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Chapter 1

Introduction

Tho goal of this thesis is to obtain better understanding of atom-molecule scattering.
Macroscopic chemical reactions and (transient effects in) mass and energy transfer phe-
nomena should be regarded as a large set of elementary processes (or molecular encoun-
ters) that must be studied to understand these macroscopic effects. Atom-molecule scat-
tering serves as a model system for such encounters and crossed molecular beam machines
provide a powerful tool towards a better understanding of such processes. These machines
allow experimentalists to study the outcome of gas phase encounters of molecules with
atoms or other molecules under well defined conditions (collision energy and initial as well
as final quantum state of the colliding molecules).

Collisions involving Nitric Oxide (NO) are the main subject of this study. In the past,
several reaction dynamical studies - both experimental and theoretical - have focussed on
the rotationally inelastic scattering of NO with a number of collision partners [1–7].

NO is both an interesting and a convenient model system. Radicals in general - as
Nitric Oxide (NO) is with its unpaired electron - play an important role in combustion
and atmospheric processes. It is a toxic air pollutant produced by combustion engines.
NO is not only an important molecule from a chemical, but also from a biological point
of view, being an intracellular signalling molecule in the bodies of mammals.

Due to the spin and orbital electronic angular momenta of its unpaired electron, NO
has a non-zero angular momentum in its rotational ground state, while it is stable enough
to be stored in a gas bottle. Furthermore, it is easily detected with spectroscopic methods
as laser induced fluorescence (LIF) [5] and resonance enhanced multi-photon ionization
(REMPI) [4,8]. Using the hexapole focussing technique [9], NO can be fully selected into
a single quantum state (upper component of the Λ-doublet) as it undergoes a first order
Stark effect [10]. The two components of the Λ-doublet within the same rotational level
(j,m,Ω, ǫ = ±1) have opposite parity, but only a minute energy splitting. Employing
(hexapole) selection of NO in a single quantum state before collision, the effect of parity
changing and parity conservation on the differential cross section can be isolated from the
effect of the excitation energy.

Although the outcome of a relatively simple collision process - for example a He-NO
collision - can be calculated up to a reasonable degree, these calculations are computa-
tionally demanding and do usually not offer much insight in the actual physics behind
it. For example, the rare gas - NO orientational dependence of the collision cross section

1



2 Chapter 1. Introduction

onto the final rotational state [2, 5, 6] could be reproduced using close-coupling calcula-
tions, but this behavior remained unexplained. The Quasi Quantum Treatment (QQT)
- as presented in this thesis - provides a powerful tool for understanding collisions and
for drawing several quantitative conclusions without the large numerical effort of coupled
channel methods. It explains (and reproduces up to a reasonable degree) the oscillatory
behavior of the steric asymmetry on the final rotational state [2] as well as the parity-pair
effects that are observed in the differential cross sections for He-NO collisions [11].

The body of this thesis consists of an introduction, five articles, represented as chapters
and one chapter with - until now - unpublished work. In the introduction, some theoretical
and experimental background is presented that is not new, but meant to improve the
readability of this thesis. Chapter 2 and 3 both question the sign of the steric asymmetry
ratio. There is an unsolved discrepancy between most1 theoretical and experiment results
for collisions of rare gases and NO. There is good agreement as far as the absolute value of
the steric asymmetry ratio (S) is concerned, but theory and experiments yield an opposite
sign of S. What in the experiment seems to be a collision onto the O-end of the molecule,
corresponds to a collision onto the N-end according to theoretical results. Chapter 2 gives
a concise discussion of this sign-discrepancy, while chapter 3 bases this discussion firmly
on theoretical grounds.

Chapter 4 describes the efforts to measure the sign of the permanent NO dipole. An
erroneous sign of the NO dipole moment - which has never been measured - would solve
the discrepancy for the steric asymmetry that is discussed in chapters 2 and 3. This
experiment was carried out in the XUV physics group of Marc Vrakking at the Amolf
institute and is ongoing work.

Chapter 5 and 6 report the results of He-NO and D2-NO crossed beam ion imaging
experiments, respectively. Full state selection allows for a systematic study of the effect
of parity conservation and changing on the differential cross section. Chapter 5 contains,
besides differential cross sections, a substantial amount of experimental information. The
emphasis of Chapter 6 lies in the presence of parity pairs and the phenomenon of rotational
rainbows. The scattering angle at which the differential cross section reaches its maximum
is shown to be parity dependent.

The last chapter (7) describes and discusses the Quasi Quantum Treatment (QQT)
that was developed in order to reach a better understanding of inelastic collisions and to
allow for rapid quantitative calculations. It provides a first demonstration that quantum
interferences between different orientations of the repulsive potential (that are present
in the oriented wave function) are the source of the oscillation of the steric asymmetry
as a function of the final rotational state. Application of the treatment to collisions of
non-oriented molecules leads to a previously unrecognized propensity rule. The angular
dependence of the cross sections for excitation to neighboring rotational states with the
same parity is shown to be similar except of a pre-factor. The QQT provides a physical
interpretation of the scattering amplitude that can be represented by a Legendre moment
and a simple interference picture.

1except for Ar-NO calculations in Ref. [2]



1.1. The NO molecule 3

1.1 The NO molecule

The Nitric Oxide (NO) molecule has an unpaired anti-bonding electron, consequently it
is an open shell molecule which leads to half integer total angular momentum quantum
numbers. The projection of the electronic spin angular momentum S onto the internuclear
axis (z) is Σ = ±1

2
. In its electronic ground state, the projection of the electronic orbital

angular momentum L is Λ = ±1. This leads to a 2Π electronic state classification [12–14].
The rotation of the nuclear framework will be indicated as O while the total angular
momentum is j, with magnitude

√

j(j + 1)~.
For low rotational states, NO can be described in a Hund’s case (a) [12, 15] coupling

scheme, the orbital angular momentum L is strongly coupled to the internuclear axis.
The rotation of the nuclear framework O points perpendicular to the nuclear axis. This
leaves for the projection of j onto the internuclear axis Ω = Σ + Λ, giving rise to two
spin-orbit states: Ω = 1

2
and Ω = 3

2
. Ω is the absolute value of the projection Ω. The

Hund’s case (a) scheme breaks down in several cases. In highly excited rotational states,
the rotation of the nuclear framework might become so fast that the electron cannot
follow the nuclear rotation which leads to a decoupling of the orbital angular momentum
from the internuclear axis. In lower excited rotational states it might happen that - if the
absolute value of the spin-orbit coupling constant A0 is relatively small compared to the
rotational constant B0 - the spin couples to the magnetic moment arising from any of the
other angular momenta including that induced by the molecules rotation as a whole. This
latter happens in the case of OH and is better described by Hund’s case (b). In the limit
of high j, Ω is no longer a good quantum number, although Λ is. L is still coupled to
the internuclear axis. An intermediate Hund’s case or Hund’s case (b) provides a proper
description.

Neglecting Λ-type doubling, the Hamiltonian consists of two components: one due to
nuclear rotation O = j − S −L and one due to spin orbit coupling L · S [13].

H′ = Hrot +HSO = A0(L · S) +B0(j − S −L)2 (1.1)

The spin-orbit constant A0 and the rotational constant B0 necessary to calculate the
rotational energy of a NO molecule in the ν = 0, X2Π state are A0 = 123.13 cm−1 and
B0 = 1.6961 cm−1 [17]. This Hamiltonian allows us to calculate the rotational energy of
the molecule in a certain rotational state. The rotational part of the wave function of an
NO molecule (assuming Hund’s case (a)) is given by:

|j,m,Ω, ǫ〉 =
1√
2

[

|j,m,Ω〉+ ǫ|j,m,−Ω〉
]

. (1.2)

where m is the projection of j onto a space-fixed Z-axis and ǫ = ±1 is the symmetry index.
The parity of a (wave-) function is defined by its behavior under parity transformation
(inversion), which acts as an unitary operator P on a wave function ψ.

Pψ(r) = ψ(−r) = pψ(r) (1.3)

The total parity p of a rotational state (eigenvalue of P ) is provided by Brown et al. [18].

p = (−1)j−ǫ/2. (1.4)
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Figure 1.1: Hund’s case (a) coupling (upper panel) and Hund’s case (b) coupling (lower
panel). In this figure we adopt the convention that the molecular axis points from the O
towards the N atom [16].
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For NO the |j,m,Ω〉 rotational wave function can explicitly be written as [13]:

|j,m,Ω〉 =

√

2j + 1

4π
Dj∗

m,Ω(φ, γ, 0) =

(−1)m−Ω

√

2j + 1

4π
Dj

−m,−Ω(φ, γ, 0) (1.5)

however, the function in Eq. 1.2 is strictly speaking only correct for j = 1
2
. For higher

rotational states intermediate Hund’s case coupling schemes are applied. For NO this
effect remains rather small [16], but for example for OH it is large [19].

In case of intermediate Hund’s case coupling, symmetrization of the case (a) wave
functions to Ω leads to the following result [13,19]:

|F1, j,m, ǫ〉 = a |j,m,Ω =
1

2
, ǫ〉+ b |j,m,Ω =

3

2
, ǫ〉

|F2, j,m, ǫ〉 = a |j,m,Ω =
3

2
, ǫ〉 − b |j,m,Ω =

1

2
, ǫ〉. (1.6)

The mixing coefficients are:

a =

√

X + (Y − 2)

2X
,

b =

√

X − (Y − 2)

2X
, (1.7)

with

X =

√

4
(

j +
1

2

)2

+ Y
(

Y − 4
)

and Y =
A0

B0

.

The rotational energy of a diatom in a ν = 0, 2Π state follows from Eq. 1.1 and 1.6.
It is given by [13]:

E(j) = B0

[

(

j − 1

2

)(

j +
3

2

)

±
√

4
(

j +
1

2

)2

+ Y
(

Y − 4
)

+ Y − 2

]

(1.8)

The ± in Eq. 1.8 distinguishes between the upper F2 (dominated by Ω = 3
2

if A0 > 0)

and the lower F1 (dominated by Ω = 1
2

if A0 > 0) spin-orbit state. For NO, the two spin
orbit states - often indicated by 2Π 1

2

and 2Π 3

2

- differ about 121 cm−1 in energy, the latter
having the highest energy.

For the 2Π 1

2

states that are well approximated by case (a) coupling, the Λ-type splitting

varies linearly with j [13]. It can approximately be expressed as [20]:

WΛ = Wg

(

j +
1

2

)

. (1.9)

Burrus and Gordy [20] obtained for the energy splitting of the j = 1
2

Λ-doublet Wg =
0.0118 cm−1. The Λ-splitting for the 2Π 3

2

component is much smaller in its lowest j = 3/2

state (4× 10−5 cm−1) [21] but increases with the third power of j [13].
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Figure 1.2: This figure gives the spectroscopic branches for the A2Σ+ ← X2Π transition
used within this thesis following the Hund’s case (a) convention. The rotational levels
are labelled with their rotational quantum number j and overall parity (±). Recall that
parity p and symmetry index ǫ relate as p = (−1)j−ǫ/2, the upper component of the Λ-
doublet, always has ǫ = −1, while the lower component has ǫ = 1. The energy differences
are taken arbitrarily and are not scaled to the actual values. In that case, the distance
between the components of the Λ-doublet (and ρ-doublet) would be much smaller. For
the branches that are connected via a +, we - with the bandwidth of our laser - cannot
distinguish between spectroscopic signals from both branches.
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Figure 1.3: Schematic representation of A′′ and A′ symmetry cases for large j for NO.

In addition to ǫ = ±1 (or e/f) labels, one assigns the components of the Λ-doublet
using A′ and A′′ labels. These labels reflect whether the electronic wave function is
respectively symmetric or anti-symmetric for reflection in the plane of rotation in the
limit of large j quantum numbers [13, 22]. The azimuth angle χ around the NO-axis
(z-axis of the molecule fixed frame) is used to designate the wave function of the unpaired
p π electron. This angle is set 0 in the rotational NO wave function as defined in Eq.
1.5. In the limit of large j, the rotation of the molecule is in the x − z-plane. At the
x-axis, χ = 0, at the y-axis (around which the molecule rotates in the high j limit),
χ = π/2. Fig. 1.3 depicts the eigenfunctions of the unpaired electron in the symmetric
2Π(A′) and antisymmetric 2Π(A′′) Λ-doublet states in the limit of large j. At low values
of j, the eigenfunctions of the unpaired p π electron will be a mixture of the symmetric
and antisymmetric (large j) electron wave functions. A measure of the symmetry of the
electron distribution is provided by [13]:

∆ = 〈Ψ| cos2 χ− sin2 χ|Ψ〉 = ±
√

X2 − (Y − 2)2

4X2
. (1.10)

In the low j limit, with both the electron lobes equally present ∆ = 0, while ∆ = 1/2
for the symmetric A′ case and ∆ = −1/2 in the antisymmetric A′′ case. Note that in
case of pure Hund’s case (a) ∆ = 0. Mixing between levels Π1/2 and Π3/2 manifolds
with the same values of j and ǫ (see Eq. 1.6) is responsible for this effect. In this work,
the highest considered j′ value of He-NO is 12.5, which leads to a value of |∆| = 0.13.
This corresponds to about one third of perfect orbital alignment at high j. Mixing will
affect the alignment dependent detection probability [23], but this effect is ignored in
our analysis in Chapter 5. Moreover, the presence of directed lobes also influences the
outcome of collisions [24]. In the current work (Chapter 7) the outcome appears to be
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dominated by parity effects.
The energy levels for an X2Π molecule like NO are drawn schematically - not scaled -

in Fig. 1.2. This figure also shows the spectroscopic branches for available A2Σ+ ← X2Π
transitions. There are usually three branches available for each rotational state, two of
these coincide and could not be resolved throughout this work. Coinciding branches in
Fig. 1.2 are connected via a ”+”.

1.2 Stark effect and hexapole focussing

Quantum state selection is essential in molecular beam experiments. In molecular dy-
namics research one attempts to obtain insight into reactions and collisions on the most
elementary scale: that of single molecules. Having a set of molecules in different states
as a starting point complicates the analysis of experimental results, or even makes it
impossible.

Adiabatic expansion cools the molecules in the beam and assures that most of these
molecules are in their lowest rotational state. Subsequent application of hexapole fo-
cussing allows for full state selection, in which molecules are selected in a single quantum
state. Hexapole state selection exploits the (first order) Stark effect.

The technique of focussing polar molecules in static electric fields was developed in
the 1950s [25]. Hexapole focussing is since these years used in several places [10,19,26–28]
but did not evolve into a widely used method.

The Stark effect arises as a shift of the energy levels of an atom or a molecule in an
electric field E [29]. The Z-axis is defined along E. In such a field, the Hamiltonian
H contains the additional term V = −µel · E = −µelE cos θ, where µel is the electric
dipole moment vector of the molecule and θ is the polar angle between the dipole and the
electric field.

H = H0 − µelE cos θ (1.11)

This effect can be calculated via perturbation theory. As an example, the first order Stark
correction to the energy will be calculated for NO. The NO wave-function in its electronic
ground state is (Eq. 1.2):

|j,m,Ω, ǫ〉 =
1√
2

[

|j,m,Ω〉+ ǫ|j,m,−Ω〉
]

.

In this equation, j denotes the rotational angular momentum quantum number, m rep-
resents its projections onto the space fixed z-axis (for now defined along E), Ω is the
absolute value of the projection of j onto the molecule fixed axis (defined along µel) and
ǫ is the symmetry index that distinguishes between the upper (ǫ = −1) and the lower
(ǫ = 1) component of the Λ-doublet.

Assuming a small energy splitting (WΛ) between both Λ-doublet components (com-
pared to their rotational constant B), the first order correction Stark energy matrix
elements are (note that cos θ = D1

0 0(0, θ, 0)):

−µelE 〈j,m,Ω, ǫ|D1
0 0|j,m,Ω, ǫ′〉 =

µelE

2

[

〈j,m,Ω| cos θ|j,m,Ω〉+ ǫǫ′〈j,m,−Ω| cos θ|j,m,−Ω〉
]

. (1.12)
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The diagonal matrix elements (ǫ = ǫ′) vanish. Using

|j,m,Ω〉 =

√

2j + 1

4π
Dj ∗

mΩ(φ, θ, 0) (1.13)

and from Eq. 3.119 and 3.125 of Ref. [13], the Stark effect W (1) (that does not invoke
contributions for j′ 6= j) follows as:

W (1) = −ǫ
[

(WΛ

2

)2

+
(

µelE
mΩ

j(j + 1)

)2
] 1

2

+ ǫWΛ/2. (1.14)

For relatively high fields, W (1) becomes linear and reduces to

W
(1)
lin = −ǫµelE

mΩ

j(j + 1)
, where: 〈cos θ〉 = ǫ

mΩ

j(j + 1)
. (1.15)

In this equation one immediately sees that molecules in an ”ǫ = negative” state are low
field seeking - their energy increases when the field strength increases - while those in the
”ǫ = positive” state seek high fields. The expectation value of cos θ is indicated by 〈cos θ〉.

The second order correction to the energy level is given by [25,29]:

W (2) = (µelE)2
∑

j′ 6=j

|〈j K m| cos θ|j′K ′m′〉|2

E
(0)
j,K − E

(0)
j′,K′

, (1.16)

the more general K also includes Ω. For Σ state diatomic and linear polyatomic molecules
with energy eigenvalue E

(0)
j = B j(j + 1) this yields (m′ = m and j′ = j ± 1) for K = 0:

W (2) =
(µelE)2

Bj(j + 1)

j(j + 1)− 3m2

2(2j − 1)(2j + 3)
. (1.17)

Note that states with j(j + 1) − 3m2 > (<)0 are in low (high) field seeking states when
µelE ≪ 2B. The general equation for K 6= 0 is provided in Ref. [30].

W (2) =
(µelE)2

2B

(j2 −K2)(j2 −m2)

j3(2j − 1)(2j + 1)
− [(j + 1)2 −K2][(j + 1)2 −m2]

(j + 1)3(2j + 1)(2j + 3)
. (1.18)

For molecules in states that carry a first order Stark effect and are exposed to relatively
weak electric fields (µelE ≪ B), these higher order energy terms can be neglected [26,27].
Molecules can also be focussed via their second order Stark effect. Not a hexapole, but a
quadrapole is ideal for this purpose [25, 27]. Focussing molecules employing their second
order Stark effect in a hexapole [27] is however also possible. For OCS one observes a
focussing maximum for the |j m〉 = |1 0〉 state of the ground vibrational state via the
second order Stark effect as well as maxima for the l-doubled |jlM〉 excited vibrational
states via the first order Stark effect [27,31].

Anderson in Ref. [32] provides a treatment to calculate the tracks that symmetric top
molecules follow within a hexapole, calculating the Stark energy up to a high order. Errors
may occur if only the first and or second order Stark effect are considered for trajectories
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Figure 1.4: Schematic representation of a hexapole state selector. A positive voltage
(+V0) is applied on three of the rods, while a negative voltage (−V0) is applied to the
other rods. Molecules that reside in the upper (low field seeking) component of the Λ-
doublet are pushed towards the center of the hexapole while those in the lower (high field
seeking) component are pulled towards the rods. The hexapole is designed to the ”Dutch
convention”: the rod diameter equals the hexapole inner radius R0 [32].
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in hexapole fields [32]. Within the scope of this thesis it is instructive to calculate an
explicit expression for the path that is followed by a rigid rotor due to the first order
Stark effect.

The potential of the hexapole field is [25]:

V = V0

( R

R0

)3

cos 3φ (1.19)

where R0 is the inner radius of the hexapole, and R and φ are cylindrical coordinates. An
ideal hexapole field is given by E = 3V0R

2/R3
0. A schematic representation of a hexapole

is provided in Fig. 1.4. Molecules in the hexapole feel a force F = −dW/dR, which for
the first order Stark effect becomes:

Fhex = −dW
(1)

dR
=
µel6V0R

R3
0

ǫmΩ

j(j + 1)
(1.20)

The distance from the pulsed nozzle to the entrance of the hexapole is given by L1,
the length of the hexapole by L2, and the distance from the exit of the hexapole to the
focal point is given by L3. Within the hexapole, the molecules move with respect to R
via:

d2R

dt2
− CR = 0 with C =

6V0µel

mMR3
0

ǫmΩ

j(j + 1)
, (1.21)

while their velocity in the z-direction remains constant. To avoid confusion, the mass
of the molecules is for now indicated with mM . If one assumes the nozzle to be a point
source, the velocity of the (low field seeking ǫ < 0) molecules along R at the entrance of
the hexapole (vR(t = 0)) is given by:

vR(t = 0) =
R(t = 0)vz

L1

. (1.22)

This initial condition - in order to lead to a trajectory - has to be substituted in:

R(t) = R(t = 0) cos(
√
Ct) + vR(t = 0)

1√
C

sin(
√
Ct). (1.23)

Note that in Eq. 1.23, the moment at which the molecules enter the hexapole is given by
t = 0. The velocity vR of the molecules before entrance of the hexapole and after their
exit of the hexapole remains constant. To keep things simple, it will be assumed that the
hexapole is long so that ”edge effects” at the entrance and exit of the hexapole can be
neglected. Further it is assumed that the acceptance angle of the hexapole is relatively
small, so vz is defined only by the expansion (

√

5kT/2mM) and is independent of the
position at which molecules enter the hexapole. Using t = (z − L1)/vz in Eq. 1.23(which
defines the pulsed nozzle at z = 0), the trajectory of the molecules in low field seeking
states is given by:

R(z) = vR(z = 0)
z

vz

with 0 ≤ z ≤ L1, (1.24)

R(z) = R(z = L1) cos
(√

C
z − L1

vz

)

+
vR(z = 0)√

C
sin
(√

C
z − L1

vz

)

with L1 ≤ z ≤ L1 + L2, (1.25)

R(z) = vR(z = L1 + L2)
z − L1 − L2

vz

+R(z = L1 + L2) with L1 + L2 ≤ z (1.26)
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Figure 1.5: Hexapole focussing curves for NO, the hexapole considered in this figure is that
of the crossed molecular beams machine at the Laser centre of the Vrije Universiteit [5,11].
The rod diameter and inner radius of the hexapole equal 7 mm.

Note that:

vR(z = L1 +L2) =
dR

dt

∣

∣

∣

z=L1+L2

= −
√
CR(z = L1) sin

(√
C
L2

vz

)

+ vR(z = 0) cos
(√

C
L2

vz

)

(1.27)
As an example, some hexapole trajectories are plotted in Fig. 1.5. A very convenient
equation that gives the focussing distance of a hexapole is provided by Stolte et al. [33]:

L3 =
L1 + 1

κ
tanκL2

κL1 tanκL2 − 1
, (1.28)

with

κ =

√

3Vhexµel

mMR0
3v2

z

−ǫmΩ

j(j + 1)

In these equations Vhex is the voltage difference between the rods: Vhex = 2V0, L3 is the
distance between the exit of the hexapole and the focussing point.

The standard focussing equation for a hexapole [26]:

V0 =
(nπ)2R3

0

6L2
2

mMv
2
z

µel

j(j + 1)

ǫmΩ
(1.29)

is a convenient approximation for the hexapole voltage, but neglects the effect of the
straight path before entering and after exciting the hexapole. It should only be used if
the hexapole (nearly) covers the whole path of the molecules. On the other hand, Eqs.
1.26 and 1.28 are not exact either. These equations slightly underestimate the hexapole
voltage needed for focussing of NO, as WΛ is relatively large and cannot be neglected in
Eq. 1.14. This leads to a nonlinear dependence of W (1) onto the electric field near the
hexapole axis.

1.3 Collision Theory

For more detailed information on collision theory, the reader is referred to Refs. [33–38]
and to chapter 3 and 7 of this work. This section focusses on some background knowledge
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Figure 1.6: Classical scattering trajectory for scattering on a mostly repulsive shell. The
center of the potential is approached, first some attraction is seen, then the repulsive part
takes over. Note that in case of an anisotropic interaction potential φ in general does not
remain constant during collision.

that is necessary to understand the main part of this thesis. The differential cross section,
center-of-mass and laboratory systems, Newton diagram, rainbow and glory scattering will
briefly be explained.

The main observables in crossed beam collision experiments are the differential and
the integral cross sections. Potential Energy Surfaces (PESs) govern chemical reactions
but cannot be observed directly. Theoreticians calculate PESs for a certain system, use
the PESs to calculate differential or integral cross sections and then compare them to
experimental values as a test.

In figure 1.6 a typical trajectory for scattering onto a mostly repulsive potential is
drawn. The atom approaches the molecule with an impact parameter b, is first slightly
attracted and then repelled. The scattering angles θ and φ are the spherical angles
between the incoming and outgoing momenta outside the interaction region. It is the
dependence of the amount of scattered molecules (into a certain state) on this angle that
can be experimentally observed. This dependence is usually expressed as the differential
cross section.

The differential cross section dσ
dω

is given by [34]

dσ

dω
=

scattered current per unit solid angle

incident current per unit surface
(1.30)

The integral collision cross section is depicted by σ while the solid angle element is given
by dω = sin θdθdφ. Current stands for amount of incident particles per unit time. The
integral cross section follows immediately as:

σ =

∫ 2π

0

∫ 2π

0

dσ

dω
sinθdθdφ (1.31)
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In the case of inelastic scattering from an initial to a final (i → f) state, σ should be
replaced by σi→f .

In case of an isotropic orientation distribution, the scattering process is cylindrically
symmetric around the initial relative velocity (z-axis), which makes φ redundant. Upon
substitution of dσ = 2πbdb and dω = 2π sin θdθ one obtains for the differential cross
section:

dσ

dω
=
∣

∣

∣

2πbdb

2πsinθdθ

∣

∣

∣
=
∣

∣

∣

b

sin θ dθ
db

∣

∣

∣
(1.32)

It is easily seen that the differential cross section becomes large if sin θ and dθ
db

are close
to 0. Singularities in the classical differential cross section at sin θ → 0, (so θ = 0, π, . . .)
are denoted glory effects The singularity at a maximum or minimum point of the deflec-
tion function θ(b) (where dθ

db
= 0) is called the rainbow singularity. The rainbow angle

corresponds to that angle where the density of classical trajectories rises to infinity [34].
Quantum mechanically the singularities are smoothed and become maxima. The rainbow
and glory angles correspond semi-classically to the angles of inflection and the maximum
of the phase shift function η(b).

Until now, scattering with respect to the origin of the potential is assumed. In collision
experiments however, there are always two moving particles (with laboratory coordinates
r1 and r2, velocities v1 and v2 and with masses m1 and m2) that collide. A more
convenient coordinate system than the ”laboratory” frame is the ”center-of-mass” frame,
sometimes also referred to as the ”collision” frame. The center-of-mass of the collision
system is taken as the origin of this coordinate system. The movement of the whole
system is factored out, which leaves only the relative components. The center-of-mass
velocity (vcms) - that is unaltered by the collision - and the relative velocity vrel replace
v1 and v2.

vcms =
m1

m1 +m2

v1 +
m2

m1 +m2

v2 and vrel = v1 − v2. (1.33)

The position vectors are obtained in a similar manner:

rcms =
m1

m1 +m2

r1 +
m2

m1 +m2

r2 and R = r1 − r2. (1.34)

The kinetic energy T and the angular momentum L can be split up in a center-of-mass
component and a relative component [34]:

T =
1

2
µelv

2
rel +

1

2
(m1 +m2)vcms (1.35)

L = µelR× vrel + (m1 +m2)rcms × vcms (1.36)

with reduced mass µel =
m1m2

m1 +m2

As the potential energy is independent of the center-of-mass velocity and position, the
center of mass motion may be omitted, which simplifies our calculations.

The relation between the center-of-mass frame and the laboratory frame are demon-
strated in a Newton-diagram in Fig. 1.7. The center-of-mass velocity remains unaltered
by the collision. The relative velocity can divided into two components for each of the
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Figure 1.7: To illustrate the relation between the center-of-mass frame and the laboratory
frame, this Newton diagram for elastic scattering of an arbitrary collision is plotted.
Velocities after collision are marked with a prime. In case of inelastic scattering, part of
the translational energy is transformed into internal energy, which leads to a smaller v′

rel

and thus a smaller radius for the scattering spheres (indicated by the dashed circles).

particles. The particles have a velocity in the center-of-mass frame of

v1,cms =
m2

m1 +m2

vrel (1.37)

v2,cms = − m1

m1 +m2

vrel. (1.38)

Note that v2,cms points antiparallel to the relative velocity, while v1,cms is directed parallel
to vrel. The scattering angles θ1 and θ2 are defined as the angles between v1,cms and v′

1,cms

and between v2,cms and v′
2,cms respectively. In the case of inelastic scattering, part of

the translational energy is transferred into internal energy. This leads to a smaller v′
rel

and thus to scattering spheres with a smaller radius.

1.4 Ion Imaging

The goal of this section is to provide the reader with some basic knowledge concerning the
ion imaging technique, making it easier to read the main part of this thesis. It does not
have the pretention to be complete. For more detailed information the reader is referred
to Ref. [39–41]. Experimental details can be found in Chapter 5.

The measurement of the velocity of particles (both its absolute value and direction)
is necessary for several applications in molecular dynamics, often in combination with
their internal energy [39]. Conservation laws help us to understand reactive and inelastic
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encounters of molecules and photodissociation events, but are useful only if most veloci-
ties and internal energies are well known. Pure state selection (adiabatic expansion and
hexapole state selection) provides a beam of molecules with well defined initial internal
and translational energy and state-of-the-art spectroscopic techniques allow us to only
ionize molecules (fragments) that are in selected final rotational states with well-defined
internal energy. The ion-imaging technique provides the velocity distribution of the ion-
ized fragments, thus leading to their final translational energy and completing the picture.

In the early days of ion imaging [42], molecules were ionized in a homogeneous electric
field between a positive plate (repeller) and a negative grid. Upon ionization, the positive
ions are accelerated along the electric field lines before entering the field free flight-tube.
At the end of this tube a position sensitive detector is placed. All ions have the same
velocity before entering the flight tube, their point of impact on the detector reflects their
velocity component perpendicular to the tube.

The position sensitive detector usually consists of a set of two micro channel plates
(MCPs), a phosphor screen and a CCD (Charge Coupled Device) camera. If an ion hits
the MCP’s, electrons are released and multiplied trough the channels of the MCPs. A
cloud of electrons reaches the phosphor screen, that shows a bright dot at the position of
electron impact. The position of such a bright spot can directly be related to the velocity
of the molecule or fragment before ionization. The camera collects images that show
the intensity on the phosphor screen. This intensity directly reflects the 2-dimensional
velocity distribution of the detected molecule/fragment prior to ionization.

There are some disadvantages to working with grids. First, the openings in the grid
behave like small electrostatic lenses, which leads to a blurring of the images. This effect
becomes worse if the grid is positioned far away from the detector. A second disadvantage
is that ions that originate from different places, but have the same velocity, end up at
different positions on the detector. To collect sharp images, one needs a ionization volume
that is as small as possible, which is especially disadvantageous when one has to cope with
small signals.

Both these problems were solved when Eppink and Parker [43] introduced the velocity
mapped imaging technique. The grid was replaced by an ion lens that projects the velocity
(its component perpendicular to the flight tube) onto the detector. In this geometry, all
molecules that have the same velocity perpendicular to the flight tube end up at the
same position of the detector. Fig. 1.8 illustrates the improvement that is achieved when
replacing the grid by a lens. It should be noted that the lens works perfect only for
molecules in a plain perpendicular to the flight tube. Molecules that are ionized closer
to the extractor or further away are not as well focussed. Most ideal would be to use a
”laser sheet” for ionization.

The ion optics as used for the experiments described in chapters 5 and 6 are schemat-
ically drawn in Fig. 1.9. The ion lens is usually referred to as an extractor, the voltages
indicated in the figure are typical. However, the voltages of the repeller and the extrac-
tor are often changed to Vrep = 500 V and Vex = 333 V to enhance the size of the ion
image (the resolution). The ratio between the repeller and extractor voltage is always
(approximately) Vrep/Vex = 3/2.

The length of the flight tube is 665 mm. The ions have a constant velocity over most
of this distance, as the flight tube is at ground. When one neglects the acceleration of



1.4. Ion Imaging 17

Figure 1.8: The difference between ion imaging using grids (left panel) and the velocity
mapping technique (right panel) is shown. If molecules are ionized at different points -
indicated by the circles - these molecules end up at different positions onto the detector.
The dotted lines indicate the trajectories described by molecules that initially have no
velocity, while in the case of the solid lines, the ion has an initial velocity with a direction
indicated by the small arrow. Immediately after ionization, the molecules are accelerated
due to (and along) the electric field E. In the right panel (velocity mapping), the grid
is replaced by a lens (extractor). As ions with the same initial velocity form a parallel
beam, they are focussed in the focal plain. This leads to particularly sharp images.

Figure 1.9: Schematic drawing of the (velocity mapped imaging) ion optics. The ionization
volume (crossing point of the molecular and laser beams) is indicated by a small circle.
The extractor is the electrostatic ion lens. Voltages indicated in this figure are typical for
the experiment at the VU, although often slightly lower repeller and extractor voltages
were used to enhance the resolution (Vrep = 500 V and Vex = 333 V).
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the ions in the beginning and close to the MCP, the time-of-flight of the ions is easily
estimated. The potential in the ionization region is (in the case of Fig. 1.9) approximately
625 V, leading to a potential energy of 625 eV for singly ionized particles. This energy is
completely transformed into translational energy, which (via 1

2
mMv

2) immediately pro-
vides the velocity. Division of the length L of the flight tube by this velocity provides the
time-of-flight. In convenient units the time-of-flight (TOF , in units of µs) can be written
as:

TOF [µs] = 72L

√

mM

nV
, (1.39)

with L [m] the length of the flight tube, mM [amu] the mass of the ions, V [V ] the
potential in the ionization region and n the charge of the ions in units of the elementary
charge [e]. The time-of-flight in the configuration described in Fig. 1.9 is approximately
10 µs.

Gating the detector at a specific time allows one to only select ions with a specific mass
and charge, reducing background signal due to oil, water etc.. This is done by pulsing the
front plate of the MCP detector (see Fig. 1.9). The pulse width used is typically 200 ns,
which is the minimum pulse width of the (home built) pulser.

Usually, a full (Newton) sphere of ions is crushed onto the detector. The initial velocity
of the ions can be in all directions, although its magnitude (radius of the Newton sphere)
is usually fixed by energy conservation. If there are more than one concentric spheres with
different radii that are crushed onto the detector, then the ”slice imaging” [44] technique
can help. In such a case, the outer sphere contributes also to the area on the detector
where the inner sphere is projected. This can make the analysis problematic, or if the
outer sphere is much stronger than the inner one it can even make it impossible. In slice
imaging, the detector is gated fast enough to detect only the center part of the Newton
sphere. Ions with their initial velocity vi along the extraction field E are the first to reach
the detector. Those with lower velocity, or their velocity vi antiparallel to the extraction
field follow. The time difference ∆t between molecules with their velocity vi antiparallel
and parallel to E can easily be approximated assuming an homogeneous extraction field.
The force that works on the ions is qE (with q = ne the charge), which leads to an
acceleration of a = qE/m. The time needed to go from v = vi to v = 0 and back again
(turning time) follows as ∆t = 2vimM/(n eE), which in convenient units is:

∆t [ns] = 0.207
vimM

nE
(1.40)

with vi in [m/s], mM in [amu] and the electric field E in [V/cm]. In the case of high
potentials at the ionization region, all molecules arrive within this ∆t. It is however also
possible that that molecules with vi antiparallel to E (south pole) pass those with vi

perpendicular to E (equator). The first have a higher velocity in the flight tube than the
latter ones.

