
VU Research Portal

FluxSimulator: An R package to simulate isotopomer distributions in metabolic
networks
Binsl, T.W.; Mullen, K.M.; van Stokkum, I.H.M.; Heringa, J.; van Beek, J.H.G.M.

published in
Journal of Statistical Software
2007

DOI (link to publisher)
10.18637/jss.v018.i07

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Binsl, T. W., Mullen, K. M., van Stokkum, I. H. M., Heringa, J., & van Beek, J. H. G. M. (2007). FluxSimulator: An
R package to simulate isotopomer distributions in metabolic networks. Journal of Statistical Software, 18(7).
https://doi.org/10.18637/jss.v018.i07

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 23. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303632827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.18637/jss.v018.i07
https://research.vu.nl/en/publications/4a9471dc-09a3-4d8f-8572-644faf12aff1
https://doi.org/10.18637/jss.v018.i07

JSS Journal of Statistical Software
January 2007, Volume 18, Issue 7. http://www.jstatsoft.org/

FluxSimulator: An R Package to Simulate

Isotopomer Distributions in Metabolic Networks

Thomas W. Binsl
Vrije Universiteit Amsterdam

Katharine M. Mullen
Vrije Universiteit Amsterdam

Ivo H. M. van Stokkum
Vrije Universiteit Amsterdam

Jaap Heringa
Vrije Universiteit Amsterdam

Johannes H. G. M. van Beek
Vrije Universiteit Medical Centre Amsterdam

Abstract

The representation of biochemical knowledge in terms of fluxes (transformation rates)
in a metabolic network is often a crucial step in the development of new drugs and effi-
cient bioreactors. Mass spectroscopy (MS) and nuclear magnetic resonance spectroscopy
(NMRS) in combination with 13C labeled substrates are experimental techniques resulting
in data that may be used to quantify fluxes in the metabolic network underlying a process.
The massive amount of data generated by spectroscopic experiments increasingly requires
software which models the dynamics of the underlying biological system.

In this work we present an approach to handle isotopomer distributions in metabolic
networks using an object-oriented programming approach, implemented using S4 classes
in R. The developed package is called FluxSimulator and provides a user friendly inter-
face to specify the topological information of the metabolic network as well as carbon
atom transitions in plain text files. The package automatically derives the mathemati-
cal representation of the formulated network, and assembles a set of ordinary differential
equations (ODEs) describing the change of each isotopomer pool over time. These ODEs
are subsequently solved numerically.

In a case study FluxSimulator was applied to an example network. Our results indicate
that the package is able to reproduce exact changes in isotopomer compositions of the
metabolite pools over time at given flux rates.

Keywords: metabolism, flux, isotopomer labeling, ODE, R, MS, NMRS, systems biology.

http://www.jstatsoft.org/

2 FluxSimulator: Simulation of Isotopomer Distributions in Metabolic Networks in R

1. Introduction

Dedicated drug development (Böhm et al. 2002; Leach and Gillet 2003) and the design of
new efficient bioreactors (Dunn et al. 2003) is a great challenge for the pharmaceutical and
biotechnological industries. Progress often depends on the exact knowledge of biochemical
reactions between chemical compounds. As these reactions occur in the metabolism of patients
or microorganisms the reactions are termed metabolic reactions and the chemical compounds
metabolites. Both can be represented via so called metabolic network models which allow for
their quantitative investigation. We will provide two case scenarios to highlight this, based
on the small sample network given in Figure 1.

In the example network each reaction is catalyzed by en-

Figure 1: A simple part of an
hypothetical metabolic network.
Metabolite A is transformed via
two enzymes into two different
metabolites named B and C.
The reaction from A to B is cat-
alyzed by enzyme E1 and the re-
action from A to C by enzyme
E2.

zyme E1 or E2, which transform metabolite A into metabo-
lite B or C, respectively. Such a network may model a
scenario in which metabolite B is a desired product to be
accumulated during a fermentation. Then an inhibition
of E2 or knocking out the gene expressing it would cause
a limitation in the production of C and could lead to a
higher production rate of B.

Alternatively, such a network model may represent a sce-
nario in which it is known that the absence of metabolite
C causes a disease. Again the knowledge provided by the
metabolic network helps to understand why this metabo-
lite is produced at a lesser rate or not at all. For instance,
this could be caused by the absence or the malfunction of
enzyme E2. Thus, an artificial supply of enzyme E2 or,
even better, a supply with an optimized enzyme E2′ are
two possible solutions.

Much research effort has been directed at experimental
techniques providing insight into metabolic networks and the quantification of the exchange
fluxes between metabolites, since, as the example just considered demonstrates, such models
may provide insight into the underlying system. All developed techniques base on the same
approach, that is the labeling of one or several metabolites. This is achieved by replacing
atoms within the metabolites by one of their isotopes. These isotopes can be detected easily
by spectroscopic measuring techniques due to their different number of neutrons. Hence, the
metabolites can be observed during the experiment.

