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Abstract The processof the acquisition of an agreed,sharedtask model as a
meansto structureinteractionbetweenexpert usersand knowledge engineersis
described. The role existing (generic) task models play in this process is
illustrated for two domains of application, both domains requiring diagnostic
reasoning. In both domains different levelsimteraction betweenan expertuser
and a diagnostic reasoning system are distinguished.

1 Introduction

Decision support systemsare most often designedto provide expert users with the
informationthey needto solve a problem.More extensivesupport,however,is provided
by knowledge-based systems that not only are capalplerfifrmingcomplexcomputation
but that also are equipped with explicit knowleddehe decisionprocess.The acquisition
of such knowledgeis not as trivial as it may seem.Although expertsdiffer in their
approache$o problems,in almostall situationsdifferent alternativesare thoughtthrough
and compared. Decision support systedeslly supportexpertsin this process.Not only
the opportunityto influencethe approachtakenby systemgfor examplethe sequenceof
tasks)is of importance,but also the opportunity to influence the more local levels of
strategic reasoning involved in decision making processes.

User centeredask analysisis essentiato the designof suchsystems(Barnard, 1993;
Brazier& Treur, 1994). The tasksusersperformin specific decisionmaking situations
mustbe identified, in additionto relationsbetweentasks. The designerof a system(in
general a knowledge engineer) and one or more experts must reach a common
understandingf the tasksinvolved in a specific decisionmaking process.The types of
decisions an expert user would prefer to make him/herself and thenvaiigch an expert
user would like to be able to influence a system’s reasoning, must be identified.

In this paperthe role a sharedtask model can play as a meansto acquirea common
understanding of a task in interaction with expert users, is desciibhedg an acquisition
processdifferent types of interaction betweenexpert usersand a systemdesignedto
supportsuchusers,canbe identified. Threelevels of interactionare introducedbelow in
Section2. In Section3 existing (generic)task modelsusedto structurethe knowledge
acquisition processare introduced.In Sections4 and 5 the processof acquisition is
described for two domains for which shared task models Ibesedevisedin practice,on
the basis of which system architectures have been developed.

2 Knowledge Acquisition

To structure the exchange of knowledge betwelemoavledgeengineerand an expertuser
often mediating representationsare used (e.g., Ford, Bradshaw, Adams-Webber&

Agnew, 1993). From our perspectivepne of the resultsof knowledgeacquisition(and
task analysis) is a shared task model: a matiéth both the knowledgeengineerand one



or more expertuser(s)agreeto be an acceptableepresentatiorof the task structurefor
which support is to be provided.

2.1 Explicit Interaction

Within a sharedmodel different types of tasks are distinguished:some of which may
requireinteractionbetweenthe userandthe system,and otherswhich may not. Different
types of information may be exchanged, depending on the subtask. These different types of
information are used to define different levels of interaction.

Object level interactioiis the interaction required to acquire specific fattsuta current
situation. This type ointeractionin often modelledduring the developmentind designof
knowledge-based systems.

In addition, however,expertsoften reasonaboutthe approacheshey take, comparing
strategiesand results. Systemsdesignedo supportexpertusersshouldthereforesupport
such types of explicit meta-reasoningExpert users should be able to influence the
strategiesemployedby a systeminfluencing factors such as specific goals, heuristics,
preferencesassumptionsetc. Interactionat this level, is calledinteractionat the level of
strategic preferencesr strategic interaction

Although a shared task model is the resuli@gotiationwith one or more experts,it is
not necessarily “the” correchodel of a taskfor all problemsin all domains.Expertusers
may wish to influence,for example the sequencingr choiceof subtasksin a particular
situation. Interaction at this level, the level of task model modification allows for
individual expert users to adapt the task model to their own needs.

To model the knowledgerequiredat thesethree levels of interactionwithin the task
model, a tjaslbasedframeworkfor the designand developmenbf compositionalsystems
is required.