In the configuration of Fig. 1.9 for the case of NO scattering, ∆t is in the order of 10
ns. This becomes larger with decreasing the repeller and extractor voltage. The molecules
from the ”equator” of the Newton sphere end up at the detector approximately 100 ns
after those from the ”south pole”.

An option to increase the arrival time difference is to pulse the extraction field some
time after ionization, so the Newton sphere can expand before it is pushed towards the
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detector [39]. In this case and assuming a homogeneous field, the Newton sphere expands
along the flight tube direction.

The implementation off the slice imaging technique might prove useful in experiments
following up those described in Chapters 5 and 6. When scattering NO off another
molecule that can be rotationally excited, concentric scattering spheres for different fi-
nal rotational states of that molecule are expected. The slice imaging technique might
be necessary to resolve these scattering spheres. A time resolution of approximately 4
nanoseconds was achieved with the Kentech pulser used in the experiments described in
Chapter 4.



20 Chapter 1. Introduction



Chapter 2

What is wrong with the steric

asymmetry?

2.1 Abstract

The sign of the steric asymmetry S in rotationally inelastic state resolved atom-molecule
collisions is questioned. Both experimental and theoretical results for collisions of Ar or He
with NO (or ON) and Ar with OH (or HO) are discussed. Studies involve quantum state-
selected crossed molecular beam experiments. In the case of NO, a striking oscillatory
behavior of S as function of the rotational state after collision is observed. Full quantum
mechanical scattering calculations with HIBRIDON reproduce the oscillation as far as
the absolute value of S is concerned, but no consistency is obtained for the sign. On
the other hand, comparable theoretical results for OH agree with experimental results
for both absolute value and sign of S. The inconsistencies between experiment and the
different theoretical approaches are described and possible solutions are discussed.

2.2 Introduction

In everyday life collisionally induced processes are non-directional. Specific orientations
seem not to play a role as all orientations are present in a sample. However, one expects
that nature will have directional preferences. For example, the collisional behavior of an
NO molecule is expected to be somewhat different when the N-end or the O-end is hit.
These orientational dependencies are important to unravel the dynamics of inelastic and
reactive collisions. Nowadays, directional dependencies can be studied up to the level of
individual quantum states using state of the art experimental and theoretical techniques.
Careful initial molecular state preparation, using sophisticated molecular beam techniques
allows experiments with quantum state controlled molecules and high resolution spectro-
scopic probes make it possible to study reaction products state-specifically.

Orientation effects in collisions of a diatomic molecule with a rare gas are described
using the steric asymmetry ratio that is defined as

S =
σHead − σTail

σHead + σTail
(2.1)

21
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Figure 2.1: Experimental setup for Ar-NO collisions [47].

where σHead and σTail denote the integral collision cross sections for molecules oriented
preferentially with their head or tail towards the incoming atom. This means that when
S is positive, head collisions contribute more to a specific final rotational state than
tail collisions and vice versa. The steric asymmetry ratio indicates the anisotropy of the
interaction potential and is an effective parameter as most instrumental errors cancel each
other in nominator and denominator.

In recent work [45], a mathematical discussion is given on the sign of the steric asym-
metry in previous work on inelastic collisions with oriented molecules. This work was
done mainly on NO [1, 2, 5] and OH [46]. Ref. [45] made clear that inconsistencies exist
on the sign of S between theory and experiment. This may have a number of reasons
varying from a wrong definition to a fundamental physical problem.

In this comment, first a typical state-selective collision experiment is described to
elucidate the discussion on the sign of S. A historical overview is given to summarize
conclusions obtained so far and to emphasize the existing discrepancies. Finally, spec-
ulations on the reason of the emerged disagreement between theory and experiment are
given.

2.3 Experimental details

To render a better insight into the experimental methods, collisions of a rare gas with
NO will serve as an example in this section. The experiments with OH are similar. The
experimental setup is a crossed beam machine as shown in Fig. 2.1 [47]. With a repetition
rate of 10 Hz two pulsed valves - the NO beam valve with 16% NO in Ar and the rare gas
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beam valve - are used to adiabatically expand gas pulses into a vacuum chamber, resulting
in low final rotational temperatures. The cooled NO molecules are disposed mostly in the
lowest rotational level of the electronic 2Π ground state with total angular momentum
quantum number j = 1

2
.

In the case of NO rotational levels carry a minute (parity) splitting, the so-called
λ-doublet. The symmetry index ǫ = −1 or 1 distinguishes between the two equally popu-
lated components of the λ-doublet (with respectively ”f” and ”e” labels). The molecules
in the low field seeking (f) upper component of the λ doublet with symmetry index ǫ = −1
are focussed into the collision region using a 2 m long hexapole. Molecules in the high
field seeking (e) lower component (ǫ = 1) of the λ doublet are pulled away from the center
of the hexapole. This means that it is possible to prepare a molecular beam of molecules
that are all in one single quantum state j = 1

2
, Ω = 1

2
, ǫ = −1. Ω denotes the (absolute

value of the) projection of the total angular momentum on the molecular axis. Ω can
take values 1

2
and 3

2
as only the electron spin and orbit angular momenta have a non-zero

projection on the molecular axis.

As a next step the hexapole focussed NO molecules (in the collision region) are oriented
in an essentially homogeneous 13.5 kV/cm field, produced in between two pairs of rods
that are placed perpendicular to the relative velocity vrel (see Figs. 2.1 and 2.2). A
negative voltage is applied onto the pair of He-rods (rare gas rods) or onto the pair
of NO-rods to produce the orientation field, while the other pair of rods is at ground.
The pairs of rods are labelled after the incoming particles that pass them first (Fig.
2.2). As the NO molecules are in a low field seeking state, they will orient with their
negative ends towards the negative rods. Assuming that the NO dipole moment is such
that N−O+ [48–53], application of the negative voltage onto the NO-rods yields O-end
collisions whereas switching the negative voltage onto the He rods yields N-end collisions
(Fig. 2.2).

Due to a collision with an Ar or a He atom, the oriented NO molecule can be excited to
a higher rotational state (j′, Ω

′
, ǫ′). The amount of molecules (giving the cross section σ)

that is scattered into a certain (j′, Ω
′
, ǫ′) state is detected by Laser Induced Fluorescence

(LIF) via the electronically excited AΣ+ state of NO. Once the cross section for both
N-end and O-end (head and tail) collisions measured, the steric asymmetry S is obtained
following Eq. 2.1.

Experiments on collisions of Ar with NO [5, 16] were performed on the same experi-
mental setup as those on collisions of He with NO [6]. The replacement of Ar (vAr = 560
m/s) in the rare gas beam by He (vHe = 1760 m/s) alters the direction of the relative
velocity and the alignment of the orientation field has to be adapted. The orientation
field lines have to be parallel to the relative velocity. Work on collisions of OH and Ar
was performed by ter Meulen and coworkers, where a discharge ring was used to produce
the OH radicals and a double hexapole was used for focussing [46].

2.4 Historic overview

First experimental evidence for large orientation effects in rotationally inelastic Ar-NO
(ON) collisions, was obtained by Van Leuken et al. [2]. In their convention, the N-
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Figure 2.2: Orientation geometry. The pairs of rods are labelled after the incoming
particles that pass them first. The orientation field is produced by applying a voltage on
the pair of NO-rods or on the pair of He-rods, see also Fig. 2.1. The other pair remains
grounded. It should be noted that vNO = 590 m/s and that vHe = 1760 m/s.
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Figure 2.3: Experimental steric asymmetry (ǫ = ǫ′ = −1) as a function of ∆j = j′ − j
for spin orbit conserving collisions of: NO with Ar (upper panel) at a collision energy
of Etr = 475 cm−1 [16], NO with He (center panel) at a collision energy of Etr = 509
cm−1 [6,16] and OH with Ar (bottom panel) at a collision energy of Etr = 746 cm−1 [46].
It should be noted that for experiments on NO the N-end is regarded as the head of the
molecule, while for collisions with OH the O-end is regarded as head of the molecule.
Earlier data for Ar-NO [5] have been improved using a flux to density transformation
that transformed LIF intensities into proper state-to-state cross sections. This treatment
enhanced the amplitude of S, but did not change its sign. The oscillation of S for collisions
of NO with He shows the same sign but a larger amplitude.
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end and the O-end of the NO molecule were defined as head and tail, respectively. They
discovered that for Ar-NO, S exhibits a striking undulatory character at a collision energy
of Etr = 475 cm−1. Later on these experimental studies were extended [5, 16, 47]. The
∆j = j′ − j dependence of the steric asymmetry for Ar-NO collisions at Etr = 475 cm−1

and for He-NO collisions at Etr = 509 cm−1 is shown in Fig. 2.3 (upper and center
panel, respectively). When the orientation field is applied such that the N-end of the
NO molecule is favored to point towards the incoming rare gas atom, the collision yields
mostly ∆j = even transitions. For O-end collisions, ∆j = odd transitions are found to
be preferred.

The strong oscillation of S cannot be understood using only classical mechanics. Ar-
NO and He-NO Potential Energy Surfaces (PESs) [54–56] show an egg-like shape in which
the N-end extends further from the center-of-mass than the O-end. When one assumes
Ar-NO collisions to be collisions between an egg shaped hard shell (NO) and a hard sphere
(Ar), there is no way to explain the effect that N-end collisions yield mostly ∆j = even,
while O-end collisions yield mostly ∆j = odd. The amount of torque that can be applied
is limited by the collision energy and the lever. This lever is the distance between a
line perpendicular to the shell (along which the force acts) and the center of mass. The
(linear) momentum parallel to the hard shell is conserved, while that perpendicular to the
shell is transformed into rotation. From a classical point of view one would expect that
the end of the molecule where the largest torque can be applied (the N-end) is preferred
for producing rapidly rotating molecules (large ∆j). Molecules that after collision are in
low rotational states (small ∆j) are expected to be due mostly to collisions onto the end
of the molecule where the maximally applied torque is smaller (O-end). No alternation
(of S) is expected from this model; classical mechanics cannot describe the observations.

Moreover, for excitations to the highest allowed rotational states the oscillation de-
creases and a negative value for S (indicating O-end preference) has been observed for
large ∆j [1,2,5,16]. At that time, the sign of the experimental value of S was in agreement
with the theoretical prediction of Refs. [1, 2, 5, 16]. Recently the experimental setup was
improved to allow for more sensitive experiments and the latest experimental data by De
Lange et al. also showed nice agreement with theory [5].

For collisions of Ar with OH, the oscillatory behavior of S as function of j′ turned out
to be absent [46] (see also Fig. 2.3, lower panel). O-end collisions mostly result in low
rotational states while H-end collisions mostly yield high rotational states. Full quantum
mechanical theoretical results correspond reasonably well to the experimental results. Van
Beek et al. [46] defined the (negative) O-end of the molecule as being the head and the
(positive) H-end as being the tail of the molecule (Eq. 2.1). This definition is opposite
to what implicitly follows from the potential energy surfaces [57] that were used for close
coupling calculations. In these PESs, θ = 0 corresponds with an H-end (Tail) collision.
For all NO PESs θ = 0 corresponds with an N-end (Head) collision [6, 54–56]. When
using these PESs in calculations, one should be well aware of and very careful with the
orientation of the PESs.

Up to this point, theory and experiment seemed to correspond very well. Some recent
results, however, raised some doubt concerning the sign of S. In the next section reasons
to question the sign of S are given.
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2.5 Reasons to doubt the sign of S

The first inducement to question the correctness of the sign of the steric asymmetry from
previous measurements, were some results obtained with a new quasi quantum mechanical
model [58]. These model calculations were performed to shed more light on the nature of
the oscillations of S. Quantum mechanics alone does not provide physical insight in the
reason of the steric effect. Results for He-NO and Ar-NO corresponded remarkably well
to the experimental ones, only the sign turned out to be wrong. Calculations with the
quasi quantum mechanical model on Ar-OH, however, reproduced the experimental sign
of S [58].

Searching for reasons of the ”erroneous” model calculations, it was noted that results
for collisions with NO are opposite to that what is expected from a simple classical ”ball-
and-stick” model. When taking a close look at the upper panel of Fig. 2.3, one sees that
for high rotational states S becomes negative. This implies that these high rotational
states are mostly produced by collisions onto the O-end of the NO molecule. Looking
at the Ar-NO PESs [54, 55] one would expect something different. For transitions to
high rotational states, the repulsive part of the potential dominates. In the Ar-NO PESs
introduced by Alexander [54,55] one can immediately see that the N-end extends further
from the center-of-mass. From a (classical) point of view one would expect the N-end to
be preferred, as the torque that can be applied to the N-end is larger. When a stick is
attached to a ball, it is easier to make the system rotate by hitting the stick, than by
hitting the ball. From this simple classical ball-and-stick model an S is expected with a
sign opposite to the sign resulting from the measurements.

For collisions of the less homo-nuclear OH molecule with Ar this becomes even more
clear and indeed the ball-and-stick model corresponds to the measurements. The H-end
(stick) is preferred for high rotational states in both experiment and theory [46]. The
steric asymmetry for the Ar-OH system is plotted in the lower panel of Fig. 2.3. Recent
full quantum mechanical (HIBRIDON) [45, 59] Ar-OH calculations, resulted in a sign
opposite to the sign of previous results for S. Identical calculations on He-NO, however,
yielded a sign of S that was similar to the experimental sign. The orientation of the
potential energy surfaces was checked and did not account for this disagreement. Close
inspection of the HIBRIDON source code showed that the prepared wave function carried
an orientation that is opposite to the one assumed [1, 2]. This offers an explanation for
the disagreement of the recent theoretical sign of S for Ar-OH with previous results and
with the ball-and-stick model. However, when the theoretical sign of S for collisions of
Ar with OH flips, it should also flip for Ar-NO and He-NO. There is still a disagreement
between the experimental and theoretical sign of S for collisions with NO.

The fact that the Ar-OH PESs [57] were specified oppositely to the definition of S [46]
(H-end as head instead of O-end) might be the reason that the disagreement between
theory and experiment (due to an error in HIBRIDON) for Ar-OH was not found before.
Very recently, some new close coupling scattering calculations have been performed on
He-NO [60]. These calculations, that were unrelated to previous HIBRIDON calculations,
also yielded a sign for S opposite to the experimental result for He-NO.

To summarize, a flip of the theoretical sign of S for collisions with NO, while keeping
the sign for collisions with OH as it was reported before, makes all theoretical results
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in agreement with the ball-and-stick model. There remains, however, a sign difference
between the theoretical (HIBRIDON) and the experimental results for collisions with NO.
It should be noted that the theoretical (MOLSCAT [61]) results for Ar-NO - as published
in Ref. [2] - are consonant with the experimental results and thus oppose the ball-and-
stick model, HIBRIDON calculations, recent CC calculation by Groenenboom [60] and
the results using a Quasi Quantum Treatment (QQT, see chapter 7). The implementation
of the adapted MOLSCAT calculations cannot be checked, as no documentation is left. A
conclusion could be that something is wrong with the sign of S from the NO experiments.

Although tested before, it was decided to test the experimental sign of S once more.
The oscillation for S is largest for the He-NO system which for this reason has been used.
To orient the molecules during the experiment, a negative voltage was applied that can
be switched onto the He or onto the NO-rods (see also Fig. 2.2). The absolute value
of the small electric dipole of NO (v = 0, X 2Π) has been measured with high precision
(0.1574 ± 0.014 D) by Hoy et al. [62] and their result is in reasonable agreement with
the ab initio value (0.1732 D) [48]. All charge distributions calculated using ab initio

methods correspond to N−O+. To our knowledge, the sign of the NO dipole moment has
not been determined experimentally so far. The NO molecules are all in the low field
seeking state that is selected by the hexapole. Orientation should be such that the N-end
points towards the the rods to which the negative voltage is applied.

First the orientation field was taken out of the machine to measure the voltages on the
rods. When the input of the HV-switch was 0, a negative voltage was measured on the
He rods; when the input was 1, a negative voltage was observed on the NO-rods. This
gives N-end and O-end collisions, respectively, as molecules in a low field seeking state
orient with their positive end towards the positive electrode. The orientation field was
placed back in the setup and LIF measurements were performed. Background subtracted
signals were collected for j′ = 4.5, Ω′ = 0.5, ǫ′ = −1 in the R21 branch (for both HV-switch
inputs): when the HV-input was 0 (N-end collisions) a signal of 67 mV was recorded, when
the HV input was 1 (O-end collisions), 29 mV was observed. For the steric asymmetry
for j = 4.5 this gives: S = (67-29)/(67+29) = + 0.40 which means N-end preference as
measured before (see also Fig. 2.3). The experimental error on S is estimated to be ±
0.15. As a consequence the discrepancy continues to exist and the question remains what
the origin of the disagreement is. No answer to this question has yet been found. In the
next section some speculations are given.

2.6 Concluding remarks

The current status is that ”revised” quantum mechanical calculations (HIBRIDON) yield
results that are consonant with the ball-and-stick model for the Ar-OH, Ar-NO and He-
NO systems. Consonance with the ball-and-stick model means that high rotational states
are preferentially the result of collisions on the end of the molecule at which the largest
torque can be applied (the N-end for NO and the H-end for OH). Experimental results

for the Ar-OH system correspond to the revised HIBRIDON calculations and to the ball-
and-stick model. For collisions of NO with Ar and He, experimental results oppose the
ball-and-stick model and consequently the sign of the (experimentally obtained) steric
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asymmetry S opposes the ”revised” quantum mechanical results.
An error in the experimental procedure for experiments with NO, introducing an

erroneous sign, would solve all disagreements between theory and experiment. Some
simple tests, however, appear to rule out such errors.

Another possibility to account for the sign difference for NO is an error in the He-
NO and the Ar-NO PESs. This is very unlikely: there is good quantitative agreement
between the absolute value of S in (Ar-NO and He-NO) experiment and theory [5,6]. The
possibility that the CEPA and CCSD(T) PESs are not accurate enough, can be excluded.
This does not exclude that the labels for the N-end and the O-end in the PESs can be
wrong. It is, however, very unlikely to assume that the heavier O-end extends further
from the center-of-mass than the N-end. Semi-quantum mechanical calculations and full
quantum mechanical calculations that are independent of the HIBRIDON code support
the finding that the simple classical ball-and-stick model can be applied.

For calculation of the experimental steric asymmetry, the head (N-end) of the NO
molecule is assumed to be negative while the tail (O-end) should be positive. However,
the actually observed steric asymmetry S is given by:

S =
σ− − σ+

σ− + σ+
(2.2)

The cross sections σ− and σ+ indicate the cases in which the negative and the positive
end of the molecule preferentially point towards the incoming atom. In terms of Eq. 2.1
the negative (positive) end of the molecule is defined as its head (tail). When the sign of
the NO (v = 0, X 2Π) dipole moment would be reversed - N+O− instead of N−O+ - the
experimental sign of S would be in agreement with the ball-and-stick model. Although
the absolute value of the NO dipole moment is well known, even the highest precision
experiments could not determine the sign of the NO dipole moment unambiguously, i.e.
N−O+ or N+O− [63]. The sign of the dipole moment has not been measured, but it has
been calculated. Large series of ab initio calculations reported N−O+ [48–53]. Taking
into account indirect evidence from recent experiments by Matsiev and coworkers [64]
and predictions by Drabbels and Wodtke [63], a flip of the sign of the dipole moment
seems to be not feasible.

The origin of the sign difference between the theoretically and experimentally obtained
values of S remains unclear for the moment. Some new experiments might shed light on
this subject. Collision experiments can be repeated with rare isotopes of NO, to get an
answer on the shape of the NO shell. In the case of 14N18O, the center-of-mass is shifted
towards the O-end of the molecule. It is expected that the N-end then is even more
preferred for high rotational states and it will be interesting to see whether stronger effects
are observed. Another approach would be to verify experimentally the sign of the dipole
moment of NO. This might be achieved in an experiment in which the molecules are first
oriented and subsequently dissociated using femtosecond laser pulses. Nevertheless, the
situation is such that considerable progress has been obtained in the last years and that
at least consistent definitions are used now. New experiments are necessary to unravel the
remaining question: what is wrong with the steric asymmetry in NO-rare gas collisions?
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Chapter 3

Sign of the steric asymmetry

3.1 Abstract

The sign of the theoretically predicted steric asymmetry S in rotational inelastic state
resolved molecule-atom collisions is questioned. It is shown that the sign of the T-matrix
obtained on a basis of non-oriented rotational states of the molecule depends on the choice
of the Jacobi coordinates in which the collision problem is solved. Explicit expressions for
the state-to-state dependence of the integral and differential cross sections for oriented
and non-oriented molecules are presented. The effect of the choice of Jacobi angles and the
inertial frame of reference on the sign of S are discussed in detail. The sign of the earliest
obtained expression for the steric asymmetry of the integral cross section (as obtained by
Van Leuken et al.) is found to be correct, whereas that of the orientational dependent
contribution of the differential cross section (as obtained by Alexander and Stolte) requires
a negative multiplication factor. Quantum mechanical calculations on collisions of OH
with Ar are performed. These calculations do not agree with the experimental sign of S
and cannot be interpreted in terms of a simple ball and stick model. Inspection of the
HIBRIDON source code shows that the prepared wave function carries an orientation that
is opposite to the one assumed. This could offer an explanation for the disagreement for S
for Ar-OH collisions. For collisions of NO with Ar, the signs of the quantum mechanically
calculated and the experimental values of S appear to disagree with the simple ball and
stick model. The experimental sign of S has been reinvestigated. Previous experimental
results are confirmed.

3.2 Introduction

Orientation effects in atom-molecule collisions are commonly described using the steric
asymmetry S, that is defined as:

S =
σHead − σTail

σHead + σTail
. (3.1)

Here σHead and σTail denote the cross sections for molecules oriented preferentially with
their head or tail towards the atom. The first striking experimental evidence for large

31
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orientation effects in rotationally inelastic state-resolved NO (ON) and Ar collisions, was
performed by Van Leuken et al. [2]. In their convention, the N-end and the O-end of the
NO molecule were defined as head and tail, respectively. In addition, quantum mechanical
scattering calculations were performed. Van Leuken and coworkers succeeded in deriving
a contracted equation that expresses the difference between the integral cross sections
for N-end preferred and O-end preferred collisions (respectively σNO

j,mj ,Ω,E→j′,m′

j ,Ω
′

,ǫ′
and

σON

j,mj ,Ω,E→j′,m′

j ,Ω
′

,ǫ′
) into a weighted sum over products of T-matrix elements. The total

angular momentum of a diatomic (or a symmetric top alike) molecule is denoted by j,
having projections Ω and mj along respectively the molecular axis and the space-fixed
Z axis. The absolute value of Ω is written as Ω and ǫ (= −1, 1) gives the symmetry
index that distinguishes between the two components of the Λ-doublet [22]. The index E
indicates the electric orientation field at the scattering region.

In NO-Ar collisions the O-end was reported to be preferred for high rotational final
states [1, 2, 5, 54]. This is not what one would expect from a simple ball and stick model
that seems to apply very well in OH-Ar collisions [46]: the O-end is more round (ball) than
the H-end (stick) that extends further from the center-of-mass (CM) of the OH molecule.
As a consequence, high rotational final states prefer H-end collisions.

This paper focusses on the sign of the steric asymmetry. It is organized in the following
way. Section 3.3 consists of a short summary of a number of relevant experimental and
theoretical considerations. In section 3.4 the sign issue concerning the steric asymmetry
is introduced. Experimental results for collisions of OH with Ar serve as a benchmark
system here, as experimentally observed rotational state transitions exhibit a propensity
in S that can qualitatively be understood in a simple ball and stick model. These experi-
mental results for S are compared to those obtained from new close coupling calculations
(HIBRIDON [59]) that have been carried out on the most recent UMP4 ab initio PES’s
for OH-Ar, developed by K los et al. [56]. Section 3.5 focusses on the parameters that are
involved in defining the sign of the steric effect. We will show that the T transition matrix
that results from HIBRIDON, T J

j′,l′,Ω
′

,ǫ′;j,l,Ω,ǫ
, depends on the choice of Jacobi coordinates

that parameterize the interaction PES’s. The resulting scattering amplitude depends
also on the actual choice of the inertial coordinate frame of the corresponding Center-of-
Mass System (CMS). The cases of the space fixed Z-axis parallel and anti-parallel to the
incoming relative velocity vector are considered.

If one chooses the Jacobi coordinates such that the displacement vector R points from
the atom to the molecule, the relative velocity vector points oppositely to the conventional
case in which the R points from the molecule to the atom. The outcome for the T-matrix
will depend upon this choice of R. This dependence is typically unimportant in cases
other than those in which steric effects are concerned. In the fifth section an experimental
investigation has been carried out that confirms the sign and magnitude of S that was
found in earlier experiments. In the last section, we will close with a brief discussion and
concluding remarks.
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3.3 Experimental and theoretical considerations

To be experimentally observable, the determination of the steric asymmetry requires
the application of a homogeneous electric orientation field E in a direction parallel or
antiparallel to the relative velocity vector of the colliding particles. The NO-beam can
be state selected in the upper component (u) of the Λ-doublet (2Π 1

2

, j = 1
2
, ǫ = ǫu = −1)

by hexapole focussing. All focussed molecules reside in a low field seeking state for which
mj = +mj and mj = −mj have equal probability. Having applied E at the scattering
volume, either the O-end (tail) or the N-end (head) predominantly points towards the
incoming Ar atom. The field strength is chosen such (E ≈ 16 kV/cm) that it is sufficiently
large to mix the selected |j,mj,Ω, ǫu〉 and the |j,mj,Ω,−ǫu〉 components of the Λ-doublet
of opposite parity with (positive) mixing coefficients α(E) and β(E). The oriented wave
function follows as

∣

∣j,mj,Ω, E
〉

= α(E)
∣

∣j,mj,Ω, ǫu
〉

± β(E)
∣

∣j,mj,Ω,−ǫu
〉

. (3.2)

with α(E)2 + β(E)2 = 1 [47]. Note that this convention deviates from that of Ref. [1]
in which the role of α and β is reversed and their absolute value is multiplied by

√
2.

Because one has to do with a low field seeking state, α(E) > β(E) ≥ 0. The ± denotes
which molecular end is preferred to point along E. Neglecting Hund case b mixing for the
moment, the rotational wave function can, for arbitrary values of ǫ, be written as [13]

∣

∣j,mj,Ω, ǫ
〉

≡ 1√
2

[∣

∣j,mj,+Ω
〉

+ ǫ
∣

∣j,mj,−Ω
〉]

(3.3)

Besides large enough for mixing, we assume E to remain small enough to keep the Stark
shift of the spacing between the rotational energy levels minor. Test calculations showed
that these shifts (in the order of Λ-doublet splitting) had negligible effect on the calculated
cross sections [2]. As the energy may be assumed independent of the actual values of α(E)
and β(E), Van Leuken et al. [2] expressed the T-matrix elements for an incoming oriented
rotational state

∣

∣j,mj,Ω, E
〉

and non-oriented outgoing state
∣

∣j′,m′
j,Ω

′, ǫ′
〉

as:

Tj′,m′

j ,l′,m′

l
,Ω

′

,ǫ′;j,mj ,l,ml,Ω,E = α(E)Tj′,m′

j ,l′,m′

l
,Ω

′

,ǫ′;j,mj ,l,ml,Ω,ǫu
+

±β(E)Tj′,m′

j ,l′,m′

l
,Ω

′

,ǫ′;j,mj ,l,ml,Ω,−ǫu
(3.4)

The orbital angular momentum of the incoming and outgoing state are respectively repre-
sented by the quantum numbers l and l′, with projections ml and m′

l on the Z axis. The
uncoupled representation of the T-matrix T

j′,m′

j ,l′,m′

l
,Ω

′

,ǫ′;j,mj ,l,ml,Ω,ǫ
, where the T-matrix

relates to the scattering S-matrix as: T = 1 − S, assumes incoming and outgoing waves
with a single direction of the space fixed quantization axis. The uncoupled representation
of the T-matrix relates to the coupled representation as:

Tj′,m′

j ,l′,m′

l
,Ω

′

,ǫ′;j,mj ,l,ml,Ω,ǫ =
∑

J,MJ

T J

j′,l′,Ω
′

,ǫ′;j,l,Ω,ǫ
×

× 〈J MJ |j′ m′
j l

′ m′
l 〉 〈J MJ |j mj l ml 〉. (3.5)
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The coupled T-matrix T J

j′,l′,Ω
′

,ǫ′;j,l,Ω,ǫ
is independent of M = mj + ml = m′

j + m′
l and

diagonal in J [65]. Unlike Alexander, who uses T J

j′,l′,Ω
′

,ǫ′;j,l,Ω,ǫ
[66], Van Leuken et al.

use the coupled representation T J

l′,j′,Ω
′

,ǫ′;l,j,Ω,ǫ
[2]. Some algebra with Wigner 3j symbols

leads to the straight forward relation between Alexander’s and Van Leuken et al. coupled
representations:

T J

j′,l′,Ω
′

,ǫ′;j,l,Ω,ǫ
= (−1)l′+l+j′+j+2JT J

l′,j′,Ω
′

,ǫ′;l,j,Ω,ǫ
(3.6)

Alexander relates the T-matrix expression of Eq. 3.5 to the dimensionless scattering
amplitude for a transition between two states [1]

fj,mj ,Ω,ǫ→j′,m′

j ,Ω
′

,ǫ′(k̂
′) =
√
π
∑

J,l,l′

(2l + 1)
1

2 (2J + 1)il−l′
(

j J l
mj −mj 0

)

×

×
(

j′ J l′

m′
j −mj mj −m′

j

)

Yl′,mj−m′

j
(k̂′)T J

j′,l′,Ω
′

,ǫ′;j,l,Ω,ǫ
(3.7)

where ( : : : ) is a Wigner 3j-symbol [13]. The sum extends over all allowed values of the
initial and final orbital angular momenta l and l′. The initial and final wave vectors are
denoted by k and k′, the direction of the initial velocity vector k̂, defines the axis of mj

quantization in the so called ”collision frame”. Combination of Eqs. 3.4 and 3.7 gives

fj,mj ,Ω,E→j′,m′

j ,Ω
′

,ǫ′(k̂
′) =

α(E)fj,mj ,Ω,ǫu;j′,m′

j ,Ω
′

,ǫ′ ± β(E)fj,mj ,Ω,−ǫu;j′,m′

j ,Ω
′

,ǫ′ (3.8)

Eq. 3.8 relates directly to the differential scattering cross section of an oriented molecule
[1].

dσj,mj ,Ω,E→j′,m′

j ,Ω
′

,ǫ′ / dω =
1

k2
|fj,mj ,Ω,E→j′,m′

j ,Ω
′

,ǫ′(k̂
′)|2 (3.9)

Integration of the differential cross section dσj,mj ,Ω,E→j′,m′

j ,Ω
′

,ǫ′/dω in Eq. 3.9 over all scat-

tering angles, provides the integral scattering cross section
σj,mj ,Ω,E→j′,m′

j ,Ω
′

,ǫ′ . Using the scattering amplitude instead of the T-matrix for the treat-

ment of molecular orientation offers a more direct insight into the underlying collision
properties, leading to a better understanding of the origin and magnitude of the observed
steric effects [2, 5, 16,19,46,67,68].

3.4 The sign of the steric asymmetry

For NO-Ar, S exhibits a striking undulatory character at a collision energy of Etr = 475
cm−1, as shown in Fig. 3.1. When the orientation field is applied such that N-end of the
NO molecule is favored to point towards the Ar, the collision yields mostly ∆j = even.
For O-end collisions, ∆j = odd is preferred [1, 2, 5, 16]. This effect is seen for both spin-
orbit conserving and spin-orbit changing collisions. The value of the steric asymmetry as a
function of ∆j = j′−j for collisions of both OH and NO with Ar turns out to be insensitive
of ǫ′. In the search for a better understanding of the striking oscillatory behavior of S,
a semi-quantum mechanical hard shell model is being developed. Application of this



3.4. The sign of the steric asymmetry 35

0 5 10 15
−0.5

0

0.5

∆ j

S
te

ric
 a

sy
m

m
et

ry
 (

S
)

Figure 3.1: Experimental steric asymmetry (ǫ = ǫu = ǫ′ = −1) as a function of ∆j = j′−j
for spin orbit conserving collisions of NO with Ar at a collision energy of Etr = 475
cm−1 [16]. Earlier data [5] have been improved using a flux to density transformation
that transformed LIF intensities into proper state-to-state cross sections. This treatment
overall enhanced the amplitude of S, but not its sign.
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model [58] to NO-Ar yields a similar undulatory behavior, but S has the improper sign
compared to measurements and quantum mechanically calculated values. Application of
this model to OH-Ar yields the ”proper” sign of S compared to the reported measured
and calculated values [19,46].

To render insight into the ”proper” sign of S, we turn to a recent study of Van Beek
et al. [46]. This study reports about the steric dependence of (state resolved) rotational
energy transfer for the ’hetero’ nuclear OH-Ar collision system. A hexapole is used to
select the OH beam predominantly in a j = Ω = mj = 3

2
, ǫu (f) state, that is oriented

in the collision region using an electric field E. In accordance with their experimental
convention Schreel et al. and later Van Beek et al. define S such that according to Eq.
3.1 the O-end of the molecule corresponds to the head, while the H-end refers to the
tail [19, 46]. At a collision energy of 746 cm−1 Van Beek et al. observed a general trend
that was independent of the final spin-orbit state and of the Λ-doublet component. For
excitation to low rotational states, S is typically small and positive, indicating a weak O-
end preference. For excitation to a higher rotational state, S becomes large and negative,
implying that H-end collisions are preferred. A simple ball and stick model explains this
behavior. In the case of ”tail” (H-end) orientation of the molecule, the H atom will have
a much higher probability of pointing towards the Ar atom. For the ”head” orientation,
the O-end of the molecule is likely to shield off the H-end from the Ar atom. Due to
the shape of the OH molecule, the torque that is exerted on the H-end (”stick”) is much
larger than that on the O-end (”ball”) at a similar relative velocity (vrel). A large torque
results in a high rotational excitation, as was noticed for the dependence of S on j′ by
van Beek et al. [46].