Early experiments (Sauer et al. 1970) included radioactive 14C atom labeling to determine the
flux of intracellular metabolites. These experiments provide information of interest but suf-
fered from several disadvantages, including the need for isolation of the intermediate metabo-
lites, their purification, chemical degradation, and the risk entailed by radioactive radiation.
In order to address such problems, labeling techniques using 13C isotopes in combination with
nuclear magnetic resonance spectroscopy (NMRS) have been developed over the course of the
last thirty years (Chance et al. 1983). The technique provides similar information as yielded
by radioactive labeling with 14C but does not suffer from its disadvantages.

In both experimental techniques, labeled and unlabeled carbon atoms move from a particular
position in a substrate molecule to a particular position in the product of the reaction. The

Journal of Statistical Software 3

set of all transitions between carbon atoms in substrates and products is termed the carbon
transition network (CTN). Metabolic networks consists of several metabolite pools, where each
particular pool is the sum of all metabolites belonging to the same chemical species. Within
a carbon transition network these pools are additionally subdivided into particular fractions.
This is due to the 2n different labeling states that can occur in a metabolite consisting of n
carbons. Each of these labeling states is termed an isotopomer and forms a subpool within
its particular metabolite pool.

Hence, to analyze 13C NMRS experiments, software to simulate and interpret these carbon
transition networks is necessary. Several approaches have been implemented previously. For
instance, van Beek et al. (1998) and van Beek et al. (1999), developed and implemented
computer programs in FORTRAN to simulate the dynamics of various metabolic network
models. Such FORTRAN programs achieve accurate simulation results but suffer from limited
flexibility and are error-prone during the manual implementation of the ODEs. This is due to
the fact that each model has to be hard coded in a subroutine, which is linked to a simulation
computer program.

Another approach is using existing software packages like Berkeley Madonna (Macey et al.
2000) or JSIM (Raymond et al. 2003) to simulate dynamic systems. Here again, the programs
require hard-coding of the model in a specially defined mathematical language.

Yet another approach by Wiechert et al. (1995); Wiechert and de Graaf (1997); Wiechert
et al. (1997, 1999); Wiechert (2001) consists of the algorithms to analyze and simulate 13C
labeling experiments. Wiechert et al. (2001) incorporated these developments into a software
package (Wiechert et al. 2001).

This package considers the underlying network to be in metabolic and isotopomeric steady
state, i.e., it assumes that the concentrations of the particular metabolites and their iso-
topomers do not change over time. As new experimental approaches go beyond these as-
sumptions, programs must be developed to handle non-steady state systems. Furthermore,
the package is written in C++ and must be used on a Linux platform.

To address the above limitations we have developed a package in the high level language
R (R Development Core Team 2006). The package is designed to simulate the carbon atom
transitions occurring in a metabolic network (Carbon Transition Network, CTN) over time. In
addition to algorithms solving ODEs efficiently, R provides features for parameter estimation
and statistics that will facilitate the extension of the package in the future. Furthermore, R
is cross-platform and can be run on all major operating systems like Linux, Windows and
MacOS. The developed R package is called FluxSimulator and can be used without any skills
in programming or handling ordinary differential equations (ODEs).

An example of a CTN, its mathematical representation, the derivation from the input files
as well as an exact specification of the input files is given in the Section 2. Additionally, we
performed an example simulation and compared the results to a simulation done with Berkeley
Madonna. This comparison is analyzed and discussed in Section 3. Final conclusions and an
outlook to future work are given in Section 4.

2. Methods

This section introduces an example CTN. It is used to explain the automatic derivation

4 FluxSimulator: Simulation of Isotopomer Distributions in Metabolic Networks in R

of the mathematical representation from the input files which are also specified in detail.
Additionally, an application scenario is presented.

2.1. CTNs And their mathematical representation

A CTN is a special type of metabolic network. Metabolic networks are usually given by their
metabolites and the exchange fluxes that occur between them (Figure 2, upper network). The
CTN has an additional property. For each metabolite present in the network, the transitions
of its carbon atoms to the produced metabolites are specified (Figure 2, lower network). Both
networks shown in Figure 2 are artificially designed, but are inspired by the network given in
Wiechert et al. (1999), which includes almost all basic situations that can occur in a metabolic
or carbon transition network.

Due to the specified carbon transitions the exact path of a labeled carbon through the network
is traceable. However, this causes problems with the calculation of the dynamic behavior.

While ordinary metabolic networks can be represented by a number of ODEs that is equal
to the number of changing metabolites occurring in the network, this is not possible for
CTNs. This is due to the large number of different isotopomers that can occur within a
single metabolite pool, each of which need to be represented by a pool themselves. Thus,
the number of ODEs necessary to represent a single metabolite is equal to 2n, where n is the
number of its carbon atoms (Figure 3).

