in ACL-deficient subjects was most pronounced at

the highest force level (Fig. 5). The main effect of ACL

status and all interactions with ACL status were not sig-

nificant for the moment at the hip joint (Fig. 4; Table 2).

Not surprisingly, the normalized knee moments, hip

moments, total and backward GRF were, except for the

total GRF with the knee over or behind the ankle, signifi-

cantly affected by knee angle and force level in all knee

joint positions (Figs. 4, 5).

Discussion

In line with the hypothesis, we found that ACL-deficient

subjects showed a task dependent increase in co-activa-

tion. In postures requiring large knee extension moments,

i.e., with the knee over or in front of the ankle, a con-

sistent increase in hamstrings activation was found in

ACL-deficient compared with control subjects. However,

the difference between ACL-deficient and control subjects

was only 2.4% MVC for postures with the knee in front

of and 5.1% MVC for postures with the knee over the

ankle. It can, therefore, be questioned whether this result,

although statistically significant, is also clinically relevant.

In this perspective, it is also important to recall that

hamstrings co-activation was knee angle dependent for

postures with the knee over or in front of the ankle.
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C
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Male ACLD
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Female ACLD

Fig. 3 Median activation levels

of the quadriceps and median

co-activation indices for male

(light gray bars, n = 10) and

female (black bars, n = 5)

control subjects and male

(white bars, n = 4) and female

(dark gray bars, n = 7)

ACL-deficient subjects

(ACLD). Data are presented for

isometric whole-leg extension

efforts in nine postures, varying

in force level and knee joint

position. Data are averaged over

three knee joint angles. Error
bars represent the 25th and 75th

percentiles. Vertical lines
indicate separations between

ANOVAs
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Enhanced hamstrings co-activation was most pronounced

in small knee angles, whereas it has been shown that pure

co-activation of the hamstrings and quadriceps cannot

directly reduce anterior tibial shear forces in the knee at

small (up to 22�) angles [7, 24]. Possibly, co-contraction

is being generated in these postures to compensate for the

reduced backward shear component of the hamstrings by

increasing joint compression. In isolated static and slow

dynamic knee extension efforts, enhanced hamstrings

activation in knee angles close to the extension has been

reported as well [1, 2], but differences between ACL-

deficient and control subjects were found to be marginal

[2] or absent [22]. In the present study, compensating a

reduced knee extension moments by increasing hip or

ankle moments were made possible while at the same

time, posture was fully controlled. Nevertheless, while

ACL-deficient subjects did show a force level and gender

dependent decreased normalized backward GRF in pos-

tures with the knee in front of or behind the ankle, no

evidence of compensatory changes in hip moments was

found. In addition, the normalized backward GRF showed

roughly the same pattern of difference between ACL-

deficient and control subjects as the normalized total GRF

and knee moments (see Fig. 5).

Our data showed that hamstrings activation was not just

task dependent, but also gender dependent. Male subjects

showed, for postures with the knee over or in front of the

ankle, higher levels of hamstrings activation than females.

This finding was consistent over ACL-deficient and control

subjects, as no interaction with ACL status was found.

Gender differences in co-activation, with males showing

higher levels of hamstrings co-activation than females,

Table 2 P values of the most relevant main effects and interactions

of three separate repeated measures ANOVAs on the normalized

magnitude of the total (nGRFtot) and backward (nGRFx) ground

reaction force, on the extension moment at the knee joint (nMomK),

on the net extension moment at the hip joint (nMomH), on the

quadriceps activation (QUAD), on the hamstrings activation (HAM),

on the gastrocnemius activation (GM) and on the co-activation index

(CI)

nGRFtot nGRFx nMomK nMomH QUAD HAM GM CI

ANOVA knee in front of ankle (ankle angle: 70�; knee angles: 30�, 45� and 60�)

ACL 0.003 n.s. 0.002 n.s. n.s. 0.004 n.s. n.s.

Gender n.s. 0.033 n.s. n.s. n.s. 0.038 n.s. n.s.

Gender 9 ACL 0.002 \0.001 0.006 n.s. 0.022 n.s. n.s. n.s.

Knee 9 ACL n.s. n.s. n.s. n.s. n.s. 0.030 n.s. 0.002

Force 9 ACL \0.001 n.s. 0.001 n.s. 0.004 n.s. n.s. 0.022

Knee 9 force 9 ACL n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Knee 9 gender 9 ACL n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Force 9 gender 9 ACL 0.005 n.s. 0.007 n.s. n.s. n.s. n.s. n.s.

ANOVA knee over ankle (ankle angle: 90�; knee angles: 10�, 30� and 50�)

ACL n.s. n.s. n.s. n.s. n.s. 0.002 n.s. n.s.

Gender n.s. 0.034 0.044 0.010 n.s. 0.003 n.s. 0.011

Gender 9 ACL 0.008 \0.001 n.s. n.s. 0.016 n.s. n.s. n.s.

Knee 9 ACL n.s. n.s. n.s. n.s. n.s. 0.044 n.s. 0.003

Force 9 ACL 0.002 0.044 n.s. n.s. n.s. n.s. n.s. n.s.