In addition to Van Beek’s measurements, close coupling scattering calculations for
OH-Ar were carried out on the CEPA [57] and on the UMP4 (unrestricted fourth-order
Møller-Plesset [56]) ab initio OH-Ar Potential Energy Surfaces (PES’s). For both PES’s,

the steric asymmetry as well as the integral inelastic cross sections (depending on Ω
′

and ǫ′) have been calculated with HIBRIDON [59]. These results agree reasonably with
the experimental values. A close inspection of the HIBRIDON code, however, shows
that the orientations that correspond with HIBRIDON’s ”heads” and ”tails” labels relate
directly to the choice of the Jacobi coordinates R (displacement vector between atom A
and molecule BC), r̂ (BC bond vector, that points from the tail C towards the head B)
and ϑ (angle between r̂ and R). For NO-Ar, ϑ = 0 corresponds with collinear Ar-NO
configuration for both the CEPA [55] and the CCSD(T) [69] PES’s. These PES’s have
been used to calculate scattering cross sections and steric asymmetries with HIBRIDON
[59] and with a (modified [2]) version of MOLSCAT [61]. In the case of OH, for both
the CEPA and the UMP4 PES’s, ϑ = 0 corresponds to the linear Ar-HO geometry.
This means that HIBRIDON assumes the H-end of the OH molecule as being the head,
while the H-end of the molecule is defined by Van Beek and coworkers as being the
tail of the molecule. Without adapting HIBRIDON’s definition to the experimental one,
HIBRIDON is expected to provide results for S that carry a sign opposite to that of Van
Beek’s experimental value, which was reported not to be the case [46].

To investigate whether the theoretical results reported by Van Beek et al. carry the
”proper” sign, steric asymmetries have been recalculated for OH (ν = 0 , X2Π 3

2

j = 3
2
)

scattered by Ar at a collision energy of 451 cm−1 and 746 cm−1 on the UMP4 PES’s.
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Table 3.1: Experimental and theoretical steric asymmetries for rotational excitation of
OH X2Π 3

2

, j = 3
2
, ǫ = -1 in collisions with Ar at a collision energy of 746 cm−1. It

should be noted that the published [46] steric asymmetry is defined as SE = (σOH −
σHO)/(σOH + σHO), while the present calculations use the definition that follows from
HIBRIDON in combination with the UMP4 and CEPA parameterization [56, 57]: SC =
(σHO − σOH)/(σHO + σOH) = −SE.

Steric asymmetry [ % ]
final state1 experimental theoretical results on UMP4 ”hard shell”

Ω
′
J ′ ǫ′ van Beek2 94% mj = 3

2

2
94% mj = 3

2

3
100% mj = 3

2

3
100% mj = 3

2

3

3
2

5
2

e 1.4 ± 0.4 5.8 4.9 5.0 -21.4
f 5.0 ± 1.9 4.9 10.7 11.2 -22.5

7
2

e -19.3 ± 1.0 -5.7 -12.1 -14.0 -22.2
f -1.3 ± 3.5 -1.2 0 0.5 -20.5

9
2

e -78.1 ± 1.3 -82.1 -12.1 -52.6 -50.6
f -23.2 ± 25.4 -47.5 -5.8 -10.6 -36.8

1
2

1
2

e 9.6 ± 1.8 11.8 0.4 0.5 9.1
f 22.3 ± 3.1 -1.3 -7.5 -10.8 8.4

3
2

e 2.9 ± 2.24 3.7 -3.6 -11.6 -25.4
f -24.1 ± 2.6 -18.1 -1.3 -3.3 -35.3

5
2

e 2.9 ± 2.24 -40.7 -1.3 -8.9 -34.6
f -25.8 ± 3.0 -34.6 -7.5 -10.9 -28.3

1The label ”e” corresponds with ǫ′ = 1 and ”f” corresponds with ǫ′ = −1.
2Values from [46].
3Present calculations, this work.
4Transitions for scattering into the 1

2
, 3

2
, e and 1

2
, 5

2
, e level cannot be separately resolved.

Accordingly, the steric asymmetries in the experimental column is the combined steric
asymmetry for the 3

2
, 3

2
, f → 1

2
, 3

2
, e and 3

2
, 3

2
, f → 1

2
, 5

2
, e excitations.
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Calculations have been performed on three different cases: 94 % mj = 3
2

and 6 % mj = 1
2
,

100 % mj = 3
2

and on a ”hard shell” assuming 100 % mj = 3
2
. The calculated steric

asymmetries for three cases are shown in Table 3.1. From this table one immediately
notices a reasonable agreement between the experimental and all theoretical amplitudes
of S, resulting from the UMP4 PES’s. The present calculations yield an overall smaller
amplitude for S at high j′, than the measured values. As far as the sign of S is concerned,
there is a striking opposite trend for the experimental values (SE) compared to our the-
oretically calculated values (SC) based on the UMP4 PES’s. The steric asymmetry as
defined in the experiment SE = (σOH − σHO)/(σOH + σHO) should carry a sign oppo-
site to that calculated by HIBRIDON reflecting the parameterization of the UMP4 and
CEPA PES’s SC = (σHO − σOH)/(σHO + σOH) = −SE. To advance quantum mechanical
calculations closer to the ball and stick model, a hard shell alike system was mimicked for
the OH-Ar system. To damp the attractive well, the sum potential (Vsum) was multiplied
with

1

2
[1− tanh{3(R− 7.08)}] (3.10)

and also set Vdif = 0. It should be noted that in this case R is in Bohr. The amplitude
of SC for the ”hard shell” alike calculations (shown in Table 3.1) is much stronger than
that for the full PES’s, as it is no longer diluted by the attractive part of Vsum(R). SE

shows a proper negative sign for nearly all rotational excited states, in accordance with
the ball and stick model. Only the spin-orbit changing transition j = 3

2
,Ω = 3

2
, E → j′ =

1
2
,Ω = 3

2
, ǫ′ = −1 carries an opposite sign for SE. Comparison of the results of the ”hard

shell” calculation with the outcome of the ball and stick model makes it plausible that
the present HIBRIDON calculations provide the improper sign for SC . One would not
expect that the O-end is preferred to yield high rotational states. Steric asymmetries are
shown in Table 3.1 and Fig. 3.2.

As there is not a perfect agreement among the absolute theoretical results for SC

on the UMP4 PES’s as obtained in this study and in Ref. [70], integral state-to-state
cross sections have been calculated to test the integration procedure. Truncating the
summation over the coupled T-matrix elements in Eq. 3.7 at J > 101 (Ecol = 451 cm−1)
and at J > 130 (Ecol = 781 cm−1), perfect agreement (Table 3.2) with ”pure” theoretical
integral state-to-state cross sections is reported [70]. We have no answer on the question
why our results for SC differ this much from previous calculations [70].

Although the NO-Ar system is more homo-nuclear than OH-Ar, one can also apply
the ball and stick model on this system. The O-end is more round than the N-end, that
extends further from the center-of-mass. From a ball and stick model one would conclude
that the N-end will be preferred for high rotational states, but this is not what was found
in earlier experiments and theory [1, 2, 5]. The only exception in respect to this finding
is the first (erroneous) measurement of S by Van Leuken, that did not correspond with
theoretical results in the same paper [2]. Except this experimental result, all published
results for S of NO-Ar collisions show a negative value for S for high rotational states. This
indicates that molecules with high rotational states mostly carry back on O-end collisions.
There is no satisfactory explanation for this effect that goes against ones natural wit.
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Figure 3.2: Steric asymmetries as a function of the final state of OH-Ar at Etr = 781
cm−1. Note that the experimental steric asymmetry is taken conform Ref. [19] and is
defined as SE = (σOH − σHO)/(σOH + σHO), while the present theoretical results are
plotted according to the definition following HIBRIDON parameterization and UMP4
and CEPA PES’s SC = (σHO− σOH)/(σHO + σOH) = −SE. Experimental values [46] are
indicated with open circles ”◦”, theoretical results on the UMP4 PES’s with 94% mj = 3

2

are given with a dotted line and a cross ”×” [46]. Theoretical results from our work [94%
mj = 3

2
and 6% mj = 1

2
] and [100% mj = 3

2
] are respectively given by a solid line and a

star ”*” and a dashed line in combination with a triangle ”△”.
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Table 3.2: Theoretical integral state-to-state cross sections [Å2] for rotational excitation
of OH X2Π 3

2

, j = 3
2
, f in collisions with Ar are listed for comparison. A collision energy

of 451 cm−1 and 746 cm−1 has been used. All calculations are based on the UMP4 PES’s.

final state Ecol = 451 cm−1 Ecol = 746 cm−1

Ω′ J ′ ǫ′ pure1 pure2 pure1 pure2

3
2

3
2

e 16.5 16.50 11.5 11.40
f . . . . . . . . . . . .

5
2

e 11.8 11.80 11.2 11.20
f 2.42 2.42 1.62 1.62

7
2

e 2.19 2.19 2.15 2.13
f 0.350 0.35 0.756 0.75

9
2

e 0.553 0.53 0.703 0.70
f 0.013 0.01 0.090 0.09

1
2

1
2

e 2.10 2.10 2.19 2.22
f 0.238 0.24 0.197 0.20

3
2

e 0.524 0.52 0.826 0.83
f 0.711 0.71 0.927 0.90

5
2

e 0.458 0.46 0.598 0.60
f 0.458 0.46 0.598 0.60

total 37.86 37.73 32.76 32.64

1 present result 2 Van Beek et al. [46]
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Figure 3.3: Incoming planar wave and outgoing spherical wave that represents a state-to-
state collision between a molecule BC and an atom A. The right panel depicts this process
in the (A-BC) CMS with R = RA−BC , the left panel reflects the so-called inverted CMS
with R = RBC−A = −RA−BC . This figure elucidates that a change from one convention
to another also alters the Jacobi angles θ. The Jacobi angles for both cases are related
as θA−BC = π− θBC−A. Note that the θ has to be distinguished from the CMS scattering
angle ϑ which denotes the angle between the outgoing and and incoming wave vectors k̂
and k̂′.

3.5 Theory

3.5.1 Schrödinger equation, T-matrix and scattering amplitude

The CMS in which the collision of an atom A and a diatomic molecule BC can be described
allows for two distinguished conventions regarding the definition of R. The convention
followed in most theoretical procedures [54, 59, 61] uses the displacement vector of the
center of A in respect to the CM of BC:

R = RA−BC = RA −RBC (3.11)

Alternatively, the ”opposite” convention

R = RBC−A = RBC −RA (3.12)

provides an equally well suited definition of R. Both conventions are illustrated in Fig.
3.3. For the simplest (elastic) case of the collision between the two particles A and BC, the
scattering matrix T reduces to a row of dimensionless scalars. The value of these scalars
does not bear any relation upon the chosen convention of R (see eg. [13, 34, 35]). In the
case of rotationally inelastic scattering this also holds for the value of the CMS scattering
angles (ϑ, φ), whereas the scattering matrix and the scattering amplitude could depend
on the choice of R = RA−BC or R = RBC−A. In this section we will show that a change
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of convention will not cause any problem in relation to the state-to-state differential and
integral cross sections, as long as one refrains from orientational dependence.

To elucidate the influence of the choice of RA−BC or RBC−A on the T-matrix, the set
of (close) coupled differential equations that substantiate the Schrödinger equation of the
scattering problem will be considered. When denoting the total wave function as:

Ψ
J,MJ

j,l,Ω,ǫ
(r̂,R) =

∑

j′,l′,Ω
′

,ǫ′

1

R
UJ,MJ

j′,l′,Ω
′

,ǫ′
(R)

∑

m′

j ,m′

l

〈j′,m′
j, l

′,m′
l|J,MJ〉

|j′,m′
j,Ω

′
, ǫ′〉Yl′,m′

l
(R̂), (3.13)

the set of close coupled equations that has to be solved numerically becomes [54,65]:

[

− ~
2

2µ

d2

dR2
+

~
2l(l + 1)

2µR2
+ 〈j, l,Ω, ǫ, J,MJ |V |j, l,Ω, ǫ, J,MJ〉

]

UJ,MJ

j,l,Ω,ǫ
(R) +

+
∑

j′,l′,Ω
′

,ǫ′

(1− δj,j′δl,l′δΩ,Ω
′δǫ,ǫ′)×

×〈j′, l′,Ω′
, ǫ′, J,MJ |V |j, l,Ω, ǫ, J,MJ〉UJ,MJ

j′,l′,Ω
′

,ǫ′
(R) = 0. (3.14)

The radial part of the wave function of Eq. 3.13 obeys to the boundary condition:

lim
R→∞

UJ,MJ

j′,l′,Ω
′

,ǫ′
(R) = δj,j′δl,l′δΩ,Ω

′δǫ,ǫ′ exp[−i(kj,Ω ·R− l
π

2
)]

√

kj′,Ω
′

kj,Ω

×

×(δj,j′δl,l′δΩ,Ω
′δǫ,ǫ′ − T J

j′,l′,Ω
′

,ǫ′;j,l,Ω,ǫ
) exp[i(kj′,Ω ·R− l′

π

2
)] = 0. (3.15)

When one assumes that the equations above correspond to the convention R ≡ RA−BC ,
Eq. 3.14 can easily be adapted to the case R = RBC−A, applying the inversion operator
iR

Yl,ml
(R̂A−BC) = iRYl,ml

(R̂BC−A) = (−1)lYl,ml
(R̂BC−A). (3.16)

Eq. 3.16 leads to
[

− ~
2

2µ

d2

dR2
+

~
2l(l + 1)

2µR2
+ 〈j, l,Ω, ǫ, J,MJ |V |j, l,Ω, ǫ, J,MJ〉

]

×

×UJ,MJ

j,l,Ω,ǫ
(RBC−A) +

∑

j′,l′,Ω
′

,ǫ′

(1− δj,j′δl,l′δΩ,Ω
′δǫ,ǫ′)×

×〈j′, l′,Ω′
, ǫ′, J,MJ |V |j, l,Ω, ǫ, J,MJ〉(−1)l+l′UJ,MJ

j′,l′,Ω
′

,ǫ′
(RBC−A) = 0. (3.17)

Application of the boundary condition of Eq. 3.15 onto the solutions of the coupled
equations Eqs 3.14 and 3.17 leads immediately to:

T
(J),A−BC

j′,l′,Ω
′

,ǫ′;j,l,Ω,ǫ
≡ T J

j′,l′,Ω
′

,ǫ′;j,l,Ω,ǫ
= (−1)l+l′T

(J),BC−A

j′,l′,Ω
′

,ǫ′;j,l,Ω,ǫ
. (3.18)

As elucidated in Eq. 3.5 T-matrix elements T
(J),A−BC

j′,l′,Ω
′

,ǫ′;j,l,Ω,ǫ
and T

(J),BC−A

j′,l′,Ω
′

,ǫ′;j,l,Ω,ǫ
may be un-

coupled, for example, to the regular collision frame or to the reversed collision frame.
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Figure 3.4: Two convenient CM inertial frames in which a collision between a molecule and
an atom can be described. In the regular collision frame (left panel) the relative velocity
vrel is directed parallel to the Z axis of mj and ml quantization. In the reversed collision
frame (right panel) vrel is directed antiparallel to the Z axis, thus giving the opposite
sign for all mj and ml quantum numbers. Both panels depict the A-BC CM system
with R = RA−BC . The T-matrix elements themselves do not depend on the choice of the
coordinate frame. Eq. 29 of Ref. [71] relates the scattering amplitudes to the T-matrix for
arbitrary orientation of the coordinate frame of which the Z axis provides the quantization
axis. Application of this expression leads to an extra multiplication factor (−1)l+l′ to the
T matrix elements in Eq. 3.7 when one applies this formula for the reversed collision
frame. Note that the same multiplication factor (−1)l+l′ appears in Eq. 3.18 when one
switches from the (A-BC) CMS (R = RA−BC) to the inverted CMS (R = RBC−A).
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Substitution of Eq. 3.18 into Eq. 3.7 yields the scattering amplitude in the (BC-A)
collision frame:

fBC−A

j,mj ,Ω,ǫ→j′,m′

j ,Ω
′

,ǫ′
(k̂′) =

√
π
∑

J,l,l′

(2l + 1)
1

2 (2J + 1)il−l′
(

j J l
mj −mj 0

)

×

×
(

j′ J l′

m′
j −mj mj −m′

j

)

Yl′,mj−m′

j
(k̂′)(−1)l+l′T

(J),A−BC

j′,l′,Ω
′

,ǫ′;j,l,Ω,ǫ
. (3.19)

As noted by Alexander [54], the absence of coupling between incoming and outgoing states
of different total parity leads to:

T
(J)

j′,l′,Ω
′

,ǫ′;j,l,Ω,ǫ
= 0 unless (−1)l+l′ = ǫǫ′(−1)j′−j. (3.20)

Application of Eq. 3.20 in Eq. 3.19 yields:

fBC−A

j,mj ,Ω,ǫ→j′,m′

j ,Ω
′

,ǫ′
(k̂′) = fA−BC

j,mj ,Ω,ǫ→j′,m′

j ,Ω
′

,ǫ′
(k̂′)ǫǫ′(−1)j′−j. (3.21)

As illustrated in Fig. 3.4, the relation between the scattering amplitudes of Eq. 3.21
remains valid either within the regular or within the reversed collision frame.

3.5.2 The mj-dependent state-to-state collision cross section for

non-oriented molecules

Application of Eq. 3.21 into Eq. 3.8 with β(E) = 0 and substituting this result in Eq.
3.9 gives:

dσj,mj ,Ω,ǫ→j′,m′

j ,Ω
′

,ǫ′ / dω =
1

k2
|fA−BC

j,mj ,Ω,ǫ→j′,m′

j ,Ω
′

,ǫ′
(k̂′)|2 =

1

k2
|fBC−A

j,mj ,Ω,ǫ→j′,m′

j ,Ω
′

,ǫ′
(k̂′)|2. (3.22)

Depending on the A-BC or BC-A sign convention for the intermolecular displacement
vector, the scattering amplitudes and coupled T-matrix elements do not have to be
equal in sign. Eq. 3.22 however, shows that their relation to the differential cross
section dσj,mj ,Ω,ǫ→j′,m′

j ,Ω
′

,ǫ′ / dω, does not depend on the choice of the A-BC or BC-A

convention. In addition to this, the insensitivity of the differential cross section to the
sense of rotation in the (regular or reversed) collision frame dσj,mj ,Ω,ǫ→j′,m′

j ,Ω
′

,ǫ′ / dω =

dσ
j,−mj ,Ω,ǫ→j′,−m′

j ,Ω
′

,ǫ′
/ dω [54] infers that non-oriented molecules do not yield a different

outcome for scattering calculations in the collision and in the reversed collision frame.
Not only the dependence of the differential cross section on the scattering angle that

is treated above, but also the dependence of the total cross section on the final state
has experimentally been investigated [16, 46]. The total cross section can be obtained
by numerical integration of the differential cross section dσj,mj ,Ω,ǫ→j′,m′

j ,Ω
′

,ǫ′ / dω over the

full range of dω. The rapid diffraction oscillations in the differential cross section can
cause this integration to be cumbersome [54]. Alternatively, the integral cross section
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can be obtained directly as an exact summation over products of T-matrix elements by
making use of the orthogonality properties of the spherical harmonics Yl′,mj−m′

j
(k̂′). The

contributions to this summation are restricted by Eq. 3.20.

σj,mj ,Ω,ǫ→j′,m′

j ,Ω
′

,ǫ′ =
π

k2

∑

J,J ′l,l′,l′′,(l+l′′ even)

√
2l + 1

√
2l′′ + 1×

×(2J + 1)(2J ′ + 1)

(

j J l
mj −mj 0

)(

j′ J ′ l′′

mj −mj 0

)

×

×
(

j′ J l′

m′
j −mj mj −m′

j

)(

j′ J ′ l′

m′
j −mj mj −m′

j

)

×

×(−1)(l−l′′)/2 T J∗
j′,l′,Ω

′

,ǫ′;j,l′′,Ω,ǫ
T J ′

j′,l′,Ω
′

,ǫ′;j,l,Ω,ǫ
. (3.23)

Since the detection selectivity for the scattered BC molecules is typically too low to resolve
m′

j, the experimental observation relates to:

σj,mj ,Ω,ǫ→j′,Ω
′

,ǫ′ =
∑

m′

j

σj,mj ,Ω,ǫ→j′,m′

j ,Ω
′

,ǫ′ . (3.24)

This allows one to contract Eq. 3.23

σj,mj ,Ω,ǫ→j′,Ω
′

,ǫ′ =
π

k2

∑

J,l,l′,l′′,(l+l′′ even)

CJ
l,l′′(j,mj)×

×(−1)(l−l′′)/2 T J∗
j′,l′,Ω

′

,ǫ′;j,l′′,Ω,ǫ
T J

j′,l′,Ω
′

,ǫ′;j,l,Ω,ǫ
(3.25)

with

CJ
l,l′′(j,mj) ≡

√
2l + 1

√
2l′′ + 1(2J + 1)×

×
(

j J l
mj −mj 0

)(

j J l′′

mj −mj 0

)

. (3.26)

Note that CJ
l,l′′(j,mj) = CJ

l′′,l(j,mj) = (−1)l+l′CJ
l,l′′(j,−mj). In experiments with NO [2,5]

the initial state is selected in j = 1
2
, which leads to mj = 1

2
. Because of Eq. 3.26,

l′′ = l′ = J ± 1
2
.

CJ
J− 1

2
,J− 1

2

(
1

2
,mj) = CJ

J+ 1

2
,J+ 1

2

(
1

2
,mj) =

2J + 1

2
. (3.27)

Combination of Eq. 3.27 with Eq. 3.23 gives a convenient expression for the integral cross
section:

σ 1

2
,mj ,Ω,ǫ→j′,Ω

′

,ǫ′
=

π

2k2

∑

J,l′,l=J± 1

2

(2J + 1)
[

T J∗
j′,l′,Ω

′

,ǫ′; 1
2
,l,Ω,ǫ

T J

j′,l′,Ω
′

,ǫ′; 1
2
,l,Ω,ǫ

]

. (3.28)

The explicit expression for the integral cross section of Eq. 3.28 for j = 3
2

with mj = 3
2

and/or mj = 1
2

(OH experiments [19,46,70]) contains a more extended summation over l
and l′′. Non-zero contributions may occur in Eq. 3.26 when l = l′′ = J± 3

2
, l = l′′ = J± 1

2
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and l = J ± 3
2
, l′′ = J ∓ 1

2
or l = J ∓ 1

2
, l′′ = J ± 3

2
. Application of Eq. 3.26 for mj = 3

2

leads to:

CJ
J± 3

2
,J± 3

2

(
3

2
,
3

2
) =

(2J + 1∓ 2)(2J + 1)

8(2J + 1± 1)
(3.29)

CJ
J± 1

2
,J± 1

2

(
3

2
,
3

2
) =

3(2J + 1∓ 2)(2J + 1)

8(2J + 1∓ 1)
(3.30)

CJ
J± 3

2
,J∓ 1

2

(
3

2
,
3

2
) = CJ

J∓ 1

2
,J± 3

2

(
3

2
,
3

2
) =

√

3(2J − 1)(2J + 3)(2J + 1)

8(2J + 1± 1)
(3.31)

The integral cross section can be calculated after substitution of Eqs. 3.29 - 3.31 in Eq.
3.25

σ 3

2
,mj=

3

2
,Ω,ǫ→j′,Ω

′

,ǫ′ =
π

2k2

∑

l′,J
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1

4
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+

+
3

4
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2

(2J + 1∓ 2)

(2J + 1∓ 1)
T J∗

j′,l′,Ω
′

,ǫ′; 3
2
,l,Ω,ǫ

T J

j′,l′,Ω
′

,ǫ′; 3
2
,l,Ω,ǫ

+

−
√

3

2

∑

l=J± 3

2
,l′′=J∓ 1

2

√

(2J − 1)(2J + 3)

2J + 1± 1
×

×Re(T J∗
j′,l′,Ω

′

,ǫ′; 3
2
,l,Ω,ǫ

T J

j′,l′,Ω
′

,ǫ′; 3
2
,l′′,Ω,ǫ

)

]

(3.32)

To complete the treatment for OH, application of Eq. 3.26 for mj = 1
2

leads to:

CJ
J± 3

2
,J± 3

2

(
3

2
,
1

2
) =

3(2J + 1± 2)(2J + 1)

8(2J + 1± 1)
(3.33)

CJ
J± 1

2
,J± 1

2

(
3

2
,
1

2
) =

(2J + 1± 2)(2J + 1)

8(2J + 1∓ 1))
(3.34)

CJ
J± 3

2
,J∓ 1

2

(
3

2
,
1

2
) = CJ

J∓ 1

2
,J± 3

2

(
3

2
,
1

2
) =
−
√

3(2J − 1)(2J + 3)(2J + 1)

8(2J + 1± 1)
(3.35)
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The total cross section can be calculated after substitution of Eqs. 3.33 - 3.35 in Eq. 3.25

σ 3

2
,mj=

1

2
,Ωǫ→j′,Ω

′

,ǫ′ =
π

2k2

∑

l′,J

(2J + 1)×

×
[

3

4

∑

l=J± 3

2

(2J + 1± 2)

(2J + 1± 1)
T J∗

j′,l′,Ω
′

,ǫ′; 3
2
,l,Ω,ǫ

T J

j′,l′,Ω
′

,ǫ′; 3
2
,l,Ω,ǫ

+

+
1

4

∑

l=J± 1

2

(2J + 1± 2)

(2J + 1∓ 1)
T J∗

j′,l′,Ω
′

,ǫ′; 3
2
,l,Ω,ǫ

T J

j′,l′,Ω
′

,ǫ′; 3
2
,l,Ω,ǫ

+

+

√
3

2

∑

l=J± 3

2
,l′′=J∓ 1

2

√

(2J − 1)(2J + 3)

2J + 1± 1
Re(T J∗

j′,l′,Ω
′

,ǫ′; 3
2
,l,Ω,ǫ

T J

j′,l′,Ω
′

,ǫ′; 3
2
,l′′,Ω,ǫ

)

]

(3.36)

3.5.3 The mj-dependent state-to-state collision cross section for

oriented molecules

The next issue that will be addressed is whether the choice for either the RA−BC or
the RBC−A displacement vector affects the orientational dependence of the collision cross
section. As a first step notice that |j,±mj,±Ω〉 and |j,∓mj,∓Ω〉 correspond to wave
functions that respectively favor head and tail orientation of the BC molecule along the
Z axis (which is the quantization axis). As pointed out by Loesch [72] collisions on the
C-end of the BC molecule are preferred when the B-end favors to point along vrel in the
(A-BC) CMS. In the (BC-A) CMS used by Stolte et al. [73,74], collisions impinging onto
the B-end of the BC molecule are preferred when the B-end favors points along vrel.

Depending on the direction of the orientation field in the scattering region (E ↑↑ vrel

or E ↑↓ vrel) collisions on the head or on the tail of BC are preferred. The oriented wave
function in the regular collision frame may be written as:

∣

∣j,±mj,Ω, E
〉

= α(E)
∣

∣j,±mj,Ω, ǫu
〉

+ β(E)
∣

∣j,±mj,Ω,−ǫu
〉

(3.37)

or as
∣

∣j,±mj,Ω, E
〉

= α(E)
∣

∣j,±mj,Ω, ǫu
〉

− β(E)
∣

∣j,±mj,Ω,−ǫu
〉

(3.38)

Taking the limit for a high field E (α(E) = β(E) = 1
2

√
2) and subsequent substitution of

these states in Eq. 3.3 lead to:

lim
E→∞

∣

∣j,±mj,Ω, E
〉

=
∣

∣j,±mj,+Ω
〉

or (3.39)

lim
E→∞

∣

∣j,±mj,Ω, E
〉

= ǫu
∣

∣j,±mj,−Ω
〉

(3.40)

The pairs of oriented wave functions that favor collisions onto the head (B) of BC in the
regular frame of the (A-BC) CMS and onto the tail (C) in the regular frame of the (BC-A)
CMS are represented by α(E)

∣

∣j,mj,Ω, ǫu
〉

−β(E)
∣

∣j,mj,Ω,−ǫu
〉

and α(E)
∣

∣j,−mj,Ω, ǫu
〉

+

β(E)
∣

∣j,−mj,Ω,−ǫu
〉

. The pair of wave functions α(E)
∣

∣j,mj,Ω, ǫu
〉

+ β(E)
∣

∣j,mj,Ω,−ǫu
〉

and α(E)
∣

∣j,−mj,Ω, ǫu
〉

− β(E)
∣

∣j,−mj,Ω,−ǫu
〉

favor collisions onto the tail (C) of the
molecule in the regular frame (A-BC) CMS and on the head in the regular frame of the
(BC-A) CMS.
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The orientation dependent contribution

1

2
(dσHead/dω − dσTail/dω) ≡ d

dω
∆σj,mj ,Ω,E→j′,m′

j ,Ω
′

,ǫ′ (3.41)

of the cross section follows from Eq. 3.8 and Eq. 3.9, upon insertion of the proper sign
for β(E). In the A-BC CMS one obtains:

d

dω
∆σj,mj ,Ω,E→j′,m′

j ,Ω
′

,ǫ′ =
−mj

mj

α(E)β(E)
1

k2
×

×
[

f
(A−BC)∗
j,mj ,Ω,ǫu;j′,m′

j ,Ω
′

,ǫ′
(k̂′)f

(A−BC)

j,mj ,Ω,−ǫu;j′,m′

j ,Ω
′

,ǫ′
(k̂′) + cc

]

. (3.42)

The complex conjugate is indicated by cc. Note that initial states with mj = 0 cannot be
oriented because of mj ·Ω = 0. When one compares Eq. 3.42 with Eq. 15 from Ref [1], a
sign mismatch appears when one assumes positive values for α and β conform the caption
of its Fig. 3. In HIBRIDON it is assumed that one works in the A-BC CMS, but the
oriented wave function is taken in respect to the BC-A CMS similar to Ref. [2]. In the
BC-A CMS, one gets:

d

dω
∆σ

j,mj ,Ω,E→j′,m′

j ,Ω
′

,ǫ′
=

mj

mj

α(E)β(E)
1

k2
×

×
[

f
(BC−A)∗
j,mj ,Ω,ǫu;j′,m′

j ,Ω
′

,ǫ′
(k̂′)f

(BC−A)

j,mj ,Ω,−ǫu;j′,m′

j ,Ω
′

,ǫ′
(k̂′) + cc

]

. (3.43)

which yields the incorrect sign of S when one ignores the A-BC and BC-A dependence of
the scattering amplitude that is based on the coupled T-matrix of Eq. 3.20. When taking
this dependence into account by combining Eqs. 3.22, 3.42 and 3.43, identical outcome in
the A-BC and the BC-A collision system results in 1

2
(dσHead/dω − dσTail/dω). This can

offer an explanation for the discrepancy between the experimental and the theoretically
calculated values of S for OH-Ar as presented in Section 3.

The expressions of Eqs. 3.42 and 3.43 both relate to the regular collision system. A
switch from the regular to the reversed collision system also induces an additional sign
change in Eqs. 3.42 and 3.43. The oriented states as defined in Eqs. 8 - 11 of [2] relate to
the collision frame of the BC-A CMS. The m′

j summed orientational dependence of the
integral A-BC collision cross sections becomes

1

2
(σHead − σTail) =

∫

4π

dω
∑

m′

j

d

dω
∆σ

j,mj ,Ω,E→j′,m′

j ,Ω
′

,ǫ′
(3.44)

which, after defining ∆σj,mj ,Ω,E→j,Ω,ǫ′ ≡
∑

m′

j
∆σ

j,mj ,Ω,E→j′,m′

j ,Ω
′

,ǫ′
and making use of Eqs.

(1.58) and (2.32) of Ref. [13] can be expressed as:

∆σj,mj ,Ω,E→j,Ω,ǫ′ =
−2π

k2
α(E)β(E)

∑

J,l,l′,l′′(l+l′′ odd)

CJ
l,l′′(j,mj)×

×(−1)
l−l′′−1

2 Im(T
J,(A−BC)∗
j′,l′,Ω

′

,ǫ′;j,l,Ω,ǫu

T
J,(A−BC)

j′,l′,Ω
′

,ǫ′;j,l′′,Ω,−ǫu

). (3.45)
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In experiments studying the orientational dependence of state-to-state rotational energy
transfer of NO [2,5], a state with j = 1

2
and mj = 1

2
is selected. In this case, the summation

over l and l′′ restricts to l = J ± 1
2
, l′′ = J ∓ 1

2
. From Eq. 3.26 it follows that:

CJ
J± 1

2
,J∓ 1

2

(
1

2
,
1

2
) =

1

2
(2J + 1). (3.46)

Consequently, Eq. 3.45 can be reduced to

∆σ 1

2
,mj ,Ω,E→j′,Ω

′

,ǫ′ =
−π
k2
α(E)β(E)

∑

J,l′,ǫ

(2J + 1)×

×Im(T
J,(A−BC)∗
j′,l′,Ω

′

,ǫ′; 1
2
,J+ 1

2
,Ω,ǫ
T

J,(A−BC)

j′,l′,Ω
′

,ǫ′; 1
2
,J− 1

2
,Ω,−ǫ

). (3.47)

This result can be transformed to the T-matrix l+ j → J coupling scheme of Van Leuken
et al., using Eq. 3.6:

∆σ 1

2
,mj ,Ω,E→j′,Ω

′

,ǫ′ =
π

k2
α(E)β(E)

∑

J,l′,ǫ

(2J + 1)×

×Im(T
J,(A−BC)∗
l′,j′,Ω

′

,ǫ′;J+ 1

2
, 1
2
,Ω,ǫ
T

J,(A−BC)

l′,j′,Ω
′

,ǫ′;J− 1

2
, 1
2
,Ω,−ǫ

). (3.48)

Comparison of Eq. 3.48 with Eq. 21 of Ref. [2] shows that for the theoretical results:

(σHead − σTail)This work = (σHead − σTail)Van Leuken . (3.49)

This implies that the theoretical sign of S as obtained by Van Leuken et al. [2] is correct.