Accordingly, the metabolic network given on the top in Figure 2 can be represented by the
following seven ODEs specified in Equations 1 to 7.

d[B]
dt

= v1 + v3b + v7f − (v2 + v3f + v7b) (1)

d[C]
dt

= v2 − v8 (2)

d[D]
dt

= v3f − (v3b + v4) (3)

d[E]
dt

= v4 + v5 − v9 (4)

d[F]
dt

= v4 − v5 (5)

d[G]
dt

= v7b + v3b + v5 − (v3f + v6 + v7f) (6)

d[H]
dt

= v6 − v10 (7)

Since metabolite A represents the entry point of the network, its concentration derives from
the experimental protocol. To simplify matters, we consider it to be constant after it has been
changed from natural abundance 13C levels at t = 0. All remaining changes of metabolite
concentrations are given as the sum of the incoming fluxes minus the sum of outgoing fluxes.
Metabolite concentrations are represented by the metabolite names in squared brackets. This
reflects the mass balance of the metabolites.

Each flux is given in
[

µmol
g∗s

]
but how a particular flux is defined depends on the underlying

reaction. Biochemical reactions not catalyzed by enzymes are given as the product of a rate

Journal of Statistical Software 5

Figure 2: A metabolic network (top) with its corresponding carbon transition network (bot-
tom). Green colored arrows represent fluxes entering the network, while red colored arrows
indicate exiting fluxes. Black colored arrows refer to internal fluxes. Note metabolite A which
represents the entry point of the network and therefore requires special handling throughout
the following simulation. Flux v3f indicates a bimolecular reaction on the substrate side that
combines the two metabolites B and G into a new metabolite D. Flux v3b indicates a bi-
molecular reaction on the product side, splitting metabolite D into the metabolites B and
G. The same holds for flux v4 splitting metabolite D into metabolites E and F , and flux v5

splitting metabolite F into E and G. Hence, v3f , v3b, v4 and v5 are given twice to denote the
coupled reactions.

6 FluxSimulator: Simulation of Isotopomer Distributions in Metabolic Networks in R

Figure 3: Representation of the isotopomer pools occurring in a two carbon metabolite A
and a three carbon metabolite F. The numbers highlighted by a circle represent the particular
carbon atoms one, two and three. The binary encoding represents the possible labeling states.
A ”0” represents a non labeled carbon while a ”1” represents a labeled carbon. Finally, the
indices at the metabolite names to the right of the binary encoding are created by the decimal
representation of the binary code plus one. The indices represent the particular isotopomers.

constant k times the concentration of the metabolite at the origin of the reaction (Equation 8).
In contrast, assuming an enzyme-catalyzed reaction, flux v1 could for instance be modeled by
Michaelis-Menten kinetics (Michaelis and Menten 1913) as given in Equation 9, where vmax

indicates the maximum reaction rate and KM the Michaelis-Menten constant.

v1 = k1

[
1
s

]
∗ [A]

[
µmol

g

]
(8)

v1 = vmax

[
µmol

g ∗ s

]
∗

[A]
[

µmol
g

]
KM

[
µmol

g

]
+ [A]

[
µmol

g

] (9)

In contrast to the metabolic network the CTN does not deal with simple metabolites but with
all isotopomer fractions of these metabolites. Hence, the example CTN has to be represented
by 42 ODEs, each referring to an isotopomer fraction. The ODEs are given in indexed mode
by Equation 10 to 16. The explanation of the indices is given in Figure 3.

[B] · dbi

dt
= (v1 · ai + v3b · (di + di+4 + di+8 + di+12) + v7f · gi (10)

− (v2 + v3f + v7b) · bi) (i = 1, ..., 4)

[C] · dci

dt
=

v2 · bi − v8 · ci if (i = 1, 4)
v2 · bi+1 − v8 · ci if (i = 2)
v2 · bi−1 − v8 · ci if (i = 3)

(11)

Journal of Statistical Software 7

[D] · ddi

dt
=

(v3f · bi · g1 − (v3b + v4) · di) if (i = 1, ..., 4)
(v3f · bi−4 · g2 − (v3b + v4) · di) if (i = 5, ..., 8)
(v3f · bi−8 · g3 − (v3b + v4) · di) if (i = 9, ..., 12)
(v3f · bi−12 · g4 − (v3b + v4) · di) if (i = 13, ..., 16)

(12)

[E] · dei

dt
=

(v4 ·

8∑
j=1

d2j−1 + v5 ·
4∑

j=1
fj − v9 · ei) if (i = 1)

(v4 ·
8∑

j=1
d2j + v5 ·

8∑
j=4

fj − v9 · ei) if (i = 2)
(13)

[F] · dfi

dt
= (v4 ·

2i∑
j=2i−1

dj − v5 · fi) (i = 1, ..., 8) (14)