2.2 Declarative Compositional Approach

DEsSIRE (Langevelde Philipsen& Treur, 1992; Brazier, Treur, Wijngaards& Willems,

1994, 1995) is a framework for the design and development of compositional systems. The
framework provides support for the specification and implementatioaropositionatask
models. Thesemodelsinclude knowledgeof the following types (comparabletypes of
knowledgeare distinguishedn taskanalysisapproachesuch as KAT/KTS (Johnson&
Johnson, 1991, 1993)):

1 knowledge of the task structure: task (de)composition,

2 knowledge of sequencing of tasks and goals: control (de)composition,
3 knowledge of knowledge structures,

4 knowledge of information exchange,

5 knowledge of task delegation.

Within the DESIRE frameworkdifferent levels of abstractiorare distinguishedor eachof
these five types of knowledge. Tasks are defined at different levaksthctionyesulting
in a task (de)compositiomifferent levels of abstractiorare alsofound within knowledge
structuressuchastaxonomiesto which tasksrefer. Sequencingf tasksand goals, and
information exchange are defined not oatyhe level of primitive tasks,but also between
composedasks (and betweencomposedasks and primitive tasks), again providing a
levelled structureof abstractionTaskdelegationthe last of the five typesof knowledge,
can also be defined at all leveldthin a taskmodel. More abstractasksmay be delegated
to morethanone party, whereasnore specifictasksare often delegatedo one particular
party.

Within the DESIREframework a distinction is madeetweerthe task dimensionandthe
knowledge dimension. Together the knowledge structures define the knowledge
dimension, related to the task dimension, but separately defined.



2.3 Task Models

A sharedtaskmodel, as a mediatingrepresentationis the resultof negotiationbetweena
knowledge engineer and one or more experts. The purpose of the negotiation is teaacquire
common understanding of the task. An expert has extensive (often implicit) knowlealge of
domain and of his/her task and strategies. A knowledge engineer has knowledge of existing
modelsof relatedtaskswhich may or may not be applicable,and of waysto modify and
combinesuch modelsfor the domainat hand. Abstract task models are often used to
structure the knowledge acquisition process.

Within the DESIREframework (Langeveldet al, 1992; Brazieet al., 1995), a number
of suchabstractask models,generictask models,exist which are usedfor this purpose.
Thesemodelshave beendefined on the basis of experienceand logical analysis. The
conceptof a generictask, introducedby Chandrasekara(i1l986, 1990) and Brown and
Chandrasekaran (1989), is compardbléhe notion of generictaskmodelin thatthey are
both generic with respect tlomains.Generictask modelswithin the DESIRE framework,
however,aregenericwith respectto both tasksand domain: generictask modelscan be
refined with respect to the task specialisation(e.g., further decompositiorof a subtask)
andrefinedwith respecto the domainby instantiation(e.g., addition of domain-specific
knowledge).Moreover,the way a generictask model is specifiedin DESIRE is more
declarative(with semanticsbasedon temporallogic) than the way generic tasks are
describedn Chandrasekaral986, 1990)and Brown and Chandrasekara(i1989). The
integral approach to levels of abstraction within tiEsIRE frameworksupportsthe useof
generic task models during knowledge acquisition. Different levels of abstractionand
composition play a role during the negotiation phase.

2.4 The Common KADS Approach

The CommorADS model sefseede Hoog, Martil, Wielinga, Taylor, Bright andvan de
Velde, 1994) includesan organisatiormodel, a task model, an agentmodel, an expertise
model,a communicatiormodeland a designmodel. An organisationmodel analyseshe
impactof a systemin andon an organisationA taskmodeldescribeghe tasksrelatedto
the realisation of a function in arganisationindependenof the agentresponsibleor the
performance of théasks.A taskmodel,however,whencomplete relateseachtaskto an
agent. Agents are described inegent modelThe capabilities of angentare describedn
an expertisemodel Strategicknowledgeis defined by inferenceand task aspectsof the
problem solving knowledge included in an expertise madetmmunicatiortasks,defined
in a communicatiormode] are specifiedin termsof usermodels (defined in an agent
model) and transfer tasks (defined in an expertise model). Important decisidaduring
the design of an application together formdeeision model

