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SECOND CLASS PARTICLES AND CUBE ROOT ASYMPTOTICS 
FOR HAMMERSLEY'S PROCESS 

By Eric Cator and Piet Groeneboom 

Delft University of Technology and Vrije Universiteit Amsterdam 

We show that, for a stationary version of Hammersley's process, with 

Poisson sources on the positive jt-axis and Poisson sinks on the positive 

j-axis, the variance of the length of a longest weakly North-East path L(t, t) 

from (0,0) to (f, t) is equal to 2E(f 
- 

X(f))+, where X(t) is the location of 
a second class particle at time t. This implies that both E(? 

? 
X(i))+ and the 

variance of L(t, t) are of order i2/ . Proofs are based on the relation between 

the flux and the path of a second class particle, continuing the approach of 

Cator and Groeneboom [Ann. Probab. 33 (2005) 879-903]. 

1. Introduction. In an influential paper Kim and Pollard [8] show that in 

many statistical contexts we are confronted with estimators which converge at rate 

n1/3 instead of the usual rate nl//2 and that in this situation the limit distribution 

is nonnormal. They call this phenomenon "cube root asymptotics." A prototype 
of such an estimator is the maximum likelihood estimator of a decreasing density, 
which converges locally at rate nI//3 after rescaling to the (almost surely unique) 
location of the maximum of Brownian motion minus a parabola. The characteriza 

tion of this limit distribution in terms of Airy functions was given in [6]. 
It has been conjectured that the asymptotics for longest increasing subse 

quences, which can be analyzed by studying longest North-East paths of Ham 

mersley's process, is related to these cube root phenomena in estimation theory 

and, in particular, that it should be possible to derive the asymptotics along similar 

lines. However, up till now, the cube root limit theory for longest increasing subse 

quences and longest North-East paths has been based on certain analytic relations, 

involving Toeplitz determinants; see, for example, [2] and [3]. 
In this paper we will work with Hammersley's process with sources and sinks, 

as defined in [4]. We will give a short description here, based on Figure 1. We 

consider the space-time paths of particles that started on the jc-axis as sources, 
distributed according to a Poisson distribution with parameter X, and we consider 

the i-axis as a time axis. In the positive quadrant we have a Poisson process of what 

we call a-points (denoted in Figure 1 by x), which will have intensity 1, unless 

otherwise specified. On the i-axis (which also sometimes will be called j-axis) we 

Received July 2005; revised September 2005. 
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(0,*) (M) 

(0,0) (3,0) 

FlG. 1. Space-time paths of the Hammersley' s process, with sources and sinks. 

have a Poisson process of what we call sinks of intensity 1/?. The three Poisson 

processes are independent. 
At the time an a-point appears, the particle immediately to the right of it jumps 

to the location of the a-point. At the time a sink appears, the leftmost particle 

disappears. To know the particle configuration at time s, we intersect a line at time 

s with the space-time paths. The counting process of the particle configuration at 

time t is denoted by Lx(-, t), where we start counting at the first sink on the ?-axis 

up to (0, t), and continue counting on the halfline (0, oo) x {t}, so Lx(x, t) equals 
the total number of sinks in the segment {0} x [0, t] plus the number of crossings 
of space-time paths of the segment [0, x] x {t}. 

The total number of space-time paths in [0, jc] x [0, t] is called the flux at (jc, t). 
It is in fact equal to L\(x, t). If X = 1, we will denote L\(x, t) just by L(jc, t), 
unless this can cause confusion. The flux Lx(x, t) equals the length of a longest 

weakly NE (North-East) path from (0,0) to (x,t), where "weakly" means that 

we are allowed to pick up either sources from the x-axis or sinks from the ?-axis, 

before we start picking up of-points. To see this from Figure 1, trace back a longest 

weakly NE path from (jc, t) to (0,0), and note that one will pick up exactly one 

a-point or one source or one sink from each space-time path. Note that, if 0 < x < 

y, Lx(y, t) 
? 

Lx(x, t) is the number of particles (or crossings of space-time paths) 
on the segment [x, y] x {t}. 

A heuristic argument for the cube root behavior of the fluctuation of the length 
of a longest weakly NE path for the stationary Hammersley process runs as fol 

lows. Suppose, for simplicity, that ? = 1. A longest weakly NE path with length 

L(t, t) = L\(t, t) can pick up points from either x- or j-axis before starting on a 

strictly NE path to (t, t). Furthermore, let, for -t <z<t, 

? number of sources in [0, z] x {0}, if z > 0, 
(1.1) N(z) - 

j number of sinks in {0} x [0 |z|j if z < 0, 
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and 

length of longest strictly NE path from (z, 0) to (t, t), 

(12) A ( ) = if z > 0, I . ; ru; - 
length of longest stricliy NE path from (0, |z|) to (t, t), 

ifz<0. 

Note that the processes At and N are independent and that 

(1.3) L(t, t) = sup{N(z) + Mz) :-t<z<t}. 