[G] · dgi

dt
=

(v7b · bi +
4∑

j=1
v3b · dj + v5 · (fi + fi+4)

−(v3f + v6 + v7f) · gi) if (i = 1)

(v7b · bi +
8∑

j=5
v3b · dj + v5 · (fi + fi+4)

−(v3f + v6 + v7f) · gi) if (i = 2)

(v7b · bi +
12∑

j=9
v3b · dj + v5 · (fi + fi+4)

−(v3f + v6 + v7f) · gi) if (i = 3)

(v7b · bi +
16∑

j=13
v3b · dj + v5 · (fi + fi+4)

−(v3f + v6 + v7f) · gi) if (i = 4)

(15)

[H] · dhi

dt
= (v6 · gi − v10 · hi) (i = 1, ..., 4) (16)

Each isotopomer fraction is represented by the metabolite name in lower case letter combined
with an index, e.g. di or dei. This index corresponds to the carbon atoms labeled in the
particular isotopomer fraction (see explanation in Figure 3). The fluxes are equal to those
used in the previous Equations 1 to 7. From Equations 10 to 16 one can see that the time
scale of change of the isotopomer fractions can be derived by dividing the incoming fluxes and
outgoing fluxes (right side of the equations) by the concentration of the receiving metabolite
pool (concentration on the left side of the equations). As metabolite A is the entry of the
network its isotopomers are prescribed and are again not considered in the equations above.

With large numbers of ODEs two problems occur. The first problem is the increased chance
of possible mistakes in the ODEs if they have to be hard coded in the computer program.
This is clearly illustrated by the complexity of the previous equations. An example for such
an encoding is given in the by the input file used for Berkeley Madonna which is available
together with the paper. The second problem is the increasing computational power necessary
to solve the ODEs numerically. To address the first problem, FluxSimulator is designed to
derive the ODEs automatically from three simple text files described in Section 2.3.

8 FluxSimulator: Simulation of Isotopomer Distributions in Metabolic Networks in R

2.2. Core algorithm

Initially, all input files are parsed and the data structures necessary to represent the CTN
are constructed within the R environment. Afterwards, all ODEs representing the dynamic
behavior of the CTN are automatically derived, as illustrated in the subsequent flowchart in
Nassi-Shneiderman style (Nassi and Shneiderman 1973).

Core Algorithm — Deriving ODEs From Input Data

NOT ALL METABOLIC POOLS CONSIDERED

GET NEXT METABOLIC POOL

NOT ALL ISOTOPOMERS CONSIDERED

GET NEXT ISOTOPOMER

NOT ALL INFLUXES CONSIDERED

GET NEXT INFLUX

Z
Z

ZY MULTIMOLECULAR REACTION
�

�
�
N

COMPUTE MULTIMOLECULAR INFLUX
CONTRIBUTION

COMPUTE SIMPLE INFLUX CONTRIBUTION

NOT ALL OUTFLUXES CONSIDERED

GET NEXT OUTFLUX

COMPUTE OUTFLUX CONTRIBUTION

SUM UP INFLUX CONTRIBUTIONS

SUM UP OUTFLUX CONTRIBUTIONS

SUBTRACT OUTFLUX FROM INFLUX CONTRIBUTIONS

SET ODE OF ISOTOPOMER

During the derivation of the ODEs all isotopomers of all different metabolites have to be
considered. In the first step all incoming fluxes of a particular isotopomer are checked for
taking part in a multimolecular reaction on the substrate side, i.e. whether the reaction
between two or more metabolites causes the production of the considered metabolite or not.

The contribution caused by an ordinary unimolecular influx to a particular isotopomer fraction
is the product of the flux size times the sum of all fractions of isotopomers, within the feeding
metabolite pool, feeding the receiving isotopomer fraction. However, the multimolecular
contribution differs from that. Because the formation depends on the reaction of at least two
different metabolites, the multimolecular contribution is the product of the flux size times
the sum of the products of all isotopomer fractions that are able to produce the isotopomer
under consideration. Examples for an equation representing a bimolecular reaction are given
in Equation 12. All remaining equations include only unimolecular incoming and outgoing
fluxes.

Journal of Statistical Software 9

The second step of the algorithm considers all exiting fluxes whose particular contributions
to the change of the isotopomer pool under consideration are given by the product of the flux
size times the fraction of the receiving isotopomer.

For all inflowing and outflowing fluxes all distinct contributions to the change of the currently
regarded isotopomer are calculated. All contributions caused by inflowing fluxes are summed
and all contributions of outflowing fluxes are subtracted. The resulting value is divided by
the size of the metabolic pool the isotopomer belongs to. This is due to the fact that the
ODEs (Equations 10 to 16) describe the time derivative of the isotopomer fractions and do
not describe the derivative of the absolute amounts of isotopomers.