Not all of the three levels of interactiondistinguishedabovein section2.1 are easily
distinguished within th€ommonkADS framework.Objectlevel interactionis definedby
transfer tasks. How interaction at the level of strategic preferencesor task model
modification can be modelledis lessclear. One option is to use the task layer of the
expertisemodel,anotheris to usethe REFLECT principle (seevan Harmelen,Wielinga,
Bredeweg, Schreiber, Karbach, Reinders, Vo3, Akkermans, Bartsch-Sporl &
Vinkhuyzen,1992). Using the tasklayer to modeltheselevelsof interactionmay not be
appropriate, as domain specific (strategic) knowledge is involved, which then wouel not
specified at the domain layer and inference l@fahe expertisemodel. This is, therefore,
not a very elegant solution. TREFLECTapproach models an entiegpertise-modein the
domainlayer of anotherexpertisemodel. Explicit strategicreasoningcan be modelled
within this approachput entailsthe (recursive)combinationof two expertisemodelsfor
this purpose.

Reasoningabout states of different reasoningprocessesis quite common in, for
example, multi-agent situations. The Common KADS framework does not include
constructsor modelswhich can be used for this purpose.The semanticsof DESIRE,
however, based on temporal logic (states and transitions betweenisistesg¢ndesigned



to model interaction between components (which brtasks)by explicit specificationof
transitions between states.

From the aboveit follows that the way in which the three levels of interaction are
incorporated into one knowledge based system is not as transparent in Coama@s in
DESIRE In DESIREthe levels of abstraction and tempaamanticdacilitate the modelling
of these levels of interaction.

3 Generic Task Models for Diagnostic Reasoning

In most situationsin which diagnosisis required not all relevantfacts are known in
advanceln practice,in fact, diagnosisis not often basedon completeinformation. The
acquisition of additional (test) information is an essential part of diaghosticprocesses.
In general,diagnosisincludesa numberof subprocessesuchas: the determinationof
hypothesesthe choiceof applicabletests,the performanceof tests,andthe interpretation
of testresults.Strategicconsiderationsuchas the suitability of a test, the likeliness of a
hypothesisbeingtrue, and the cost and effect of a test, play an importantrole in these
processesA numberof existing (generic)task modelsfor diagnosticreasoningin which
strategicknowledgeis explicitly modelledare describedn this section. Thesemodelsare
used in interaction with experts to structure acquisitioshafedtask modelsof diagnostic
reasoningfor specific domainsof application. The processof knowledgeacquisitionis
illustrated for two such domains in Sections 4 and 5.

In Section 3.1 a generic model for diagnostic reasoning is described. Two
specialisation®f this modelare presentedn Sections3.2 and3.3. The relation between
the models anthe differentlevels of interactiondistinguishedn Section2.1 is discussed
in Section 3.4.

3.1 The six Architecture for Diagnostic Reasoning

As describedabovesharedtask modelsare acquiredin interaction with experts, using
existing (generic) task models to structure the prooe&sowledgeacquisition.A generic
task model of diagnosticreasoningdesignedfor this purpose(Treur, 1993; Brazier &
Treur, 1994) is shown in Figure 1.

L_pm| Hypothesis J Test |_> Diagnostic J

Determination —————| Determination —————m= Process
Evaluation

_|
Tes L
_|

L | Evaluation

Fig. 1. SIX: a generic task model of diagnostic reasoning.

In this model four tasks are distinguishbgpothesis determinatiptest determinatiortest
evaluationand diagnosticprocessevaluation Hypothesisdeterminatiorreasonsabout the
appropriatenessf possiblehypothesesvithin a given stateof the diagnosticprocessand
determines which hypotheses are to be further investigated. Test deternmanatigseghe
currentstateof the diagnosticprocesswith respectto test performanceand determines
which testsare mostappropriate.Test evaluationperformsthe tests, and determineshe
relation between thiestresultsandthe currenthypothesesDiagnosticprocessevaluation
analysesthe implications of the test resultsfor the hypothesesand determineswhich
hypotheses are rejected and which are confirmed. On the basiamdilgsisof the current
overall state of the diagnostic process, the decisi@aoncludethe diagnosticprocessmay



be made. If, however,the diagnostic processis continued, the required subsequent
processes (for example, determination of hypotheses or tests) are identified.