The process z h> t~l/3{N(zt2/3) 
- 

\z\t2/3}, \z\ < tl/3, converges in the topol 

ogy of uniform convergence on compacta to two-sided Brownian motion, originat 

ing from zero. As will be shown below, the expectation of t~l^3At(zt2^3) has an 

asymptotic upper bound (as t -> oo) of the form 

2,2/3 _k|/l/3_lz2f 

which is seen by taking expectations and optimizing the choice of X in the inequal 

ity in Lemma 4.1. This suggests that the distance to zero of the exit point where the 

longest path leaves either jc- or y-axis cannot be of larger order than r2/3, since oth 

erwise the Brownian motion cannot cope with the downward parabolic drift 
?\z2, 

temporarily assuming that the fluctuation of At{z) is of order Op(t1/3). The latter 

fact we know to be true from the analytic approach, not used in our probabilistic 

approach. On the other hand, we will derive this in Section 7; see (7.7). 
The limit behavior of the exit point can be compared to the behavior of the 

location of the maximum of Brownian motion minus a parabola, which plays a key 
role in the asymptotics for the cube root estimation theory, mentioned above. The 
crucial difference, however, is that the exit point is the location of the maximum of 
the sum of two independent processes instead of the maximum of just one process. 

We note here that the n]//3 convergence in estimation theory (so slower con 

vergence than the usual n1^2-convergence) corresponds to the t2^3 order of the 
distance to zero of the exit point, which (after a time-reversal argument, based on 

Burke's theorem for Hammersley's process) can be called "super-diffusive" be 

havior of a second class particle. The slower convergence in estimation theory is 
caused by the fact that the estimators have an interpretation in terms of the location 
of a maximum, just as the exit point for a longest weakly NE path in Hammersley's 
process. 

The key relation which allows us to make the heuristic argument above rigorous 
is Theorem 2.1 of Section 2, which, in combination with (time-reversal) results 

of Section 3, tells us that Var(L(i, t)) = 
2EZ(f)+, where Z(t) is the rightmost 

point where a longest weakly NE path leaves the x-axis; see (3.2), Section 3. It is 
shown in Section 4 that this implies EZ(i)+ 

= 
0(t2^3). In Section 5 we compare 

longest strictly NE paths with longest weakly NE paths and obtain a bound on the 
difference between the lengths of these paths. This allows us to also obtain a lower 
bound for EZ(i)+ in Section 6. Finally, in Section 7 we discuss tightness results 
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for the original Hammersley process without sources and sinks, in connection with 

results of Sepp?l?inen [9]. 
Our methods heavily rely on the ideas developed in [4], which concern, in par 

ticular, the difference in behavior below and above the path of a second class parti 
cle and Burke's theorem for Hammersley's process, which enables us to use time 

reversal and reflection. 

2. Variance of the flux and location of a second class particle. We will need 

the concept's second class particle and dual second class particle, which also play 
an important role in later sections. A "normal" second class particle is created by 

putting an extra source at (0,0) (thus effectively removing the first sink), and a dual 

second class particle is created by putting an extra sink at (0,0), thus effectively 

removing the first source. Define X(t) as the location at time t of a second class 

particle in a stationary Hammersley process with source and sink intensity equal 
to 1 (the symmetric case), and Xf(t) as the location at time t of a dual second class 

particle for this case. 

As explained in [4], a "normal" second class particle X(t) jumps to the previ 
ous position of the ordinary ("first class") particle that exits through the first sink 

at the time of exit, and successively jumps to the previous positions of particles 

directly to the right of it, at times where these particles jump to a position to the 

left of the second class particle. The concept of a dual second class particle was 

also considered in [4], but there it is seen as a second class particle for the process 

"moving from left to right." Figure 2 shows the trajectories of a second class parti 
cle and a dual second class particle. Note that we always have X(t) < Xf(t), which 

is evident from Figure 2. 

(X(t\t) (x,t) (X'(t),t) 
.o. . 

-O?O?O?<8>?O??? >?? 

o 

o 

5S?e?? 

o 

o 

o 

o 

<t>?o?o?o?0?<$> * * * * * 

<&?*?*?*?*?* 

FIG. 2. Trajectories of(X(t), t) and (X'(f), t). 
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Now consider a stationary Hammersley process with ?-intensity 1, source 

intensity ? and sink-intensity 1/?. Fix x,t > 0 and consider the flux L\(x,t). 
Denote X\(t) and X'x(t) as the locations at time t of a second class particle and 

a dual second class particle, respectively. We use the subscript ? to indicate that 

the distribution of the location of the (dual) second class particle depends on ?. If 

? = 1, the subscript is suppressed. We have the following result: 

Theorem 2.1. 

Var(L?(jc, t)) 
= -kx + 

- 
+ 2?E(jc 

- 
Xx(t))+. A 

Remark 2.1. A similar relation between the variance of the flux and the 

location of a second class particle has been proved for totally asymmetric simple 
exclusion processes (TASEP) in [5]. 

Remark 2.2. Note that taking ? = 
JTfx yields 

Var(L?(x, t)) 
= 

2?E(jc 
- 

Xx(t))+. 

Proof of Theorem 2.1. For notational clarity we use the four wind direc 

tions N, E, S and W to denote the number of crossings of the four respective sides 

of the rectangle [0, x] x [0, t] [so L?(jc, t) = N + W]. Clearly, S + E = N + W. 