After having calculated the ODEs for all isotopomer fractions of all metabolites the ODEs are
passed to the lsoda() function of R. This function solves the ODEs numerically over a given
sequence in time. It starts with a set of initial values that were also given in the input files.
The lsoda algorithm was designed by Petzold (1983); Hindmarsh (1983). It is able to switch
between algorithms for stiff and non-stiff systems of first order ODEs for optimal numerical
integration.

2.3. Input files

The information necessary to encode a CTN for FluxSimulator is distributed over three dif-
ferent input files. This is done for reasons of simplicity and clarity since each file includes
another type of information about the network.

The first input file contains the topology of the network and is therefore called the topology
file. The network is represented in matrix notation. The rows are labeled by the metabolite
names and the columns by the flux names. Whenever a flux is an inflowing flux to a particular
metabolite pool this is indicated by a ’1’ at the particular position of the matrix, while in
contrast ’−1’ indicates an outflowing flux and ’0’ designates a flux that is not connected to
a particular metabolite. The structure of the topology file is illustrated below on the basis
of the example CTN in Figure 2. Note that the matrix in the topology file is an adjacency
matrix and not equal to a stoichiometric matrix, which is not applicable in CTNs.

v1 v2 v3f v3b v4 v5 v6 v7f v7b v8 v9 v10
A -1 0 0 0 0 0 0 0 0 0 0 0
B 1 -1 -1 1 0 0 0 1 -1 0 0 0
C 0 1 0 0 0 0 0 0 0 -1 0 0
D 0 0 1 -1 -1 0 0 0 0 0 0 0
E 0 0 0 0 1 1 0 0 0 0 -1 0
F 0 0 0 0 1 -1 0 0 0 0 0 0
G 0 0 -1 1 0 1 -1 -1 1 0 0 0
H 0 0 0 0 0 0 1 0 0 0 0 -1

The second input file, the transition file, contains information about the individual carbon
transitions occurring between the different metabolites and hence between their isotopomer
pools. For each metabolite pool that receives carbon atoms from another pool a particu-
lar entry is included in the transition file. The structure of the entries is illustrated using
metabolite D of the example CTN. The complete transition file is available with the paper.

10 FluxSimulator: Simulation of Isotopomer Distributions in Metabolic Networks in R

@transition D 2
C1 C2 C3 C4

B 1 2 NA NA
G NA NA 1 2
end

Each single entry starts with the keyword ’@transition’ followed by the name of the carbon-
receiving metabolite pool and the number of metabolites that transfer carbons to the receiving
pool. The next lines contain the actual transition information and are specified in matrix
notation. The rows are labeled by the name of the carbon-supplying metabolite pools. The
columns are labeled by the particular carbon atoms of the carbon-receiving metabolite and
range from C1 to Cn, where n is the number of carbon atoms the receiving metabolite consists
of. The matrix entries are constructed as follows. Each entry corresponds to the position of
the carbon in the supplying pool before it was transferred to the receiving pool. If there is
no carbon atom transferred, the entry of the matrix is ’NA’, which indicates not available or
missing value in R.

For instance, the transition entry for the carbon-receiving metabolite pool D shows a ’1’ and
a ’2’ in the row of carbon transferring metabolite B, followed by two times ’NA’. This means
that the first and the second carbon of B are transferred to the first and second carbon
position of metabolite C, respectively, and no carbons are transferred from B to the third
and fourth position. Each single transition entry ends with the keyword ’end’. Specifying the
transition entries the entire transition file is built.

The third input file is called parameter file and contains the flux and pool sizes as well as the
number of carbon atoms for each particular metabolite. The parameter file of the example
CTN is given below. The entry containing the parameters for the metabolite pools starts with
the keyword ’@poolparameter’ followed by a matrix wise representation containing the pool
sizes and the number of atoms. The first row with keyword ’size’ contains the particular
pool sizes. The second row, labeled by ’atoms’, contains the number of carbon atoms for each
metabolite pool. The columns are labeled by the pool names and the whole entry ends with
the keyword ’end’.

@poolparameter [micromol/g]
A B C D E F G H

size 100 100 100 100 100 100 100 100
atoms 2 2 2 4 1 3 2 2
end

@fluxparameter [micromol/(g * s)]
v1 v2 v3f v3b v4 v5 v6 v7f v7b v8 v9 v10

size 24.5 9 17 15.5 1.5 1.5 14 13 27 9 3 14
end

The subsequent entry contains the flux sizes and is encoded in the same manner as for the
pool sizes, although no number of atoms is needed and the labeling of the columns is done
by the flux names. Additionally, the entry starts with the keyword ’@fluxparameter’. A
complete parameter file should contain all pool and flux descriptions.

Journal of Statistical Software 11

2.4. Implementation and application

According to the object-oriented programming style the entire package was designed based
on S4 classes, which are the backbone of object-oriented programming in R (Chambers 2003).
They provide all usual object-oriented features such as instantiation, polymorphism and inher-
itance. Object oriented programming is very intuitive and structured. Additionally, it offers
advantages when dealing with biological systems, whose modular, hierarchical structure is
often naturally representable in terms of objects.