Diagnostic reasoningprocessesan be basedon causal or on anti-causal domain
knowledge. In the first case derivations abitietdomainfollow the directionof causality:
the predicted observable consequences are derived from hypotheses (possibleafauses),
which (some ofthe predictedobservationsre verified. For this type of reasoningcausal
knowledgeis requiredthat specifieshow the causalconsequencesf hypothesesan be
derived (e.g., represented by a causal network).

In the second case the domain knowledge is used to derive hypdthes@formation
on observablegsymptoms).Here the direction of derivationis againstthe direction of
causality:it proceedsfrom observablefindings (in particular, those that actually were
observed)o the causesFor this type of reasoningknowledgeis requiredthat specifies
how hypotheses can be derived from observiibtings: this type of knowledgeis called
anti-causal knowledge.

In both cases strategic reasoningeiguiredto determinethe appropriatehypothesesn
which to focusandthe appropriateeststo be performed,as modelledby the generictask
model for diagnostic reasoniisgx described above. This generic task model can be refined
by specialisation to twslightly different modelsfor diagnosticreasoningoasedon causal
domain knowledg&nd anti-causadlomainknowledge respectively Thesespecialisations
are described in Sections 3.2 and 3.3.

3.2 A Specialisation of the Generic Task Model for Anti-causal Diagnostic
Reasoning

The specialisationfor diagnosticreasoningbasedon anti-causaldomain knowledgeis
obtainedby decomposinghe testevaluationtaskinto two subtaskstestperformanceand
results interpretationas shown in Figure 2.

| Hypothesis J Test |_> Diagnostic J

Determination |—————m»|Determination ————» Process

Evaluation —|
NN
Test Evaluation
Test Results
M| Performance M| [nterpretation

Fig. 2. A task model for diagnostic reasoning based on anti-causal knowledge.

Test performanceis responsiblefor the “execution” of the tests selected by test
determinationThe resultsof the testmay be acquireddirectly by object level interaction
with an expertuser, or may be acquiredautomaticallyfrom other systems.No further
reasoning about the domain is performed in this task. The actesteéaformationis used
by results interpretationto draw conclusionsabout the hypothesesby meansof the
available anti-causal domain knowledge.

3.3 A gspecialisation of the Generic Task Model for Causal Diagnostic
Reasoning

The specialisation for diagnostic reasonbagedon causaldomainknowledgeis obtained
by decomposinghe test determinationtask into two subtasks:test generationand test
selection as shown in Figure 3.
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Fig. 3. A task model for diagnostic reasoning based on causal knowledge.

Testgeneratiortakesthe hypothesison which it is focussedasits input and using causal
domainknowledgeobservablecausalconsequenceare derived. Theseobservablecausal
consequenceare predictionsof the findings that should be observedif the hypothesis

hold. The predicted findings, influenced by the assumed hypothesis, are suitable candidates
for tests to be selected. Test selection analysesathdidatesand selectsone or moretests

on the basis of this analysis.

3.4 Interaction Levels in the Generic Task Models

In Section 2.1 three levels of interaction were distinguished. In this secti@véiein the
siX model for diagnostic reasoning are discussed.

Object level interaction

The testevaluationsubtaskemploysobjectlevel interactionwith a user. The executionof
tests may require users to provide (additional) information to the system.

Interaction at the level of strategic preferences

Strategicpreferencesrerelatedto eachsubtaskat the meta-level.Strategicpreferencesn

the hypothesisdeterminationsubtask may influence the choice of hypotheses(e.g.
frequency of occurrence, likelihood given a situation, preferentteeafser, ...). Strategic
preferences ithe testdeterminatiorsubtaskmay influencethe choiceof tests(e.g. based
on cost of the tests, duration, predictive power, oodl@xecution preferenceof the user,
...). Strategicpreferencedn the diagnosticprocessevaluationsubtaskinfluence whether
the system continues it search for (more) rejected and/or confirmed hypotheses or not.

Interaction at the level of task model modification

The userof the systeminfluenceswhich subtaskis activatedwhen. Knowledgeof the
sequence in which subtasks are activated may be overriddesels.For example,a user
may look at the results of several settings for the strategic preferencesfor the test
determination subtask before proceeding to the test evaluation subtask.

