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What Can Formal Methods Bring to Systems Biology?

Nicola Bonzanni, K. Anton Feenstra, Wan Fokkink, and Elzbieta Krepska

Vrije Universiteit Amsterdam, Department of Computer Science
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
{bonzanni,feenstra,wanf,ekr}@few.vu.nl

Abstract. This position paper argues that the operational modelling approaches
from the formal methods community can be applied fruitfully within the systems
biology domain. The results can be complementary to the traditional mathemat-
ical descriptive modelling approaches used in systems biology. We discuss one
example: a recent Petri net analysis of C. elegans vulval development.

1 Systems Biology

Systems biology studies complex interactions in biological systems, with the aim to
understand better the entirety of processes that happen in such a system, as well as to
grasp the emergent properties of such a system as a whole. This can for instance be at
the level of metabolic or interaction networks, signal transduction, genetic regulatory
networks, multi-cellular development, or social behaviour of insects.

The last decade has seen a rapid and successful development in the collaboration
between biologists and computer scientists in the area of systems biology and bioin-
formatics. It has turned out that formal modelling and analysis techniques that have
been developed for distributed computer systems, are applicable to biological systems
as well. Namely, both kinds of systems have a lot in common. Biological systems are
built from separate components that communicate with each other and thus influence
each other’s behaviour. Notably, signal transduction within a cell consists of cascades
of biochemical reactions, by which for instance genes are activated or down-regulated.
The genes themselves produce the proteins that drive signal transduction, and cells can
be connected in a multicellular organism, making this basically one large, complex dis-
tributed system. Another, very different, example at the organism level is how ants in
one colony send stimuli to each other in the form of pheromones.

Biological systems are reactive systems, as they continuously interact with their en-
vironment. In November 2002, David Harel [11] put forward a grand challenge to com-
puter science, to build a fully animated model of a multi-cellular organism as a reactive
system; specifically, he suggested to build such a model of the C. elegans nematode
worm, which serves as a one of the model organisms in developmental biology.

Open questions in biology that could be addressed in such a modelling framework
include the following, listed in order from a detailed, molecular viewpoint to a more
global view of whole organisms:

– How complete is our knowledge of metabolic, signalling and regulatory processes
at a molecular level?
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– How is the interplay between different pathways or network modules organized and
regulated?

– How is the interaction between intra-cellular processes and inter/extra-cellular pro-
cesses organized?

– How do cells self-organize?
– How do cells differentiate?
– How are self-organization and differentiation of cells connected?
– How does self-organization and differentiation lead to the formation of complex

structures like organs (e.g. the eye, brain, kidney)?

One grand open question that pervades the whole of biological research is, how could
all of this evolve? This is exemplified by the title of the 1973 essay by Theodosius
Dobzhansky [4] that “Nothing in biology makes sense except in the light of evolution”.
Some recent theoretical work [5] highlights an interesting possibility, that flexibility in
regulation is a necessary component of evolution, but has itself been evolved in biolog-
ical systems.

2 Formal Models of Biological Systems

Why would a biologist want to use formal models? First of all, formal models can be
an excellent way to store and share knowledge on biological systems, and to reason
about such systems. Furthermore, in vivo experiments in the lab tend to take an awfully
long time, and are labour intensive. In comparison, in silico experiments (i.e. computer
experiments) can take relatively little time and effort. And for instance genetic perturba-
tions can be difficult (or unethical) to perform in the lab, while they may require trivial
adaptations of a formal model.

The time is ripe for exploiting the synergy between (systems) biology and formal
methods. First of all we have reached the point where biological knowledge of for in-
stance signal transduction has become so detailed, that enough information is available
to start building sensible formal models. Second, the development of analysis tech-
niques for formal methods, and the power of the underlying computer hardware, has
made it possible to apply formal methods to very complex systems. Although we are
certainly not (and possibly never will be) at a level where a full-fledged formal analysis
of the entire genetic regulatory network of one cell is within reach, we can definitely
already study interesting, and challenging, fragments of such networks.

It is important to realise that biology (like e.g. physics, chemistry, sociology, eco-
nomics) is an empirical science. This is basically orthogonal to the standard application
of formal methods in computer science, where a formal analysis is used to design and
prove properties of a computer system. If a desired property of a computer system turns
out to fail, then we can in principle adapt the system at hand. In contrast, biological
systems are simply (and quite literally) a fact of life, and formal models ‘only’ serve to
better understand the inner workings and emergent properties of such systems. So while
in computer science model validation typically leads to a redesign of the corresponding
computer system, in systems biology it leads to a redesign of the model itself, if in silico
experiments on the model do not correspond with in vivo experiments on the real-life
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biological system. A nice comparison between these two approaches can be found in
the introduction of [18].