We also know from Burke's theorem for Hammersley's process (see [4]) that N 

and E are independent, just like 5 and W. This means that 

Var(L?(jc, 0) 
= Var(W + N) 

= Var( W) + Var(A0 + 2Cov(W, N) 

(2.1) = Var(W) + Var(A0 + 2Cov(5 + E-N,N) 
= Var(W) 

- 
Var(A0 + 2Cov(S, N) 

= --Xx + 2Cov(S,N). 
A 

We want to investigate Cov(5, A^). It turns out that we can do this by varying the 

source-intensity appropriately. For s > 0, we define a source-intensity of ? + s. 

The sinks remain a Poisson process with intensity 1/?. We denote expectations 
with respect to this new source intensity by Ee. Define 

an=Ee(N\S 
= n). 

Note that an does, in fact, not depend on e, since we condition on the number of 
sources in [0, x], and the sources outside this interval do not influence N. Then 

3s ?=0 ds 
8=0^ 

n\ 
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This shows that 

(2.2) 

1 ^?v (xX) _ ^ ^-^ (xX) ^ = 
-> 

-? 
e XKan-n-x} -?e XKan 

n=0 n=0 

= 
-E(NS)-xE(N). 
? 

Cov(N, S) = E(NS) 
- 

E(N)E(S) 

d 
= X 

de 
E?(N), 

e=0 

where we use that E(S) 
= ?jc. 

We will calculate this derivative in the following manner. Fix, independently, 
a Poisson process of intensity 1 of or-points in (0, oo)2, a Poisson process of 

sources of intensity X on the jc-axis and a process of sinks of intensity l/X on the 

/-axis. Now we add an independent Poisson process of intensity s to the process of 

sources. Define N? as the number of crossings of the North-side [i.e., (0, jc) x {t}] 
for the process with the added sources. 

Note that if we add an extra source at (z, 0), then N increases by 1 if and only 
if Xx(t; z) < jc, where Xx(t; z) is the location of a second class particle at time t, 

which started at (z, 0). We denote Xx(t) = Xx(t; 0). This means that 

(2.3) E(N?) = E(N0) + s f E(t{Xx(t;z)<x})dz + 0(e2). 

Therefore, by using the stationarity of the Hammersley process, 

Cov(N, 5) = ??I E(N?) 
de \e=o 

= \( E(tlXx(t;z)<x])dz 

(2.4) =X fX F(Xk(t) <x-z)dz Jo 

= X fXF(x-Xx(t)>z)dz Jo 
= 

XE(x-Xx(t))+. 

Combining this with (2.1) gives 

Var(L?(jc, t)) 
= 

-Xx+t- + 2?E(jc 
- 

Xk(t))+. D 

Now consider a stationary Hammersley process with source (and sink) inten 

sity 1. We denoted the flux of this process at (jc, t) by L(x, t), and the location of a 
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(dual) second class particle at time t, which started at (0,0), by X(t) [resp. Xf(t)]. 
Note that under the map 

(x,t) i-> (x/X,Xt), 

a stationary process with source intensity 1 gets transformed into a stationary 

process with source intensity X (and corresponding sink intensity l/X). This rescal 

ing argument shows 

(2.5) XXk(t) = X(t/X) and XX[(t) 
= X\t/X), 

where = denotes equality in distribution. 

We would like to bound Var(L^(i, t)) in terms of Var(L(i, t)) in the case where 

X > 1. Using Theorem 2.1 and (2.5), we get, using the inequality (A + B)+ < 

A+ + B+, 

Var(L?(i, t)) 
= -Xt + t/X + 2E{Xt 

- 
t/X + t/X 

- 
X(t/X))+ 

<(X- \/X)t + 2E(t/X 
- 

X(t/X))+ 
= (X- \/X)t + Var(L(//?, t/X)). 

If we show the intuitively clear result that, for X > 1, 

(2.6) Var(L(i?X, t/X)) 
< Var(L(i, t)), 

we have proved that 

(2.7) Var(L?(i, t)) <(X- l/X)t + Var(L(i, t)). 
We can show (2.6) by noting that Theorem 2.1 for X = 1 is equivalent to 

(2.8) V<ir(L(x,t)) 
= -x + t + 2 ? F(X(t)<z)dz. Jo 

Define 

(j)(x,t) 
= 

Var(L(jc,i)) 

Clearly, (p is symmetric, since the source and sink intensities are equal, which gives 
reflection symmetry of the process. 

Furthermore, (2.8) shows that 0 is a continuously differentiable function, with 

di(?(x,t) 
= 

-\+2F{X(t)<x). 

If we can show that F(X(t) < t) > 1/2, we would have proved (2.6), since 

d\(t)(t, t) > 0 for a symmetric function 0 implies that (j)(t, t) is increasing in t. 

Since reflecting Hammersley's process in the diagonal preserves the distribu 

tion, while interchanging the trajectories of X' and X, we know that 

?(X(t) > jc) 
= 

P(X'(jc) < t) < 
P(X(jc) < t). 