4 A Shared Task Modd for Soil Sanitation

One domain in which a shared taskdelwas developedn interactionwith expertsis the
domain of soilsanitation(Boelens,1991). During the acquisitionprocesshe generictask
model of diagnostic reasoningiX) presentegboveplayedan importantrole. This model
was usedto structureinteractionwith the experts.In this sectionthe domain of soil
sanitationis introduced,an indication of the requiredfunctionality of a supportsystemis
given and finally the acquisition of the shared task model is described.



4.1 Soil Sanitation

Soil sanitationis a relatively young but fast-growingareaof expertise.Polluted soil is
found in many locations (in the Netherlands at least several thousand) and depending on the
severityof the pollution the soil may needto be sanitized.At the level of provincial and
local authorities the problem of soil sanitation usually is encountered dubiagrenewal.
Pragmaticsolutionsare often chosen.Such solutionsare basedon two major decisions:
how the site is to be sanitized and how the soil can be disposed.

Several procedures have bdemmulatedconcerningsoil sanitation.Inventoryresearch
provides an indication of the different typafscontaminationsinitial investigationsaim to
provide a global insight in the nature and concentrationsof the contaminantsFurther
investigation concentrates on the nature, extent and concenti@titrescontaminationss
well asthe spreading-probabilitiesThe goal of theseinvestigationss to provide enough
information for the sanitation procedure. The sanitation procedure consisteiparison
of the possiblesanitationalternativeson environmentaltechnicaland financial aspects.
Sanitation is planned and executed.

The domain of sanitationconsistsof types of contaminationsfound (heavy metals,
cyanide, aliphatic or hydrocarbons, aromatic compounds, and volatile helogenic
hydrocarbons)and types of soil (sandy,loamy, loamy and clayey, peaty, and mixed).
These types are only top-levels of taxonomies. Possible (gesanéBtiontechniquesare:
removing the contamination, prevesgireadingof the contamination(isolation),or change
of the function of the site. When removing the contaminatitrerthe soil is not removed
(in situ techniques) or the soil is dug up. A soil sanitation alterngtiaglan: one or more
pollution remedial techniques are applied to the polluted site.

4.2 Acquisition of a Shared Task Model for Soil Sanitation

Experts working in the domain gbil sanitationwere awareof the needfor more support
in choosingthe bestsoil sanitationalternative.Although large bodiesof knowledgeare
available the experts lacked support for flexible afsthat knowledge.ldeally, the experts
shouldbe ableto influencethe useof the knowledge whenknowledgeis usedandwhat
sanitation alternatives or tests may be investigated.

The following knowledge was readily available in pre-defined proceduresand/or
algorithms:

* How to chooseremedialtechniqueshasedon their technologicalfeaturesand the
situation at the polluted site.

* How to combine pollution remedial techniques into sanitation alternatives.

* How to predictthe resultsof sanitationalternativesbasedon the situation at the
polluted site.

* How to compare sanitation alternatives to environmental standards or constraints.

* How to weight betweenvarious (groups of) evaluation criteria for sanitation
alternatives.

« How to perform sensitivity analysis to determine which type of additional
investigations is most effective with regard to selecting the best alternative.

Initial analysisof the experts’reasoningprocesdo find the bestalternativefor a specific
situation given the option to colleatiditionalinformationaboutthe situation,is, in fact, a

form of diagnosis. Expertagreedthat this generictask model (the generictask model for

diagnostic reasoning, described in section 3.1) provided a basisifeequendiscussion.
The mapping of the terminology in the domain to the terminologyhiich the generictask
model is presented, was relatively straightforward: sanitation alternatives doth&nare
hypothesesperformanceof “additional investigation” is the performanceof tests, and
acquiredinformation corresponddo test results. The resulting task decompositionis

shown in Figure 4.
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Hypothesis determination

During knowledge acquisition it became clear that the determination ofdktappropriate
sanitation alternatives, should beenastwo separatd¢asks.Thefirst is the determination
of the most appropriatiechniquefor the reductionof one or more pollutantsat a polluted

site femedial techniques determinatjoithe seconds the formulationof alternativeq(i.e.

hypotheses)on the basis of the available remedial technigues (sanitation alternative
compositiof.