The FluxSimulator implementation was validated using the CTN given in Figure 2. This
CTN was specified in the three previously described input files. For comparison the ODE
representation was also encoded in a file applicable in Berkeley Madonna 8.3.8. It mainly
consists of the 42 ODEs represented by Equations 10 to 16.

In order to specify the input files correctly, one additional constraint has to be considered.
The CTN is assumed to be in metabolic steady state, which means that the pool size of
each metabolite is not allowed to change over time, although the fractions of its isotopomers
are changing. Hence, the flux sizes have to be solutions of the linear equation system in
Equation 17 to 23, which results from Equations 1 to 7 with the time derivative set to zero:

v1 + v3b + v7f = v2 + v3f + v7b (17)
v2 = v8 (18)

v3f = v4 + v3b (19)
v4 + v5 = v9 (20)

v4 = v5 (21)
v5 + v3b + v7b = v3f + v6 + v7f (22)

v6 = v10 (23)

This under-determined system of equations guarantees the metabolic steady state. The
amount of all inflowing metabolites is equal to the amount of outflowing metabolites for
each particular metabolite pool. The system consists of seven equations and twelve unknown
parameters, the flux sizes. Thus, five flux sizes may be chosen freely and are arbitrarily set
to v1 = 24.5

[
µmol
g·s

]
, v3f = 17

[
µmol
g·s

]
, v7f = 13

[
µmol
g·s

]
, v8 = 9

[
µmol
g·s

]
and v9 = 3

[
µmol
g·s

]
in

the example. The remaining seven flux sizes were then computed by solving the system of
equations and resulted in v2 = 9

[
µmol
g·s

]
, v3b = 15.5

[
µmol
g·s

]
, v4 = 1.5

[
µmol
g·s

]
, v5 = 1.5

[
µmol
g·s

]
,

v6 = 14
[

µmol
g·s

]
, v7b = 27

[
µmol
g·s

]
and v10 = 14

[
µmol
g·s

]
.

After the specification of the input files the dynamic behavior of the CTN was simulated in
both packages for a time period of 1000 seconds. The usage of FluxSimulator is described
below while the usage of Berkeley Madonna can be found elsewhere (Macey et al. 2000).

The initial step getting started with FluxSimulator is to install and load the FluxSimulator
package. Additional packages necessary to install are wle, circular, boot and odesolve which are
freely available on the Comprehensive R Archive Network (CRAN). Once the FluxSimulator
package is loaded the function call fluxsim() starts an interactive dialog that guides the user
through all necessary specifications. This dialog is subsequently explained on the base of the
input necessary to perform the simulation of the example CTN.

12 FluxSimulator: Simulation of Isotopomer Distributions in Metabolic Networks in R

Please enter the path to the topology file!
1: Data/topology.txt
Please enter the path to the transition file!
1: Data/transition.txt
Please enter the path to the parameter file!
1: Data/parameter.txt
Please enter the start time!
1: 0
Please enter the end time!
1: 1000
Please enter the size of the time steps!
1: 0.1
Please enter the name of the initially labeled pool!
1: A
Please enter the 4 different isotopomer fractions!
1. isotopomer fraction:
1: 0.01
2. isotopomer fraction:
1: 0.01
3. isotopomer fraction:
1: 0.97
4. isotopomer fraction:
1: 0.01

The first three input parameters (lines two, four and six) represent the relative or absolute
locations of the input files on the system. Note that the name of the input files has to include
the file extension. The subsequent input parameters specify the time period that has to be
simulated (start and end time) and the size of the time steps (lines seven to twelve). The last
two input parameters (lines 13 to 19) specify the name of the initially labeled pool and its
isotopomer fractions. Note that the number of different isotopomer fractions depends on the
number of carbon atoms present in the initially labeled metabolite and can be lower or higher
than in this example. Additionally, all given isotopomer fractions have to sum up to ’1’. After
entering the last isotopomer fraction a confirmation by the enter button starts the simulation.
Finally, the dynamic behavior of each metabolite’s isotopomer fractions is plotted.

An additional possibility to start the simulation is suited for users who do not want to be
guided through the specifications. Then the function call should include all arguments neces-
sary for the computation as for the example simulation below:

fluxsim(topologyFile = "topology.txt",
transitionFile = "transition.txt",
parameterFile = "parameter.txt",
simTime = c(0, 1000, 0.1),
labeledPool = "A",
isotopomerFractions = c(0.01, 0.01, 0.97, 0.01))

Journal of Statistical Software 13

3. Results and discussion

In the following the simulation results of FluxSimulator and Berkeley Madonna achieved
during the simulation of the dynamics of the CTN are compared. Additionally, the handling
and performance of the packages is discussed.