Choosing /=i,we see that 

F(X(t) >t)< F(X(t) <t) 
= 

F(X(t) < 
t), 

which shows that ?(X(t) <t)> 1/2. As noted before, this proves (2.6). 
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3. Connection between second class particles and exit points. As has al 

ready been noted in the Introduction, we can view the flux L\(x, t) in two ways: 
it is the number of space-time paths in the square [0, jc] x [0, t], but is also the 

length of the longest weakly NE path from (0,0) to (jc, t), where "weakly NE" 

means that we are allowed to pick up sources or sinks, as well as a-points, as long 
as we are going North-East. To work with this latter representation, which we will 

mainly use in the symmetric case when both the source- and the sink-intensity 
are 1, we define, for ? t < z < t, N(z) and At(z) by (1.1) and (1.2). Remember 

that the processes At and TV are independent and that 

(3.1) L(t, t) = sup{W(z) + Mz) :-t<z<t}. 

Another important aspect of this representation is the location at which a longest 

path leaves either the x-axis or the y-axis. Define 

(3.2) Z(t) = sup{z e [-t, t] : N(z) + At(z) = L(t, t)} 

and 

(3.3) Z\t) = inf{z [-/, t] : N(z) + Mz) = L(t, t)}. 

We call Z(t) and Z'(t) exit points for a longest path, since there exist longest paths 
that leave the axis on (Z(t), 0) [or (0, -Z(f))] or on (Z'(i), 0) [or (0, -Z'(i))L 

From this definition and using the symmetry of the situation, we can see that 

(3.4) Z\t)<Z(t) and Z(t) = -Z\t). 

We will need another link between the two representations. We have defined X(t) 
and X\t) as the position at time ? of a second class particle, respectively dual 

second class particle, that starts at (0, 0). Now define 

Y(t) = 

and 

y\t) = 

t-X(t), if X(t)<t, 

M{s >0:X(s) >t}-t, ifX(t) > t, 

t-Xf(t), if X'(t)<t, 

mf{s >0:X'(s) >t}-t, if X\t) > t. 

Since X'{t) > X(t), we have Y'(t) < Y(t). Figure 3 shows the relation between 

X and Y. 

It also shows two relations which we will be important later: 

a<t =? {X(t) <a} = {Y(t)>t-a} and 

{X'(t)<a} 
= 

{Y'(t)>t-a}, 
(3.5) 

a>t =? {X(t)>a} 
= {Y(a) <t-a) and 

{X\t)>a} 
= 

{Y'(a)<t-a}. 
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-Y(t) 

A 

-Y(a) 

t a 

FIG. 3. Relating X and Y. 

Now consider Figure 4. The left picture shows a realization of the Hammersley 

process and two longest weakly NE paths, corresponding to Z(t) and Z'(t). The 

right picture shows the same realization, but now reflected in the point (r\t, ^t). 
Note that the longest paths become trajectories of a second class and a dual 

second class particle in the reflected process, and that Z(t) corresponds to Y(t), 
while Zf(t) corresponds to Y'(t). Burke's theorem in [4] states that the reflected 

process is also a realization of the stationary Hammersley process, so that we can 

indeed conclude that 

Z(t) = Y(t) and Z'(t) = Yf(t). 

In particular, this means, using Theorem 2.1 and noting that (t 
? 

X(t))+ 
= 

Y(t)+, 
that 

(3.6) Var(L(t,t)) 
= 2EZ(t)+. 

z\t) 

<> 
<> 

<|> 
o o ? 

<> 

o 

<t> O O O O O O 

<J>-O0-0-0-? 
o 
o 

4> 
<> 

o 
o 

<> 

<!>-? 

o 

o 

b o o o1 o o 

I Y'(t) 

Z(t)t 

FlG. 4. Longest path is distributed as trajectory of a second class particle. 
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4. EZ(t)+ is of order 0(t2/3). We wish to control the exit point Z(t). We 

will do this by considering an auxiliary Hammersley process L\, coupled to the 

original one, by thickening the sources to a Poisson process of intensity X > 1 

and thinning the sinks to a Poisson process of intensity l/X. The process At then 

satisfies the following inequality. 

LEMMA 4.1. Let X>\ and define L\(x, t) as the flux of L\ at (jc, t). Then, 

forO<z<t, 

Mz)<Lx(t,t)-Lx(z,0). 

PROOF. It is clear that a strictly NE path from (z, 0) to (t, t) is shorter than a 

longest weakly NE path from (z, 0) to (t,t), where this path is allowed to either 

pick up sources of L\ on [z, t] x {0}, or pick up crossings of L\ with {z} x [0, t]. 

However, this longest weakly NE path is equal to the number of space-time paths 
in [z, t] x [0, t] of Lx, which, in turn, is equal to L\{t, t) minus the number of 

sources on [0, z] x {0}. D 

We can now show the following theorem. We use the notation a(x) <b(x) if 

there exists a constant M such that, for all parameters x,a(x) < Mb(x). 

Theorem 4.2. Let0<c< t/EZ(t)+. Then 

,iz"i>tEz('ws(i4?(?+?)' 
PROOF. Note that, for any ? > 1, 

?{Z(t) > u) = ?{3z > u : N(z) + At(z) = L(t, t)} 

< P{3z > u : N(z) + Lx{t, t) 
- 

Lx(z, 0) > L(t, t)} 

= F{3z > u : N(z) 
- 

Lx(z, 0) > L(t, t) 
- 

Lx(t, t)}. 