The orientational dependence of OH in collisions has been studied for incoming ori-
ented molecules with Ω = j = mj = 3

2
[19, 46, 70]. In this case the summation over l and

l′′ in Eq. 3.45 reduces to respectively: l = J ± 3
2
, l′′ = J ∓ 3

2
, l = J ± 1

2
, l′′ = J ∓ 1

2
, l =

J + 1± 1
2
, l′′ = J + 1∓ 1

2
and l = J − 1± 1

2
, l′′ = J − 1∓ 1

2
. Application of Eq. 3.26 for

mj = 3
2

yields for these special cases:

CJ
J± 3

2
,J∓ 3

2

(
3

2
,
3

2
) =

1

8

√

(2J − 1)(2J + 3)

2J(2J + 2)
(2J + 1), (3.50)
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2
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3

2
,
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2
) =

3

8

√

(2J − 1)(2J + 3)

2J(2J + 2)
(2J + 1), (3.51)
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2
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(
3

2
,
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2
) =

√
3

8
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√

2J(2J + 2)
(2J + 1), (3.52)

and CJ
J−1± 1

2
,J−1∓ 1

2

(
3

2
,
3

2
) =

√
3

8

(2J + 3)
√

2J(2J + 2)
(2J + 1). (3.53)
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Subsequent substitution of Eqs. 3.50-3.53 into Eq. 3.45 gives:
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. (3.54)

Similar to the case of mj = 3
2

(yielding Eqs. 3.50-3.60) application of Eq. 3.26 for mj = 1
2

gives:
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1

2
) = −3

8

√
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Subsequent substitution of Eqs. 3.55-3.58 into Eq. 3.45 for mj = 1
2

results in:
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(3.59)
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The equations above describe a recipe to calculate 1
2
(σHead−σTail), which presents the

numerator of S as defined in Eq. 3.1. Its denominator 1
2
(σHead + σTail) can be calculated

using Eq. 3.42 as:

1

2
(σHead + σTail) =

α2(E) σj,mj ,Ω,ǫu→j′,Ω
′

,ǫ′ + β2(E) σj,mj ,Ω,−ǫu→j′,Ω
′

,ǫ′ (3.60)

In the case of j = 1
2

and j = 3
2
, Eqs. 3.28, 3.32 and 3.36 provide a recipe for calculation

of σj,mj ,Ω,ǫ→j′,Ω
′

,ǫ′ . Substitution of σj,mj ,Ω,ǫ→j′,Ω
′

,ǫ′ in Eq. 3.60 yields S.

3.6 Re-evaluation of the experimental S

Except for the very first tentative observations [2], the experimentally obtained values of
S for NO-Ar confirmed the theoretical predictions [1, 5, 69]. Both calculated and experi-
mental values of S for high j′ are in disagreement with a ball and stick model. The present
(close-coupling) HIBRIDON calculations for OH-Ar result a sign for S that is improper
compared to earlier measurements and which is also opposite to the ball and stick model.
As argued in Section 4.3 below Eq. 3.43, this can be explained the fact that the oriented
wave function in HIBRIDON carries an actual orientation that is opposite to the denoted
one. The assumption that the ball and stick model is correct for OH-Ar, implies that the
sign of S for HIBRIDON calculations (also for NO-Ar) has to be reversed. This raises
the question whether the experimental results for NO-Ar have to be revised, possibly due
to errors in the experimental procedure. Therefore the experimental sign of S has been
reinvestigated to explore this possibility. As a first step, the direction of the orientation
field in relation to the data acquisition and control software has been checked. Using a
voltmeter, the voltage on the rods of the orientation field was measured and found to be
in correspondence with the assumed value in the software.

To exclude the possibility that the previous experiments had been carried out incor-
rectly, the steric asymmetry has been remeasured for NO-He (at Etr = 514 cm−1) for a

transition to the final state j′ = 4.5, Ω
′
= 1

2
, ǫ′ = −1. This remeasurement has been car-

ried out under similar conditions as in earlier measurements for NO-Ar and NO-He [5,16],
but with a more powerful laser and a new data acquisition program. The earlier measure-
ments on NO-Ar and NO-He showed that NO-He yields the same sign for S as NO-Ar [16].
In both measurements laser induced fluorescence from the A2Σ+(v = 0) state was used to

determine the total number of molecules scattered into the j′ = 41
2
,Ω

′
= 1

2
, ǫ′ = −1 level

of the vibrational ground state.

The laser system that was used in earlier work has been replaced by a more powerful
excimer pumped dye laser system (Lambda Physik EMG 201 / FL 3002) equipped with
a frequency doubling unit to generate the tunable λ = 226 nm (output 1.5 mJ/pulse).
This new laser system required a new timing and control system for which new software
was developed. New software for data acquisition was also developed and the orientation
voltages were tested once again and found to be correct. A value of S = 0.28± 0.02 was
obtained earlier by De Lange et al. in the case described above [5]. Our remeasurement
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yielded a value of S = 0.39 ± 0.15 which confirms the correctness of De Lange’s NO-Ar
data collection procedure .

The next step in our re-evaluation was to look for physical explanations for an orien-
tation of the NO molecule in the scattering region, opposite to the expected orientation.
Opposite orientation of the NO molecule would change the sign of the theoretical pre-
dicted S, so N-end collisions are preferred for excitation to high rotational states. If a
molecule in a low field seeking state undergoes a rapid change of the electric field along its
path, this can result in a sudden change of the low field seeking state into that of a high
field seeking state. This phenomenon is known under the name Majorana flop [73, 75].
When such an effect would occur in our setup the sign of the experimental reported S
would reverse and agree with the proper sign (in accordance to the ball and stick model)
of the theoretical S, as argued in this work. The presence of an orientational Majo-
rana flop has been investigated experimentally by examining the LIF spectrum of the
A2Σ+(v = 0) ← X2Π 1

2

(v = 0), under the same conditions at which S was remeasured,
Fig. 3.5. When no orientation field is present, one expects to see only two peaks for the
hexapole state selected beam, the R21 and the Q11 branch. If a field is applied, mixing
of Λ-doublet as defined in Eq. 3.8 will take place and the peak of the R11/Q21 branches
appears. Peaks belonging to the lower and high field seeking Λ-doublet state will occur
and grow with increasing orientation field strength. This effect is seen, but in the case of
a Majorana flop, the high field seeking R11/Q21 peak ought to dominate the spectrum. In
the experiment it does not. The experiment shows that it is the low field seeking compo-
nent of the Λ-doublet that is present in the collision region. This component orients with
its negative end towards the negative electrode of the orientation field rods.

3.7 Discussion and concluding remarks

Theoretical and experimental results for S in NO-Ar collisions showed an O-end preference
for transitions to high final rotational states [2,5]. From a (classical) ball and stick model
one would expect the N-end to be preferred, as the torque that can be applied on the
N-end is larger. For collisions of the less homo-nuclear OH molecule with Ar, the simple
ball and stick model does apply. The H-end is preferred for high rotational states in both
experiments and theoretical results [46]. To our knowledge, there is no satisfactory answer
to the question why S for OH-Ar does behave as expected, while for NO-Ar it behaves
oppositely. Application of a newly developed quasi-quantum mechanical model [58] yields
reasonable values for the amplitude of S, but gives a sign for NO-Ar that is opposite to
experimental one. For OH-Ar it yields the proper sign, so its result can in both cases be
explained by the ball and stick model. The present quantum mechanical (HIBRIDON)
calculations on collisions of OH-Ar (this work) yield an opposite sign of S: a preference
for O-end collisions for transitions to high rotational states. Although this does not
correspond to the ball and stick model, it is consonant with NO-Ar results.

Assuming that OH-Ar measurements are correct (as they can easily be understood),
then HIBRIDON calculations yield the wrong sign for S. A sign error in the expressions
of Van Leuken [2] for collisions involving NO is excluded, as can be concluded from
the outcome of section 3.5.3. A feasible possibility is an error in the implementation of
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Figure 3.5: LIF excitation spectrum of A2Σ+(v = 0) ← X2Π 1

2

(v = 0) transition of
the hexapole state selected NO beam, taken under the same conditions at which S was
remeasured. The spectrum is somewhat saturated and an orientation field of E ≈ 16
kV/cm is applied that is expected to induce about 25% mixing with the lower component
(ǫ = 1) of the Λ-doublet [47]. The R21 and the Q11 originate from the hexapole selected
upper ǫ = -1 component of the j = 1

2
Λ-doublet. The R11/Q21 transition, that originates

from the lower component of the Λ-doublet is due to the mixing of the Λ-doublet, caused
by the orientation field. When the field is switched off, the center peak (R11/Q21 branch)
disappears, while the other peaks remain. In absence of saturation and at equal population
of both components of the Λ-doublet component, LIF intensities will be proportional to
Hönl-London factors giving a ratio of R21 : Q11 : R11/Q21 as 1 : 2 : 3. Clearly the spectrum
shows approximately 25% mixing in the lower Λ-doublet component. This means that
the NO molecules in the scattering region are in a low field seeking state. A Majorana
flop is excluded.
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HIBRIDON. In HIBRIDON it is assumed that one works in the A-BC CM system, while
the oriented wave functions are taken in respect to the BC-A CMS. This inconsistency
induces a switch of the sign of S. The possibility of implementation problems in the
adapted version of MOLSCAT could not be explored, as its originator Prof. J. Snijders
sadly passed away in 2003 and no documentation was left. It should however be noted
that the sign of S in Ref. [2] was carefully checked because of its discrepancy with the
early experimental results in the same paper.

When for NO-Ar the sign of quantum mechanical calculations has to switch as well,
all theoretical results are consonant with the ball and stick model. The experimental
results for NO-Ar have been checked and were found to be opposite to the ball and stick
model. Experimentally, it has been shown that molecules in the collision region are in the
low field seeking state. The negative end is assumed to correspond to the head (N-end)
and the positive end to the tail (O-end) of the NO molecule. Under this assumption, the
actually observed steric asymmetry S is given by:

S =
σ− − σ+

σ− + σ+
(3.61)

The cross sections σ− and σ+ respectively indicate the cases in which the negative and
the positive end of the molecule preferentially point towards the incoming atom. If the
sign of the NO (v = 0, X 2Π) dipole moment would be reversed, N+O− instead of N−O+,
the experimental sign of S would be in agreement with the ball and stick model.

The absolute value of the small electric dipole of NO(v = 0, X 2Π) has been measured
with high precision: 0.1574 ± 0.014 D by Hoy et.al [62], whose result is in reasonable
agreement with the ab initio value: 0.1732 D [48]. Although the absolute value of the NO
dipole moment is well known, even the highest precision experiments cannot determine the
sign of the NO dipole moment, i.e. N−O+ or N+O− [63]. In all past experiments [76–78],
the assumed sign of the NO (v = 0, X 2Π) dipole is based on the outcome of large series
of ab initio calculations that all reported N−O+ [48–53]. Taking into account recent
experiments by Matsiev and coworkers [64] and predictions by Drabbels and Wodtke [63],
a flip of the sign of the dipole moment seems not to be feasible.

Except for the sign of S, there is a good quantitative agreement regarding the am-
plitude of S between NO-Ar collision experiments and their theory. Thus the possibility
that the CEPA and CCSD(T) PES’s are not accurate enough, can be excluded. Besides
this, the observed excitation spectrum of the bound Ar-NO (v = 0, X 2Π) Van der Waals
complex has been found to agree very well with its theoretical prediction based on the
CEPA and on the CCSD(T) PES’s [79]. This does not exclude that the labels for the N
and the O-end in the PESs might be wrong. However, it is very unlikely to assume that
the heavier O-end extends further from the center-of-mass than the N-end.

A very unlikely option is that van Beek et al. made an experimental error and that
also their previous theoretical calculations carry the wrong sign for S [46]. In this case
both NO-Ar and OH-Ar behave oppositely to the ball and stick model. The previous
theoretical calculations [1,2] for NO-Ar and the present calculated values of Table 3.1 for
OH-Ar are found to agree with experiments.

The last option is that only the present HIBRIDON calculations (as listed in Table 3.1)
are erroneous, due to errors outside the actual program (e.g. input parameters). Previous
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calculations for both NO-Ar and OH-Ar could not carry these errors, which would explain
the agreement between the theoretical and experimental sign for both cases. This cannot
explain the opposite behavior of S for NO-Ar and OH-Ar, where OH-Ar does and NO-Ar
does not behave as expected from a ball and stick model. Although this last option can
never be excluded completely, no errors could be found.

Clearly, to render a satisfactory explanation for the sign issue concerning the steric
asymmetry and to resolve the disagreement between the experimental and predicted the-
oretical values for S, further work is required.
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Chapter 4

The sign of the NO dipole moment

4.1 Abstract

Intense femtosecond laser pulses are applied in an attempt to directly probe the sign of
the permanent dipole moment of a molecule. A hexapole selects NO molecules in a low
field seeking state (j = 1

2
,Ω = 1

2
, ǫ = −1), subsequently the molecules are oriented along

an electrostatic field of approximately 13 kV/cm. This field serves both for orientation
of the molecules and for extraction of ions. The linearly polarized fs laser light aligns
the oriented molecules along the laser polarization and induces Coulomb explosion. By
rotating the laser polarization slightly off from parallel to the orientation/extraction field,
the velocity map imaging technique allows one to spatially distinguish between the amount
of fragments moving along and moving opposite to the electric field after explosion. Other
than when resolving these amounts in time-of-flight, this technique is not limited to low
orientation field strengths. Strong orientation effects were observed and correspond to
the sign of the dipole moment of NO (v=0) being negative, such that N−O+. However,
the observed orientation of both CH3F and OCS opposes that expected from the signs of
their dipole moments. No definitive answer concerning the sign of the NO dipole moment
can be given at this point.

4.2 Introduction

The development of intense femtosecond lasers capable of generating electric fields com-
parable to the strength of the Coulomb interactions that hold together molecules has
motivated extensive fundamental research in the last twenty years. As a result, the way
that molecules ionize and dissociate in intense laser fields is now well understood [80].
Studies of the interaction of atoms and molecules with intense laser fields have led to
important spin-offs, such as the development of coherent light sources in the extreme
ultra-violet part (XUV) part of the spectrum by means of the process of high harmonic
generation [81]. In the last two years a new trend can be witnessed in molecular physics
research using intense laser fields, where this field is beginning to make contributions to
the determination of molecular structure [82,83], and molecular wave functions [84]. Here
we present a study where recently acquired understanding concerning the alignment and
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orientation of molecules in strong laser and DC electric fields is used to determine the
sign of the permanent dipole moment in the ground electronic state. Our studies include
measurements for the Nitric Oxide (NO) molecule, where the sign of the permanent dipole
moment has been the subject of recent debates [45].

As reported by Townes and Schawlow [30], the sign of a permanent dipole moment can
be experimentally obtained via the isotopic dependence of magnetic susceptibility factors.
However, application of this technique led to the determination of a dipole moment of N2O
that opposed the theoretically calculated sign [85], thus shedding doubt on this approach
as a secure method to determine the sign of a molecular dipole moment 1. We propose
the use of hexapole state selection in combination with Coulomb explosion imaging as a
new method for the determination of the sign of permanent dipole moments.

As a result of the first-order Stark effect, a hexapole geometry (consisting of six rods
that are held at alternating DC voltages) focusses molecules in low-field seeking states.
Molecules in high-field seeking states are de-focussed. For symmetric top molecules, the
first order Stark energy is given by [6,9]:

U (1) = −〈µel ·E〉 = −µelE
mΩ

j(j + 1)
, note that: 〈cos θ〉 =

mΩ

j(j + 1)
. (4.1)

Here the quantum numbers m and Ω are the projections of the total angular momentum
j onto a space fixed z axis (defined along the DC field direction E) and onto a molecule
fixed axis (defined along the permanent dipole moment µel), respectively. Molecules with
mΩ > 0 are in high-field seeking states and are pulled towards the hexapole rods: their
potential energy decreases with the electric field strength E. Molecules in low-field seeking
states - i.e. with mΩ < 0 - are pushed towards the (low field) center of the hexapole and
are focussed. Low field seeking molecules orient preferentially with their permanent dipole
moment (pointing from the negative to the positive charge) aligned anti-parallel to the
applied DC electric field, while molecules in high-field seeking states orient preferentially
with their permanent dipole aligned parallel to the DC field.

For example, in the case of NO, the two components of the j = 1
2

Λ-doublet are a
high- and a low-field seeking state, that respectively align parallel and anti-parallel to an
applied DC field. The wave function of a symmetric top alike molecule is given by [13]:

Ψj,m,Ω =

√

2j + 1

8π2
D∗ j

m,Ω(φ, θ, χ). (4.2)

After substitution of j = 1
2

and integration over the - for reasons of symmetry - redundant
Euler angles φ and χ, the square of the wave function immediately provides the orientation
probability distribution:

W (θ) = |Ψj,m,Ω|2 = |dj
m,Ω(θ)|2. (4.3)

1Jalink et al. [86] performed a crossed beam experiment and obtained results in agreement with the
theoretically calculated sign of the dipole moment of N2O. They crossed the beam of oriented N2O
molecules with an effusive Ba beam and detected the BaO∗ yield as a function of N2O orientation.
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Figure 4.1: The probability distribution W (cos θ) of ground state NO molecules in a high
uniform electric field E. The angle θ gives the angle between µel and E. The continuous
line indicates the distribution for high field seeking molecules with j = 1
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For respectively the low and high field seeking states it follows that:

W (θ) = sin2 θ

2
for j =

1

2
,m = ±1

2
,Ω = ∓1

2

W (θ) = cos2 θ

2
for j =

1

2
,m = ±1

2
,Ω = ±1

2
(4.4)

These distributions - for both low field and high field seeking molecules - are plotted
versus cos θ in Fig. 4.1. The two components of the Λ-doublet orient oppositely in a
high electric field. If both components of the Λ-doublet are equally populated, no net
orientation is present.

Orientation of the permanent dipole moment of high/low-field seeking states parallel/anti-
parallel to a DC field is accompanied by orientation of the molecular frame. This is ex-
ploited in collision studies in the gas phase and on surfaces that target the observation of
steric effects [5, 10]. In inelastic collisions the orientation dependence of the (final state
dependent) collision cross section σ is defined as:

S =
σHead − σTail

σHead + σTail
. (4.5)

In NO, a collision onto the N-end corresponds to a ”Head” collision, whereas a ”Tail”
collision means that the NO is preferentially oriented with its O-end towards the incoming
collision partner. In He-NO and Ar-NO rotationally inelastic collisions, experimental and
theoretical values of S correspond reasonably well, but their sign is opposite 2. If the dipole
moment moment of NO would be opposite to the ab initio value - i.e. corresponding to

2except for Ar-NO calculations in Ref. [2]
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Figure 4.2: Schematic representation of the Amolf orientation experiment. Molecules are
oriented in the 13 kV electric field E. The laser polarization is slightly off from vertical
to be able to distinguish between ions that moved upwards or downwards after explosion.
The laser beam points out of the paper.

N+O− instead of N−O+ - the discrepancy between then the sign of the theoretical and
experimental values of S would vanish [45, 87]. While the absolute value of the electric
dipole of NO(v = 0, X 2Π) has been measured [62] with high precision (µel = 0.1574±0.014
D), even the highest precision experiments have been unable to determine the sign of the
NO dipole moment [63], which has predicted by ab initio calculations to be negative
[48–50,53], corresponding to a configuration N−O+.

Friedrich and Herschbach [88] have analyzed the steric properties of polar molecules
interacting with the combination of a DC electric field and a strong laser field that induces
an adiabatic alignment by interacting with the anisotropic polarizability ∆α = α|| − α⊥
[89]. They have shown that for moderate strengths of the DC electric field (ω = µelE/B ≪
1, where B is the rotational constant of the molecule) and large strengths of the laser field
(∆ω = ∆α IL/B ≫ 1) both molecules in low-field and high-field seeking states orient
themselves with their permanent dipole moment parallel to the direction of the field,
hence reversing in the case of the low-field seeking states the orientation that occurs when
only a DC electric field is present. Conversely, if the interaction with the laser pulse is
impulsive (τ < 0.01− 0.02 1

2Bc
[90], no reversal of the orientation is anticipated during the

laser pulse.

4.3 Experiment and discussion

In the experiment, a mixture of 16 % NO in Ar (room temperature stagnation pressure 3
bar) was expanded into a vacuum chamber using a pulsed nozzle (General Valve, 25 Hz).
After passing through a ⊘ = 4 mm collimator, the beam entered a hexapole state selector
positioned 40 cm from the nozzle. The 1 m long hexapole [10] focussed NO molecules
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Figure 4.3: Schematic representation of the ion optics used in the Coulomb explosion
experiment. The hexapole state selected molecules are oriented in the approximately 13
kV/cm extraction field between repeller and extractor. The time-of-flight (TOF) tube
points perpendicular to the molecular beam direction, its length is 40 cm.

in the low-field seeking component of the j = 1
2

Λ-doublet into a velocity map imaging
spectrometer [43], where the molecules were oriented in a 13 kV/cm DC electric field E

between the repeller and the extractor, see Fig. 4.3. The focussed output from a linearly-
polarized 1kHzz femtosecond laser (60 fs, I = 1 · 1015 W/m2) entered the experimental
chamber perpendicular to the NO beam axis, and was used to multiply ionize and fragment
the molecules. The laser polarization was turned 20o with respect to the DC electric field
axis (see Fig. 4.2), creating a situation where fragments with a recoil velocity away from
the imaging detector could be distinguished from fragments recoiling towards the imaging
detector. N2+ and O2+ fragments resulting from Coulomb explosion of NO were detected
on a position-sensitive detector consisting of a dual Microchannel (MCP) plate detector,
followed by a phosphorscreen and a CCD camera system. To achieve a high time-of-flight
resolution and distinguish between the N2+ and the O2+ fragments, a 12 ns, 1 kV pulse
(Kentech SPSV) was applied to the back of the MCP detector, while -600 V DC was
applied to the front of the MCP detector.

Representative images for the Coulomb explosion of oriented NO molecules with de-
tection of N2+ ions and O2+ ions are shown in Figs. 4.4 and 4.5, respectively. To allow
for a quantitative interpretation of the data, the integral of the images along the y-axis
is plotted below the two-dimensional images. In both figures, the left image shows the
fragment velocity distribution without applying any voltage to the hexapole. In this case
the experiment contains equal contributions from both the high-field and low-field seeking
component of the j=1

2
Λ-doublet, and the image looks symmetric In the right images, a

voltage is applied to the hexapole that focusses the low-field seeking state into the spec-
trometer, while de-focussing the high-field seeking state. In this case an increase in the
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Figure 4.4: Ion images for the Coulomb explosion of oriented NO, where N2+ ions were
detected using the geometry shown in Fig. 4.2; the left part of the image is due to
fragments that recoil towards the imaging detector.
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Figure 4.5: Ion images for the Coulomb explosion of oriented NO, where O2+ ions were
detected using the geometry shown in Fig. 4.2; the left part of the image is due to
fragments that recoil towards the imaging detector.
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ion yield is observed and the images become strongly asymmetric.

From the figures it can be concluded that the N2+ fragments of the state-selected
NO molecules preferentially recoil in the direction of the detector (i.e. along the DC
electric field) while the O2+ ions preferentially recoil away from the detector. The laser
polarization in Figs. 4.4 and 4.5 is +20o, as defined in Fig. 4.2. The intensity on the
right side of the images indicates the amount of fragments that recoil towards the imaging
detector, while the left spot shows the ions from atoms that recoil towards the imaging
detector.

Assuming that only impulsive alignment is present and that the orientation of the
NO molecules does not change due to the (60 fs) laser pulse and the explosion process,
the conclusion of the current experiment is easily drawn. In the images, the laser beam
points from right to left, while the NO beam is oriented from top to bottom. The laser
polarization in Figs. 4.4 and 4.5 is +20o, as defined in Fig. 4.2. The intensity on the right
side of the images indicates the amount of fragments that originally pointed downwards,
while the left spot shows the ions from atoms that originally pointed upwards. From the
figures one observes that for N2+ detection the left spot on the images dominates, while
for detection of O2+ ions, the right spot is strongest. The N-end of the state selected
NO molecules preferentially points upwards (towards the extractor, being the negative
electrode), while the O-end preferentially orients downwards (towards the repeller, being
the positive electrode). As the NO is in a low field seeking state, the dipole moment (for
v = 0) is such that N is negative and O is positive (N−O+).

However, if we assume, following Friedrich and Herschbach [88] that molecules in
low-field seeking states reverse their orientation as a result of adiabatic alignment in a
strong laser field, then we conclude that prior to the laser excitation the NO molecule
was oriented with its O atom pointing towards the detector, and hence, that the dipole
moment of NO results from a charge distribution N+O− in the molecule, opposing the
results from ab initio calculations [48–50,53]. In this case one would also see orientation
with the hexapole off. The orientation can be enhanced also in this case as the molecular
beam with the hexapole on is much colder than with the hexapole off. The rotational
constant of NO is 1.6 cm−1, which leads to 1

2Bc
= 10ps. Adiabatic alignment is expected

to occur for laser pulses that are longer than this time. In our case, with 60 fs laser pulses,
no adiabatic alignment in expected.

In order to gain confidence in the ability of Coulomb explosion imaging for the determi-
nation of the direction of permanent dipole moments, further experiments were performed
using CH3F and OCS. The former has a permanent dipole where the F-side is negatively
charged. Measurements detecting F 2+ and H+ ions revealed clear evidence for preferen-
tial recoil of the H+ ions towards the detector (i.e. along the DC electric field direction)
and of the F 2+ ions away from the detector. Given the fact that low-field seeking states of
CH3F orient in a DC electric field with the F-atom pointing in the direction of the field.
This results lends support to the predictions of Friedrich and Herschbach [88]. Similarly,
in the case of OCS (which has its permanent dipole moment pointing towards the S atom),
detected S2+ ions displayed a preferential recoil towards the detector (i.e. along the DC
electric field direction), while detected O2+ displayed a preferential recoil away from the
detector.

CH3F has a rotational constant of [30] B = 0.85 cm−1, that for OCS [91] is B = 0.20
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cm−1. This leads for 1
2Bc

to 590 and 2500 fs, respectively, which is much more than the
laser pulse duration. One would assume only impulsive alignment to be present for these
molecules. Also the adiabatic orientation effects as described by Friedrich et al. [88] are
not likely to be present.

At this point no final conclusion concerning the NO dipole moment can be drawn. In
the near future, calculations will be performed to investigate the possibility of ”wrong
way” orientation induced by the fs detection laser.



Chapter 5

He-NO Differential cross sections

5.1 Abstract

The first measurements of differential inelastic collision cross sections of fully state-selected
NO (j = 1

2
, Ω = 1

2
, ǫ = −1) with He are presented. Full state selection is achieved by

a 2 m long hexapole, which allows for a systematic study of the effect of parity con-
servation and breaking on the differential cross section. The collisionally excited NO
molecules are detected using a resonant (1+1’) REMPI ionization scheme in combination
with the velocity-mapped, ion-imaging technique. The current experimental configura-
tion minimizes the contribution of non-colliding NO molecules in other rotational states
j,Ω,ǫ - that contaminates images - and allows for study of the collision process at an
unprecedented level of detail. A simple method to correct ion images for collision-induced
alignment is presented as well and its performance is demonstrated. The present results
show a significant difference between differential cross sections for scattering into the up-
per and lower component of the Λ-doublet of NO. This result cannot be due to the energy
splitting between these components.

5.2 Introduction

Detailed knowledge of rotationally inelastic collisions is of great importance in under-
standing energy transfer between molecules and atoms. The study of collisions of rare
gases with (open shell) NO molecules has been used in the past to better characterize
inelastic collisions and reactions. In the last decades much work has been reported on
this subject. Early work on He-NO and Ar-NO collisions [92] resulted in integral inelastic
cross sections and showed that these exhibit an oscillatory structure as a function of the
final rotational state. Large anisotropy effects in the Ar-NO and He-NO potential were
found by De Lange et al. [5, 6, 16]. In their experiments NO molecules were oriented,
after which the integral state-to-state collision cross section was determined using Laser
Induced Fluorescence (LIF). Typically, LIF provides only integral cross sections, while dif-
ferential cross sections are nowadays usually obtained using ion-imaging techniques. Suits
et al. [93] were the first to apply the latter technique to obtain differential cross sections for
collisions of Ar with NO. The introduction of this technique triggered new research, espe-
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cially after Eppink and Parker [43] improved the achievable resolution considerably with
the implementation of electrostatic lenses. The velocity-mapped ion-imaging technique
is now commonly used in the field of molecular dynamics [3, 4, 28, 39, 94–98]. Differential
cross sections for inelastic collisions can also be measured using a movable detector [99],
but this technique is more time consuming and experimentally difficult. The resolution
depends on the scattering angle and only the scattering angle of the molecule in the labo-
ratory frame can be obtained. Velocity-mapped ion-imaging provides the velocity vector
of the scattered molecules (both its absolute value and the scattering angle).

Potential Energy Surfaces (PESs) govern chemical reactions. There is however no
method to measure them directly, although some attempts were made to directly cal-
culate potential energy surfaces from measured differential cross sections [100, 101]. In
practice, theoreticians calculate PESs for a certain system, use the PESs to calculate
differential cross sections (DCSs) and then compare the DCSs to experimental values as
a test. The first measurement of inelastic differential cross sections for He-NO collisions
was carried out by Wesley et al. [102] and compared to scattering calculations based on
the Yang and Alexander CEPA PESs [103]. The measurements showed in all cases more
forward scattering than the calculations. Also Kohguchi et al. [104] reported discrepan-
cies between theory and experiment for Ar-NO differential cross sections. Elioff et al. [97]
repeated these measurements for spin-orbit changing collisions and found a better cor-
respondence to theory for the ratio between forward- and backward-scattered molecules
than in Kohguchi’s work.

The experiment described in this work is the first scattering experiment in which
differential cross sections for scattering from a single Λ-doublet state are obtained. The
molecules are prepared in a single quantum state before the collision and the detection
of the scattered molecules is also fully state selective. This experiment provides the first
opportunity to take a close look at the effect of parity breaking and parity conservation
on the differential cross section. A hexapole state selector [2,105] is used to select the NO
molecules in the low field seeking upper component of the Λ-doublet with symmetry index
ǫ = −1 (f). It works as a positive lens for molecules in the low field seeking component,
while it diverges molecules in the high field seeking lower component of the Λ-doublet
with ǫ = 1.

All previous crossed-beam ion-imaging work relies on adiabatic expansion alone for
the initial state preparation. Besides resolving the Λ-doublet of the NO molecules in the
beam, hexapole state selection suppresses the percentage of incoming molecules in higher
rotational states (j > 1/2) into the scattering center. These molecules are less deflected
by the hexapole and are not focussed into the scattering region, but undergo (passive)
divergence over the length of the hexapole. The hexapole selected beam of molecules
allows for measurements of differential cross sections for low final rotational states that
were previously unmeasurable due to the presence of molecules in these rotational states
in the beam, that obscured the forward scattered intensity.

Collision-induced alignment has been shown to influence ion images [106] and thus
the values of the differential cross sections that are extracted from these images. Wade
et al. [98] used vertical and horizontal laser polarization to determine the NO alignment
after collision and used the alignment information to correct the differential cross sections.
In this work, a simple, yet rigorous, method to cope with collision-induced alignment is
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presented. The conservation of the projection ma of the total angular momentum on the
kinematic apse is exploited for alignment correction. Apse quantization was proposed and
demonstrated to be a feasible approximation by Khare et al. [107]. Later on, Meyer et al.
showed that the apse approximation yields good quantitative results for (among others)
He-NO collisions [108] and Ne-NO collisions [109].

5.3 Experimental

In order to explore Λ-state selected differential cross sections, a previously used crossed-
beam apparatus [2, 5, 6, 47] has been modified. The existing LIF detection system is
replaced by newly designed ion optics for velocity-mapped ion-imaging. A XeCl excimer
pumped dye laser system (Lambda Physik EMG 201 / FL 3002) is used for detection. The
dye laser operates with Coumarin 47 dye and is equipped with a frequency doubling unit
to generate tunable light around λ ≈ 226 nm (output ≤ 1.5 mJ/pulse). The excimer laser
generates around 90 mJ of λ = 308-nm light of which approximately 10 % is separated
using a small mirror in front of the dye laser and is used in the ionization step of the 1+1’
Resonance Enhanced Multi-Photon Ionization (REMPI) process [8]. As the excimer beam
is rather divergent, a telescope consisting of an f = 100-mm and an f = −50-mm lens
is placed immediately after the mirror that reflects the 10 %. The focus of this beam is
made to coincide with the scattering center using an f = 300-mm lens. The λ ≈ 226-nm
laser beam is not focussed, but guided through an iris with a diameter of about 1 mm.
The excitation and ionization beams are crossed at 90o to get a well defined ionization
volume, estimated to be 1 mm3. When the tunable laser light is blocked, no signal can
be observed, meaning that non-resonant ionization of NO in the ground state does not
occur. When the λ = 308-nm ionization laser beam is blocked, the signal is typically less
than 10% of that when both laser beams are on. As there is competition between (1+1)
and (1+1’) REMPI, the contribution of (1+1) REMPI to the signal is expected to be
suppressed even more than 10 %.

The main advantages of using (1+1’) REMPI in the crossed laser configuration are
that it generates a well defined and rather isotropic detection volume and that the 308-nm
light is less likely to ionize background molecules in the vacuum chamber than the 226-nm
light. The small isotropic volume simplifies the extraction of differential cross sections
from ion-images and reduces distortion of the images due to ionization near the edges
of the electrostatic lenses. Using 308-nm light for ionization, the 226-nm light intensity
can be reduced, which decreases the noise level. For most background gas molecules the
308-nm photon is below the ionization threshold. Using (1+1’) REMPI it is possible to
overcome saturation in the excitation step, whereas the ionization step is saturated.

A schematic drawing of the experimental setup is shown in Fig. 5.1. The primary
beam consists of 16% NO in Ar, the secondary beam of pure He. Both beams are produced
using General Valves, pulsed at a frequency of 10 Hz. The NO in the primary beam is
rotationally cold due to adiabatic expansion, i.e. most of the NO molecules are in the
lowest rotational state with angular momentum quantum number j = 1

2
. The beam passes

two skimmers (⊘ = 1 mm and ⊘ = 0.7 mm) that are situated 3 cm and 8 cm from the
pulsed nozzle opening, respectively, before it enters the hexapole. The 2 m long hexapole
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Figure 5.1: Schematic drawing of the crossed-beam ion-imaging setup. The Time-Of-
Flight tube is perpendicular to the plane defined by the laser and molecular beams and
points upwards.
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Figure 5.2: Schematic drawing of the ion optics. The crossing point of the molecular
and laser beams is indicated by a small circle. The TOF tube is placed perpendicularly
(pointing upwards) to the plane defined by the laser and molecular beams.

focusses molecules in the low field seeking (ǫ = −1, f) upper component of the lambda
doublet into the detection/collision region [105]. In the collision region, the NO beam is
crossed at 90o with a He beam. The He nozzle is positioned 8.5 cm from the scattering
center, the beam of He atoms is collimated by a (⊘ = 1.9 mm) skimmer, positioned 1.5
cm from the nozzle. During the experiments (both beams on) the ion gauge pressure
reading in the collision chamber is approximately 1 · 10−6 mbar.

Because of hexapole focussing, the NO beam is very pure. Only the molecules in
the j = 1

2
, Ω = 1

2
, ǫ = −1 state are focussed. The (1+1’) REMPI signal difference

(hexapole gain) when tuning the dye to the focussed ground state between ”hexapole
on” and ”hexapole off” is approximately a factor of 70. The contribution of the other
component of the Λ-doublet is negligible as it is diverged by the hexapole [5]. The amount
of molecules in other quantum states is substantially less than 1%. Switching on the He
beam does not weaken the ground state signal significantly, from which it can be concluded
that less than 2% of the NO molecules collide. The contribution of double collisions can
thus be ignored.

