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Structural similarity between the magnetic-flux profile
in superconductors and the surface of a 2d rice pile

M. S. Welling, C. M. Aegerter and R. J. Wijngaarden
Division of Physics and Astronomy, Vrije Universiteit
De Boelelaan 1081, 1081HV Amsterdam, The Netherlands

(received 31 May 2002; accepted in final form 4 December 2002)

PACS. 05.65.+b – Self-organized systems.
PACS. 45.70.Vn – Granular models of complex systems; traffic flow.
PACS. 74.60.Ge – Flux pinning, flux creep, and flux-line lattice dynamics.

Abstract. – We analyze the magnetic-flux profile in the critical state of an YBa2Cu3O7−x

thin film. It is found that the profile forms a self-affine structure in both space and time.
Furthermore, the surface of a pile of rice is studied, which also shows a self-affine structure.
These experimental results are compared to simulations of a two-dimensional version of the
Oslo model for sandpiles. The exponents characterizing the roughness and dynamics of the
profiles for both experimental systems agree with each other, the values being α = 0.39(3)
for the roughness exponents and β = 0.50(3) for the growth exponents. These values are
reproduced in the simulations as well. This shows that a simple sandpile model can be used
to describe the shape and dynamics of the vortex landscape in the critical state. Conversely,
superconductors may be used as a model granular system.

The connection between sandpiles and the critical state in superconductors goes back to
de Gennes [1], more than thirty years ago. He invoked the sandpile as a mechanical model
for the occurrence of the critical state. In this analogon, the vortices of quantized magnetic
flux in the superconductor take the role of sand grains. The friction forces between the grains
are mapped onto pinning forces due to impurities and gravity takes the form of a “magnetic
pressure” arising from the repulsive inter-vortex interactions [2]. Given these identifications,
the building up of the critical state in a superconductor is similar to that of a sandpile, with
its self-organizing slope.

In recent years, the image of a sandpile has become a paradigm for the complex behaviour of
simple dynamical systems. This is mainly due to the concept of self-organized criticality (SOC)
and its sandpile cellular automaton [3]. However, experiments on real sand and its dynamics
have been inconclusive for a long time as to whether SOC does in fact apply to them [4].
Recent experiments on the behaviour of one-dimensional (1d) piles of rice have however shown
the features of a critical system, such as finite-size scaling [5]. Further investigations into
rice piles have also shown that the surface of such a rice pile is a self-affine structure [6, 7]
giving further insights into the dynamics of experimentally realized SOC systems. Extending
these studies to the structure of a 2d rice pile opens up a way for a proper comparison of
the critical state in superconductors with a granular pile. The corresponding flux profile,
c© EDP Sciences
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Fig. 1 – The vortex landscape in an YBa2Cu3O7−x film at an applied field of 15mT. This surface
is obtained by plotting the vortex density on the z-axis (corresponding to the height of a granular
pile) as a function of position in the sample. Each profile (black line) is defined starting at the front
(white line) and going backwards towards the sample edge.

given by the magnetic-flux density B(x) in the penetrating direction, is easily available from
magneto-optical experiments. Furthermore, kinetic effects are thought to be suppressed in rice
piles, such that simple cellular automata can describe the system [5]. In comparison, kinetic
effects are naturally unimportant in the study of the critical state in superconductors, as the
constituting particles (the vortices) show heavily overdamped dynamics [8]. By determining
the self-affinity of the magnetic-flux profile, we also extend work on SOC in superconductors.
Up to now, such studies were restricted to the distribution of the size of flux jumps presenting
a global measure of the state of the system [9].

In this letter, we show that the experimentally determined structure of these magnetic-
field profiles, given by the roughness and growth exponents [10], is in excellent quantitative
agreement with the exponents characterising the surface of a 2d rice pile. In addition, a
cellular automaton developed to describe granular piles [6], is extended to 2d in order to deal
with a similar geometry as our experiment. Simulations of such a cellular automaton also are
in excellent agreement with the experimental results.

The experiments were carried out on a thin film of YBa2Cu3O7−x (YBCO), with a thick-
ness of 80 nm, grown using pulsed laser ablation on a NgGaO3 substrate [11]. It is the same
sample as that used in ref. [12]. The sample was subjected to a slowly increasing magnetic
field (in steps of µ0∆Hext = 50 µT), while held at a constant temperature of 4.2 K. After
each field step, the sample was allowed to relax for 10 s after which a series of magneto-optical
images was taken. A complete experiment consists of 350 time steps starting at zero applied
field. In the following, the results of 10 such experiments are averaged. This corresponds to
128 images for each experiment and a total number of 2.5×105 profiles used for the statistical
analysis described below. The local magnetic-field profile was determined using a magneto-
optical setup [13]. An Yttrium-Iron Garnet (YIG) is placed on top of the thin film, which is
located at the object plane of a polarizing microscope. Due to the high Verdet constant of the
YIG, the polarization vector of the incoming light is turned locally when a magnetic field is
present. This means that in the polarization microscope, regions of high magnetic fields show
up as bright spots. In an ideally cross-polarized microscope, only the absolute value of the
field can be determined. Moreover, the illumination has to be uniform to a high degree for
a reliable determination of this absolute value. Both of these problems can be circumvented
by using a recently developed lock-in method [14]. Introducing a modulation on the incom-
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ing polarization, the polarization vector can be determined directly for each pixel. Since the
rotation of the polarization vector is directly related to the z-component of the magnetic flux
(Bz), this method allows a direct determination of Bz, including its sign. An example of such
a magneto-optically determined flux-scape can be seen in fig. 1, where the sample is shown
in a field of 15 mT. The studied profiles are defined starting at the front of penetrating flux,
given by a certain threshold level (∼ 2 mT), going backwards to the edge of the sample for a
given distance (128 pixels). Over the width of the interesting region we could then study a
big number (200) of such profiles from one image. The fact that we take the profiles starting
from the front is important in the study of the time behaviour, since this mimics a stationary
state, where the height of the pile does not grow in time.