Knee 9 force 9 ACL n.s. 0.047 n.s. n.s. n.s. n.s. n.s. n.s.

Knee 9 gender 9 ACL n.s. n.s. n.s. n.s. n.s. 0.011 n.s. 0.024

Force 9 gender 9 ACL 0.007 n.s. n.s. n.s. n.s. n.s. n.s. n.s.

ANOVA knee behind ankle (ankle angle: 108�; knee angles: 10�, 30� and 45�)

ACL 0.017 n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Gender n.s. 0.002 0.027 n.s. n.s. n.s. n.s. 0.011

Gender 9 ACL 0.020 \0.001 n.s. n.s. n.s. n.s. n.s. n.s.

Knee 9 ACL n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Force 9 ACL n.s. 0.004 n.s. n.s. 0.027 n.s. n.s. n.s.

Knee 9 force 9 ACL n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Knee 9 gender 9 ACL n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Force 9 gender 9 ACL n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Non-significant P values (a [ 0.05) are omitted

Knee knee joint angle, Force force level, ACL ACL status
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have been reported before in fast isokinetic knee extensions

[16] and prior to landing in a drop-jump [23].

The quadriceps activation patterns found in the present

study neither showed an overall nor a knee angle dependent

adaptations in ACL-deficient subjects. Nevertheless, some

interaction with force level was seen, indicating that ACL-

deficient subjects may limit quadriceps activation at higher

load levels. Furthermore, we did find an interaction

between gender and ACL status in postures with the knee

over or in front of the ankle. However, this interaction

suggesting increased quadriceps activation in males, but

not in females, should be interpreted with a great care.

First, we measured only four male ACL-deficient subjects

and some or all of those subjects may have been hesitant to

fully activate the quadriceps in the MVC trial, which would

have resulted in an overestimation of quadriceps activation.

Furthermore, a comparison of quadriceps muscle activation

between ACL-deficient and control subjects cannot directly

be interpreted in terms of muscle forces as a smaller cross-

sectional area of vasti muscles [33] and lower quadriceps

strength [19] were found in groups of mainly male ACL-

deficient subjects versus control subjects. In line, we found

reduced knee moments in male subjects, mainly at higher

load levels, which can probably only in part be attributed to

enhanced hamstrings activation.

In addition to the hamstrings and quadriceps, the gas-

trocnemius might affect shear forces in the knee joint [12].

However, in the current study, the activation levels of the
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Fig. 4 Median magnitudes of

the normalized total ground

reaction force, normalized knee

moment and normalized hip

moment for male (light gray
bars, n = 10) and female (black
bars, n = 5) control subjects

and male (white bars, n = 4)

and female (dark gray bars,

n = 7) ACL-deficient subjects

(ACLD). Data are presented for

isometric whole-leg extension

efforts in nine postures, varying

in knee angle and knee joint

position. Data are averaged over

three force levels. Error bars
represent the 25th and 75th

percentiles. Vertical lines
indicate separations between

ANOVAs
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gastrocnemius were not different between the subject

groups.

A limitation of this study is that the level of functioning

varied over ACL-deficient subjects. Four ACL-deficient

subjects functioned on a high level (IKDC [85%) while

four others functioned on a low level (IKDC \65%).

Furthermore, the ACL-deficient subjects in the present

study showed a large range in time from injury to test. This

may have enhanced the variance in our data as Wexler

et al. [32] showed that adaptations in ACL-deficient subject

develop gradually over time. However, most of the subjects

will have had sufficient time to adapt, as for seven of our

subjects the injury was more than 7 years ago. Neverthe-

less, not all subject-related variance could be controlled,

resulting in skewed data. By normalizing to subject pro-

portions, by including gender as a between-subject factor

and by log-transformation prior to ANOVA application, we

minimized the risk of confounding effects. Unfortunately,

the ACL-deficient group was too small to perform sub-

group analyses. Future studies should focus on whether

different strategies are used in groups differing in func-

tional capacity. Finally, the task itself, matching target

forces, could have had some effect on co-contraction level,

but is unlikely to have affected differences between groups.
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the normalized total ground

reaction force, normalized

backward ground reaction force

and normalized knee moment

for male (light gray bars,

n = 10) and female (black bars,

n = 5) control subjects and

male (white bars, n = 4) and

female (dark gray bars, n = 7)

ACL-deficient subjects

(ACLD). Data are presented for

isometric whole-leg extension

efforts in nine postures, varying

in force level and knee joint

position. Data are averaged over

three knee joint angles. Error
bars represent the 25th and 75th

percentiles. Vertical lines
indicate separations between

ANOVAs
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Conclusion

Anterior cruciate ligament-deficient subjects were found to

use enhanced hamstrings co-activation without concomi-

tant changes in quadriceps activation, and this was more

pronounced at higher load levels and near full knee

extension. However, the differences were small and it

remains uncertain whether this is clinically relevant. Fur-

thermore, female subjects had lower hamstrings activation

levels than male subjects. Finally, male ACL-deficient

subjects tended to limit quadriceps activation and resulting

in knee moments at higher load levels.
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