The ion optics and Time-Of-Flight (TOF) tube are placed perpendicularly to the
drawing plane of Fig. 5.1 and a schematic drawing is given in Fig. 5.2. The distance
between the repeller and extractor plates is 20 mm and the length of the TOF tube
amounts to 550 mm. The TOF tube is at ground, the ”back” of the MCP detector
(facing the phosphor screen) is at 950 V while the ”front” (facing the grid) is gated to
a negative voltage (-950 V). A grid (transmission of 90 %) is positioned just before the
MCPs. This grid prevents ions from being pulled towards the center of the detector
when the front voltage is switched to -950 V. Simulations show that without the grid,
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Figure 5.3: The left panel shows an ion image of two ”beam spots”. The top left spot
is from the 16 % NO beam in Ar beam (593 m/s), while the lower spot is due to the 1
% NO in He beam velocity (1710 m/s). The camera is positioned such that the up-down
direction of the ion-images coincides with the axis of the He beam, the left-right direction
coincides with that of the NO beam. The right panel shows the corresponding Newton
diagram. The vector u′ indicates scattering with a velocity u′ in the center-of-mass frame
under an angle θ. The corresponding kinematic apse direction is indicated by â. Note
that the u′ distribution after collision is (cylindrically) symmetric around the relative
velocity vrel. The dashed square indicates the frame of the recorded ion images that
remains unaltered for all images in Figs. 5.4, 5.5 and 5.6.

the resolution decreases and that the molecular velocity component (before ionization)
perpendicular to the TOF is no longer linear with the position of impact on the detector.
This problem cannot be solved by putting the front of the MCPs at ground and gate the
back at +2 kV. In that case the NO+ ions would have less kinetic energy (600 V instead
of 1.6 kV) when they hit the detector, yielding weak signals. Low repeller voltages are
essential to facilitate the resolution required for detection of the small changes in NO
velocity due to collisions with the light He atoms. Disturbances of the images because of
the inhomogeneous field in the region near the detector are avoided using the grid in front
of the detector. The ions see two parallel plates and are accelerated perpendicularly to
the detector. The grid shows up in some images, but the effect on the differential cross
sections is negligible.

To test and optimize the setup, about 1% NO was added to the He beam. Optimal
repeller and extractor voltages are determined with NO in both the primary and in the
secondary beam. The dye laser (226 nm) is tuned to the electronic transition starting
from the j = 1

2
, Ω = 1

2
, ǫ = −1 state. Repeller and extractor voltages were tuned to the

value at which the beam spots were as small as possible [39] and at which the primary
(NO) and secondary (He) beam were on the horizontal and vertical axis, respectively. In
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Fig. 5.3 the resulting image is shown that was recorded after optimization of the voltages.
Typical values used throughout this work are 750 V for the repeller and 500 V for the
extractor. Lower values of 500 V and 330 V can be applied successfully as well. The
image in Fig. 5.3 provides information on the properties of the molecular beams. The
resolution of the setup is determined from the (primary) NO-beam. Its velocity has been
calculated and measured before [5, 16]. Using the value of 593 m/s, a resolution G of 7.7
m/s per pixel is found. The secondary beam is found to be a little slower than calculated
for pure He (1710 m/s instead of 1760 m/s). This is assumed to be due to the 1% of NO
that was added to facilitate detection. The FWHMs of the velocity distribution of the
(primary) NO beam and the (secondary) He beam are estimated to be respectively 50
and 100 m/s (along the beam velocity). The velocity spread in the He beam is probably
underestimated because only the 1 % NO seeded in He is actually detected and not the
lighter He itself.

Knowing the velocities of the NO and the He beams, a Newton diagram is drawn
to yield insight in the collision geometry (right panel of Fig. 5.3). The centers of the
beam spots in the left panel of Fig. 5.3 correspond to the vNO and vHe vectors in the
right panel. For laboratory velocities the symbol ”v” will be used, while ”u” indicates a
velocity in the center-of-mass frame. The u′ distribution after collision is (cylindrically)
symmetric around the relative velocity vrel. This scattering (Newton) sphere of the NO
molecules is projected on the detector. For reasons of readability the scattering sphere for
He is not drawn in the figure. The dashed square in the right panel of Fig. 5.3 denotes
the frame of the ion images, as used for all images in Figs. 5.4, 5.5 and 5.6.

5.4 Extraction of differential cross sections

The detection probability of a scattered molecule depends on several factors. This makes
it impossible to directly use the intensity on an outer ring of an ion image to determine
the differential cross section. Asymmetries in the images can occur due to collision-
induced rotational alignment, due to different residence times for slow and fast molecules
within the detection volume and due to the Doppler shifts and laser alignment. The
beam velocity distributions and instrumental factors cause blurring of the images. In this
section, a method is given to correct for the most important of these distorting factors in
order to extract reliable differential cross sections from the ion images in a straightforward
procedure.

Currently no corrections for imperfect spatial positioning of the laser and for Doppler
shift are applied to our data as the effect of these factors was found to be small. The center-
of-mass velocity distribution of the NO molecules after collision (u′) is small compared
to the bandwidth of the laser (0.5 cm−1). Hardly any change of the asymmetry of the
images was observed when slightly detuning the frequency of the dye laser.

The blurring of the ion images due to the velocity spread in the beams as well as other
instrumental factors is approximated by a single Gaussian blurring function. This function
is fitted empirically to a computer generated image in order to match the sharpness of
the experimental images.

The detection region is defined by four crossing beams: the NO beam, the He beam and
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the two laser beams, each with a diameter of about one millimeter. It is an experimental
challenge to overlap all four beams in time as well as in space. The resulting detection
volume is small which restricts the maximally achievable signal. The advantages of this
geometry, however, are that the ionization volume is nearly spherical and that due to the
small detection volume relative to the size of the ion lenses edge effects from the latter
are minimized. Because of the nearly spherical shape of the detection volume we make
the approximation that the molecular detection probability T (x, y) due to the molecule’s
residence time in the detection volume is inversely proportional to the absolute value of
the velocity in the laboratory frame. The coordinates (x, y) indicate the position on the
detector in pixels and relate directly to the x and y components of the velocity in the
center-of-mass (u′x and u′y) frame via the resolution G (x = u′x/G and y = u′y/G) with
unit m/s/pixel.

T (x, y) ≡ 1

|v′|
/〈 1

|v′|
〉

(5.1)

Normalization of this T (x, y) is obtained by dividing by the average over all pixels
(〈1/|v′|〉). Appendix 5.8 shows the procedure to calculate T (x, y). If the detection volume
would be non-isotropic or not centered at the beam crossing, T (x, y) will also depend on
the (laboratory) scattering-angle. For example: molecules scattered along a single laser
(LIF or 1+1 REMPI) [16] have a longer pathway through the detection volume than
those scattered in another direction. If this were the case, an extra correction would be
required.

Collision-induced alignment can also cause NO molecules to be non-uniformly de-
tected, creating a further distortion of the ion image, which has to be corrected for. The
alignment dependent detection probability is given by:

Sa(j′ → j∗) ≡
∑

m∗

∣

∣

∣

∣

∣

〈

Ψ∗(j∗,m∗)
∣

∣

∣
µ̂ · ǫ̂

∣

∣

∣
R(βp)Ψ′

a(j′,m′
a)
〉

∣

∣

∣

∣

∣

2

(5.2)

The wave functions are referred to as Ψ′
a(j′,m′

a) and Ψ∗(j∗,m∗), denoting respectively that
of a rotational state after collision and that after laser excitation to the 2Σ state. Note that
m∗ is defined along the polarization ǫ̂ of the linearly polarized laser (laser frame). The
wave function in the apse system Ψ′

a(j′,m′
a) (m′

a is defined along the kinematic apse) is
transformed into the laser frame by the Euler angle rotation operator R(βp) ≡ R(0, βp, 0).
The angle between the laser polarization and the kinematic apse is given by βp. Since
Sa(j′ → j∗) depends on βp, it is not an ordinary Hönl-London factor. The scattered
wave function can carry alignment, while the Hönl-London factors assume an isotropic
m distribution. Until now no simple method to calculate Sa(j′ → j∗) for each position
(x, y) on the detector was available. Appendix 5.9 provides a simple but widely applicable
correction treatment based on the approximate conservation of the projection ma of the
total angular momentum j on the kinematic apse (m′

a = ma). It results in a value of
Sa(j′ → j∗) for every position on the detector. Khare [107] and Meyer [108] showed that
ma conservation is an appropriate assumption. S(j′ → j∗) is evaluated for every pixel
with coordinate (x, y) on the detector.

In the case of full saturation of the excitation step, the detection probability no longer
depends on the scattering angle. Correction of the ion images with only the velocity
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correction should in this case yield images that are symmetric in the relative velocity. If
partial saturation occurs, the dependence of the detection probability on βp becomes less.

Ssat(j
′ → j∗) = S0 + Sa(j′ → j∗) (5.3)

The parameter S0 indicates the saturation: when S0 ≪ Sa(j′ → j∗), there is no saturation,
when S0 ≫ Sa(j′ → j∗) there is full saturation and the detection probability no longer
depends on the scattering angle. To get an idea of the effect of the saturation correction,
S0 can be expressed in units of 〈Sa(j′ → j∗)〉, the value of Sa(j′ → j∗) averaged over all
pixels.

In order to actually extract differential cross sections from the ion images, first the
experimental image Iex(x, y) is corrected for the laboratory velocity and alignment via
Eqs. 5.1 and 5.2. For more information on the correction, see Appendix 5.8 and 5.9. The
corrected image is given by:

Iex,c(x, y) =
Iex(x, y)

Sa(j′ → j∗) T (x, y)
. (5.4)

In the case of (partial) saturation, Sa(j′ → j∗) is replaced by Ssat(j
′ → j∗). The corrected

image is now reasonably symmetric (but still blurred) and the intensity on the rim of the
ion image already gives a good indication of the differential cross section. To obtain a
proper differential cross section (DCS) from the blurred two-dimensional velocity distri-
bution of the corrected image, a forward extraction method is applied. This method is
in the spirit of Lorenz et al. [94]. The intensity Rex(θ) on an about 6 pixels wide outer
ring of the corrected ion image Iex,c(x, y) is used as a ”trial DCS” (DCS0 = Rex(θ)) to
simulate an image. The blurring factor - that includes both the beam velocity distribu-
tion and instrumental blurring - is applied on the simulated image to make it as sharp as
the corrected experimental image Iex,c(x, y). The intensity on a broad outer ring of the
simulated image Rsim(θ) is compared to that of the same outer ring on the experimental
image (Rex(θ)), after which the DCS is adapted.

DCSi =
Rsim,i−1(θ)

Rex(θ)
DCSi−1 (5.5)

Note that Rsim,i−1 has been simulated using DCSi−1. The adapted trial DCS is used to
simulate an image that is compared with the experimental one. This step is repeated
several times (i = 1, 2, 3, . . .) until the simulated and experimental images are as similar
as possible. Two parameters have to be fitted during the optimization. The saturation
parameter S0 is chosen such that the asymmetry of the corrected experimental image
is minimized, while the Gaussian blurring parameter is selected to make the simulated
image as sharp as the experimental one.

5.5 Close-Coupling calculations of differential cross

sections

The calculations of the differential cross sections were done using a full quantum close-
coupling (CC) approach with two diabatic potentials (Vsum = 1

2
(A′′ + A′) and Vdif =
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Figure 5.4: Experimental and simulated ion images. The images in the top rows are
collected using the R21 branch (Ω′ = 1/2, ǫ′ = −1). The bottom rows show images
collected using the P11 branch (Ω′ = 1/2, ǫ′ = 1). The experimental images are raw
data, the simulated images are from the optimized extracted differential cross section and
incorporate, blurring, velocity correction T (x, y) and alignment correction Sa(j′ → j∗).
No saturation correction is applied: S0 = 0. The frames of all images are identical and
taken in accordance to the dashed square in the right panel of Fig. 5.3.

1
2
(A′′ − A′)) for the He-NO(X2Π) system taken from Ref. [56]. The contour plots of

the diabatic surfaces are shown in Ref. [6, 56]. Calculations of the steric dependence of
the inelastic total collision cross section using these surfaces yielded a reasonably good
agreement with experimental data [6].

The HIBRIDON suite of codes [59] was used for the scattering calculations. The
methodology of scattering of the structureless partner with an open shell diatomic was
described in detail before [6,45,66,69,104,109–111]. We refer the reader to these references
for details. The close-coupling calculations at a collision energy Ecol = 508.13 cm−1

employed all partial waves up to a total angular momentum quantum number Jmax =
101.5 and NO rotational levels up to j′ = 17.5. The reduced mass of the He-NO system
and the rotational constant of the NO molecule were taken as µ = 3.5314 a.m.u. and
B = 1.69611 cm−1, respectively.

The description of the NO diatomic can be done in a Hund’s case (a) coupling scheme.
This is due to the relatively large spin-orbit coupling resulting in 2Π1/2 (ground state spin-
orbit manifold F1) and 2Π3/2(F2). Each spin-orbit state is further split into Λ-doublet
components with symmetry index ǫ = 1 (e) and ǫ = −1 (f). Λ-doubling parameters, p
and q for NO are 1.172 · 10−2 and 6.7 · 10−4, respectively. For the spin-orbit Hamiltonian
A ∗ L̂Ŝ a spin-orbit constant of the NO molecule of A = 123.1393 cm−1 has been used.

The CC equations were propagated from R=3.7 a0 to 35 a0. From the CC calculations
we were able to determine integral and differential cross sections for state-to-state transi-
tions from the j = 0.5 initial state of NO, resolved for Λ-doublet and spin-orbit manifold
(F1 and F2). The integral cross sections from these calculations are used to normalize the
experimental results in this study.
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Figure 5.5: Experimental and simulated ion images. The images in the top rows are
collected using the Q11 + P21 branch (Ω′ = 1/2, ǫ′ = −1). The bottom rows show images
collected using the R11 + Q21 branch (Ω′ = 1/2, ǫ′ = 1). The experimental images are
raw data, the simulated images are adapted using blurring, velocity correction T (x, y)
and alignment correction Ssat(j

′ → j∗). Partial saturation was included to reproduce the
asymmetry: S0 ≈ 1.5〈Sa(j′ → j∗)〉 where 〈Sa(j′ → j∗)〉 is the mean value of the alignment
correction, averaged over all pixels. An ”unsaturated” image would show even stronger
asymmetry. The frames of all images are identical and taken in accordance to the dashed
square in the right panel of Fig. 5.3.

Figure 5.6: Experimental (raw) ion images for spin-orbit changing collisions. Simulated
images from the extraction of the differential cross section are not presented for these
branches, but correspond to the experimental images as well as in the case of spin-orbit
conserving collisions. The frames of all images are identical and taken in accordance to
the dashed square in the right panel of Fig. 5.3
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5.6 Results and discussion

A nearly complete set of ion images for inelastic He-NO collisions at a collision energy
of approximately 510 cm−1 is displayed in Figs. 5.4, 5.5 and 5.6. The raw experimental
images are are shown. In Figs. 5.4 and 5.5 the raw experimental images are compared
to simulated images from the extraction of differential cross sections, including the cor-
rections discussed in section 5.4. A few images are missing because these could not be
resolved spectroscopically. Table 5.1 lists the various spectroscopic branches of the A← X
electronic transition that are available to detect the ion images. The symmetry index ǫ
in Table 5.1 relates to the parity of a rotational state [18] as

p = (−1)j−ǫ/2. (5.6)

The symmetry index ǫ is −1 for the upper component (f) of the Λ-doublet and 1 for the
lower (e) component. Note that the parity of states within one branch alternates with
∆j = j′ − j. For example, final states with even ∆j from the R21 branch have the same
parity as those with odd ∆j in the P11 (and vice versa).

Taking a first look at the experimental images one notices that there is little contam-
ination of the images due to background signal. The He beam is switched from ”on” to
”off” after 100 laser shots. This procedure is repeated typically 20 times. The images with
the He beam ”off” are subtracted from those with the He beam ”on”. The excimer/dye
laser system and General Valves run at 10 Hz, consequently collecting an image takes ap-
proximately 7 minutes. Some of the highest rotational states (∆j > 10) however, required
twice the integration time.

The hexapole state selector eliminates all but one quantum state from the NO molecu-
lar beam. The product images show little contamination with scattering from other states
or with direct detection of uncooled molecules present in the NO beam. These conditions
lead to particularly crisp images. Only for scattering into the lower Λ-doublet component
of the lowest rotational state (j′ = 1/2, ǫ′ = 1) the ion image shows a strong distortion in
the forward direction due to some residual NO in this state in the molecular beam (see
Fig. 5.7). Because of this distortion it has not been used to extract a differential cross
section and is not plotted in Fig. 5.5. For scattering into all higher rotational states this
effect caused no problems.

The overall behavior of the images is as expected. For low rotational states, forward
scattering dominates, while images for high rotational states show mostly backward scat-
tering. In order to transfer more translational energy into rotation, collisions with reversed
momentum are preferred. The only exception to this behavior is the j′ = 12.5 image in
the R11 +Q21 branch that shows sideways scattering, while the images for j′ = 10.5 and
j′ = 11.5 only show backward scattering. The diameter of the projected scattering spheres
decreases with j′: the amount of translational energy after collision has to decrease if the
amount of rotational energy increases. The radii of the projected spheres correspond well
to this energy loss. This confirms the correctness of the velocity calibration. Images for
scattering into Ω

′
= 3/2 states (spin-orbit changing collisions) show more forward scatter-

ing than spin-orbit conserving collisions (Ω
′

= 1/2). This can be explained by the guess
that spin-orbit changing collisions are particularly sensitive to the attractive part of the
potential.
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Table 5.1: Branches used to collect ion images indicating which Ω′, ǫ′ states (after collision)
are probed. For each of the branches, images for several j′ (up to j′ = 12.5) are collected.

Branch Ω′ ǫ′

P11
1
2

1
R21

1
2

-1
P12

3
2

1
R22

3
2

-1
R11 + Q21

1
2

1
P21 + Q11

1
2

-1
R12 + Q22

3
2

1
P22 + Q12

3
2

-1

Figure 5.7: Ion image for j = 1
2
, ǫ = −1 → j′ = 1

2
, ǫ′ = 1 scattering (R11 + Q21 branch).

The black spot is due to background subtraction. This background signal is due to the
small amount of molecules that still resides in this state (the lower component of the Λ-
doublet) after the hexapole. This image was recorded under different imaging conditions.
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Figure 5.8: Newton diagram for He-NO collisions to illustrate the effect of alignment on
the detection probability. The vectors labelled with u′ indicate scattering with a velocity
in the center-of-mass frame under an angle θ. Remind that scattering is symmetric in
respect to the relative velocity. The kinematic apse orientations corresponding to the
drawn scattering vectors are indicated with â. A thin line is drawn perpendicular to â

in order to indicate the plane (perpendicular to the paper) in which the vector ∆j is
found. The propagation and polarization directions of the 226-nm laser are indicated in
the figure with klaser and ǫ̂.

The uncorrected images from single P and R branches are reasonably symmetric in
the relative velocity vector, while those for Q branches (combined with a P or R branch)
show significant asymmetry. In each case, the left side of the ion images from Q branches
shows less intensity than the right side (see Figs. 5.4, 5.5 and 5.6). The images have
been collected within a period of about three days, not in a particular order and the laser
bandwidth is relatively large compared to the differences in NO center-of-mass velocities.
This rules out Doppler effects as well as the spatial overlap of the lasers and the other
beams as a possible reason for the asymmetry stated above. Collision-induced rotational
alignment is the prime suspect for the effect. A qualitative classical explanation of this
effect is described here.

In Fig. 5.8 the vectors labelled u′ indicate scattering under an arbitrary angle θ. The
corresponding kinematic apse â is also drawn in the figure. The momentum component
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Figure 5.9: Differential cross sections for spin-orbit conserving (Ω′ = 1
2
) transitions, into

the lower component of the Λ-doublet (ǫ′ = 1). Experimental results are given for different
branches and compared to HIBRIDON calculations. The ion-images from which these
differential cross sections are derived are found in Figs. 5.4 and 5.5. Note that both
theory and experiment show sideways scattering for j′ = 12.5 (Ω′ = 1

2
, ǫ′ = 1) while one

would expect strong backward scattering for such a high rotational state. To transfer a
lot of translational energy into rotation, collisions with reversed momentum are usually
preferred.

that is transformed into rotation (∆p = p′ − p) points along the kinematic apse â,

â ≡ p′ − p

|p′ − p| (5.7)

where p and p′ denote the linear momenta before and after collision respectively. When
the collision is impulsive and takes place very rapidly, there is essentially no change in
the collision geometry during the time interval in which the intermolecular forces act.
The internuclear distance R between the scattering partners remains unchanged during
this interval. Conservation of total angular momentum yields a simple relation for the
transferred amount of rotational angular momentum [107,112]:

∆j = −∆(R× p) = −(R×∆p). (5.8)

It follows directly that ∆j ⊥ ∆p. In quantum mechanical terms this means that
ma = m′

a. For the repulsive He-NO collision system this is expected to be an excel-
lent approximation.
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Figure 5.10: Differential cross sections for Ω′ = 1
2
, ǫ′ = −1. Experimental results are

given for different branches and compared to HIBRIDON calculations. The ion-images
from which these differential cross sections are derived are found in Figs. 5.4 and 5.5.

To reach qualitative understanding of the alignment effects in the ion-images, we
assume for now that j′ ≈ ∆j. This is only correct for ∆j → ∞. A quantitative
treatment (at arbitrary j′) as used to correct the ion-images is found in Appendix 5.9.
For Q branch transitions, the transition dipole moment µ points parallel to the rotational
angular momentum vector (µ ‖ j′). The detection probability as a function of the angle
between j′ and the laser polarization ǫ̂ for a Q branch transition is given by [113]:

|µ̂ · ǫ̂|2 = |ĵ′ · ǫ̂|2. (5.9)

For a P or R branch transition µ points perpendicularly to j′, which leads to a reversed
dependence of the detection probability upon the angle between j′ and ǫ̂ [113]:

|µ̂ · ǫ̂|2 =
1

2
(1− |ĵ′ · ǫ̂|2). (5.10)

The laser light is polarized horizontally, bisecting the direction of the NO and He beams
(see Fig. 5.8). In this figure, a thin line is drawn perpendicularly to â in order to indicate
the plane (perpendicular to the paper) in which j′ is isotropically distributed. Note that
since j′ is isotropically distributed in that plane, 0 ≤ |ĵ′ · ǫ̂|2 ≤ 1

2
. It immediately follows

that the alignment dependence for detection via a Q-branch transition is stronger than
in the case of a P or R branch transition. In the left-scattered case in Fig. 5.8, ǫ̂ and j′

are nearly perpendicular resulting in a low intensity for a Q-branch transition and a high
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intensity for a P or a R branch transition. In the right side of the images, where ǫ̂ and j′

are have larger parallel components, this effect is the other way around.
The raw experimental ion images for P and R branches are already near-symmetric in

the relative velocity without correction (Figs. 5.4 and 5.6). This is because the detection
probability due to the velocity of the molecules after collision and that due to alignment
(Appendix 5.8 and 5.9) more-or-less cancel for detection via these branches. No saturation
correction has to be applied for these branches to reproduce the experimental ion images
with the simulated ones. The left side of the images corresponds to a larger laboratory
velocity and thus to a lower detection probability than the right side. This is of course
independent of the used spectroscopic branch. Roughly speaking, for P and R branch
transitions the detection probability on the left side of the images is larger than on the
right side, for Q branch transitions this effect is reversed. This makes ion images using a Q
branch transitions for excitation strongly asymmetric as the detection probabilities due to
alignment and due to the velocity of the molecules add, while when using P and R branch
transitions they nearly cancel. The asymmetry is weakened because each absorption line
in a Q branch coincides with one in a P or R branch, but the latter ones are generally
weaker. In order to reproduce experimental ion-images obtained using the P+Q and
R+Q branches, some saturation has been assumed. This is easily explained because these
(combined) branches are stronger than single P and R branches. In Appendix 5.9 (Fig.
5.15) it was already shown that a P branch at low rotational states shows slightly more
asymmetry than a R branch. This small effect is also seen in the experimental (and
simulated) results in Fig. 5.4, which supports exploiting ma conservation (along the apse)
for collision-induced alignment correction.

The differential cross sections that have been obtained from all ion-images are plotted
and compared to theory in Figs. 5.9, 5.10, 5.11 and 5.12. The theoretical results are
from new close coupling HIBRIDON [59] calculations on RCCSD(T) potential energy
surfaces [56]. Because the experiment does not provide total cross sections, experimental
results have been normalized on the integral cross section obtained from the current
HIBRIDON calculations

σj,Ω,ǫ→j′,Ω′,ǫ′ =

∫ π

0

DCSj,Ω,ǫ→j′,Ω′,ǫ′ sin(θ)dθ. (5.11)

For the final states that have been studied using two different branches, both experimen-
tal differential cross sections are plotted as this gives information on the correctness of
the extraction routine and the error in the measurements in general. Overall there is
good agreement between theory and experiment and between the experimental results of
different branches, indicating the high quality of the PESs and supporting the current
extraction method including the apse based alignment correction (see Section 5.4).

The substantial differences between theory and experiment as in Ref. [102] might be
explained by a combination of theoretical and experimental factors. As discussed by
De Lange et. al. [6], the anisotropy of the currently used RCCSD(T) potential energy
surface is stronger than that of the CEPA surface used in [102]. However, the observed
discrepancies in Ref. [102] cannot be fully contributed to theory [6]. Excellent state
selection and the correction for collision-induced alignment improves the reliability of the
current experimental differential cross sections compared to those in Ref. [102]. However,
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Figure 5.11: Differential cross sections for spin-orbit changing (Ω′ = 3
2
) transitions, into

the lower component of the Λ-doublet (ǫ′ = 1). Experimental results are given for different
both branches and compared to HIBRIDON calculations. The ion-images from which
these differential cross sections are derived are found in Fig. 5.6.
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Figure 5.12: Differential cross sections for Ω′ = 3
2
, ǫ′ = −1. Experimental results are

given for different branches and compared to HIBRIDON calculations. The ion-images
from which these differential cross sections are derived are found in Fig. 5.6.

the current differential cross sections cannot directly be compared to the experimental
results in Ref. [102] as the current results originate from the scattering out of the upper
component of the Λ-doublet. In the experiment in [102], both components are equally
present before collision.

Large differences are both observed and calculated between scattering into a j′, ǫ′ = −1
and a j′, ǫ′ = 1 state for both spin-orbit changing and spin-orbit conserving collisions.
Scattering into the ǫ′ = 1 component of the Λ-doublet favors larger scattering angles than
scattering into the ǫ′ = −1 component at the same j′. These differences have not been
observed before and this is the first experiment that enables such a study. Scattering
into the ǫ′ = 1 state (lower component of the Λ-doublet) appears to yield the same ion-
image (and a similar differential cross section) as scattering into the ǫ′ = −1 state (upper
component of the Λ-doublet) with one less quantum of rotational angular momentum
j′. The differential cross section for scattering into a j′ = ν, ǫ′ = 1 is similar to that of a
j′ = ν+1, ǫ′ = −1 final state. This effect cannot be explained by the small energy splitting
between the two components of the Λ-doublet, for Ω′ = 1/2 ranging from approximately
0.01 cm−1 for low to 0.1 cm−1 for high rotational states in this study. For Ω = 3/2
it ranges approximately from 4 · 10−5 cm−1 to 0.01 cm−1. This leaves only a quantum
mechanical effect to explain this observation, that will be addressed in Ref. [58].

Some differences between experiment and theory are seen for low rotational states.
Theoretical differential cross sections show rapid oscillations in the forward direction (close
to θ = 0) that are not seen in the experimental outcome. These oscillations are due
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to diffraction and the experimental resolution is too low to resolve these oscillations.
Besides this, it is consistently found - independent of spin-orbit changing or conserving
collisions - that the differential cross section for the first sideways scattered rotational state
is predicted by theory to be less forward scattered than the experiment shows. These
four differential cross sections are the only ones where a significant difference between
experiment and theory exists. A slight underestimation of the attractive part of the PESs
might cause this difference, but it cannot be fully excluded to be due to experimental
factors. The forward direction is suspected to cause some problems during extraction of
differential cross sections as the direction of the apse there is poorly defined. On the other
hand, if the apse model fails, one also expects this to happen for the lowest rotational
states, which is not the case. Except for these small differences, there is good agreement
between theory and experiment.

5.7 Concluding remarks

For the first time, quantum-state-resolved differential cross sections arising from single
parity states have been recorded. The differential cross sections are plotted in Figs. 5.9,
5.10, 5.11 and 5.12. A 2 meters long hexapole state selector was used to select the upper
component of the Λ-doublet of the lowest rotational state (j = 1/2,Ω = 1/2, ǫ = −1)
from a molecular NO beam expansion. The fully state-selected beam was crossed with
a Helium beam and velocity-mapped ion-imaging was applied to record ion-images. The
absence of molecules in other rotational states in the molecular beam due to hexapole
focussing leads to particularly crisp images.

The present work provides the first experimental evidence for differences in the differ-
ential cross section between parity-breaking and parity-conserving transitions. We find
that scattering into the ǫ′ = 1 component of the Λ-doublet favors larger scattering angles
than scattering into the ǫ′ = −1 component at the same j′. The differential cross sections
for scattering into the lower component of the Λ-doublet j = 1/2, ǫ = −1→ j′ = ν, ǫ = 1
is very similar to that of scattering into the upper component j = 1/2, ǫ = −1 → j′ =
ν + 1, ǫ = −1. These final states carry the same parity. The energy splitting between the
two components of the Λ-doublet is too small to explain this observation.

We exploit m conservation along the kinematic apse during collision to correct for
collision-induced alignment. A straight forward method to take this alignment into ac-
count is presented. The experimental results support this method. The distortion of
the ion-images is well reproduced and differential cross sections for scattering into the
same rotational state, extracted from different spectroscopic branches, correspond nearly
perfectly to each other.

The experimental differential cross sections correspond well to those calculated in
close coupling (HIBRIDON) calculations based on RCCSD(T) potential energy surfaces
(PESs) [114]. Together with a previous experiment where steric asymmetries for collisions
of He with (oriented) NO were measured [6], this forms a thorough test for the ground
electronic state PESs. The PESs are accurate in the energy range that is probed in these
experiments (Etr < 510 cm−1). However, a slight underestimation of forward scattering
for a few rotational states might be caused by underestimation of the attractive part of
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the PESs.

5.8 Appendix: velocity correction

It is assumed that the NO detection probability (T (x, y)) due to the molecular residence
time in the detection volume is inversely proportional to the absolute value of the velocity
in the laboratory frame. The coordinates (x, y) indicate the position position on the
detector in pixels and relate directly to the x and y components of the velocity in the
center-of-mass (u′x and u′y) frame via the resolution G (x = u′x/G and y = u′y/G).

T (x, y) ≡ 1

|v′|
/〈 1

|v′|
〉

(5.12)

Normalization is obtained by dividing with the average over all pixels (〈1/|v′|〉).
The velocity in the laboratory frame can be approximated for each pixel in the ion-

images, assuming an ideal velocity distribution in the beams. The velocity in the lab
frame follows as:

v′ = vcms + u′ (5.13)

The absolute value of the velocity in the center-of-mass frame |u′| follows from energy
conservation. It is dependent on the rotational state after collision j′. The components
u′x and u′y in x and y direction (along the NO and He velocity vector, respectively) are
defined by the position (x, y) on the detector and the resolution G. The component u′z
can now be specified as:

u′z =
√

|u′|2 − u′x 2 − u′y 2. (5.14)

For positions on the detector (x, y) where |u′|2−u′x 2−u′y 2 < 0 , we will use u′z = 0. The
center-of-mass velocity vcms is given by:

vcms = vNO +
mHe

mNO +mHe

(vHe − vNO) (5.15)

The laboratory velocity now follows as:

v′ =





vNO

0
0



+
mHe

mNO +mHe





−vNO

vHe

0



+







u′x
u′y

√

|u′|2 − u′x 2 − u′y 2






(5.16)

with an absolute value of:

|v′| =
[

(

vNO−
mHevNO

mNO +mHe

+u′x

)2

+
( mHevHe

mNO +mHe

+u′y

)2

+ |u′|2−u′x 2−u′y 2

] 1

2

(5.17)

Eq. 5.16 can be extended to correct for the Doppler shift, but because of the small
center-of-mass velocity differences of the scattered molecules this is not done here. As an
example, the detection probability factor for j′ = 4.5 as derived from Eq. 5.12 is plotted
in Fig. 5.13. From this figure it can be seen that for the current images, T (x, y) turns
out to be a factor of 2 larger in the top-right angle than in the bottom-left angle of the
images. This is a substantial effect that cannot be neglected in extracting differential
cross sections from ion-images.
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Figure 5.13: The laboratory velocity detection probability T (x, y), at each position on the
image (here for j′ = 4.5) is given by the intensity. Molecules with low laboratory velocity
remain in the detection volume for a longer time and are thus more likely to be detected
than fast molecules. The frame of this figure corresponds to the dashed square in Fig.
5.3, which corresponds to the area of the ion-images in Figs. 5.4, 5.5 and 5.6. Note that
values of T (x, y) < 0.8 do not occur within the frame.
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5.9 Appendix: collision-induced alignment

A simple but widely applicable correction treatment based on the m conservation along
the kinematic apse is derived here. The alignment dependent detection probability is
proportional to:

Sa(j′ → j∗) ≡
∑

m∗

∣

∣

∣

∣

∣

〈

Ψ∗(j∗,m∗)
∣

∣

∣
µ̂ · ǫ̂

∣

∣

∣
R(βp)Ψ′

a(j′,m′
a)
〉

∣

∣

∣

∣

∣

2

(5.18)

The wave functions will be referred to as Ψa(j = 1
2
,ma = ±1

2
), Ψ′

a(j′,m′
a) and Ψ∗(j∗,m∗),

denoting respectively the rotational states before collision, after collision (in the apse
frame) and after laser excitation to the 2Σ state. Note that m∗ is defined along the electric
field of the linearly polarized laser (laser frame). The wave function in the apse system
Ψ′

a(j′,m′
a) is transformed into the laser frame, the angle between the laser polarization and

the kinematic apse is described as βp. During excitation to the 2Σ state the projection of
the rotational angular momentum in the laser frame remains conserved. The wave function
after a collision will be aligned due to the collision. If one assumes that the projection
ma of the total angular momentum j on the kinematic apse is conserved during collision,
it is relatively easy to take this effect into account. The kinematic apse direction is given
by:

â =
k′ − k

|k′ − k| (5.19)

where k and k′ denote the momentum vectors before and after collision, respectively.
Khare [107] and Meyer [108] showed that ma conservation along the kinematic apse is
a reasonable approximation. Rotation of the wave function Ψ′

a(j′,m′
a) over the angle

between the apse and the laser polarization βp provides the aligned wave function in the
laser frame:

R(βp)Ψ′
a(j′,ma) =

∑

m′

dj
m′,ma

(βp) Ψ′(j′,m′) (5.20)

Note that 0 ≤ βp ≤ 90o. Substitution of Eq. 5.20 in Eq. 5.18 gives:

Sa(j′ → j∗) =
∑

m′

∣

∣

∣

∣

∣

dj
m′,ma

(βp)
〈

Ψ∗(j∗,m∗)
∣

∣

∣
µ̂ · ǫ̂

∣

∣

∣
Ψ′(j′,m′)

〉

∣

∣

∣

∣

∣

2

(5.21)

In order to distinguish between the apse alignment dependent detection probability and
the ordinary Hönl-London factors, these are respectively written as Sa(j′ → j∗) and
S(j′ → j∗). Jacobs and Zare [115] show that the (m-dependent) detection probability or
rate constant for linearly polarized light is proportional to the well known Hönl-London
factors multiplied with a 3-j symbol:
∣

∣

∣

∣

∣

〈

Ψ∗(j∗,m∗)
∣

∣

∣ µ̂ · ǫ̂
∣

∣

∣ Ψ′(j′,m′)
〉

∣

∣

∣

∣

∣

2

= S(j′ → j∗)

(

j∗ 1 j′

m′ 0 −m′

)2

δm∗,m′ . (5.22)

The Hönl-London factors S(j′ → j∗) for a X2Π → A2Σ+ transition where first derived
by Earls [116] and are also available from Ref. [13]. Together this gives:

Sa(j′ → j∗) = S(j′ → j∗)
∑

m′

∣

∣

∣
dj

m′,ma
(βp)

(

j∗ 1 j′

m′ 0 −m′

)

∣

∣

∣

2

(5.23)



88 Chapter 5. He-NO Differential cross sections

0 20 40 60 80
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

β
p
 [ o ]

al
ig

nm
en

t d
ep

en
de

nt
 d

et
ec

tio
n 

pr
ob

ab
ili

ty
 [a

.u
.]