For the study of the rice pile we devised a geometry which is similar to that of the flux
penetration in the YBCO thin film. The growth takes place on a line, where the rice is
uniformly distributed using a mechanical distributor [15]. The size of the pile is ∼ 1 × 1 m2.
The 3d structure of the pile surface is measured using the distortions of a set of projected
lines imaged at an angle to the projection direction using a high-resolution camera [15]. This
setup allows a resolution of ∼ 2 mm over the whole area, which is comparable to the size of
the grains (∼ (2×2×7) mm3). The profiles are defined in the same way as for the flux-scape,
where the threshold is taken at a height of 0.1 m and going back 256 pixels. In a typical
experimental run, 400 images are taken at intervals of 30 s. The data presented here are from
three different experiments, yielding a total of 5 × 105 profiles.

The sandpile model used in the simulations is an extension of the Oslo model to two spatial
dimensions. It belongs to the class of sandpile models with randomized updating rules, where
the critical slope is dynamically adjusted by the avalanches [16]. In the original version of the
model, a line of local slopes zi = hi − hi+1 of a granular pile is considered. An extension to
higher dimensions is easily made. In this case, the z’s stand for the gradient of the pile:

z2
i,j = (hi,j − hi+1,j)2 + (hi,j − hi,j+1)2 (1)

and the simplest possible extension of the 1d toppling rules [6] to 2d is

zi,j −→ zi,j − 4,

zi±1,j −→ zi±1,j + 1, (2)
zi,j±1 −→ zi,j±1 + 1,

zc
i,j ∈ {3, 4},

when zi,j > zc
i,j , after which the critical value is chosen anew. The updating for this two-

dimensional version takes place on a line at x = 0, whose values are increased by one after
each avalanche (i.e. z0,j → z0,j + 1). The height of the pile is obtained from the gradients by
integration. In the y-direction, periodic boundary conditions are assumed. The boundaries in
the x-direction are open. Together with the updating rules, this geometry leads to a planar
surface comparable to the magnetic flux in the critical state of a superconductor, which shows
roughening behaviour. The simulations were carried out on a grid of 128 × 128 pixels. The
analyzed profiles are from 128 time steps after saturation of the roughening was reached,
which involves waiting for 5000 time steps until profiles are analyzed.

In order to determine the self-affine exponents in space and time of the profiles of the
magnetic flux, the rice pile and the simulations, we carried out several procedures to minimize
systematic uncertainties. The most classical determination of the self-affine exponents is to
characterize the roughness of an interface via its width [10]:

w(L, t) =
(〈(

h(x, t) − 〈h(t)〉L
)2〉

L

)1/2
. (3)
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In time, the width will grow as a power law, with a “growth exponent” β from the initial,
flat state up to a saturation time, after which it is independent of time. However, when the
interface to be studied is the profile of a pile, there is no initial, flat interface and thus the
study of the width as a function of time is difficult. After a while, when saturation of w(L, t)
in time is reached, the width of the interface varies as a power law with the system size L,
where the characteristic exponent is usually called the roughness exponent, α.

A more promising way of analysis, which enables the determination of both the roughness
and the growth exponents also for times after saturation, is via the two-point correlation
function defined as [10]

C(x, t) =
(〈(

h(ξ, τ) − h(x + ξ, t + τ)
)2〉

ξ,τ

)1/2
. (4)

It has been shown that this quantity obeys the same scaling laws as the width, such that it can
be used to determine α and β. In the study of the profile dynamics, the correlation function is
much more useful, because power law scaling is also obtained for times after saturation occurs.
Thus, we can apply this method to the profiles determined at such later times. Furthermore,
the determination of the correlation function takes into account more data points than a local
width analysis. This leads to better averaging of the data and thus smoother curves for the
determination of the exponents. For large length or long time scales, however, the averaging
is still only over very few points, such that power law behaviour breaks down before the
correlation length is reached.