Since Lx(-, 0) is a thickening of L(-, 0), we get that ?X-\(z) := Lx(z, 0) 
- 

N(z) 

is in itself a Poisson process with intensity ? ? 1. This means that 

P{Z(0 >u}< F{?x-\ (w) < Lk(t, t) 
- 

L(t, /)}. 

To have a useful bound for all 0 < u < 
\t, 

we choose X such that 

E?x-i(u) 
- 

E{Lx(t, t) 
- 

L(t, /)} = (A 
- 

\)u 
- 

tik + - - 2\ 

is maximal. This means that we choose 

xu = 
(i-u/trl/2. 
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Some useful elementary inequalities, that hold for all 0 < u < 
\t, 

are 

K<2, 

(4.1) E?^-ii?) 
- 

E{Uu(t, t) 
- 

L(t, 0} 
> 

\u2/t, 

k?-\/k?<2u/t. 

Note that, due to (2.7) and (3.6), 

Var{L??(f, r) 
- 

L{t, t)\ 
< 

2(Var{L??(i, t)} + Var{L(i, t)}) 

<?EZit)+ + 2tiku-l/ku) 

<8EZ(i)+ + 4w. 

Now we can use Chebyshev's inequality: 

?{Zit) >u)< Pj?^-iOi) 
< Lk?it,t) 

- 
Lit, t)\ 

<P|Vi(?)<EJVi,_i(H)-?2/(8/)} 

+ ?{LXuit, t) 
- 

Lit, t) > 
E?^-iiu) 

- 
h2/(80} 

64i2(?M 
- 

\)u 
(4.2) < 

?4 

+ ?{LKit, t) 
- 

Lit, t) > 
E{LXuit, t) 

- 
Lit, t)) + u2/iSt)} 

t2 64i2(8EZ(r)+ + 4w) 
U^ u* 

^ t2 t2EZ(t)+ 
u? ?r 

If t > u > 
|f, 

we see that 

P{Z(0>h}<p{z(?)>-?}<^3 
+ 

3 ) i2 ?2EZ(0+ 
M4 

where we use (4.2). This means that (4.2) is true for all 0 < u < t. The theorem 

now follows from choosing u = 
cEZ(t)+. D 

With this theorem we can show that EZ(t)+ 
= 

0(t2/3). 

COROLLARY 4.3. Let Z(t)+ and L(t, t) be defined as in (3.6). Then 

EZ(?)+ r Var(L(M)) , 
limsup ?^? 

= 
hmsup ??^-< +oo. 

f_>oor f2/3 ,-W 2?2/3 
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Proof. Using (3.6), we only have to prove the statement for EZ(f )+. Suppose 
there exists a sequence tn f +00 such that 

r EZfe)+ 
hm -r?? = +00. 

n-+oo 
tn1'5 

Using Theorem 4.2, we see that 

P(2??,+ 
>?Z(,?)+l<5^-?(-l 

+ 
;l)Al. 

Using dominated convergence [note that t2/(EZ(tn)+)3 is a bounded sequence], 
this shows that 

POO 

/ F{Z(tn)+>cEZ(tn)+}dc^O, 
Jo 

which would imply the absurd assertion that 

lEZ(i?)+J 

As a corollary we get the following: 

Corollary 4.4. Let c > 1. Then 

nz(t)>ct2'3}<^. c? 

PROOF. This is an immediate consequence of Theorem 4.2 and the previous 

corollary. D 

Remark. This result can be compared to a result on transversal fluctuations 

of a longest NE path in [7]. He shows that all longest stricly NE paths from (0,0) 
to (t,t) remain in a strip along the diagonal of width ty, with probability tending 
to 1, as t ?> 00, for any y > 2/3. To this end, he uses the analytic results in [2]. 

Section 3, in combination with Corollary 4.4, shows that the transversal fluctuation 

at time s < t of a longest weakly NE path from (0,0) to (t, t) is of order (t 
? 

s)2?3. 
This is due to the fact that any longest weakly NE path lies within the reflected 

trajectories of a second class particle and a dual second class particle; see Figure 4. 

Our result on weakly NE paths implies the same result for strictly NE paths, as the 

following short argument will show: consider the longest strictly NE path that is 

to the right of all other longest strictly NE paths and suppose, at time s < t, this 

path is to the right of the diagonal. Since the sources and sinks are independent of 

this event, we have that, given this event, there is still a probability of at least 1/2 
that Z(t) > 0. The corresponding longest weakly NE path (so the weakly NE path 
that is most to the right) cannot be to the left of the considered longest strictly NE 
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path (because they cannot cross), so the order of the fluctuations to the right of a 

longest strictly NE path cannot be higher than the same order for longest weakly 
NE paths. For fluctuations to the left, a similar argument holds. The remark at the 

end of Section 6 discusses the corresponding lower bound result. 

5. Strictly NE paths and restricted weakly NE paths. To get a lower bound 

on EZ(t)+, we need to control the difference between a strictly NE path and 

a weakly NE path in a stationary Hammersley process L\ (with source inten 

sity 1), where the weakly NE path is only allowed to pick up sources in an interval 

[0, st2/3] x {0}. To do this, we consider another independent Hammersley process 

Lx on [0, t]2 with source intensity X, sink intensity l/X and a-intensity 1; for 

this process, the sources, sinks and a-points are independent of the corresponding 

processes for L\. Coupled to this process Li, we consider Lq as the correspond 

ing (nonstationary) Hammersley process that uses the same a-points, but has no 

sources or sinks. 