R
21

P
11

 Q
21

0 20 40 60 80
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

β
p
 [ o ]

0 20 40 60 80
0

0.005

0.01

0.015

0.02

0.025

β
p
 [ o ]

∆ j = 1 ∆ j = 5 ∆ j = 10

Figure 5.14: The alignment dependent detection probability (Sa(j′ → j∗)/S(j′ → j∗)) is
plotted against the angle βp between the apse and the laser polarization for three different
values of ∆j and for three different branches.

Note that the detection probability is independent of the sign of ma. Eq. 5.23 provides
a novel and simple method to correct ion-images for collision-induced alignment. Every
pixel on an image corresponds to a certain final momentum (velocity). With the final
rotational state defined and therefore the final velocity of the NO molecules defined, each
position on the detector can be associated with a particular kinematic apse via Eq. 5.19.
Fig. 5.14 shows the dependence of the detection probability (divided by the Hönl-London
factor) Sa(j′ → j∗)/S(j′ → j∗) on the angle βp between the apse and the electric field of
the laser. This is plotted for three different ∆j, for a Q, an R and a P branch transition.
Already at ∆j = 10, the expected limiting behavior for j′ → ∞ emerges, as argued in
section 5.6 below Eqs. 5.9 and 5.10. In Fig. 5.15 the detection probability Sa(j′ → j∗)
is given for four branches and one rotational state. The size of the images in Fig. 5.15
corresponds to the size required to record an entire ion-image of the scattered NO product.
Note that the Q11 strongly dominates over the P21 because its Hönl-London factor for
the Q11 transition is about a factor of three larger than that for the P21 transition. The
R11 and Q21 branches carry a similar value of the Hönl-London factor, but as expected
the Q branch character dominates the alignment dependent detection probability. The
alignment dependence of the detection probability for a Q branch transition is about a
factor of two stronger than and opposite to that of a P or R branch transition. This is
clearly demonstrated in Eqs. 5.9 and 5.10 and Fig. 5.14.

In the event of full saturation of the A ← X transition, the detection probability no
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Figure 5.15: The alignment dependent detection probability Sa(j′ → j∗) at each position
on the image (here for j′ = 4.5) is given by the intensity for several branches. The angle
between the apse and the laser polarization defines the detection probability via Eq. 5.23.
The size of each of the frames in this figure corresponds to the dashed square in Fig. 5.3,
which corresponds to the frames of the ion-images in Figs. 5.4, 5.5 and 5.6. Note that the
apse is undefined when k′ = k (see Eq. 5.19). The dynamic range of each of the images
is taken from 0 to its maximum value.
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longer depends on the scattering angle. In that case, correction of the ion-images with
only the velocity correction should yield undistorted ion-images. If partial saturation
occurs, the dependence of the detection probability on βp becomes less.

Ssat(j
′ → j∗) = S0 + Sa(j′ → j∗). (5.24)

The parameter C indicates the saturation: if S0 << Sa(j′ → j∗), there is no saturation, if
S0 >> Sa(j′ → j∗) there is full saturation and the detection probability no longer depends
on the scattering angle. To get an idea of the effect of the saturation correction, C can
be expressed in terms of the value of Sa(j′ → j∗) averaged over all pixels 〈Sa(j′ → j∗)〉.



Chapter 6

Parity-dependent rotational

rainbows

6.1 abstract

The (j′,Ω
′
, ǫ′) dependent differential collision cross sections of D2 with fully state selected

(j = 1/2,Ω = 1/2, ǫ = −1) NO have been determined at a collision energy of about 550
cm−1. The collisionally excited NO molecules are detected by (1+1’) resonance enhanced
multi-photon ionization (REMPI) combined with the velocity-mapped ion-imaging tech-
nique. The results are compared to He-NO scattering results and tend to be more forward
scattered for the same final rotational state. Both for collisions of the atomic He and the
molecular D2 with NO, scattering into pairs of rotational states with the same value of
n ≡ j′ − ǫǫ′/2 yield the same angular dependence of the cross section. This ”parity
propensity rule” remains present both for spin-orbit conserving as for spin-orbit changing
transitions. The maxima in the differential cross sections - that reflect rotational rain-
bows - have been extracted from the D2-NO and the He-NO differential cross sections.
These maxima are found to be distinct for odd and even parity pair number n. Rainbow
positions of parity changing transitions (n is odd) occur at larger scattering angles than
those of parity conserving transitions (n is even). Parity conserving transitions exhibit
- from a classical point of view - a larger effective eccentricity of the shell. No rainbow
doubling due to collisions onto either the N-end and the O-end were observed. From a
classical point of view the presence of a double rainbow is expected. Rotational excitation
of the D2 molecules has not been observed.

6.2 Introduction

Crossed molecular beam machines [117] provide an important tool towards a better under-
standing of the dynamics of chemical elementary processes [35,104]. These machines allow
experimentalists to study the outcome of (gas phase) encounters of molecules with atoms
and/or other molecules under well defined conditions (collision energy and initial state of
the colliding molecules). All macroscopic chemical reactions consist of a large number of
elementary chemical processes that must be studied to understand macroscopic chemical

91
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reactions and energy transfer. Steering these reactions is a longstanding goal in molecular
sciences and for this it is necessary to understand and to predict the outcome of a single
molecular encounter.

Since the pioneering work of Yuan T. Lee, John C. Polanyi and Dudley R. Herschbach,
an enormous progress in the field of reaction dynamics has been achieved. An important
development within that progress has been the introduction of the ion-imaging technique
[93]. This method allows one to record the whole (2D) velocity distribution of reaction
products in a single measurement. The velocity-mapped ion-imaging technique [39, 43]
- that uses electrostatic lenses to project the velocity distribution onto the detector - is
nowadays a common tool in the field of molecular dynamics [3, 4, 28,39,95,96].

In the past, several reaction dynamical studies - both experimentally and theoretically
- have focussed on the rotationally inelastic scattering of NO with a number of collision
partners [1–4]. The main reason for this is that NO is both an interesting and convenient
model system. It is a radical, with non-zero angular momentum in its rotational ground
state, while it is stable enough to be stored in a gas bottle. Furthermore, it is easily
detected with spectroscopic methods as laser induced fluorescence (LIF) [5] and reso-
nance enhanced multi-photon ionization (REMPI) [4, 8]. Using the hexapole focussing
technique [9], NO can be fully selected into a single quantum state (upper component
of the Λ-doublet) as it undergoes a first order Stark effect [10]. The two components of
the Λ-doublet within the same rotational level have opposite parity, but only a minute
energy splitting. Parity propensity effects for Hund’s case (a) molecules are far more
important than the effects of the orientation of the unpaired electron charge cloud. The
latter effects are responsible for the A′ and A′′ symmetry of the PESs [1]. By (hexapole)
selection of NO in a single quantum state before collision, the effect of parity changing
and parity conservation on the differential cross section can be isolated from the effect of
the excitation energy.

It was shown recently, that interesting physical effects emerge for inelastic He-NO
scattering experiments when full (hexapole) state selection is applied [11]. The angular
dependence of the cross section for excitation to pairs of states with the same parity
was noted to be similar. In the present study we will asses this effect quantitatively,
by a direct comparison of the differential cross sections for two different systems. This
parity propensity follows directly from a simple Quasi-Quantummechanical Treatment
(QQT) [58], which also provided some new insights into the orientation dependence of
the inelastic collision cross section.

In our search towards a better understanding of inelastic collisions, additional velocity-
mapped ion-imaging measurements on D2-NO inelastic scattering have been performed.
This collision system is very close to He-NO, but still distinguishable [102] and provides
thus valuable information about the effect of a small difference of the interaction potential
on the differential cross section. In the current work, we focus on ”parity pairs” and the
position of the rotational rainbows. Classical rotational rainbows [34] are reflected by the
maxima in the rotationally inelastic scattering angular distributions.
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6.3 Experimental

The experimental setup has been described in detail in Ref. [11] and only the most relevant
conditions are mentioned here. A beam of 16 % NO seeded in Ar expands from a General
Valve, which forms the first step of state selection. Due to adiabatic cooling, most of the
NO molecules are in their rotational ground state with rotational quantum number j = 1

2
.

Via two skimmers, the NO beam enters a 1.6 meters long hexapole. The hexapole focusses
molecules in the low field seeking upper component of the λ-doublet (j = 1

2
,Ω = 1

2
, ǫ = −1)

into the collision region and diverges molecules in the lower component (j = 1
2
,Ω = 1

2
, ǫ =

1). The parameter ǫ denotes the symmetry index, while Ω (= |Ω|) is the (absolute value of
the) projection of the electronic angular momentum onto the molecular axis. Molecules in
higher rotational states are much less affected by the hexapole and the resulting divergence
of the molecular beam over the three meters distance from nozzle to collision region reduces
the relative amount of molecules in higher rotational states in the beam by approximately
a factor of 70 (hexapole gain of the focussed state).

The hexapole focussed beam of NO molecules (vNO = 593 m/s) is crossed in the
collision chamber by a beam of D2 molecules (vD2

= 1830 m/s) [102]. These velocities
result in a nominal collision energy of 551 cm−1, which is slightly larger than in the case
of He-NO scattering (514 cm−1) [11]. An encounter of a D2 molecule with a NO molecule
can in principle induce rotation of the NO and/or the D2 molecule. Energetically it is
allowed to excite the NO molecules up to ∆j = j′ − j = 16 while the D2 molecules can
be excited up to ∆j = 4. The rotationally excited NO molecules are ionized via a (1+1’)
resonance enhanced multi photon ionization (REMPI) scheme [8] along the electronic
A 2Σ+ ← X 2Π transition using an excimer (XeCl) pumped dye laser laser with a band-
width of about 0.1 cm−1. Velocity-mapped ion-imaging is applied to obtain the two
dimensional velocity distribution of the scattered NO molecules.

To suppress contributions from other ionized molecules (oil or water) to the ion images,
time-of-flight (TOF) gating is applied. The contributions to the images of thermal NO
and of non-colliding molecules in the NO beam at the collision center are minimized by
subtracting background images. The D2 beam is switched from ”on” to ”off” after each
100 laser shots. This procedure is repeated typically 20 times. The images with the
D2 beam ”off” are subtracted from those with the D2 beam ”on”. As the excimer/dye
laser system and General Valves run at 10 Hz, collecting an image takes approximately 7
minutes. Because of low signal, some of the highest rotational states (∆j > 10) required
twice the integration time.

Differential cross sections are extracted from the ion images following the extraction
procedure described in Ref. [11]. In this procedure, collision-induced rotational alignment,
the detection probability due to different residence times for slow and fast molecules within
the detection volume and blurring of the images are explicitly taken into account. An
empirical blurring factor is used to make the simulated images as sharp as the experimental
ones. To correct for alignment, the assumption is used that the projection ma of the
rotational angular momentum j on the kinematic apse is conserved. The alignment
dependent correction accounts for (partial) saturation.
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Figure 6.1: Set of raw experimental ion images for spin-orbit conserving (Ω = Ω
′
= 1/2)

D2-NO scattering. The images for ǫ′ = −1 are collected using the R21 spectroscopic
branch. The majority of the images for ǫ′ = 1 are collected via the P11 branch, those
labeled with a star * are from the combined R11 + Q21 branch that exhibits more asymme-
try with respect to the vrel. This is due to the combination of collision-induced alignment
and the residence time of the molecules in the detection region. For a P and R branch
transition the effects of alignment and residence time nearly cancel, while for Q branch
transitions those add, yielding very asymmetric ion images. The images are plotted such
that two images above each other relate to the same parity pair n = j′ + ǫ′

2
. The missing

image for j′ = 9.5, ǫ′ = 1 could not be collected due to overlapping spectral lines.
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6.4 Results and discussion

6.4.1 Differential cross sections and parity pairs

A set of (raw) velocity mapped ion images for spin-orbit conserving collisions (Ω = Ω
′
=

1/2) 1 is plotted in Fig. 6.1. The projected Newton sphere is cylinder-symmetric around
the relative velocity (vrel = vD2

− vNO). The camera is oriented such that vNO points
from right to left, while vD2

points from the top to the bottom of the images. The
resulting orientation of vrel is from top-left to bottom-right.

The intensity on an outer ring of an ion image (on both sides of vrel) gives a first
impression of the differential cross section. Note that the intensity on the top-left part of
the images is due to forward scattered molecules, while backward scattered molecules are
detected at the lower-right part of the image. In the images it is clearly seen that forward
scattering is preferred for NO scattering into low rotational states, while for high final
rotational states backward scattering dominates. The ion images for spin-orbit changing
transitions (Ω

′
= 3

2
) are not shown in this work, but are of a similar quality as those in

Fig. 6.1. Rotational excitation of the D2 molecules is not observed in the ion images.
This should show up as small projected Newton sphere dominated by backward scattering
in the images for low rotational states of the NO molecules.

For He-NO collisions [11] it was found that scattering - at the same value of j′ - into
the upper component of the Λ-doublet (ǫ = −1→ ǫ′ = −1) yields more forward scattering
than into the lower component of the Λ-doublet (ǫ = −1 → ǫ′ = 1). Such a difference is
also found in the present D2-NO images.

Scattering into the lower component of the λ-doublet seems to be ”one rotational
quantum ahead” of scattering into the upper component of the Λ-doublet. For example,
similar images are collected for excitation to the j′ = 4.5, ǫ′ = 1 and the j′ = 5.5, ǫ′ = −1
states, as is the case for the j′ = 5.5, ǫ′ = 1 and the j′ = 6.5, ǫ′ = −1 states, etc. This
similarity holds both for spin-orbit conserving and spin-orbit changing transitions. Note
that these final states carry the same parity and for this reason the pairs are referred to
as ”parity pairs”. The parity for a rotational state j, ǫ follows from:

p = (−1)j−ǫ/2. (6.1)

The parity of a rotational state relates to the symmetry properties of its wave function
ψ(r) and is defined by its behavior under parity transformation (inversion), which acts
as an operator P on a wave function ψ:

Pψ(r) = ψ(−r) = pψ(r) (6.2)

Note that r represents here both electronic and nuclear coordinates.
To illustrate the presence of parity pairs, the images in Fig. 6.1 are plotted such that

two images above each other belong to the same pair. The parity pairs are numbered as:

n = j′ − ǫǫ′

2
, (6.3)

1Since Hund’s case (a) coupling dominates [16] for the here achievable final rotational states of NO.

Labels Ω
′

= 1

2
and Ω

′

= 3

2
correspond to scattering into the F1 and F2 levels.
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Figure 6.2: The rotational levels of the NO molecule are labeled with their rotational
quantum number j and symmetry index ǫ = ±1). Recall that parity p and ǫ relate as
p = (−1)j−ǫ/2. The parity pair numbers n in this figure relate to the experimental case
where j = 1/2, ǫ = −1. Parity pairs are observed for both spin-orbit conserving as for
spin-orbit changing transitions, but the differential cross sections of a parity pair n for
spin-orbit conserving transitions does not correspond to that of the same pair n for a
spin-orbit changing collision. The energy differences are taken arbitrarily and are not
scaled to the actual values. In that case, the distance between the components of the
Λ-doublet would be much smaller.
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Figure 6.3: Differential cross sections for (D2 - NO) scattering into Ω
′
= 1

2
. The differential

cross sections are plotted per parity pair and normalized such that the integral
∫

dcs dϑ =
1. The differential cross section for j′ = 12.5, ǫ′ = 1 is plotted separately in Fig. 6.5.

which reduces in our experiment to n = j′+ǫ′/2 as ǫ = −1. Figure 6.2 provides a schematic
representation of the NO energy levels including the parity pair number n for the (current
experimental) case j = 1/2, ǫ = −1. The physical background of pairs with these labels
is discussed in detail in Ref. [58]. The integral that leads to the differential cross section
contains a phase shift factor and a Legendre polynomial Pj′−ǫǫ′/2. If the energy spacing
between the rotational levels is small, the phase shift factor has little influence. Because
of the Legendre polynomial, excitation to a pair of rotational states with the same label n
should show a similar angular dependence of the cross section. Even Legendre polynomial
contribute for parity conserving transitions, while odd Legendre polynomials contribute
for parity breaking transitions.

In the case of NO the electron cloud of the unpaired electron is nearly cylinder symmet-
ric with respect to the internuclear axis (Hund’s case(a)). The mixing between Ω = 3/2
and Ω = 1/2 is small, so the angular distribution of an ǫ = 1→ ǫ′ = −1 transition is nearly
equal to that of ǫ = −1 → ǫ′ = 1 and the angular distribution of an ǫ = −1 → ǫ′ = −1
transition is nearly equal to that of ǫ = 1→ ǫ′ = 1.
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Figure 6.4: Differential cross sections for (D2 - NO) scattering into Ω
′
= 3

2
. The differential

cross sections are plotted per parity pair and normalized such that the integral
∫

dcs dϑ =
1. The differential cross section for j′ = 12.5, ǫ′ = 1 is plotted separately in Fig. 6.5.
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Figure 6.5: Differential cross sections for (D2 - NO) scattering into the highest observed
rotational state j′ = 12.5 of the lower component of the Λ-doublet (n = 13). Note that the
differential cross section for Ω′ = 1

2
, ǫ′ = 1 has a strong sideways scattered contribution.

From a simple classical model this cannot be understood. A similar, but even more
pronounced effect was observed for He-NO collisions [11].

The D2-NO differential cross sections that are extracted from the images (indicated
in the figures as ”dcs”) are shown in Fig. 6.3. The extracted cross sections for spin-

orbit changing collisions (Ω
′

= 3
2
) are shown in Fig. 6.4. Tables with D2-NO differential

cross sections can be found online 2. To illustrate the pairwise structure, the differential
cross sections that form a pair are plotted in the same panel. Those for excitation to
the j′ = 12.5 states of the ǫ′ = 1 state are plotted separately in Fig. 6.5. For the
purpose of comparison, all differential cross sections are normalized with respect to each
other such that the integral

∫

dcs dϑ = 1. Note that this is not the usual integral cross
section (

∫

dcs sinϑdϑ). Normalization on the total cross section suppresses information
for scattering angles close to 0o and 180o. As we focus on the shape of the differential
cross section all scattering angles are equally important. The plotted cross section is the
average of two experimental results if two spectroscopic branches were available to collect
data.

An interesting observation in Fig. 6.5 is that - opposite to what one would expect from
a classical point of view - the cross sections for scattering into the (j′ = 12.5,Ω′ = 1

2
, ǫ′ = 1)

is more-or-less dominated by sideways scattering. This effect has been observed to be even
more pronounced for He-NO scattering, but no satisfactory explanation is available yet.
If we extrapolate the observed pairwise structure, the differential cross section for the
j′ = 12.5,Ω′ = 1

2
, ǫ′ = 1 should be similar to that of the j′ = 13.5,Ω′ = 1

2
, ǫ′ = −1

final rotational state. This latter state is classically not allowed. Energetically it is, but
the maximally applied torque is too small to allow for such a high rotational state [118].
Quantummechanically these transitions are allowed, but with a much smaller cross section.

2See EPAPS Document for tables with D2-NO differential cross sections. This document can be
reached through a direct link in the online articles HTML reference section or via the EPAPS homepage
(http://www.aip.org/pubservs/epaps.html).
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Figure 6.6: Differential cross sections for (He - NO) scattering into Ω′ = 1
2
. The differential

cross sections are plotted per parity pair and normalized such that the integral
∫

dcs dϑ =
1.
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Figure 6.7: Differential cross sections for (He - NO) scattering into Ω′ = 3
2
. The differential

cross sections are plotted per parity pair and normalized such that the integral
∫

dcs dϑ =
1.

Experimental differential cross sections (as published in Ref. [11]) for He-NO collisions
are plotted (grouped per parity pair) in Figs. 6.6 and 6.7 to show the presence of parity
pairs and to allow for a systematic comparison with those for D2-NO scattering in Figs.
6.3 and 6.4. In agreement with the CC calculations [11] of the He-NO differential cross
sections, the angular dependence of the experimental cross section within a parity pair n
have been to be remarkably similar for both collision systems.

In addition to parity pairs n of the differential cross sections of D2-NO and He-NO,
as plotted in Figs. 6.3 - 6.7 there is also some resemblance between the differential cross
section of n = 1 and n = 2, of n = 3 and n = 4, etcetera. These pairs can be labeled via
k, where k = n/2 if n =”even” and k = (n+1)/2 if n =”odd”. See for an example of such
a pair the images for j′ = 4.5, ǫ = 1 and j′ = 5.5, ǫ = 1. Although the images turn out to
be quite similar for these cases, significant differences between the resembling differential
cross sections are present. For excitation to states with n = ”even” slightly more forward
scattering is observed than for n = ”odd”. This becomes most clear in the cross sections
for n = 5 and n = 6 in Fig. 6.6.
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Figure 6.8: The positions of the rotational rainbows for each parity pair j′ + ǫ′/2 are
plotted for both D2 - NO and He - NO scattering. The left panel shows the rainbow
maxima for spin orbit conserving (Ω′ = 1/2) collisions, while the right panel shows the
rainbow maxima for spin orbit changing (Ω′ = 3/2) collisions. The results are averaged
over both components of the pairs. To guide the eye, the points for He-NO and D2-NO
are connected via lines.

Upon a close inspection of the finest details of Figs. 6.3 - 6.7 one notices imperfections
that can mostly be attributed to statistical uncertainties in the ion images. Especially
in the near forward direction the differential cross sections are often imperfect due to
background subtraction and due to diffraction which shows up as a rapid oscillation
beyond our angular resolution. These oscillations contribute only for n ≤ 4 as can be
seen in the CC results of Ref [11]. The false maximum in the backward direction (ϑ very
close to 180o) can be caused by a small inaccuracy in the extraction procedure. Overall
there is excellent agreement between the differential cross sections within each parity pair.

6.4.2 Rotational rainbows

At first sight, there is not much difference between the differential cross sections for He-
NO and D2-NO. Both cases clearly exhibit the pairwise behavior and range from forward
to backward scattering when ∆j is raised. The D2-NO cross sections are slightly more
forward scattered than those of He-NO. The scattering angles at which the measured dif-
ferential cross sections of He-NO and D2-NO reach their maximum angle ϑm are plotted
in Fig. 6.8 as a function of the parity pair number n. These maxima (ϑm(n)) reflect the
classical rotational rainbow angles (ϑr(∆J)). Here ∆J is the (classical) continuous equiv-
alent of the quantum step ∆j. The angle ϑr(∆J) corresponds to the minimum scattering
angle at which a specific amount of incoming translational momentum is transformed
into molecular rotation. At ϑ = ϑr(∆J), the classical (double) differential cross section

d2σ
dωd∆J

becomes singular. This can be understood by considering the scattering from a
(non-rotating) nearly convex hard shell [118]. A schematic representation of such a hard
shell scattering process is shown in Fig. 6.9.
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Figure 6.9: Schematic representation of a hard ellipsoid NO shell colliding with a D2

molecule. The incoming linear momentum p is decomposed into a component parallel
and one perpendicular to the hard shell. The parallel component is conserved during
collision, while the perpendicular one is partly transferred into rotation.

The initial conditions at which ∆J is transferred into rotation are uniquely defined
when one specifies γn: the angle between the surface normal n̂ and the molecular axis r̂

at the impact position of the atom onto the molecular shell. The incoming momentum is
given by p = µvrel, with µ the reduced mass and vrel the relative velocity of the system.
At the point of impact Rs, the perpendicular component of the incoming momentum
p⊥ = (p·n̂)n̂ is responsible for ∆J . The perpendicular component of the momentum after

collision p′
⊥ points opposite to that before collision: p̂⊥

′ = p̂′
⊥. The parallel component

of the momentum p|| = p − p⊥ remains conserved during the collision p′
|| = p||. The

magnitude of the rotational excitation is proportional to the effective impact parameter
bn at the point of impact [119]. This impact parameter is the shortest distance between
the surface normal and the center-of-mass of the molecule.

For a convex shell, there are three values of γn at which bn = 0: two at each end of
the molecule (γn = γR = 0, π) and one near the equator (γn = γR ≈ π/2). The angle
γR depicts the position vector of the shell Rs with respect to the center-of-mass of the
molecule. In between these zero positions of bn there are two maximum values, one on
each side of the molecule, that allow for maximum rotational excitation [120]. In the
case of an ellipsoid [119] this is at bn = A − B where A and B are its major and minor
axis, respectively. All together this implies that there are (except at bn = 0 and at its
maximum value) four angles (γn) that lead to the same value of bn.

From conservation of energy and angular momentum it can be shown that:

k⊥ ≡ p⊥/~ =
1 + µb2n(γn)/I

2bn(γn)
∆J (6.4)

and k′⊥ =
√

k2
⊥ − µ∆J2/I (6.5)
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where I is the moment of inertia of the molecule. At fixed values of ∆J and incoming
momentum k, the smallest scattering angle occurs at the maximum value of bn. Note that
since k|| is conserved, the scattering angle ϑ increases with k⊥. At backward scattering
(ϑ = 180o), the substitution of k = k⊥ determines the lower limit of bn for which this
transition is possible. The scattering angle ϑ relates to k as:

ϑ = arctan
(k⊥
k||

)

+ arctan
(k′⊥
k||

)

(6.6)

Four values of γn (leading to the same value of bn) contribute to d2σ
dωd∆J

at the same
scattering angle ϑ. In general, the differential cross section becomes the sum over these
four contributions:

d2σ

dωd∆J
∝

4
∑

i=1

d2σ(γn,i)

dωd∆J
=

4
∑

i=1

d2σ(γn,i)

dωnd∆J

dωn

dω
. (6.7)

Note that dω = sinϑdϑdϕ and dωn = sin γndγndϕn.
A singularity in the (double) differential cross section appears when dω/dωn = 0. This

derivative can be expressed as:

dω

dωn

∝ sinϑ

sin γn

dϑ

dγn

=
sinϑ

sin γn

dϑ

dbn

dbn
dγn

. (6.8)

The singularity occurs if dbn

dγn
= 0, in other words, for collisions onto the two maximum

values of the effective impact parameter. The classical differential cross section for a
specific value of ∆J at its smallest scattering angle (ϑr) will approach infinity. For the
special case of an ellipsoid hard shell, the rotational rainbow angle ϑr takes place at [119]:

sin
(1

2
ϑr

)

=
∆j

2k(A−B)
(6.9)

Previous theoretical studies [121–123] at comparable collision energies and similar anisotropic
systems, conclude that the classical rotational rainbow angle ϑr is usually substantially
smaller than the scattering angle found for maximum scattered intensity. This effect is
especially pronounced at large scattering angles.

To extract θm, the scattering angle of the maxima from the experimental results,
the differential cross sections (in Figs. 6.3-6.7) were smoothed. A zero-phase (forward
and reverse) filtering routine was applied to remove fast oscillations in the differential
cross sections. Differential cross sections obtained from three ion images (for D2-NO with
j′ = 3.5,Ω′ = 1/2, ǫ′ = 1, for D2-NO with j′ = 9.5,Ω′ = 1/2, ǫ′ = −1 and for for He-NO
with j′ = 7.5,Ω′ = 1/2, ǫ′ = 1) were omitted, mainly because of experimental inaccuracies.
The decision to leave these cross sections out were based on three criteria: the maxima
of the extracted differential cross section are 1. far away from the result via a different
spectroscopic branch, 2. far away from the corresponding theoretical value [11] and 3. far
away from the rainbow maximum of the differential cross sections for other final rotational
states within a parity pair. These experimental differential cross sections are nevertheless
included in (the calculations for) Figs. 6.3 - 6.7. Note that most of the data points in
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Figure 6.10: Experimental He-NO rainbow maxima from Fig. 6.8 are compared to values
from CC calculations [11]. Results for spin orbit conserving transitions are found in the
left panel, while the right panel shows results for spin orbit changing transitions. The
maxima for parity changing transitions (j′ + ǫ′/2 = odd) are at larger scattering angles
than those for parity conserving transitions (j′ + ǫ′/2 = even). To elucidate this, separate
lines are drawn that connect the data points for both cases. The filtering of the data
causes a slight underestimation of the scattering angle with maximum differential cross
section when it is close to 180o.s

Figs. 6.8 and 6.10 are based on four separate differential cross sections. Typically two
spectroscopic transitions are available for one rotational state and two rotational states
form a parity pair.

The observation that D2-NO collisions yield more forward scattering than He-NO
collisions could indicate a more anisotropic interaction potential. On the other hand, ion
images for ∆j > 12.5 could not be obtained, as their cross section were too small for both
He-NO and D2-NO. This opposes the explanation of a larger anisotropy causing more
forward scattering for D2-NO: larger anisotropy would allow classically for a larger ∆j.
No PESs are available for D2-NO collisions, but detailed PESs are available for He-NO
collisions [114]. Inspection of the Vsum contour plot in Ref. [6] gives (at E = 500 cm−1) for
a collision onto the N-end B = 4.40 a0, AN = 5.65 a0 and for a collision onto the O-end
AO = 5.25 a0. To estimate the difference in anisotropy between the He-NO and D2-NO
potentials, Eq. 6.9 has been fitted to the experimental data for spin orbit conserving
collisions in Fig. 6.8. For now we approximate ∆J ≈ j′ + ǫ′/2. This fit yields for He-
NO (A − B)He−NO = 0.76 a0 and for D2-NO (A − B)D2−NO = 0.93 a0. The (A − B)
values from this rough estimation are not too far away from the values derived from the
ab initio potential. However, from this simple (classical) view, one would assume that
double rainbows are present: recall that there is a maximum of bn on both the N-end and
on the O-end of the NO molecule. Such double maxima were indeed observed for Ne-CO
scattering [124, 125] and attributed to this effect, but remain absent in this work. The
Ne-CO system is more asymmetric than He-NO as the C-end extends much more from
the center-of-mass compared to the O-end (Ne-CO), than the N-end extends compared
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to the O-end (He-NO).

Westley et al. [102] did not observe double maxima for D2-NO and He-NO scattering
(note that both components of the Λ-doublet were present in the incoming NO beam)
and concluded that the asymmetry was too small to resolve these two rainbows. From the
current results however, one would expect that their differential cross sections contain four
maxima. Not only one for each side of the molecule, but also for the parity conserving
component and the parity changing component. If both components of the Λ-doublet
are present before collision, one cannot distinguish between parity changing and parity
conserving transitions (for example j = 1

2
, ǫ = 1 → j′ = 13

2
, ǫ′ = 1 and j = 1

2
, ǫ = −1 →

j′ = 13
2
, ǫ′ = 1 show up in the same ion image). Eq. 6.3 shows that both curves with

labels n = 6 and n = 7 contribute to the same ion image when both components of the
Λ-doublet of j = 1

2
are populated before collision. From Fig. 6.8 it becomes clear that

the maxima in the cross section of the two contributing curves can be far (> 40o) apart
from each other.

In Fig. 6.10 the experimentally observed maxima for He-NO scattering are compared
to those obtained in CC calculations [11]. In this figure, the points for parity changing
transitions (n = odd) are connected by a line (for reasons of clarity) as are those for
parity conserving (n = even) transitions. We conclude that parity changing transitions
show a more forward scattered maximum of the cross section than parity conserving ones.
The molecule appears to be less anisotropic for parity changing collisions than for parity
conserving ones.

In contrast to Westley et al. [102], we observe that the D2-NO maxima of the differ-
ential cross section are substantially more forward scattered than those of He-NO in case
of spin-orbit changing transitions (see Figs. 6.8 and 6.10). For both He-NO and D2-NO
the spin-orbit changing collisions, ϑm remains small up to a large value of n, after which
the differential cross section changes to completely backward scattering very rapidly. It is
impossible to fit such a curve using Eq. 6.9. Overall we conclude that spin-orbit changing
collisions at the same value of n turn out to be more forward scattered than in the case
of spin-orbit conserving transitions.

6.5 Concluding remarks

Differential cross sections for fully quantum state selected NO molecules (j = 1
2
,Ω = 1

2
, ǫ =

−1) colliding with D2 are obtained using the velocity-mapped ion-imaging technique. The
detection step is fully quantum state resolved (j′,Ω′, ǫ′), which allows for an investigation
of the effect of changing and conservation of parity on the differential cross section. The
D2-NO differential cross sections for various final states are plotted in Figs. 6.3, 6.4
and 6.5. In both the spin-orbit conserving and changing case, He-NO collisions show
maxima of the differential cross sections at larger scattering angles than those found in
the present study (D2-NO). This possibly could indicate a larger anisotropy of the D2-NO
shell compared to the He-NO potential, but in this would also allow for excitation to
higher rotational states which is not observed.

Parity pairs are observed in the differential cross sections for both spin-orbit conserv-
ing and spin-orbit changing collisions. The present results show a significant difference
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between differential cross sections for scattering into the upper and lower component of
the Λ-doublet of NO. The angular dependence of the cross sections is found to depend
on the parity pair number n = j′ − ǫǫ′/2. For excitation to pairs of neighboring j′ states
with the same parity, the angular dependence of the cross section turns out to be similar,
what indicates that the differential cross section is proportional.