Test determination

The mostextensiverefinementof the generictask model was madewith respectto test
determination.Different subtaskswere identified using different types of knowledge
(including the knowledge mentioned above) to determine the most appropriate test.

Predictionsaboutthe (expectedyeductionsof pollutantsat a particular site, are made
using the availableknowledgementionedabove (sanitation alternative results prediction
task). Available knowledge is also used to determine the goodnesduations measured
againstdirectiveson soil sanitation and construction materials (results vs. standards
comparisontask). Separateknowledgeis availableto decide how important different
criteria are in the evaluation of sanitation alternatieate(ia weightingtask).

Experts employ sensitivity analysis to determine which tests are most intenestiegy
of existing uncertaintiesénsitivity analysisask). The knowledgeexpertshaveof models
to predict the effect of tests dne criteria was alsoidentified as a separateask (additional
investigation effects prediction task). On the basis of the knowledge obtainedby the
performanceof the abovementionedsubtasksa decisionis madeas to which additional
investigationsshould be performed taking cost and duration (additional investigation
selectiontask).

Test performance

Before actually performing tests experts reason about the information they exqespiite
and the way in which additional investigations should be performed (investigation
executionpreparatior). This task is distinguishedfrom the actual performanceof the
additional investigationsr(vestigation executiotask).

Results interpretation

Furtherdecompositiorof resultsinterpretationwas not necessarythe resultsof the tests
are interpreted.

Diagnostic process evaluation

Experts recognized the appropriateness of a task for evaluationstéthsof the process.
On the basis of this analysisexpertsdecide whetherto pursuefurther analysis of a
situation, or not.

Levels of interaction

Within the final version of the sharedtask model all three levels of interaction were
modelled. Object level interaction is of importance in the test evalustiotask interaction
at the level of strategicpreferencesn hypothesisdeterminationand test determination
subtasks,interactionat the level of task model modification in the task control process
(using information provided by the diagnostic decision subtask).



5 Acquisition of Shared Task Modelsin Diagnosis of Chemical
Processes

In a completelydifferent domain,namelythe domain of nylon production,the samesix
modelwas usedduring knowledgeacquisitionto structurediscussionswith an expertin
this field. The expertinvolved identified the needfor a systemto supporthim in the
diagnostic process$opefully reducingthe needfor frequenton-sitediagnosis.The nylon
production process was descriliadletail and a few examplesf typesof problemswith
which the expertis confrontedwere discussedAs it was unclearhow, in general,the
expertstructuredhis processof diagnosisthe two specialisation®f the six task model
described in Section 3: the causal and the anti-caustdsk models, were introduced.

Initially, the processof nylon productionin principle is basedon causalknowledgein
the domainsof physicsand chemistry,the knowledgeengineersinvolved expectedthe
diagnosticprocessto be basedon causal reasoning.The six task model for causal
diagnostic reasoningwas introduced. Further discussionand analysis of cases of
diagnosticprocesseshowever,showedthat during the diagnosticprocessn this domain
hypotheseshemselvegould be confirmedor rejectedon the basisof direct observation,
i.e., no causalor anti-causalknowledgeat all was required. In addition caseswere
identified in which hypothesesvhich could not be confirmed or rejectedon the basisof
direct observation played an importantrole. In thesecasesthe expert used anti-causal
knowledge to derivétypothesedrom observedindings. At this point the Six task model
for anti-causal diagnostic reasonings introduced.The two modelswere comparedand
the expertconcludedthat, in general,the anti-causalmodel was most applicableeven
though herealisedthatin some, more exceptionaland complicated)situations the causal
model would be more applicable (in which observablefindings are derived from
hypotheses). Hypothesis determination was funtefimed: a (limited) numberof possible
hypothesesrefirst identified, one of which is chosenfor further examination.The first
task is delegated to the system, the second to the exgegrBy modellingthe taskin this
way, the expert user explicitgnd directly influencesthe reasoningorocess.The needfor
such strategic interaction was identified during the knowledge acquisition process.