We denote L$(x, t) as the number of particles (i.e., the number of crossings of 

space-time paths) of the Hammersley process without sources or sinks with the 

segment [0, x] x {t}. Note that, for 0 < z < t, 

(5.1) AM 
- 

At(z) = L0(r, t) 
- 

L0(t 
- 

z, t). 

This follows from the fact that Lo(t 
? 

z,t) equals the length of the longest (strictly) 
NE path from (0,0) to (t 

- 
z, t). Also note that {N(z) : z e (0, t)} [the number of 

sources of the process L\ in the interval (0, t)] and {Lx(t, t) 
? 

Lx(t 
? 

z,t):z e 

(0, t)} are two independent Poisson processes. 
Define X[(t) as the position at time t of a dual second class particle of the 

process Lx, that started in (0, 0). Then we know that 

(5.2) x < y < 
X[(t) =? Lx(y, t) 

- 
Lx(x, t) < 

L0(y, t) 
- 

L0(x, t). 

This is due to the fact that if we leave out all the sources of Lx, the space-time 

paths do not change above the trajectory of X'x (this is one of the key ideas in [4]; 
the reader might want to check this fact by looking at Figure 2). This means that if 

we define the process Lasa Hammersley process that uses the same a -points and 

sinks as L^, but starts without any sources, we have that 

x < 
X'k{t) =? Lx(x, t) = L(x, t). 

Inequality (5.2) now follows from the fact that the set of particles of L is at all 

times a subset of the set of particles of the Hammersley process Lo, since this 

process has no sinks, whereas L does have sinks. 

Theorem 5.1. Fix L > 0. Then 

limsupPJ sup {N(z) + At(z)} 
- 

At(0) > Ltl/3\ = 0(e3), e?0. 
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PROOF. We will use the auxiliary Hammersley process constructed above. De 

fine 

X=\-rrx'3. 

If Xfx{t) 
> t, (5.2) tells us that, for 0 < z < t, 

Lk(t, t) 
- 

Lk(t -z,t)< L0(t, t) 
- 

L0(t 
- 

z, t). 

Using (5.1) and defining 

Nk(z) = Lx(t,t)-Lk(t-z,t), 

we see that (remember that N and At are independent) 

( sup {N(z) + 
Mz)}~M0)>Lt1^3} 

^[0,??2/3] J 

< 
p{ sup {N(z) - Nk(z)} > Ltl/3\ + F{X[(t) < t). 

he[0,8t2/3] i 

The second term on the right-hand side of (5.3) can be bounded using (2.5), 

(3.5) and Corollary 4.4: 

P{X'k(t) <t} = F{X'(t/k) < Xt} 

= ?{Zf(t/X)>t(l/X-X)} 

(5.4) <F{Z(t/X)>t(l/X-X)} 
= 

P{Z(i/(l 
- 

rt'l/3)) 
> rt2/3(2 

- 
r/"1/3)/(l 

- 
rt~l/3)} 

<P{Z(f)>rf2/3}<r~3, 

for all r e [1, i1/3), applying Corollary 4.4 with argument t = 
t/(\ 

? 
ri~1/3). 

The first term on the right-hand side of (5.3) concerns a hitting time for the dif 

ference of two independent Poisson processes. After rescaling, this can be written 

as 

P{30<z<, 
: ?~1/3{7V(z?2/3) 

- 
?x{zt2'3)} 

> 
L). 

The process z ?- t~xl3{N{zt2/3) 
- 

?k{zt2/3)} converges, as t -> oo, to the drifting 

Brownian motion process 

(5.5) Wr(z) = W(2z) + rz, z > 0, 

in the topology of uniform convergence on compacta, where W is standard Brown 

ian motion on R+. Hence, we get, by a standard application of Donsker's theorem, 

lim P{3o<z<, : r l/3{N(zt2/3) 
- 

Nk(zt2/3)} > 
L) 

(5.6) 
= P sup Wr(z)>L\. 

Ue[0,e] 



CUBE ROOT ASYMPTOTICS 1287 

We now get, for r < L/e, 

pj sup Wr(z)>L\ <PJ sup W(z)>L-sr\ 

= 
PJ sup W(2^)/v/2e>(L-^r)/V2e| 

lze[0,l] J 

j sup W(z) > (L - ?r)/V2??} 

e-^u2du. 

(5.7) 

Vtt/o 

e[o,n 

2 

(L-er)/>/2? 

Taking r = 
L/(2s), we get 

V*V 
-(1/2)?2 

H 

du 
er)/j2e 

2 ? nr- _j2 

du 
^- 

==-, s | 0, 

L/Vs? y/2n L\f2? 

using Mills' ratio approximation for the tail of a normal distribution in the last 

step. This means that, with this choice of r, our estimate for the second term on 

the right-hand side of (5.3) is dominant, so (5.4) now proves the theorem. D 

Note that we could use the proof of the theorem to show that L can even go to 0 

at a certain speed when e -> 0, and still the considered probability would go to 0, 

uniformly in t. 