Fisher and Henzinger [6] distinguish two kinds of models for biological systems:
operational versus denotational (or, as they phrase it, computational versus mathemati-
cal). On the one hand, operational models (such as Petri nets) are executable and mimic
biological processes. On the other hand, denotational models (such as differential equa-
tions) express mathematical relationships between quantities and how they change over
time. Denotational models are in general quantitative, and in systems biology tend to
require a lot of computation power to simulate, let alone to solve mathematically. Also
it is often practically impossible to obtain the precise quantitative information needed
for such models. Operational models are in general qualitative, and are thus at a higher
abstraction level and easier to analyse. Moreover, Fisher and Henzinger, as well as
Regev and Shapiro [17], make a convincing case that a good operational model may
explain the mechanisms behind a biological system in a more intuitive fashion than a
denotational model.

Metaphorically one can ask the question whether molecules in a cell, or cells them-
selves, solve differential equations to decide what to do in a particular situation, or
rather when they encounter one another follow simple sets of rules derived from their
physical interactions. In that respect, one may consider the continuous, mathematical
models as an approximation of the discrete molecular processes, rather than viewing
the qualitative model as a course-grained abstraction of a continuous reality.

An operational model progresses from state to state, where an event at a local compo-
nent gives rise to a state transition at the global system level. Fisher et al. [7] argue that
(unbounded) asynchrony does not mimic real-life biological behaviour properly. Typi-
cally, asynchrony allows that one component keeps on executing events, while another
component is frozen out, or executes only few events. While in real life, all components
are able to execute at a certain rate. Bounded asynchrony, a phrase coined by Fisher
et al. [7], lets components proceed in an asynchronous fashion, while making sure that
they all can proceed at their own rate. A good example of bounded asynchrony is the
maximally parallel execution semantics of Petri nets; we will return to this semantics in
Section 3.

We briefly mention the three modelling paradigms from the formal methods commu-
nity that are used most frequently for building operational models of biological systems.

Petri nets are well-suited for modelling biochemical networks such as genetic regula-
tory pathways. The places in a Petri net can represent genes, protein species and
complexes. Transitions represent reactions or transfer of a signal. Arcs represent
reaction substrates and products. Firing of a transition is execution of a reaction:
consuming substrates and creating products. Cell Illustrator [15] is an example of
a Petri net tool that targets biological mechanisms and pathways.

Process calculi, such as process algebra and the π-calculus, extended with probabili-
ties or stochastics, can be used to model the interaction between organisms. Early
ground-breaking work in this direction was done by Tofts [21] in the context of pro-
cess algebra, with regard to ant behaviour. The Bioambients calculus [16], which
is based on the π-calculus, targets various aspects of molecular localisation and
compartmentalization.
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Live sequence charts are an extension of the graphical specification language message
sequence charts; notably, they allow a distinction between mandatory and possible
behaviour. They have been used successfully by Harel and his co-workers to build
visual models of reactive biological systems, see e.g. [12].

Model checking is in principle an excellent methodology to verify interesting prop-
erties of specifications in any of these three formalisms. And as is well-known, ab-
straction techniques and distributed model checking (see e.g. [1]) can help to alleviate
the state explosion problem. However, in view of the very large scale and complex-
ity of biological systems, so far even these optimisation techniques cannot push model
checking applications in this area beyond toy examples. Simulations methods are com-
monly used to evaluate complex and high-dimensional models, and are applicable in
principle to both operational and denotational models. Well-known drawbacks, com-
pared to model checking, are that this approach can suffer from limited sampling due
to the high-dimensional state space, and that there may be corners of the state space
that have a biological relevance but that are very hard to reach with simulations. Still,
in spite of these drawbacks, for the moment Monte Carlo simulations are currently the
best method to analyse formal specifications of real-life biological systems.

In our view, for the successful application of formal methods in the systems biology
domain, it is expedient to use a simple modelling framework, and analysis techniques
that take relatively little computation power. This may at first sound paradoxical, but
simplicity in modelling and analysis methods will make it easier to master the enormous
complexity of real-life biological systems. Moreover, it will help to communicate with
biologists on the basis of formal models, and in the hopefully not too far future will
make it attractive for biologists to start using formal modelling tools.

3 A Petri Net Analysis of C. elegans Vulval Development

Petri nets representing regulatory and signalling networks We recall that a Petri net
is a bipartite directed graph consisting of two kinds of nodes: places that indicate the
local availability of resources, and transitions which are active components that can
change the state of the resources. Each place can hold one or more tokens. Weighted
arcs connect places and transitions. In [13] we explained a method to represent biolog-
ical knowledge as a Petri net. As explained before, places represent genes and protein
species, i.e., bound and unbound, active and inactive, or at different locations, while
transitions represent biological processes. Firing of a transition is execution of a pro-
cess, e.g. consuming substrates or creating products. The number of tokens in a place is
interpreted as follows. For genes as a boolean value, 0 means not present and 1 present.
For proteins, there are abstract concentration levels 0-6, going from not present, via low,
medium, and high concentration to saturated level. The rationale behind this approach
is to abstract away from unknown absolute molecule concentration levels, as we intend
to represent relative concentrations and rates. If desired, a modeller could fine-tune the
granularity of the model by adjusting the number of available concentration levels.