Is was shown that there exists a large difference between maxima (rainbow positions)
for parity conserving and for parity changing transitions. If no full (hexapole) state selec-
tion is applied, this means that 4 rotational rainbows might contribute to the differential
cross sections: two for scattering from both sides of the molecule, one for parity conserv-
ing transitions and one for parity changing transitions. It should be explored in future
experimental studies if these four maxima can be observed separately. Parity propensity
rules are expected to become less pronounced with increasing anisotropy of the interaction
potential.
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Chapter 7

Quasi Quantum Treatment

7.1 abstract

Rotationally inelastic scattering of rare gas atoms and oriented NO molecules exhibits a
remarkable alternation in the sign of steric asymmetry between even and odd changes in
rotational quantum number. This effect has also been found in full quantum mechanical
scattering calculations. However, until now no physical picture has emerged for the alter-
nation. In this work, a newly developed Quasi-Quantum Treatment (QQT) provides a first
demonstration that quantum interferences between different orientations of the repulsive
potential (that are present in the oriented wave function) are the source of this alterna-
tion. Further, from application of the treatment to collisions of non-oriented molecules a
previously unrecognized propensity rule is derived. The angular dependence of the cross
sections for excitation to neighboring rotational states with the same parity is shown to
be similar except for a pre-factor. Experimental results are presented to support this rule.
Unlike conventional quantum mechanical (or semiclassical) treatments, QQT requires no
summation over the orbital angular momentum quantum number l or integration over
the impact parameter b. This eliminates the need to solve large sets of coupled differen-
tial equations that couple l and rotational state channels among which interference can
occur. The QQT provides a physical interpretation of the scattering amplitude that can
be represented by a Legendre moment. Application of the QQT on a simple hard-shell
potential leads to near-quantitative agreement with experimental observations.

7.2 Introduction

Inelastic scattering of open shell molecules provides detailed information on collision in-
duced energy transfer, necessary for understanding fundamental processes in chemical
reactions [35,104]. It has been a long standing goal in molecular sciences to steer chemi-
cal reactions and for this it is a prerequisite to understand and predict the outcome of a
reactive encounter. One pathway to achieve this goal is to exploit nature’s preference for
directionality and to control (steer) a reaction by orienting molecules before they collide
and eventually react.

Measurements of rotationally inelastic scattering of rare gases with oriented NO molecules

109
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- i.e. N-end or O-end collisions - have shown a large dependence on the initial orienta-
tion [1,2,5,6,16,45]. This dependence can be expressed by the molecular steric asymmetry
ratio (S):

Si→f =
σR−NO − σR−ON

σR−NO + σR−ON

, (7.1)

in which σR−NO and σR−ON denote the cross sections for rotational energy transfer from
the initial (i) to final (f) state when the rare gas atom R impinges onto the N-end or the
O-end, respectively.

In experiments described in Refs. [2,5,6,16], a hexapole has been used to state-select
NO in the upper component (ǫ = −1) of the Λ-doublet of the 2Π1/2 rotational ground
state (j = 1/2), where ǫ is the symmetry index (ǫ = −1, 1) and j the rotational angular
momentum quantum number. The NO molecules are subsequently oriented in a homo-
geneous electrostatic field. When a beam of Ar or He crosses the beam of oriented NO,
collisions induce rotational excitation of the NO molecules from the rovibrational ground
state to higher rotational levels (j = 1

2
,Ω = 1

2
, ǫ→ j′,Ω

′
, ǫ′). Here Ω is (the absolute value

of) the projection of j on the molecular axis. Laser Induced Fluorescence (LIF) was used
to measure the ratio of inelastic collision cross sections in the two orientations in these
experiments [2, 5, 6].

Until now, no clear physical explanation could be given for the observed dependence
of Si→f on the final rotational state of the NO molecule: collisions with an odd change
in rotational quantum number ∆j = j′ − j have a strong preference for collisions on the
N-end, whereas final rotational states with even ∆j result mostly from O-end collisions.
A full quantum treatment (using HIBRIDON [1, 6, 59]) yields a fair agreement with the
observed orientation dependence of the total cross section, but provides no understanding
of the undulatory dependence of S on ∆j [54]. In conventional scattering calculations
the desired cross sections are obtained from multiple summations over products of T-
matrix elements and provide no intuitive picture of the underlying collision propensity.
Theoretical exact close coupling (CC) calculations and experimental results are presented
in Fig. 7.1 to illustrate the dependence of S on ∆j.

Alexander and Stolte [1] showed that the undulatory behavior of S is insensitive to the
angular dependence of the long range part of the Ar-NO potential. Its most prominent
features are governed by the anisotropy of the repulsive part of the potential, to which
S is very sensitive. However, Alexander and Stolte [1] did not succeed in establishing an
explanation for the observed alternation of Si→f as a function of ∆j = j′−j, nor to provide
a clear link between this behavior and the shape of the anisotropic potential. In this paper
we will explain the observed steric effects by introducing a Quasi Quantum Treatment
(QQT) of the collision problem. The alternation between N-end and O-end preference is
demonstrated in this work to correspond to a quantum interference phenomenon between
scattering events from different molecular orientations.

The conventional exact CC solution of the scattering problem of a rare gas atom R and
a hetero nuclear rigid diatomic (NO) requires the expansion of the incoming plane wave
eikZ into an infinite sum of Legendre polynomials Pl(cos θ), where θ is the scattering angle.
Each Pl(cos θ) is multiplied by an incoming and outgoing spherical wave e±i(kR−lπ/2)/(kR)
to yield the proper plane wave. The absolute value of the position vector is written as R,
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Figure 7.1: The dependence of the observed and theoretical steric asymmetry ratio on the
rotational excitation ∆j = j′−j with Ω

′
= 1/2, ǫ′ = −1 is plotted for He colliding with NO

at Etr = 514 cm−1 (top) [6] and for Ar colliding with NO at Etr = 475 cm−1(bottom) [16].
If collisions onto the N-end have a larger cross section for excitation to a certain rotational
state, S is positive and vice versa. The experimental steric asymmetry SA has been
multiplied with -1 to match the plotted theoretical (HIBRIDON) result Si→f [6] as well
as a simple ball-and-stick model [45]. This convention is used throughout this chapter,
which leads to a sign of S that for Ar-NO collisions opposes the predictions of Ref. [2].
Ar-NO calculations in Ref. [2] yield a sign of S that is consonant with experimental
results, but opposes the ball and stick model and the sign of S from recent (He-NO) CC
calculations [6]. There still is an unresolved sign discrepancy between theory (HIBRIDON)
and experiment as discussed in detail in Refs. [45] and [87].
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Figure 7.2: All orientations are present in the oriented wave function. Constructive and
destructive interference between these waves will occur dependent on the difference in
path length. The potential can cause scattering under a certain angle for many different
impact parameters. Note that for a hard shell as drawn here, the kinematic apse â

coincides with the surface normal n̂.

the orbital quantum number as l and the incoming wave number k is given by:

k ≡ 1

~

√

2Etr

(mNO mR)/(mNO +mR)
. (7.2)

The semi classical impact parameter b (see Fig. 7.2) relates to the orbital angular mo-
mentum quantum number l as

b ≈ l + 1
2

k
. (7.3)

The quantum number l couples with the NO rotational quantum number j to yield the
total angular momentum quantum number J . Both J and the overall parity of the total
wave function are conserved by the scattering Hamiltonian. To solve the He-NO inelastic
scattering problem at Etr ≈ 500 cm−1, the maximum value of J becomes as large as
120.5 [11, 60]. At each value of J one has to solve a large set of coupled differential
equations that contain all relevant scattering channels j, l,Ω, ǫ that influence the outcome
of the scattering process. In the example of He-NO, the number of coupled differential
equations that need to be solved numerically is typically as large as 1300 at a single
value of J and parity [60]. State of the art computational possibilities still exclude exact
calculations on molecule-molecule scattering for which there are many more channels. An
exception is the case of low collision energies or large splitting between the rotational states
(H2-like molecules). Conventional quantum treatments provide good qualitative results,
but these elaborate numerical methods yield little insight into the actual physics behind
phenomena and their behavior under different circumstances. Calculation times are often
too long to adjust the input parameters and learn the behavior of the system as function
of these parameters. To overcome theoretical limitations, a large number of approximative
methods to solve inelastic scattering problems have been developed since the 1960s [65].
Among these, the semiclassical version of the infinite order sudden (IOS) approximation
has turned out to be particularly useful as it facilitates rapid calculation [126–129].
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Generally speaking there are two types of sudden approximation. In the first one,
the molecular axis is assumed to remain fixed in space and the scattering paths are fully
determined by the isotropic part of the potential. A rotational transition probability
is treated as a time-dependent perturbation resulting from the anisotropic part of the
potential. The exponential form of the S-matrix is not approximated, but the resulting
phase shifts are from a first order approximation of the anisotropy of the potential. The
angle between the specified molecular axis and the position vector R between the center-
of-masses of the atom and molecule is the main collision variable [9, 130,131].

Following Curtiss [132], Pack [133] and McGuire and Kouri [134] described collisions
of atoms and diatomics in terms of body fixed or rotating coordinate frames. In this
second type of sudden approximation, the molecular axis r is assumed to remain fixed in
respect to R and not in space (R̂ · r̂ ≡ cos γ). The centrifugal term in the Schrödinger
equation is simplified by approximating l = l and l′ = l (with l and l′ the initial and final
orbital angular momentum), which drastically reduces the number of coupled equations.
This decoupling of the centrifugal barrier is also referred to as the ”centrifugal sudden
approximation”. It leads to a phase shift calculation that is of infinite order in the
anisotropy of the potential for each orientation angle γ of the molecule. When the energy
of the rotational states is taken into account, one refers to this method as the ”Coupled
States” (CS) approximation. When this energy is ignored, one speaks about the ”Infinite
Order Sudden” (IOS) approximation.

Nowadays the IOS approximation is often applied when one is prevented from car-
rying out numerically demanding close coupling calculations for practical reasons. The
IOS and CS approximations usually yield satisfactory results in the calculation of m, m′

degeneracy averaged collision cross sections, but are well known to err in predicting the
m,m′ or steric dependence of the inelastic collision cross section (m and m′ are the pro-
jections of the rotational angular momentum j on a space fixed axis). This shortcoming
can be alleviated by assuming a hard-shell-like ”Point Contact Interaction” (PCI) at the
turning point [71,135]. Later Khare, Kouri and Hoffman [107,136] showed explicitly that
there is a propensity for preserving jz when using an apse (geometric or kinematic) as
quantization axis. The two apses coincide for elastic collisions and point about parallel
to R at the turning point in the case of a near-isotropic (near-spherical) potential. The
kinematic apse (KA) direction is that along which momentum is transferred in the hard
shell approximation. In general, the kinematic apse is ∆j dependent while the geomet-
ric apse is not. It was shown that one can obtain reasonable differential cross sections
quantized in the space-fixed frame, by calculating and transforming only the ∆m = 0
scattering amplitude from the KA frame for a given j → j′ transition [112,136].

A distinctive Quasi Quantum Treatment (QQT) is presented in the current study,
the l, l′ and J quantum numbers are replaced by angular variables that provide a direct
connection between the incoming and outgoing states and momenta. The present work
builds on pioneering work of Hoffman [137], who developed a classical kinetic theory for
a mixture of dilute gases of rigid convex molecules. Molecular orientation variables, not
impact parameters, were used to evaluate the collision integrals. Evans and coworkers
[138, 139] succeeded in extending Hoffman’s angular parametrization to the calculation
of the classical bimolecular rate constant, the energy-dependent reaction cross section
and the steric dependence of the differential cross sections for general diatom-diatom
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collisions. In the present study, we will exploit the l, l′, J replacement by angular variables
to gain understanding and to calculate differential cross sections and steric asymmetries
for scattering on anisotropic (heteronuclear) potentials. The straightforward expressions
derived in this way provide an intuitive basis for understanding the source of the observed
steric asymmetry.

This paper is organized in 6 sections and an appendix. Section 7.3 describes the
main ideas behind the QQT and applies it to both fully state selected, non-oriented
molecules (section 7.3.1) and to oriented molecules (section 7.3.2). A previously unrec-
ognized propensity rule for the differential cross section follows from this treatment. In
section 7.4 a hard shell approximation is introduced to obtain the molecule fixed scatter-
ing amplitude. This scattering amplitude, which contains the phase shift, is necessary to
obtain quantitative results from the QQT. The quantitative QQT results are discussed in
section 7.5 and compared to experimental results. Some conclusions and a future outlook
are given in section 7.6. In the appendix, a short discussion is given concerning the impact
the QQT has on the discrepancy in the sign of the steric asymmetry ratio [45, 87]. This
discussion directly relates to our results but does not belong to the central focus of the
present study.

7.3 Quasi Quantum Treatment

The QQT aims at the simplification and approximation of exact quantum treatments.
It presents an intuitive basis for understanding the physics behind the steric asymmetry
and - more generally - the relation between inelastic collisions and the anisotropy of the
inter-molecular potential.

For scattering trajectories (rays) to interfere, the trajectories from a single initial state
need to be scattered under an identical angle and into the same final molecular state. The
impact parameter b gives the distance between a straight line along the the trajectory of
the incoming particle long before collision and the (center-of-mass) origin the collisions
system that resides at the center-of-mass of the NO molecule (see Fig. 7.2). The orbital
angular momentum before collision (with quantum number l) is fixed by k and the impact
parameter b. Traditionally, to calculate differential cross sections, a summation over l is
made that in the classical limit can be replaced by integration over b ≈ l/k (for example see
Ref. [126]). For elastic (atom-atom) scattering on a Lennard-Jones type of the potential,
there are only three trajectories with different impact parameters that lead to the same
scattering angle [140] and thus interfere. One of the three trajectories is mostly caused
by the repulsive part of the potential, the other two are due to the attractive part [140].

In the case of an anisotropic potential, even when neglecting the attractive part, the
repulsive part of the potential allows scattering into a certain angle for many impact pa-
rameters. This is demonstrated in Fig. 7.2 using a hard egg-shaped potential. Solving
this scattering problem numerically involves a large set of coupled (j, l, ǫ, j′, l′, ǫ′) differen-
tial equations at each value of J , which makes these treatments time-consuming [65,141].
Calculating steric asymmetries for the He-NO collision system with current technology
takes a set of several parallel processors several days [60].

Approximations can be introduced to reduce the size of the calculations. The projec-
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Figure 7.3: Part of the incoming momentum k is transformed into rotation. The orien-
tation of the apse (β) and the translational energy loss due to rotational excitation ∆j
fixes the scattering angle.

tion ma of the total angular momentum j on an apse â is approximately conserved during
the collision, when the repulsive part of the potential dominates (in the sudden approxima-
tion). Apse quantization was proposed and demonstrated to be a feasible approximation
by Khare et al. [107,136,142]. Later on, Meyer et al. experimentally showed that the apse
approximation yields good quantitative results for (among others) He-NO collisions [108]
and Ne-NO collisions [109]. In this work, the kinematic apse will be used, which - in
contrast to the geometric apse - relies on the final rotational state. The kinematic apse
is defined as [107]:

âk =
k′ − k

|k′ − k| . (7.4)

The spherical angles which define the direction of the kinematic apse in the collision frame
(Ẑ ≡ k̂) are defined as β and α. The orientation of the molecular axis with respect to
the kinematic apse is given by the spherical angles γa and φa.

In the QQT the commonly-used sum over l (or integral over the impact parameter
b) is replaced by an integral over the apse angles β and α. The scattering angle is
determined fully by the angle of the kinematic apse with the incoming momentum and
the final rotational state. When one integrates over b, scattering into the same angle and
thus interfering contributions originate from many values of b (see Fig. 7.2), making the
integral cumbersome to evaluate. Fig. 7.3 schematically shows the scattering angle of the
outgoing momentum for different final rotational states at a single direction of kinematic
apse. Note that 1

2
π ≤ β ≤ π for scattering with k′ ≤ k. No interfering contributions

from different apse orientations occur as there is a direct relation between apse angle and
scattering angle.

To find the relation between the scattering angle (θ), the incoming momentum (k)
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and the angle between apse and incoming momentum (β), the energy of each rotational
level of the NO-molecule E(j) has to be known. The amount of kinetic energy that is
converted into rotation is given by:

E(j′) =
1

2µ
(k2 − k′ 2), (7.5)

where µ is the reduced mass. In experiments of Refs. [2, 5, 6] and [11] the molecules
are prepared in the upper component of the Λ-doublet of the rotational ground state
(j = 1

2
,Ω = 1

2
, ǫ = −1). In collisions with rare gas atoms, the NO molecules are excited to

higher rotational states (j′,Ω
′
, ǫ′). The spin-orbit constant A0 and the rotational constant

B0 used to calculate the rotational energy of a NO molecule in the ν = 0, X2Π state are
A0 = 123.13 cm−1 and B0 = 1.6961 cm−1 [17].

In the current treatment the attractive part of the rare gas - NO interaction will be
neglected; the maximum well depth for He-NO and Ar-NO (25 and 116 cm−1 respectively
[56, 69]) is much smaller than the kinetic energy compared to a collision energy of ≈ 500
cm−1. Only spin-orbit conserving Ω′ = Ω transitions are considered. Spin orbit changing
transitions are expected to be governed by the difference potential energy surface Vdiff [1]
which is not included in the present treatment.

The first goal is to calculate the state-to-state differential cross section, dσ/dω, which
is related to the dimensionless scattering amplitude by:

dσj,m,Ω→j′,m′,Ω′

dω
=

1

k2
|fj,m,Ω→j′,m′,Ω(ϑ, ϕ)|2. (7.6)

The scattering amplitude is defined as the coefficient of the outgoing wave in

Ψ ∝ Ψj,m,Ωe
ik·R +

∑

j′,m′

Ψj′,m′,Ωfj,m,Ω→j′,m′,Ω(ϑ, ϕ)
ieik′R

√
kk′R

. (7.7)

In Ref. [143], it was shown that Eq. 7.7 is a proper asymptotic solution of the Schrödinger
equation. Integration of the differential cross section over dω = sinϑ dϑ dϕ provides the
total cross section σj,m,Ω→j′,m′,Ω.

The conventional scattering amplitude fj,m,Ω→j′,m′,Ω(ϑ) can be expressed in a newly
introduced scattering amplitude gj,m,Ω→j′,m′,Ω(β). The azimuthal angles α and ϕ are
redundant because of cylindrical symmetry; note α = ϕ. The scattering amplitudes are
related via a Jacobian:

fj,m,Ω→j′,m′,Ω(ϑ) =

√

sin β

sinϑ

∣

∣

∣

∣

∂β

∂ϑ

∣

∣

∣

∣

gj,m,Ω→j′,m′,Ω(β). (7.8)

Note that Eq. 7.8 does not specify the choice of the quantization axis. Recall that the
projection of the total angular momentum on the apse (ma) is (approximately) conserved
during the scattering process (m′

a = ma). Including ma conservation in the calculation
leads to an enormous simplification. The scattering amplitude in the apse frame (where
the apse âk serves also as quantization axis) is defined as:

gj,ma,Ω→j′,ma,Ω(β) = C(β)〈j′,ma,Ω| gj→j′(γa; β) |j,ma,Ω〉 =

C(β)

∫ π

0

∫ 2π

0

Ψj,ma,Ω gj→j′(γa; β) Ψ∗
j′,ma,Ω sin γa dφadγa. (7.9)
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C(β) is a normalization factor that is discussed in detail later (see Eq. 7.17). For now we
will proceed without quantifying the fixed molecule scattering amplitude gj→j′(γa; β) that
connects the incoming and outgoing wave functions and carries their phase shift. The
angle γa of the molecular axis r with the apse âk is assumed to remain fixed during the
collision. In section 7.4, a hard shell potential will be used to approximate gj→j′(γa; β),
but there is no restriction to such a potential. The absolute value of the molecule fixed
scattering amplitude is taken as the square root of the apse-dependent classical differential
cross section dσ

dωa
≡ dσ

sin β dβ dα
that is independent of the final rotational state.

|gj→j′(γa; β)| = k

√

∂2σ(γa)

| sin (β)∂β| ∂α. (7.10)

The integration of Eq. 7.9 contains the product of the initial and (complex conjugate
of) the final wave function. The rotational wave function can be expressed as [13]:

Ψj,ma,Ω =

√

2j + 1

4π
Dj∗

ma,Ω(φa, γa, 0) =

(−1)ma−Ω

√

2j + 1

4π
Dj

−ma,−Ω(φa, γa, 0) (7.11)

The product of the wave functions that appears in the integral of Eq. 7.9 can - after using
Eq. 3.116 of Ref. [13] - be contracted to:

Ψ∗
j′,ma,ΩΨj= 1

2
,ma,Ω =

1

4π

√

j′ +
1

2

[

Pj′− 1

2

(cos γa) +
maΩ

maΩ
Pj′+ 1

2

(cos γa)
]

(7.12)

Here maΩ denotes the absolute value of the product maΩ. We first apply this result to
fully state selected molecules (as in Ref. [11]) and after that to oriented molecules.

7.3.1 State-selected molecules

The pure parity wave function for an NO molecule in the laboratory frame (neglecting
Hund case b mixing) can be written as:

|j,ma,Ω, ǫ〉 =
1√
2

[

|j,ma,Ω〉+ ǫ|j,ma,−Ω〉
]

. (7.13)

The parity of a wave function is defined by its behavior under parity transformation
(inversion), which acts as an unitary operator P on a wave function ψ:

Pψ(r) = ψ(−r) = pψ(r) (7.14)

The total parity p = ±1 of a rotational state (eigenvalue of P ) is provided by Brown et
al. [18]:

p = (−1)j−ǫ/2. (7.15)
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Using the result in Eq. 7.12, the differential cross section for scattering of j = 1
2
,ma =

1
2
,Ω = 1

2
, ǫ→ j′,ma = 1

2
,Ω = 1

2
, ǫ′ is given by:

dσj= 1

2
,ǫ→j′,ǫ′

dω
= C(β)2 j

′ + 1
2

4k2

sin β

sinϑ

∣

∣

∣

∣

∂β

∂ϑ

∣

∣

∣

∣

|gj′−ǫǫ′/2(β)|2 (7.16)

with: gn(β) =

∫ 1

−1

gj→j′(γa; β)Pn(cos γa)d cos(γa).

Note that n = j′ − ǫǫ′/2.
The factor C(β) takes care of current density conservation along the kinematic apse,

which lies along the direction of momentum transfer. The total differential cross section
with respect to the apse (summed over all rotational states) for inelastic scattering has
to be the same as its classical counterpart:

C(β)2 =
dσclass

dωa

/

∑

j′,ǫ′

j′ + 1
2

4k2
|gj′−ǫǫ′/2(β)|2 (7.17)

with:
dσclass

dωa

=

∫ 2π

0

∫ π

0

Ψ∗
j,ma,Ω,ǫ

Ψj,ma,Ω,ǫ

dσ(γa; β)

dωa

sin γadγadφa. (7.18)

Recall that
dωa = sin βdβdϕ. (7.19)

In the case of j = 1
2
, Eq. 7.18 can be simplified as:

dσclass

dωa

=
1

4π

∫ 2π

0

∫ π

0

dσ(γa; β)

dωa

sin γadγadφa. (7.20)

The effect of the weak j′ dependence of the phase shift in gj→j′(γa; β) for neighboring
j′ values is suppressed for the remainder of section 7.3 and gj→j′(γa; β) is abbreviated
as g(γa; β). In Eq. 7.16, it can be seen that the differential cross sections for transitions
from j = 1

2
, ǫ = −1 to two neighboring rotational states with the same parity (for example

j′ = 3.5, ǫ′ = 1 and j′ = 4.5, ǫ′ = −1) are similar, except for a different pre-factor (j′ + 1
2
).

This propensity rule immediately follows from Eq. 7.16:

dσ 1

2
,ǫ=−1→ 3

2
,ǫ′=1

dω
≈ 2

3

dσ 1

2
,ǫ=−1→ 5

2
,ǫ′=−1

dω
∝
∣

∣

∣

∫ 1

−1

g(γa; β)P2(cos γa)d cos(γa)
∣

∣

∣

2

dσ 1

2
,ǫ=−1→ 5

2
,ǫ′=1

dω
≈ 3

4

dσ 1

2
,ǫ=−1→ 7

2
,ǫ′=−1

dω
∝
∣

∣

∣

∫ 1

−1

g(γa; β)P3(cos γa)d cos(γa)
∣

∣

∣

2

dσ 1

2
,ǫ=−1→ 7

2
,ǫ′=1

dω
≈ 4

5

dσ 1

2
,ǫ=−1→ 9

2
,ǫ′=−1

dω
∝
∣

∣

∣

∫ 1

−1

g(γa; β)P4(cos γa)d cos(γa)
∣

∣

∣

2

et cetera.

The current treatment explains the surprising observation that differential cross sec-
tions come in ”parity pairs” as seen in ion imaging (velocity mapping) experiments [11].



7.3. Quasi Quantum Treatment 119

Figure 7.4: Ion images for He-NO collisions at Etr = 514 cm−1 . Marked images (*)
are from P+Q or Q+R branch transitions. These images are more sensitive to collision
induced rotational alignment and therefore show more asymmetry than those from single
P and R branches [11]. The parity pairs are grouped and separated from the other images
by white lines. The image for p′ = −1, j′ = 9.5 could not be obtained because of two
overlapping spectral lines. Images for p′ = 1, j′ = 6.5 and p′ = 1, j′ = 7.5 form a pair as
well although they are displayed on different rows.
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Ion images of product angular distributions for spin-orbit conserving He-NO collisions
are plotted in Fig. 7.4. The top panel displays images for parity conserving transitions,
while the lower panel shows images for parity breaking transitions. The ”parity pairs” for
each final rotational state with identical j′ − ǫǫ′/2 are grouped in this figure and spaced
from the other images. The intensity in the ion images reflects the 2-dimensional velocity
distribution of the NO-molecules after collision with a He-atom. The intensity on an
outer ring roughly reflects the differential cross section. For excitation to low j′, the NO-
molecules are mostly scattered in the forward direction, for high final rotational states,
backward scattering is preferred. This can easily be understood. Glancing collisions -
where little translational energy is transformed into rotational energy - are forward scat-
tered, whereas head-on collisions allow for higher rotational states and will show mostly
backward scattering.

Although the ion images of Fig. 7.4 clearly show the presence of parity pairs, these
images remain unable to give information on the absolute value of the differential cross
sections. To test the predicted (pre-factor) ratios between the differential cross section
within the pairs, these ratios are compared to those obtained from quantum mechanical
close coupling (HIBRIDON) [59] calculations [11]. The ratios An between HIBRIDON
differential cross section within parity-pairs, are obtained with a least squares fit, where

[ dσ

dω

∣

∣

∣

∆j=n+1
− An

dσ

dω

∣

∣

∣

∆j=n

]2

(with n = 1, 2, 3, . . .)

is minimized. The resulting close coupling ratios are compared to those from the QQT
pre-factors in Table 7.1. For low final rotational states, there exists a good qualitative
agreement with the ratios predicted from Eq. 7.16, although for the highest rotational
states the agreement is less pronounced. Until now, no thorough explanation for the
disagreement at high rotational states has become available, but at this region the con-
tribution of spin orbit changing collisions becomes comparable compared to that of spin
orbit conserving collisions. Additionally, the angular dependence of the differential cross
sections turns out to be more distinctive for large j′ [11].

The counter-intuitive result that the differential cross section to the upper j′ compo-
nent of each parity pair j′ − ǫǫ′/2 is larger than that to the lower j′ component opposes
the ”exponential gap” model [35, 92]. This rule of thumb predicts that the cross section
for a small ”gap” (the change of translational energy during collision) and thus a small j′

is larger than to a higher one.

Application of classical S-matrix theory showed that collisions between rare gas atoms
and nearly homo-nuclear 1Σ molecules, favor rotational transitions with ∆j = even [144].
This propensity rule cannot simply be extended to collisions of 2Π molecules like NO.
Each rotational j state carries both parities in the two components of the Λ-doublet.
Both in this work, as well as that by Drabbels et al. [145] the preference of ∆j for
conservation or breaking of parity was studied. For parity conserving collisions of He
with NO it was observed that transitions with ∆j = even are preferred, while for parity
breaking transitions both studies find a preference for ∆j = odd transitions. The (2j′+1)
pre-factor in Eq. 7.16 explains both propensities.
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Table 7.1: Parity pairs for He-NO collisions. A least squares method was used to find
ratios between differential cross sections from quantum calculations. For the QQT the
ratio’s between the pre-factors (j′ + 1

2
) are provided. The ratio between the differential

cross sections for the QQT might be slightly different due to the dependence of the phase
shift on the final rotational state.

n p′ dσ
dω

∣

∣

∆j=n+1

/

dσ
dω

∣

∣

∆j=n

QQT pre-factor An (Quantum calc.)

1 1 3/2 1.50 1.54
2 -1 4/3 1.33 1.36
3 1 5/4 1.25 1.23
4 -1 6/5 1.20 1.30
5 1 7/6 1.17 1.16
6 -1 8/7 1.14 1.25
7 1 9/8 1.13 1.13
8 -1 10/9 1.11 1.07
9 1 11/10 1.10 1.32
10 -1 12/11 1.09 0.88
11 1 13/12 1.08 2.50

7.3.2 Oriented molecules

The result in Eq. 7.12 is applied to oriented molecules in this subsection. Under the
influence of a static electric orientation field E the hexapole state selected wave function
can be described as a linear combination of both components of the λ-doublet.

|j,m,Ω, E〉 = α(E)|j,m,Ω, ǫ = −1〉 ± β(E)
m

m
|j,m,Ω, ǫ = 1〉 (7.21)

The ± indicates orientation. For ”+” orientation there is preference for r to point parallel
to the quantization axis (r ↑↑ Ẑ), while for ”−” orientation these vectors point antiparallel
(r ↑↓ Ẑ).

The parameters α(E) and β(E) in Eq. 7.21 are the mixing coefficients. If the orienta-
tion field cannot be assumed infinitely high, mixing is not complete and α(E) > β(E) > 0
with α2 + β2 = 1. For an infinitely high orientation field E∞, α(E) = β(E) = 1√

2
, the

wave function can then be written as:

∣

∣j,m,Ω, E∞
〉

=
1√
2

[

∣

∣j,m,Ω, ǫ = −1
〉

± m

m

∣

∣j,m,Ω, ǫ = 1
〉

]

. (7.22)

We first focus on this more simple case. Substitution of Eq. 7.13 into 7.22 now yields:
∣

∣

∣
j,m,Ω, E∞

〉

=
∣

∣

∣
j,m,Ω =

m

m
Ω
〉

for ”+” orientation,
∣

∣

∣j,m,Ω, E∞

〉

= −
∣

∣

∣j,m,Ω = −m
m

Ω
〉

for ”-” orientation. (7.23)
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For convenience, the orientation is for now taken relative to the apse; m in Eqs. 7.22 and
7.23 is replaced by ma.

∣

∣

∣
j,ma,Ω, E∞

〉

=
∣

∣

∣
j,ma,Ω =

ma

ma

Ω
〉

for ”+” orientation, (7.24)
∣

∣

∣
j,ma,Ω, E∞

〉

= −
∣

∣

∣
j,ma,Ω = −ma

ma

Ω
〉

for ”-” orientation. (7.25)

Recall that orientation is defined such that for ”+” orientation, the molecular axis r

preferentially is parallel to the quantization axis, while for ”-” orientation it preferentially
is antiparallel. It should be noted that in Eq. 7.25 the apse serves as quantization axis
Ẑ = â. In NO, r points from the O-atom towards the N-atom. In the apse frame, the ”+”
orientation relates to a R−NO collision geometry and the ”-” orientation to a R−ON
geometry. Transformation from the apse frame to the collision frame - which weakens the
orientation effects - will be done at a later stage. The orientation dependent scattering
amplitude in the apse frame follows directly from the substitution of Eq. 7.12 in Eq. 7.9.

g 1

2
,±→j′(β) = ±C(β)

1

2

√

j′ +
1

2

[

gj′− 1

2

(β)± gj′+ 1

2

(β)
]

with: gn(β) =

∫ 1

−1

gj→j′(γa; β)Pn(cos γa)d cos(γa). (7.26)

This equation turns out to be very helpful to explain the oscillations of the steric asym-
metry S as a function of the final rotational state.

To obtain a relation between the relevant scattering amplitudes, the recurrence relation
for Legendre polynomials will be used.

Pn+1(x) =
2n+ 1

n+ 1
x Pn(x)− n

n+ 1
Pn−1(x). (7.27)

For large n this reduces to:

Pn+2(x) ≈ 2xPn+1(x)− Pn(x). (7.28)

Around the center (x ≈ 0), Pn(x) dominates in Eq. 7.28. At the edges (|x| ≈ 1),
2xPn+1(x) dominates. Overall both terms are equally important as Pn+1 is multiplied
with 2x (−1 < x < 1). Note that the amplitude of the oscillations of Pn+1(x) is only
slightly smaller than that of Pn(x). In Fig. 7.5 some Legendre polynomials are plotted
to illustrate that Pn+2(x) ≈ −Pn(x) around x ≈ 0.

Substitution of Eq. 7.28 in Eq. 7.26 gives

gn(β) ≈ −gn+2(β) + 2

∫ 1

−1

gj→j′(γa; β) cos γa Pn+1(cos γa)d cos(γa). (7.29)

If the contributions around the waist of the molecules (cos γa = 0) dominate the integral,
the second term in Eq. 7.29 can be neglected: gn(β) ≈ −gn+2(β). This will be the case
when the phase shift η close to cos γa = 0 is stationary [126]: i.e. η does not depend
on cos γa, which is expected for a prolate molecule like NO. Under these conditions it is
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Figure 7.5: Example of Legendre polynomials. Roughly speaking, Pn(cos γa) ≈
−Pn+2(cos γa) in the (broad) region around cos γa = 0.



124 Chapter 7. Quasi Quantum Treatment

easily shown why the orientation preference switches sign when increasing j′ → j′ + 1.
The ± orientation dependent differential cross section for excitation to j′ immediately
follows from Eq. 7.26:

dσ 1

2
,±→j′

dω
=
j′ + 1

2

4k2
C(β)2 sin β

sinϑ

∣

∣

∣

∣

∂β

∂ϑ

∣

∣

∣

∣

|gj′− 1

2

(β)± gj′+ 1

2

(β)|2. (7.30)

For j′ + 1 this results in:

dσ 1

2
,±→j′+1

dω
=
j′ + 3

2

4k2
C(β)2 sin β

sinϑ

∣

∣

∣

∣

∂β

∂ϑ

∣

∣

∣

∣

|gj′+ 1

2

(β)± gj′+ 3

2

(β)|2. (7.31)

Substitution of gn+2(β) ≈ −gn(β) → gj′+ 3

2

(β) ≈ −gj′− 1

2

(β) yields:

dσ 1

2
,±→j′+1

dω
≈ j′ + 3

2

4k2
C(β)2 sin β

sinϑ

∣

∣

∣

∣

∂β

∂ϑ

∣

∣

∣

∣

|gj′− 1

2

(β)∓ gj′+ 1

2

(β)|2. (7.32)

Comparing the right-hand sides of Eqs. 7.30 and 7.32 one notices that they are nearly
similar, except for the pre-factor and the ± in the integral, which defines the orientation.
The ± is exchanged for a ∓, which implies that the orientation preference is reversed
when increasing j′ → j′ + 1.