6. Lower bound for EZ(f)+. We wish to bound the probability that Z(t) e 

[0, et2/3]. In order to do this, we again introduce an independent auxiliary station 

ary Hammersley process L^, but now with intensity X > 1. In fact, we will choose 

X=\+rt -1/3 

Coupled to this process, we again consider the Hammersley process Lo without 

sources or sinks, but with the same a-points. This time, however, we will leave out 

the sinks of the stationary process; to be more precise, we have that 

(6.1) y > x > Xk(t) => L0(y, t) 
- 

L0(x, t) < Lx(y, t) 
- 

Lk(x, t). 

The reason is that if we consider the stationary process Lx and leave out the sinks 

of this process, below the trajectory of X\ the space-time paths do not change. The 

inequality then follows from the fact that the set of particles of a process which, 
like Lo, has no sinks, but starts with sources and uses the same a-points, will at all 
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times be a superset of the set of particles of the Hammersley process Lq. Compare 
this to the explanation of (5.2). 

We again define 

?x(z) 
= Lk(t,t) 

- 
Lk(t 

- 
z,t) 

and will show the following result. 

Theorem 6.1. 

limlimsupP{0 < Z(t) < et2'3} = 0. 
?40 t^ 

Proof. Let r\ > 0. It is enough to find s > 0 such that 

limsupP{0 < Z(t) < st2'3} < 3r?. 
f?>-oo 

For any L, r > 0 and X= I + rt~1'3, we have 

P{0 < Z(t) < st2'3} < 
PJ sup (N(z) + Mz)) < sup (N(z) + At(z))\ 

h>et2/3 ze[0,st2/i] J 

(6.2) < 
PJ sup {N(z) 

- 
(MO) 

- 
Mz))} < 

Ltl'3\ 
yz>?t2? j 

+ PJ sup {N(z)-(M0)-At(z))}>Ltl'3\, 
{ze[0,et2/3] i 

since for any L e R, X < Y implies that either X < L or Y > L, so 

F(X <Y)< F({X < L] U [Y > L}) < F(X < L) + F(L < Y), 

which allows us to "optimize" over L. For the first term of (6.2), we want to use 

(6.1), which implies that, on the event {Xk(t) <t ? 
rt2'3}, we know that, for all 

Z < rt2/3, 

L0(t, t) 
- 

L0(t 
- 

z, t) < Lk(t, t) 
- 

Lx(t 
- 

z, t). 

Therefore, 

P{0<Z(O<^2/3} 

< 
PJ sup {N(z) - Nk(z)} < Ltl/3\ + F{Xk(t) > t - rt2'3} 

he[st2/\rt2/3] J 

(6.3) +PJ sup {N(z)-(At(0)-At(z))}>Ltl'3\ he[0,st2/3] 
> 

= F 
j sup {N(z) - Nk(z)} < Ltl/31 + F{X(t/X) > Xt - Xrt2'3} 
lZe[et2/\rt2/3] J 

+ 
PJ sup {N(z) 

- 
(A,(0) 

- 
Mz))} > Ltl/3\. 
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Using (3.5) (note that kt - krt2? > t/k when r < ?r1/3), Z'(i) < Z(f) and 

?Z'it) = Z(t), we get, for the second term in (6.3), 

P{X(i/?) > kt - krt2?] = ?{Zikt 
- 

krt2?) < (1/? 
- k)t + krt2?) 

< ?{Z\kt 
- 

krt2?) < (1A 
- 

k)t + krt2?} 
= 

?{-Z'ikt 
- 

krt2?) >ik- \/k)t 
- 

krt2?) 

= ?{Zikt 
- 

krt2?) >ik- \/k)t 
- 

krt2?) 

rt2? = P Z(?(l -r?r?li))> 
l+r?-l/3 

-r2/1/3 

This means that we can start by choosing r sufficiently large to ensure that the 

second term is smaller than r?, since 

2/3 
r2tl? 

>{z(ta-r2r2^>-i+rt_r/3 

= 
pjz(i 

+ 0(i,/3)) > rt2? + 
0(?1/3)j 

= 0( r \ t OO, 

where we use Corollary 4.4 in the last step. 
Now we turn to the first term in (6.3). This term is very similar to the term we 

found in the previous section. We have, as in the proof of Theorem 5.1, that the 

process 

z^r]/3{N(zt2/3)-?x(zt2/3)} 

converges, as t -> oo, to a drifting Brownian motion process 

(6.4) Wriz) = 
Wi2z)-rz, z>0, 

in the topology of uniform convergence on compacta, where W is standard Brown 

ian motion on R+ (this time the drift is negative instead of positive). Hence, we 

get, again using Donsker's theorem, 

lim P {Niz)-?xiz)}<Lt 

(6.5) 

< 

sup 
ze[st2/3,rt2/3] 

sup Wr(z) <L 
Ue[?,r] 

sup Wr(z) <L 
Z [0,r] 

sup Wr(z)<L\+] 
ze[0,r] 

1/3 

sup Wr(z)<L, sup Wr(z)>L 
ze[s,r] ze[0,s] 

sup Wr(z) > L 
ze\0,e) 
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Since 

limPJ sup Wr(z)<L\=0, ?4? lz [0,r] J Ue[0,r] 

we can choose L = 
L(r?) > 0 sufficiently small to ensure 

sup Wr(z)<L\<r]/2. 
ze[0,r] J 

It is also clear from the argument of the proof of Theorem 5.1 [see (5.7)] that we 

can next choose e > 0 sufficiently small to ensure that 

sup Wr(z) > 
l\ 

< 
PJ sup W(2z) >l)< rj/2, 

for this choice of L = 
L(rj) > 0. 