Biological systems are highly concurrent, as in cells all reactions can happen in par-
allel and most are independent of each other. Therefore, in [13] we advocate to use what
is called maximal parallelism [3]. A fully asynchronous approach would allow one part
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of the network to deploy prolonged activity, while another part of the network shows
no activity at all. In real life, all parts can progress at roughly the same rate. Maximal
parallelism promotes activity throughout the network. The maximal parallel execution
semantics can be summarised informally as execute greedily as many transitions as pos-
sible in one step. A maximally parallel step leaves no enabled transitions in the net, and,
in principle, should be developed in such a way that it corresponds to one time step in
the evolution of the biological system. This is possible because the modeller can cap-
ture relative rates and concentration levels using appropriate weights on arcs. Typically,
if in one time unit a protein A is produced four times more than a protein B, then the
transition that captures production of A should have a weight that is four times as large
as the weight of the one that captures B production.

In nature a cell tends to saturate with a product, and as a result the reaction slows
down or stops. To mimic this behaviour, each place in the Petri net has a predefined
maximum capacity of six. To guarantee that the highest concentration level can be at-
tained, we introduced bounded execution with overshooting. A transition can only fire if
each output place holds fewer than six tokens. Since each transition can possibly move
more than one token at once into its output places, each transition can overshoot the
pre-given capacity at most once.

C. elegans vulval development C. elegans is a round worm, about 1mm in length, living
in soil. In order to lay eggs, the C. elegans hermaphrodites grow an organ called vulva.
The complexity and universality of the biological mechanisms underlying the vulval de-
velopment (e.g. cell-cell interactions, cell differentiation, cross-talk between pathways,
gene regulation), and the intensive biological investigations undertaken during the last
20 years [19] make this process an extremely appealing case study [8,9,10,14,20]. In
particular, the considerable amount of descriptive biological knowledge about the pro-
cess joint with the lack of precise biochemical parameters, and the large number of
genetic perturbations tested in vivo, welcome the research of alternative modelling pro-
cedures. These approaches should be able to express the descriptive knowledge in a
formal way, abstract the processes enough to overcome the absence of fine-grained bio-
chemical parameters, and check the behaviour of the system with a sound methodology.

Recently we developed a Petri net model of the process that leads to the formation of
the vulva during C. elegans development [2], using the Petri net framework described
above. It comprises 600 nodes (places and transitions) and 1000 arcs. In this network
we could identify different modules. These correspond to different biological functions,
such as gene expression, protein activation, and protein degradation. It is possible to
reuse modules corresponding to a function, like small building blocks, to compose more
complex modules, and eventually build a full cell. The cell itself is a module that can
be reused, as can other modules like pathways or cascades.

To analyse the Petri net model, we applied Monte Carlo simulations. We simulated
64 different genetic perturbations. Twenty-two experiments previously selected in [9]
were used for model calibration. Thirty perturbations were used for validation: 26 from
[9], three from [19], and one from [22]. The remaining twelve simulations constitute
new predictions that invite further in vivo experiments.

This case study shows that the basic Petri net formalism can be used effectively to
mimic and comprehend complex biological processes.
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4 Conclusions

Transforming ‘data’ into ‘knowledge’ is a holy grail in Life Sciences. Sometimes we
have much data but relatively little descriptive knowledge, e.g. a whole genome se-
quenced and protein interaction data, but little information about the single genes and
their functions. At other times we have excellent descriptive knowledge about a biolog-
ical process but lack the biochemical details to simulate or explain accurately the phe-
nomenon. For instance, we may know the response of an organism to a certain stimulus
but we do not know which molecules are responsible, or we may know the molecules
but not all the biochemical parameters to reproduce the behaviour of the organism in
silico.

Reaching the sweet spot in between abstraction and biological significance is one
of the big challenges in applying formal methods to biology. On the one hand, a fine-
grained approach potentially gives more detailed predictions and a better approximation
of the observed behaviour, but it has to cope with a huge number of parameters that are
largely unknown and could not be effectively handled by, for instance, model checking
techniques. On the other hand, a coarse-grained approach developed at a higher level
of abstraction needs fewer detailed parameters and is computationally cheaper, but it
might have to be tailored to answering a single question, lowering the overall biological
significance of the model. Therefore, it is crucial to choose the appropriate abstraction
level and formalism in respect to the biological questions that the modeller wants to
address.

To pick up the right questions is a pivotal choice, and to understand their biologi-
cal significance is essential. In order to accomplish these two goals, it is necessary to
establish a clear and unambiguous communication channel between ‘biologists’ and
‘computer scientists’. Furthermore, it is necessary to expand the application of for-
mal methods beyond the manageable but only moderately interesting collection of the
toy examples. Although several different formal methods can achieve such objectives,
in our experience the intuitiveness of its graphical representation, tied with the strict
formal definition of Petri net, contributed greatly to establish a common ground for
‘biologists’ and ‘computer scientists’.
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