As mentioned previously the numerical integration method chosen for FluxSimulator is the
lsoda algorithm of Petzold et al. (Petzold 1983). The algorithm chosen in Berkeley Madonna
was developed by Runge and Kutta (Albrecht 1977). All results achieved during the numer-
ical integration with Berkeley Madonna were given to the seventh decimal place behind the
decimal point. Those of FluxSimulator up to the tenth decimal place. It turned out that
both simulations computed exactly the same results in each iteration step when the values
of FluxSimulator were rounded to the seventh decimal position. Hence, both simulations
computed equal dynamic behavior for all isotopomer fractions. This confirmed the adequate
performance of FluxSimulator, for which three example plots are given in Figure 4.

Berkeley Madonna receives one input file in plain text format. Within this input file each
ODE describing the behavior of a single isotopomer has to be encoded by hand, leading to a
total of 42 ODEs for the current example. This leads to the following issues:

1. All network properties have to be considered manually, e.g. multimolecular reactions
or the fact that one isotopomer could be fed by more than one isotopomer of another
metabolite.

2. Small changes in the network can cause various changes in several ODEs that have to
be recoded carefully by hand.

3. Unexperienced users prefer the specification of a more intuitive network representation,
above hard-coded equations.

It is clear that manual specification of the ODEs is a potential source of error and leads to
limited flexibility and low biologist-friendliness. This is addressed by FluxSimulator and its
automatic derivation of the ODEs from the three intuitive input files. These files can be
edited easily. Hence, changes in the network can be made very fast and consistently, leading
to a high flexibility of the package. Moreover, the generation of the input files is feasible for
a biologist without mathematical and computer science training.

4. Conclusions and outlook

In this work we presented a new R package called FluxSimulator to simulate isotopomer dis-
tributions in metabolic networks over time. The package was developed using object-oriented
S4 classes. It was specifically designed to derive the mathematical representation underlying
the dynamics of the network automatically using intuitive input files. FluxSimulator and
Berkeley Madonna computed an identical behavior for the example CTN. However, in con-
trast to Berkeley Madonna or other available simulation programs, FluxSimulator is suitable
for users with a weak mathematical background. This is due to the fact that the enormous
potential for errors during direct encoding of all ODEs representing a CTN is circumvented.
Additionally, the user can more easily and consistently experiment with the model system,

14 FluxSimulator: Simulation of Isotopomer Distributions in Metabolic Networks in R

Figure 4: Dynamic change of the isotopomer fractions of metabolite B, C and D (four of
the sixteen isotopomers) over time. Before t = 0 all metabolites isotopomer fractions were
constant at the natural abundance level of 1.1% of carbon isotope. After t = 0 the isotopomer
fractions of A were fixed at a1 = 0.01, a2 = 0.01, a3 = 0.97 and a4 = 0.01.

Journal of Statistical Software 15

e. g. changing the network topology. A web interface for users that want to simulate their
CTNs without installing R is planned and will enhance the user-friendliness.

Hence, FluxSimulator is an appropriate alternative to simulate isotopomer distributions over
time in metabolic networks. Future work will improve and extend FluxSimulator further with
special focus on the following properties:

1. Incorporation of algorithms to eliminate ODEs not necessary for the computation of
the desired simulation, hence increasing computational speed.

2. Analysis of experimental NMRS data to estimate the fluxes.

3. Application of the statistical facilities of R to simulate hypothetical NMRS data, e.g.
by adding measurement noise.

4. Application of the optimization routines of R to estimate unknown flux parameters from
the experimental NMRS data.

5. Incorporation of algorithms to improve the speed of solving the ODEs.

6. Increase of flexibility with respect to the input of labeled isotopomers, e.g. usage of
several metabolite pools as entry point for labeled substrate, or flexible functions of
time.

7. Extension to other isotopes like 2H, 15N, 17O, 18O and 33S, or a combination of them.

8. Development of a concise and easy to handle graphical user interface to enhance the
flexibility and the comfort.

9. Analysis of MS data in combination with NMRS data to estimate the flux parameters.

All these improvements can make FluxSimulator a powerful, flexible and easy to handle tool
to analyze and simulate isotope labeling NMRS and MS experiments.

Acknowledgments

This work is part of the BioRange program (project number SP 2.2.1) of the Netherlands
Bioinformatics Centre (NBIC), which is supported by a BSIK grant through the Netherlands
Genomics Initiative (NGI). The work is also part of the Center for Medical Systems Biology
which is a Genomics Center of Excellence funded by the Dutch Government via the NGI.
K.M. was supported by Computational Science grant #635.000.014 from the Netherlands
Organization for Scientific Research (NWO).

References

Albrecht P (1977). “The Runge-Kutta Theory in a Nutshell.” SIAM Journal on Numerical
Analysis, 14, 1006–1021.