Incomplete mixing due to finite field strength can be included in the model. Applica-
tion of Eq. 7.21 as the initial wave function leads to the orientation-dependent differential
cross section:

dσ 1

2
,±,E→j′,ǫ′

dω
=
j′ + 1

2

4k2
C(β)2 sin β

sinϑ

∣

∣

∣

∣

∂β

∂ϑ

∣

∣

∣

∣

|α(E)gj′+ǫ′/2(β)± β(E)gj′−ǫ′/2(β)|2 (7.33)

The observed steric asymmetry will in practice be smaller than what follows from integra-
tion of Eq. 7.33. Recall that orientation is until now defined along the apse: the product
maΩ gives the orientation, where ma is the projection of j on the apse. In experiments,
molecules are oriented along an electric field that is usually fixed in the laboratory.

The projection of the total angular momentum on the Ẑ-axis of the collision frame
(parallel or antiparallel to the electric field E) is defined by mΩ instead of maΩ, where m
is the projection of j on the Ẑ-axis that points along the relative velocity. The final result
is a linear combination of ”+” and ”-” orientation along the apse weighted by the axis
distribution of the selected state. There will be a weakening of the steric asymmetry from
the pure apse-oriented state, but the conclusions drawn before on the undulating behavior
of S remain intact. The laboratory and apse frames are related by rotation through the
polar angle β.

|j,m,Ω〉 =
∑

ma

dj
ma,m(β)|j,ma,Ω〉 (7.34)

In the scattering experiments with oriented NO molecules, the initial state is j = 1
2
. The

differential cross section follows as:

dσj= 1

2
,mΩ=± 1

4
,E→j′,ǫ′

dω
=

sin2
(β

2

)dσj= 1

2
,maΩ=∓ 1

4
,E→j′,ǫ′

dω
+ cos2

(β

2

)dσj= 1

2
,maΩ=± 1

4
,E→j′,ǫ′

dω
(7.35)
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Table 7.2: Hard shell Legendre polynomial approximation coefficients as used in Eq.
(7.36).
n cn for He-NO hard shell [Bohr] cn for Ar-NO hard shell [Bohr]

0 4.8637 5.8692
1 0.1983 0.1516
2 0.6908 0.6771
3 -0.0126 0.0142
4 -0.1497 -0.0999
5 -0.0012 0.0010
6 0.0263 0.0183

Where the mΩ/mΩ = 1 provides a R − ON configuration and mΩ/mΩ = −1 gives a
R − NO configuration in the collision frame with Ẑ = k̂. Note that 90o ≤ β ≤ 180o,
which implies that the first term with sin2(β/2) is the strongest one. The ”+” orientation
in the collision frame is dominated by the ”-” orientation in the apse frame because the
quantization axis in the apse frame (Ẑ = â) generally points opposite to that in the
collision frame (Ẑ = k̂).

7.4 Hard shell approximations

To be able to calculate differential and integral cross sections, it is necessary to provide an
explicit expression for the molecule fixed scattering amplitude gj→j′(γa; β), that contains
the phase shift. In this section a hard shell potential is applied to obtain gj→j′(γa; β). The
use of more sophisticated potential energy surfaces - soft and / or including attraction - is
not treated here. At our collision energy, the He-NO and Ar-NO potential energy surfaces
are reasonably well described in a hard shell approximation. The aim of this work is to
obtain a better insight into the physics of inelastic scattering.

The convex hard shell for Ar colliding with NO is approximated using the 475 cm−1

equipotential surface from Alexander’s Vsum PESs [69]. The shell for He-NO uses the
514 cm−1 equipotential surface from Vsum PESs calculated by K los [114]. These equipo-
tential surfaces are taken at the collision energies from Refs. [5, 6, 11]. The hard Ar-NO
and He-NO potentials are shown in Fig. 7.6. As the amount of available ab initio points
on the equipotential is limited, an interpolation has been used to establish the shell. The
equipotential lines are expressed in a Legendre expansion:

Rs(γR) =
nmax
∑

n=0

cnPn(cos γR). (7.36)

In this equation, γR is the polar angle between the position vector of the shell and the
molecular axis while Rs(γR) gives the distance from the origin of the potential to the hard
shell (see also Fig. 7.7). The coefficients for this expansion have been calculated using a
least squares optimization routine. For Ar-NO, 9 points were supplied and used for the
fit while for He-NO the fit was made using 37 points. The cn coefficients resulting from a
fit to the expansion with nmax = 6 are shown in Table 7.2. As is shown in Fig. 7.6, both
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Figure 7.6: Calculated equipotential line and interpolation for NO-Ar Etr = 475 cm−1

[69] and NO-He PESs Etr = 514 cm−1 [56]. Coefficients from table 7.2 are used. The
interpolation for Ar-NO is based on 9 data points, that for He-NO is based on 37 points.
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Figure 7.7: Schematic representation of a hard convex shell.

the He-NO and the Ar-NO ab initio equipotential surfaces are excellently described using
Eq. 7.36 with the fitted cn constants of Table 7.2.

The surface normal n̂ - that points perpendicularly to the hard shell - coincides with
the kinematic apse âk. In the hard shell approximation, the scattering angle is determined
only by the incoming momentum, the surface normal and the final rotational state. This is
demonstrated in Fig. 7.8, where the incoming momentum k is decomposed in a component
parallel (k‖) and perpendicular (k⊥) to the shell. The force that induces the rotation
points perpendicular to the shell. The component of the momentum perpendicular to the
hard shell is reversed and partly transformed into rotation. The component along the
hard shell k‖ is conserved:

k′
‖ = k‖.

The hard shells can be exploited to find the molecule fixed scattering amplitude. This
amplitude for a specific rotational excitation is written as:

gj→j′(γa; β) = gclass(γa; β) eiη(γa;β). (7.37)

The j → j′ dependent phase shift is denoted by η(γa; β) and gclass(γa; β) is a ”classical”
hard shell scattering amplitude that follows from the classical differential cross section in
the apse frame. For a spherical potential gclass reduces to the square root of the classical
differential cross section (in the apse frame)

gclass(β) = kRs

√

|cosβ|. (7.38)
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Figure 7.8: Assuming a hard shell, the scattering angle is defined by only the incoming
momentum, the surface normal n̂ (that coincides with the kinematic apse âk) and the
final rotational state.
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In this case, Rs is independent of the position on the hard shell (γR = γa). Integration of

Eq. 7.9 for elastic scattering - dη(γa;β)
dγa

= 0 or a constant as function of γa - now yields the
classical integral cross section.

1

k2

∫ 0

−1

∫ 2π

0

[

kRs

√

| cos β|
]2

dα d cos β = πR2
s

Note that in this spherical shell approximation, the current density conservation parameter
C(β) reduces to:

C(β)2 = R2
s|cosβ|

/

∑

j′,ǫ′

j′ + 1
2

4k2
|gj′−ǫǫ′/2(β)|2 (7.39)

In order to calculate the phase shift η, the hard convex potential is used. The phase
shift is defined as the path length difference difference between a path via the hard shell
and the corresponding imaginary path through the origin of the potential (center-of-mass),
divided by the local de Broglie wavelength and multiplied by 2π.

η(γa; β) = −Rs(γR)

~
cos (γa − γR)(k′⊥ + k⊥) (7.40)

As k⊥ = |k cos β|, it is easily seen that for a glancing collision, the phase shift is zero,
while for a head-on collision the absolute value of the phase shift is at a maximum. The
phase shift simply scales with | cos β|. Once η is calculated for a certain position on the
hard shell for | cos β| = 1, multiplication by | cos β| provides the phase shift for collisions
at the same γa for arbitrary direction of the apse.

Eq. 7.40 contains both γR and γa. In Fig. 7.7 it is shown that - unlike for a spherical
shell - the angle γa between the normal (apse) âk and the molecular axis is not the same
as the angle γR between Rs(γR) and the molecular axis. An unique relation between γR

and γa follows from:

γa = − arctan

(

d Rs(γR) sin (γR)

d Rs(γR) cos (γR)

)

(7.41)

The expression for gclass(γa; β) (Eq. 7.10) is no longer given by Eq. 7.38. Areas on the
molecular shell that have a large radius of curvature will contribute more to the scattering
amplitude than those with a small radius of curvature. By using the two radii of curvature
ρ1 and ρ2 that support the differential surface dS as a function of γa and substituting
their product for R2

s in Eq. 7.38 one obtains:

gclass(γa; β) =
√

ρ1ρ2|cosβ|. (7.42)

The radii of curvature ρ1 and ρ2 are calculated as:

ρ1 =
d Cf

d γa

, (7.43)

ρ2 =
Rs(γR) sin (γR)

sin(γa)
. (7.44)
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Figure 7.9: QQT results for the steric asymmetry ratio of He-NO collisions (Ω′ = 1
2
) are

compared to results of CC (HIBRIDON) calculations [6]. Mixing coefficients used are
α(E) = 0.883 and β(E) = 0.470 [6], collision energy is approximately 510 cm−1. The
upper panel denotes ǫ′ = −1 while the lower shows results for ǫ′ = 1. In the case of
perfect orientation (mixing) both panels should show the same result as both components
of the Λ-doublet are equally populated before the collision.

d Cf/d γa is the γa derivative of the arc length of the hard shell in a plane through the
molecular axis. The second radius of curvature ρ2 is given by the distance from the
molecular axis to the hard shell along the surface normal. Note that gclass(γa; β) is the
square root of the fixed molecule differential cross section dσ/dωa in respect to the apse.
With these results, the treatment can be applied to provide quantitative results. This is
the subject of the next section.

7.5 Quantitative Results and Discussion

The general QQT of section 7.3 provides already some qualitative conclusions. In section
7.3.1 it was shown that the differential cross sections for collisions with fully state-selected
(non-oriented) molecules show parity pairs and propensity rules. In section 7.3.2 it is ar-
gued why the steric asymmetry exhibits an oscillatory behavior as function of the final
rotational state. The calculation of the molecule fixed scattering amplitude obtained from
the hard shell approximation makes it possible to obtain quantitative results. In this sec-
tion the hard shell QQT will be applied to He-NO scattering to result in calculated angle
dependent differential cross sections for non-oriented molecules and steric asymmetries
for collisions of He and Ar atoms with oriented molecules.

Upon substitution of Eqs. 7.40 and 7.42 in Eqs. 7.33 and 7.35 and subsequent evalua-
tion of the integral, the differential cross section is obtained. Integration of the differential
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Figure 7.10: QQT results for the steric asymmetry ratio of Ar-NO collisions (Ω′ = 1
2
, ǫ′ =

1) are compared to results of CC (HIBRIDON) calculations [1, 16]. Mixing coefficients
used are α(E) = 0.832 and β(E) = 0.555 [5], collision energy is approximately 510 cm−1.
The upper panel denotes ǫ′ = −1 while the lower shows results for ǫ′ = 1. The differences
between the QQT results and the CC results for ∆j ≤ 3 likely originate from attractive
long range interactions that are neglected in the hard shell QQT calculations. Aoiz et
al. [146] showed that the attractive part of the potential only has significant influence for
∆j ≤ 3.
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cross section leads to a cross section that using Eq. 7.1 provides the steric asymmetry
S. S is plotted in Figs. 7.9 and 7.10 for two cases: He-NO with ǫ′ = 1 and Ar-NO
with ǫ′ = −1. Mixing is not complete so slightly more NO with ǫ = −1 is present than
with ǫ = 1 before collisions. Mixing coefficients were taken from Ref. [6] for He-NO and
from Ref. [5] for Ar-NO. The QQT results for S correspond remarkably well to the close
coupling calculations (HIBRIDON). The experimental results have not been drawn in
Figs. 7.9 and 7.10 for readability, but (except for the unresolved sign error [45, 87]) they
correspond well to the theoretical (CC) values of S that are in the plot (see also Fig. 7.1).
The amplitude of S for scattering to the ǫ = −1 state is smaller than that for ǫ = 1. CC
calculations and experimental results show the same behavior.

In Eqs. 7.30 and 7.32 it was already shown that S shows an undulating behavior
as function of the final rotational quantum state j′. These equations however give no
information about the sign of the oscillation. To get information on the sign of the steric
asymmetry, the phase shift has to be included. In Fig. 7.11, the phase shift (He-NO)
for several final rotational states j′ is plotted (at β = 180o), as are some corresponding
Legendre polynomials. The dashed line with label ηmax labels the position where the
phase shift is maximum (least negative) and stationary. This position dominates within
the integral, which is enhanced by the fact that gclass(γa; β) has a maximum at this
position (the waist of the molecule) as well. Except at the stationary phase point, the
molecule-fixed scattering amplitude will show oscillations around 0 where the phase is
not stationary, which yields a small contribution in this area. On the other hand, if
there is a too large area of stationary phase compared to the oscillations of the Legendre
polynomials, the contribution in that area will also be close to 0. This is the reason that
the cross section for excitation to high rotational states vanishes for glancing collisions
with small phase shifts.

To illustrate how the stationary phase defines the sign of the steric asymmetry, scat-
tering into j′ = 6.5 is discussed here in some detail. Recall that in the integral for the
scattering amplitude a sum of two integrals of Legendre polynomials is found (Eq. 7.26)

dσ 1

2
,±→j′

dω
=
j′ + 1

2

4k2
C(β)2 sin β

sinϑ

∣

∣

∣

∣

∂β

∂ϑ

∣

∣

∣

∣

|gj′− 1

2

(β)± gj′+ 1

2

(β)|2.

with: gn =

∫ 1

−1

gclass(γa; β)eiη(γa;β)Pn(cos γa)d cos(γa).

The ± defines orientation, where the + indicates a (R − NO) and the ”−” an R −
ON collision. Recall that the apse serves as quantization axis here. Scattering will be
dominated by the value of the Legendre polynomial around the phase-shift maximum
γmax (where η(γa; β) = ηmax). For now a spherical hard shell is assumed so gclass(γa; β) is
independent of γa. Roughly speaking for j′ = 6.5 one has,

g6 ∼ eiηmaxP6(cos γmax) = −0.27 eiηmax ,

g7 ∼ eiηmaxP7(cos γmax) = 0.18 eiηmax . (7.45)

For a N-end collision g6 + g7 = −0.09eiηmax appears in the integral, while for an O-end
collision one has g6 − g7 = −0.45eiηmax . It is easily seen that the latter will yield a larger
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Figure 7.11: The combination of phase shift η (top panel) and the Legendre polynomials
(lower panel) fix the sign of the steric asymmetry S. The phase shift drawn here is
for collisions with β = 180o (incoming momentum lies along the surface normal). The
dashed line with label ηmax labels the position where the phase shift is maximum (least
negative). At this point the phase shift is stationary (the derivative dη

dγa
= 0), which makes

this position dominant within the integral, which is enhanced by the fact that gclass(γa; β)
has a maximum at this position. Due to the fact that k and k′ are larger for Ar-NO than
for He-NO, the phase function will be steeper for the Ar-NO system (see Eq. 7.40).
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contribution to the differential cross section for a transition to j′ = 6.5:

dσ 1

2
→j′=6.5,−

dω
>
dσ 1

2
→j′=6.5,+

dω
. (7.46)

According to Eq. 7.1 this will give a negative steric asymmetry, which is also seen in Fig.
7.9. The steric asymmetry will be slightly weakened as explained in Eq. 7.34. The values
for S in Fig. 7.9 and 7.10 are not calculated using the stationary phase argument, but
the whole integral in Eq. 7.30 is evaluated.

Besides integral cross sections and thus steric asymmetries, the QQT provides differ-
ential cross sections. Although until now no differential cross sections have been measured
for collisions of oriented NO, they are available for collisions of non-oriented NO with He.
Westley et al. [102] performed ion imaging measurements using state selection of the NO
with adiabatic cooling for state selection (both components of the Λ doublet present).
Recently, Gijsbertsen et al. performed ion imaging experiments with hexapole state se-
lected NO in which only upper component of the Λ doublet (ǫ = −1) is present [11].
Some (raw) ion images [11] are shown in Fig. 7.4. The intensity on an outer ring of these
images roughly indicates the differential cross section. In Fig. 7.12 some differential cross
sections from the QQT are compared to (extracted) experimental data and data from
close coupling calculations. The extraction method is explained in Ref. [11]. The QQT
results and experimental data are normalized to the total cross sections as available from
HIBRIDON results to enable a good comparison of the angular dependence. There is a
difference between the absolute values of the HIBRIDON calculations and QQT calcu-
lations. This is easily explained by the use of a hard shell. In order to transfer a lot of
kinetic energy into rotation, the potential is more deeply penetrated, causing underesti-
mation of the differential cross section for low rotational states. Scattering into Ω

′
= 3/2

was not taken into account in the QQT, which should result in too large a differential
cross section overall for scattering into the Ω

′
= 1/2 states.

7.6 Conclusions

The quasi-quantum-mechanical methodology successfully explains the steric asymmetry
and its alternation based on interfering scattering trajectories from a single purely re-
pulsive potential energy surface. It is thereby demonstrated that the steric asymmetry
reflects phase differences between scattering from the two ends of the NO molecule. The
straightforward quasi quantum mechanical picture provides the first physically simple,
yet rigorous, explanation for the behavior of the steric asymmetry, and it can readily be
extended to provide predictions of steric effects in other inelastic scattering systems or
for reactive collisions. It is shown that the effect of the attractive part of the potential
is small and thus that interference between propagation on the A′ and A′′ surfaces is not
responsible for the oscillations.

The differential cross sections calculated for non-oriented NO molecules colliding with
He atoms agree reasonably well to experimental results and close coupling calculations.
The QQT predicts a parity propensity rule that is also seen in experimental results and
results from full quantum mechanical calculations. This rule was not recognized as such
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Figure 7.12: Several differential cross sections for parity conserving transitions (p = p′ =
−1). The parity pairs (see also Fig. 7.4) are easily seen in this figure. Both the exper-
imental and QQT results are normalized on the total cross section from close coupling
HIBRIDON results. The hard shell approximation causes an underestimation of the dif-
ferential cross section for low rotational states. For these differential cross sections, the
normalization factors are (from low to high rotational states) 1.51, 1.58, 1.15, 1.18, 0.84
and 0.91.
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Figure 7.13: A hard shell was prepared such that the N-end (around γR = 0o) is similar
to that used for He-NO collisions, the O-end (around γR = 180o) is spherical (represented
by a horizontal line). Classically no torque can be applied on the spherical end. From the
ball and stick model one expects the S to be overall positive, except for elastic collisions
(∆j = 0) where no torque is necessary.

until now. In order to improve qualitative results of the QQT, the potential can be made
softer. This will allow the potential to be penetrated more deeply in the case of head-on
collisions than in the case of glancing collisions. Low rotational states will then show a
larger cross section compared to the current results.

7.7 Appendix: QQT and the sign of the steric asym-

metry.

As briefly mentioned before in this work, there still is an important unsolved discrep-
ancy between theory and experiment for collisions of rare gases and NO. There is good
agreement as far as the absolute value of the steric asymmetry ratio (S) is concerned, but
theory 1 and experiments yield an opposite sign of S. In both [6] and this work, it was
decided for now to multiply the experimental values of S with −1 when plotting them in
order to enable quantitative comparison. The sign problem for S of collisions with NO is
extensively discussed in Refs. [45] and [87]. Although not yet published when Refs. [45]
and [87] were published, the QQT provides an important argument in discussions on the

1except for Ar-NO calculations in Ref. [2]
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Figure 7.14: Steric asymmetry ratio for the specially designed hard shell in Fig. 7.13.
Classically no torque can be applied on the spherical end. From the ball-and-stick model
one expects the S to be overall positive, except for elastic collisions (∆j = 0) where no
torque is necessary. The result for S provides a strong indication that the theoretical sign
of S is correct.

sign of the steric asymmetry.

All theoretical results - except those of Ref. [2] - for rare gas collisions with oriented
NO and OH [46] are, since the revision of Ref. [45], consonant with a so-called classical
ball-and-stick model. If a stick is attached to a ball, it is easier to make that system rotate
by hitting the stick than by hitting the ball. The torque that can be applied on the stick
is larger than on the ball. For Ar colliding with OH the analogy with the ball (O-end) and
stick (H-end) is easily seen. Both experiment and theory shows that highest rotational
states are preferentially produced by collisions onto the H-end of the molecule. For NO,
the ball-and-stick effect is less pronounced, but it is still there. The N-end extends further
from the center of mass than the O-end and therefore it allows for a larger torque. It is
expected that relatively high rotational states are preferentially due to N-end collisions.
Looking at Fig. 7.1 it can easily be seen that this corresponds to theoretical results, while
experimental results show that O-end collisions are preferred for high rotational states.
Recall that experimental results in Fig. 7.1 are multiplied with a factor -1.

The ball-and-stick model can be exploited to see whether a sign error has been made
in the QQT. It is easy to design a hard shell that has extreme a ball-and-stick features.
The outcome of calculations with such a shell should immediately make clear what the
orientation is. For such a test, the O-end of the He-NO hard shell was made spherical
from the minimum of Rs(γR) on. In Fig. 7.13, the adapted hard shell is shown. The
original shell is drawn in Fig. 7.4. The steric asymmetry that follows from the QQT
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calculations is shown in Fig. 7.14 and leaves little room for a sign error. Only for elastic
collisions (∆j = 0) is a negative steric asymmetry ratio observed, which means that elastic
scattering arises principally from O-end scattering. A positive S is seen for all inelastic
channels (∆j > 0), which implies that the N-end is preferred. This ”ball-and-stick effect”
becomes more extreme as the stick is extended farther from the center of mass.



Samenvatting

Naar een beter begrip van
inelastische atoom-molecuul botsingen

Er is geen scheikunde zonder botsingen. Moleculaire botsingen vormen het uitgangs-
punt voor alle chemische reacties. Tijdens de botsing wordt impuls en energie overge-
dragen van de ene aan de andere botsingspartner. Dit kan structurele veranderingen
veroorzaken of leidt zelfs tot het uiteenvallen van een molecuul. In het alledaagse ”ma-
croscopische”leven zien we het gemiddelde resultaat van een groot aantal ”microscopi-
sche”botsingen. Individuele botsingen daarentegen zijn veel moeilijker te bestuderen.
Een gedetailleerd beeld van zo’n botsing is noodzakelijk om macroscopische verschijnse-
len goed te kunnen interpreteren. Op de schaal van enkele atomen en moleculen speelt
de kwantummechanica daarbij een dominante rol. De uitkomst van een botsing, d.w.z.
de eindtoestand waarin een botsend molecuul wordt aangetroffen, wordt bepaald door
overgangswaarschijnlijkheden van het ene naar het andere energieniveau.

Het is tegenwoordig mogelijk om voor geschikte systemen individuele botsingen expe-
rimenteel onder volledig gecontroleerde omstandigheden (begintoestand, botsingsenergie
en eindtoestand van de botsingspartners) te onderzoeken. Hiervoor worden gekruiste bun-
delmachines gebruikt, eventueel in combinatie met een zespool toestandsselector. Deze
toestandsselector maakt het mogelijk om moleculen in een enkele kwantummechanische
toestand te selecteren. Vervolgens kun je met gevoelige spectroscopische technieken on-
derzoeken hoe de bezetting van de energieniveaus verandert door de botsing, bijvoorbeeld
als functie van de botsingsenergie of voor verschillende oriëntaties. Deze informatie rela-
teert direct aan de interactiepotentiaal, hoewel het nog steeds niet mogelijk is deze direct
te reconstrueren uit metingen.

Dit proefschrift focusseert op botsingen van edelgas atomen met stikstofmonoxide
(NO). NO is een radicaal en daarom een chemisch interessant en veel gebruikt modelsys-
teem. Door een ongepaard elektron heeft NO een halftallig impulsmoment. NO is gevoelig
en kwantumtoestand specifiek te detecteren met behulp van spectroscopische technieken
zoals ”Laser Induced Fluorescence”(LIF) en ”Resonance Enhanced Multi Photon Ioniza-
tion”(REMPI) en is stabiel genoeg voor experimenteel gebruik.

Hoofdstuk 2 en 3 draaien om het teken van de sterische asymmetrie: de oriëntatie-
afhankelijkheid van botsingen. In de alledaagse chemie spelen oriëntatie-effecten geen rol:
alle oriëntaties zijn aanwezig in een ensemble. In een enkele botsing echter verwacht je dat
de uitkomst wel afhankelijk is van de oriëntatie van het molecuul. In deze hoofdstukken
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wordt gekeken naar de verschillen tussen botsingen van een edelgas op de N-kant en de
O-kant van het NO molecuul. Aangezien het NO molecuul een dipoolmoment heeft kan
het met elektrische velden worden georiënteerd alvorens te botsen.

Dit soort oriëntatie-effecten wordt gekwantificeerd met behulp van de sterische asym-
metrie S:

Si→f =
σkop − σstaart

σkop + σstaart

voor een bepaalde overgang van begintoestand i naar eindtoestand f . Hierbij zijn σkop

en σstaart respectievelijk de botsingsdoorsneden voor een botsing op de staart en op de
kop van het georiënteerde molecuul. Voor NO wordt over het algemeen de N-kant gezien
als ”kop”, terwijl de O-kant de ”staart”vormt. Als S positief is dan zijn het vooral
”kop”botsingen die bijdragen aan een bepaalde eindtoestand en als S negatief is, dan
zijn dat vooral botsingen op de ”staart”. Botsingen met ∆j = j′ − j = even worden
vooral veroorzaakt door botsingen op de N-kant (S is positief), terwijl S negatief is voor
botsingen met ∆j = oneven. Het rotationeel impulsmoment na en voor botsing wordt
aangeduid met respectievelijk j′ en j. De meeste2 theoretische berekeningen geven precies
het tegenovergestelde als uitkomst: S is negatief voor botsingen met ∆j = oneven en S is
positief voor ∆j = even. Voor hoge j′ voorspellen HIBRIDON3 en andere berekeningen
een voorkeur voor N-kant botsingen, maar experimenten laten zien dat met name O-kant
botsingen tot hoge rotatietoestanden leiden. Ook een simpel klassiek model in combinatie
met ab initio Ar-NO en He-NO potentiaal oppervlakken geeft aan, dat N-kant botsingen
zouden moeten domineren voor hoge ∆j. Klassiek gezien, worden immers de hoogste
rotatietoestanden vooral veroorzaakt door botsingen op de kant van het molecuul waar
het grootste krachtmoment kan worden aangebracht. Voor NO is dit de N-kant.

Verschillende verklaringen voor deze discrepantie worden beschreven in Hoofdstuk 3.
Hierbij worden expliciete uitdrukkingen voor de (j → j′) afhankelijke differentiële en in-
tegrale botsingsdoorsnede gegeven. Effecten van de keus van het assenstelsel en van de
Jacobihoeken op het teken van S worden besproken en bieden geen oplossing. Nieuwe
experimentele resultaten - na uitgebreide controle van de experimentele condities - zijn
consistent met eerdere uitkomsten. Een mogelijke maar onwaarschijnlijke oplossing is een
foute definitie van het teken van het dipoolmoment van NO. Het teken van dit dipoolmo-
ment is nooit gemeten, maar uit berekeningen volgt: N−O+. Wanneer dit andersom zou
zijn, dan oriënteert het NO molecuul in het experiment tegengesteld aan de verwachte
oriëntatie en het experimentele en theoretische teken van S zouden overeen komen.

Hoofdstuk 4 beschrijft een experiment om expliciet het teken van het dipoolmoment
van NO te bepalen. Hierbij wordt toestandsgeselecteerd NO georiënteerd in een homo-
geen electrisch veld en vervolgens met een intense femtosecondelaser beschoten. Het NO
molecuul valt uit elkaar (Coulomb explosie) en de fragmenten (bijv. N2+ en O2+) worden
in het electrisch veld versneld naar de detector. Fragmenten die oorspronkelijk naar de
positieve elektrode gericht stonden moeten eerst omkeren, waardoor ze iets langer onder-
weg zijn (ongeveer 2 ns) dan fragmenten die voor explosie naar de negatieve electrode
gericht stonden. Door het aantal vroege fragmenten te vergelijken met het aantal late
fragmenten van dezelfde soort kan de oriëntatie van het molecuul op het moment van

2uitgezonderd Ar-NO berekeningen in Ref. [2]
3na correctie, Ref. [45]
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explosie worden bepaald. Door de polarisatie van de laser een kleine hoek te laten maken
met het oriëntatieveld is het tijdsverschil van 2 ns ”omgezet” in een verschil in plaats
van inslag op de detector. Voor NO worden sterke oriëntatie-effecten waargenomen, die
wijzen op een dipoolmoment waarbij N negatief is en O positief (N−O+). Dit komt over-
een met resultaten uit ab initio berekeningen en geeft geen verklaring voor het verschil
tussen theoretische en experimentele waarden van de sterische asymmetrie S. Om dit
resultaat te valideren, is het bovenstaande experiment herhaald met OCS en CH3F, mo-
leculen waarvan het teken van het dipoolmoment buiten kijf staat. Voor deze moleculen
is de waargenomen oriëntatie tegengesteld aan de verwachte oriëntatie. Een mogelijke
verklaring is wordt gezocht in de combinatie van het laser- en het oriëntatieveld, maar
een definitieve oplossing is nog niet gevonden. Het is op dit moment niet mogelijk op
basis van experimentele resultaten een definitieve uitspraak te doen over het teken van
het dipoolmoment van NO.

Met een zespool toestandsselector kunnen NO moleculen in een enkele (laag veld zoe-
kende) toestand worden geselecteerd: j = 1

2
, Ω = 1

2
, ǫ = −1. Hierbij is j het rotatie

kwantumgetal, Ω het kwantumgetal van de projectie van j op de molecuulas en ǫ de
symmetrie index, die −1 is voor de laag veld zoekende (bovenste) component van het
Λ-doublet. In hoofdstuk 5 en 6 worden experimenten besproken waarbij differentiële bot-
singsdoorsneden voor botsingen van He en D2 met toestandsgeselecteerd NO zijn bepaald.
Hiervoor is gebruik gemaakt van de zogenaamde ”ion imaging” techniek, waarbij de NO
moleculen na botsing worden gëıoniseerd (via (1+1’) REMPI) en hun 2D snelheidsver-
deling wordt afgebeeld op de detector. In hoofdstuk 5 wordt behandeld hoe differentiële
botsingsdoorsneden uit deze afbeeldingen worden afgeleid. Hierbij wordt expliciet de de-
tectiewaarschijnlijkheid van verstrooide moleculen in acht genomen. Deze waarschijnlijk-
heid is afhankelijk van de tijd die de verstrooide moleculen (met verschillende snelheden
in het laboratorium) in het detectievolume aanwezig zijn en van alineëring van moleculen
door botsingen. Door de vrijwel perfecte toestandsselectie worden botsingen bestudeerd
tot op een voorheen onhaalbaar niveau.

Omdat de met de zespool geselecteerde NO moleculen een gedefinieerde pariteit heb-
ben, en ook de detectiestap volledig toestandsselectief is, kan het effect van behoud en
verandering van pariteit gedurende de botsing als een gëısoleerd proces worden bestu-
deerd. De resultaten laten een duidelijk verschil zien tussen botsingen met de bovenste
en met de onderste component van het NO Λ-doublet als eindtoestand. Dit kan niet
worden veroorzaakt door het energieverschil tussen deze componenten. De differentiële
botsingsdoorsneden voor He-NO botsingen komen redelijk overeen met theoretische (”clo-
se coupling”) berekeningen, wat aangeeft dat de in deze berekeningen gebruikte interac-
tiepotentiaal betrouwbaar is. Botsingen van D2 met NO laten iets meer voorwaartse
verstrooiing zien dan voor He-NO. Hieruit kan worden geconcludeerd dat de D2-NO in-
teractiepotentiaal iets meer anisotroop is dan die voor He-NO. Rotationele excitatie van
de D2 moleculen is niet waargenomen.

Botsingen naar telkens twee naburige j′ niveaus met dezelfde pariteit p = (−1)j−ǫ/2

geven zowel voor He-NO als D2-NO ongeveer dezelfde botsingsdoorsnede. Deze ”pariteits-
paartjes”worden aangeduid met nummers n.

n = j′ − ǫǫ′

2



142 Samenvatting

Deze regel klopt zowel voor spin-baan toestand brekende (Ω
′

= 3/2) als voor spin-baan

toestand behoudende (Ω
′
= 1/2) overgangen. De maxima in de differentiële botsingsdoor-

sneden - die rotationele regenbogen weergeven - zijn bepaald en deze liggen bij grotere
strooihoeken in het geval van pariteitsbrekende overgangen dan voor pariteitbehoudende
botsingen. Dit is een indicatie dat in het eerste geval de anisotropie van de schil groter is.
Dubbele regenbogen - veroorzaakt door botsingen op de N-kant of de O-kant van het NO
molecuul - zijn niet waargenomen. Klassiek wordt dit verwacht omdat de NO schil aan
de N-kant anders is dan aan de O-kant. Wanneer voor een botsing zowel even als oneven
pariteit aanwezig zijn is het mogelijk dat twee maxima in de differentiële botsingsdoorsne-
de worden waargenomen: één voor pariteitbehoudende en één voor pariteitveranderende
botsingen.

Zowel het voorkomen van de hierboven beschreven pariteits-paartjes als de oscillatie
van de sterische asymmetrie S als functie van j′ worden gevonden in de uitkomsten van
volledig kwantummechanische berekeningen. Deze berekeningen geven echter geen in-
zicht in de fysische achtergrond van deze effecten. Het quasi kwantummechanisch model
(QQT) dat wordt beschreven in hoofdstuk 7 beschrijft botsingen in een relatief eenvou-
dig interferentieplaatje en biedt meer inzicht. De integraal over de impactparameter b is
vervangen door een integraal over hoekvariabelen: de oriëntatie van het molecuul en van
de ”kinematic apse”(KA). Deze KA is gedefinieerd langs de richting van impulsverande-
ring en dient ook als kwantisatie-as. De projectie ma van j op de KA wordt behouden
verondersteld en er is geen interferentie mogelijk tussen verschillende standen van de KA
(in tegenstelling tot voor verschillende waarden van b). Hierdoor is het niet meer nodig
om grote hoeveelheden gekoppelde vergelijkingen op te lossen. De verstrooiingsamplitude
wordt beschreven als (een integraal over) een product van een fasefactor en een Legendre
veelterm. De fasefactor wordt momenteel benaderd met behulp van een harde schil inter-
actiepotentiaal. In deze harde-schil-benadering wordt een goede overeenkomst gevonden
met kwantummechanische (HIBRIDON) berekeningen wat betreft de sterische asymme-
trie en redelijke overeenkomst wat betreft de differentiële botsingsdoorsnede. De oscillatie
van S wordt verklaard door interferenties tussen botsingen op verschillende plaatsen op de
harde repulsieve NO schil. Het bestaan van pariteits-paartjes wordt in het model (QQT)
voorspeld.
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