The sharedtask model designedfor diagnostic Nylon-6 production processis a
specialisationof the generictask model for diagnosticreasoningbasedon anti-causal
knowledge, presented in Section 3.3. The first version of a system for diaghblsiton-
6 production processes basmuthis model, hasbeenimplementedandis currently being
evaluated. In other domains in te@mechemicalplant, the causalmodelhasshownto be
more applicable.

6 Discussion

To model a task in which an expert user and an intelligent decision support system
collaborate, appropriate intermediagpresentationsf the taskat handmustbe designed.
The acquisition of a shared task model ag@@rmediaterepresentationf the task (within

which different levels of specificity are modelled), has been addressed in this paper.

The knowledgeinvolved in a collaborativetask, to the extentmodelledin an agreed
shared task model, includes the knowledge of different types of interaction involved within:
(1) knowledge of the task structure, (2) knowledgsezfuencingf (sub)tasksandgoals,

(3) knowledgeof the knowledgestructures(4) knowledgeof informationexchangeand
(5) knowledge of task delegation. These five types of knowladgexplicitly modelledin

the declarativecompositionalframework for the design of complex reasoningtasks,
DESIRE Within the DESIRE framework existing abstract models of generic tagksyide a
means to structure initial interaction witte expertuserduring the acquisitionof a shared
task model. A number of agreed,sharedtask models have been used to develop
applications (decision support systems) in different domains.

In this paper the principldsehindthe DESIRE approachto user-centeredystemdesign
are presentedand illustrated on the basis of the developmentof two applications of
diagnostic decision support systems. In the first application, decision support in the domain



of soil sanitation, one of the existing generic task models for diagnostic reabasipn
anti-causaknowledgeprovideda meansto structureknowledgeacquisition. The shared
task model developedfor this domainwas, in the end, a specialisatiorof this existing
generic task model.

In the seconddomaindiscussedn the paper,diagnosisof chemical processesfwo
existing genericaskmodelsfor diagnosticreasoningwereintroduced:the first one based
on causalknowledge,andlaterin the acquisitionprocessthe model basedon anti-causal
knowledge.In contrastto the knowledge engineers’expectationsthe model basedon
causalknowledgewas not in line with the expert’s diagnosticapproach.The anti-causal
model, however,was useful: the acquisitionprocessesultedin a sharedtask model for
diagnostic reasoning of Nylon-6 production as a specialisation of this model.

The declarativenatureof knowledgespecificationin DESIRE (for both examples)was
of particularimportanceto modelling strategicpreferencenteractionbetweenthe userand
the decision support system. Explicit, declarative representation of strategic kno(fdedge
which modelling primitives exist within DESIRE) allows strategicknowledgeitself to be
subjectof interaction,both from the userto the system(which preferencesold, which
relations betweepreference®xist, etc. influencingthe system’sreasoningstrategy),and
from the system to the user (which preferences have been fulfilled, to which extent, etc.).

Not only the knowledge acquisition process (and task analysis) is structured on the basis
of this sharedmodel, but alsothe designof the interactionbetweenthe user and system.
Three different levels of interaction between an expert user and an intelligent
design/decisiorsupportsystemare distinguishedin this paper: object level interaction,
strategicpreferencenteractionand interactionrequiredfor task model modification, each
requiring specific modelling techniqueEhe role an agreedsharedtask modelcanplay as
the basis for modelling the necessary functionality of interaction between an expert user and
the system, and thus as the bdgisthe designof aninterface,is discussedn (Brazier&
Ruttkay, 1993; Brazier, Treur & Wijngaards, 1996).

The role of shared task models in situations in winichie thantwo parties(agents)are
involved, is a current focus oésearchA sharedtask modelis an agreedmodel:in some
situations agreement may be reached between more than two parties (resalsitiggaition
comparableto the situation describedabove for two parties), but in other situations
different models of dask may exist betweenparties,thus requiring “attunement’between
parties.Such collaborativetasksare currently being analysed,providing insight in the
extensions required to theEBIREframework.
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