16 FluxSimulator: Simulation of Isotopomer Distributions in Metabolic Networks in R

Böhm H, Klebe G, Kubinyi H (2002). Wirkstoffdesign - Der Weg zum Arzneimittel. Spektrum
Akademischer Verlag, Heidelberg.

Chambers J (2003). Programming with Data: A Guide to the S Language. Springer, Berlin.

Chance E, Seeholzer S, Kobayashi K, Williamson J (1983). “Mathematical Analysis of Isotope
Labeling in the Citric Acid Cycle with Applications to 13C NMR Studies in Perfused Rat
Hearts.” Journal of Biological Chemistry, 258, 13785–13794.

Dunn I, Heinzle E, Ingham J, Jiri E (2003). Biological Reaction Engineering. Dynamic Mod-
elling Fundamentals with Simulation Examples. Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim.

Hindmarsh A (1983). “ODEPACK, A Systematized Collection of ODE Solvers.” Scientific
Computing, pp. 55–64.

Leach A, Gillet V (2003). An Introduction to Chemoinformatics. Springer, Berlin.

Macey R, Oster G, Zahnley T (2000). Berkeley Madonna User’s Guide. University of Cali-
fornia.

Michaelis L, Menten ML (1913). “Die Kinetik der Invertinwirkung.” Biochemische Zeitschrift,
49, 333–369.

Nassi I, Shneiderman B (1973). “Flowchart Techniques for Structured Programming.” SIG-
PLAN Notices, 8, 12–26.

Petzold L (1983). “Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of
Ordinary Differential Equations.” SIAM Journal on Scientific Computing, 4, 136–148.

Raymond G, Butterworth E, Bassingthwaighte J (2003). “JSIM: Free Software Package for
Teaching Phyiological Modeling and Research.” Experimental Biology, 280.5, 102.

R Development Core Team (2006). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org/.

Sauer F, Erfle J, Binns M (1970). “Turnover Rates and Intracellular Pool Size Distribution of
Citrate Cycle Intermediates in Normal, Diabetic and Fat-Fet Rats Estimated by Computer
Analysis from Specific Activity Decay Data of 14C-Labeled Citrate Cycle Acids.” European
Journal of Biochemistry, 17, 350–363.

van Beek JM, Csont T, de Kanter F, Bussemaker J (1998). “Simple Model Analysis of 13C
NMR Spectra to Measure Oxygen Consumption Using Frozen Tissue Samples.” Advances
in Experimental Medicine and Biology, 454, 475–485.

van Beek JM, van Mil H, King R, de Kanter F, Alders D, Bussemaker J (1999). “A 13C NMR
Double-Labeling Method to Quantitate Local Myocardial O2 Consumption Using Frozen
Tissue Samples.” American Journal of Physiology, 277, H1630–H1640.

Wiechert W (2001). “13C Metabolic Flux Analysis.” Metabolic Engineering, 3, 195–206.

http://www.R-project.org/
http://www.R-project.org/

Journal of Statistical Software 17

Wiechert W, de Graaf A (1997). “Bidirectional Reaction Steps in Metabolic Networks: I.
Modeling and Simulation of Carbon Isotope Labeling Experiments.” Biotechnology and
Bioengineering, 55, 101–117.

Wiechert W, de Graaf A, Marx A (1995). “In Vivo Stationary Flux Determination Using 13C
NMR Isotope Labelling Experiments.” Advances in Biochemical Engineering/Biotechnol-
ogy, 54, 109–154.

Wiechert W, Möllney M, Isermann N, Wurzel M, de Graaf A (1999). “Bidirectional Reaction
Steps in Metabolic Networks: III. Explicit Solution and Analysis of Isotopomer Labeling
Systems.” Biotechnology and Bioengineering, 66, 71–85.

Wiechert W, Möllney M, Petersen S, de Graaf A (2001). “A Universal Framework for 13C
Metabolic Flux Analysis.” Metabolic Engineering, 3, 265–283.

Wiechert W, Siefke C, de Graaf A, Marx A (1997). “Bidirectional Reaction Steps in Metabolic
Networks: II. Flux Estimation and Statistical Analysis.” Biotechnology and Bioengineering,
55, 118–135.

Affiliation:

Thomas W. Binsl
Faculteit der Exacte Wetenschappen
Vrije Universiteit Amsterdam
De Boelelaan 1083a
1081HV Amsterdam, The Netherlands
Telephone: +31/02/5987734 E-mail: tbinsl@few.vu.nl
URL: http://www.few.vu.nl/~tbinsl/

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume 18, Issue 7 Submitted: 2006-09-28
January 2007 Accepted: 2007-01-10

mailto:tbinsl@few.vu.nl
http://www.few.vu.nl/~tbinsl/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Methods
	CTNs And their mathematical representation
	Core algorithm
	Input files
	Implementation and application

	Results and discussion
	Conclusions and outlook
	References