Another, still more reliable way of finding the self-affine exponents is to calculate the
spatial (temporal) power spectrum or structure function, S(k) (S(ω)), of the interface [17]. It
is defined as the square of the Fourier transform ĥ(k) (ĥ(ω)) of the local height h(x) (h(t)):

S(k) =
∣∣ĥ(k)

∣∣2, S(ω) =
∣∣ĥ(ω)

∣∣2, (5)

where we determine the Fourier transforms via an FFT algorithm after padding the profile
with zeros to the next power of two. The distribution function, σ(k) (σ(ω)), defined via an
integral of the structure function

σ(k) =
(

1
2π

∫
S(k) dk

)1/2

, σ(ω) =
(

1
2π

∫
S(ω) dω

)1/2

, (6)

is equal to the local width w [18]. The advantage of this method with respect to the correlation
function is that also at large length or long time scales the averaging will be done over a
reasonable sample, such that the results are reliable over a bigger range.

In the following, we use both the correlation function and the power spectrum to determine
the roughness and growth exponents of the magnetic-flux profile in our YBCO thin film and
the profile of the 2d rice pile. Furthermore, we determine these quantities for simulations of
the 2d version of the Oslo model discussed above.

The roughening of the magnetic-flux profile is shown in fig. 2a, where the distribution
function, σ(k), as well as the spatial correlation function, C(x, 0), are given. The distribu-
tion function can be seen to scale over a decade and a half. On small scales, an “intrinsic
width” [10], introduced by experimental noise, dominates the behaviour of the correlation
function. The resulting growth exponent from both methods, αflux = 0.39(3), is in excellent
agreement with that determined from the rice pile, which can be inferred from fig. 3a, where
a value of αrice = 0.39(3) is found. The results are reproduced in the 2d Oslo model, shown
in fig. 4a. Here again, a value of αOslo = 0.38(3) is found from both C(x) and σ(k). Note the
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Fig. 2 – a) The spatial behaviour of the magnetic-flux profiles. The slope of the straight line indicates
the value of the roughness exponent, α = 0.39(3). b) The temporal behaviour of the magnetic-flux
profiles. Here, the growth exponent is indicated by the slope of the straight line, β = 0.51(3). Open
symbols stand for the two-point correlation function and closed symbols for the distribution function.
xpix is the size of a pixel, kpix = 2π/xpix, tstep is the duration of a time step and ωstep = 2π/tstep.
The curves are shifted for clarity.

Fig. 3 – a) The spatial behaviour of the rice pile profile. The roughness exponent is given by the slope
of the straight line, α = 0.39(3). b) The dynamics of the 2d rice pile. Here, the slope of the straight
line indicates the growth exponent, β = 0.48(3). Open symbols stand for the two-point correlation
function and closed symbols for the distribution function. The curves are shifted for clarity.
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Fig. 4 – a) The spatial behaviour of the 2d Oslo model. The roughness exponent is given by the slope
of the straight line, α = 0.38(3). b) The dynamics of the 2d Oslo model. Here, the slope of the straight
line indicates the growth exponent, β = 0.50(3). Open symbols stand for the two-point correlation
function and closed symbols for the distribution function. The curves are shifted for clarity.

larger value of the roughness exponent in the 2d system as compared to that found in [7] for
the 1d case, in both simulations and experiments, with α1d 
 0.25.

The quantification of the dynamics of the evolution can be seen in fig. 2b, where the time
correlation function, C(0, t), is plotted, as well as the distribution function, σ(ω). We obtain
power law behaviour over two decades. This allows a determination of the growth exponent of
the flux profile, for which we obtain: βflux = 0.51(3). In fig. 3b, the dynamics of the rice pile
surface are characterised in the same way. The value of the growth exponent, βrice = 0.48(3) is
in good agreement with that of the flux profile. Again these findings can be compared to sim-
ulations of the 2d Oslo model, where the results are shown in fig. 4b. Here we obtain a growth
exponent of βOslo = 0.50(3), in good agreement with the experimental results on both systems.

Thus in the spatial roughness, as well as the dynamics there is quantitative agreement
between the 2d flux profiles in YBCO thin films and those of a 2d rice pile. Furthermore,
both of these experiments are well described by a 2d version of the Oslo sandpile model.

In conclusion, we presented measurements on the magnetic-field profile in the critical state
of superconductors. This profile is a self-affine surface, which can be described by a growth
and a roughness exponent, which we have determined in two different ways. These exponents
numerically agree with those obtained from an analysis of the surface structure of a 2d rice
pile, as well as simulations of the 2d Oslo sandpile model which we developed. This is a
quantitative confirmation of the classical analogue of the critical state as a granular pile [1],
however extending it further to include the more detailed structure and dynamics of the piles
as well. Therefore, magnetic vortices in superconductors may be used as a model system
for granular matter in the future. In contrast to other experimental systems for studying
granular phenomena, there are clear advantages in the study of superconductors: i) The
inter-particle interactions between vortices are well known [8]. ii) The size and shape of the
particles (vortices) are well known and also easily controllable by changing the temperature.
iii) The density of particles is easily and continuously changed via the applied magnetic field.
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iv) Different types of driving are easily implemented, since the driving is being done by either
the magnetic field or an electrical current [19]. v) The quenched disorder can be controlled
and changed in similar samples [20]. This makes possible to study the influence of static
disorder on the structure of granular matter.
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