It is now seen from (6.5) that this bounds the first term of (6.3) from above by rj 

[remember that we have already fixed r > 0 to bound the second term of (6.3)]. 

Finally, we can choose s > 0 so small that the third term in (6.3) is smaller than rj, 

using Theorem 5.1. This completes the proof. D 

COROLLARY 6.2. Let Z(t)+ and L(t, t) be defined as in (3.6). Then 

. 
fEZ(t)+ 

. 
fVar(L(M)) 

hminf?x-pz? 
= 

hminf-^-> 0. 
f-*oo t1'5 t-+oo 2tll5 

Proof. Using (3.6), we only have to prove the statement for EZ(i)+. Suppose 

tn 
? oo such that 

EZfa)+ 
2/3 

~> U 
In 

Then 

Since -Z'(t) = Z(t) and Z'(t) < Z(t), we have that F{Z(t) > 0} > 1/2, for all 
t > 0. This would mean that, for all s > 0, 

liminfP{0 < Zfo.) < 
?in2/3} 

> i, 

which would contradict Theorem 6.1. D 

Remark. We can again make a comparison with the results in [7]. Johansson 

shows that the probability that all longest strictly NE paths from (0,0) to (t, t) stay 
within a strip around the diagonal of width ty does not tend to 1, as t -> oo, for all 

y < 2/3, again using the analytical results in [2]. Our Theorem 6.1 shows that the 

probability that all longest weakly NE paths from (0, 0) to (t, t) stay within a strip 
around the diagonal of width tY tends to 0, as t -> oo, for all y < 2/3 (see also the 

Remark at the end of Section 4). 
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7. Tightness results. In the preceding sections it was shown, using the "hy 

drodynamical methods" of [4] that, for a stationary version of Hammersley's 

process, with intensity 1 for the Poisson point processes on the axes and in the 

plane, the variance of the length of a longest weakly NE path L(t, t) is of order 

t2/3, in the sense that 

(7.1) 0 < liminfi"2/3 Var(L(i, *)) < limsupi~2/3 Var(L(f, *)) < oo. 

This means, in particular, that, for any t > 0, the sequence 

n~x/3{L(nt, nt) 
- 

2nt], n = 
1,..., 

is tight. 
As noted in [9], the distributional limit result for n~l/3{Lo(nx,nt) 

? 
2n*Jxt\ 

for Hammersley's process without sources and sinks in [2] can be translated into a 

limit of Yn/n1/3, where 

(7.2) Yn = 
znt([nx])-nx2/(4t), 

and Znt([nx]) is the [nx]th particle at time nt, counting particles at time nt from 

the left. Theorem 3.2 in [9] gives a tightness result for a more general version of 

Yn, in the context of a version of Hammersley's process on the whole line, with a 

(possibly) random initial state. The result is that, under his conditions D and E, the 

sequence 

Yn/(nl/3\ogn), n = l,... 

is tight. He conjectures that, in fact, n1/3 logn can be replaced by n1/3. The results, 
derived above, are a further indication that indeed n{/3 logn might be replaced by 
nlj/3, and that this can be derived by hydrodynamical methods. 

For the stationary version of Hammersley's process, with intensities 1 of the 

Poisson processes in the plane and on the axes, we can define znt([2nt]) as the 

location of the [2n?]th source at time nt, where we count the sources from left 

to right, starting with the first source to the right of zero. Note that at time zero 

the particles are just the sources. The particles, escaping through a sink, are given 
location zero at times larger than or equal to the time of escape. 

With this definition, our results give tightness of the sequences 

(7.3) n~l/3{znt([2nt]) 
- 

nt}, n = 1, 2,..., 

for each t > 0. This can be seen in the following way. We have, for M > 0 and 
t > 0, the "switch relation" 

(7.4) n-x,3{znt([2nt]) 
- 

nt) > M ^=? L(nt + Mnx'3, nt) < [2nt]. 
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Theorem 2.1 yields 

Var(L(nt + Mnx/3, nt)) 
= -nt - Mnl/3 +nt + 2E(nt + Mn1'3 - 

Xx(nt))+ 
= -Mn]/3 + 2E(nt + Mn1'3 - 

Xx(nt))+ 
< Mnl/3 + 2E(nt 

- 
X\(nt))+, 

where we use (Y + Z)+ 
< 1 + + Z+ in the last step. Theorem 2.1, applied in the 

opposite direction, yields 

2E(nt 
- 

Xi(nt))+ 
= 

Var(L(nt,nt)). 

Hence, we get, by (7.1) and Chebyshev's inequality, 

P{^"1/3{^([2^])-^}>M} 
= 

F{L(nt + Mnl/3, nt) 
- 2nt - 

Mnl/3 < [2nt] 
- 2nt - 

Mnl/3} 

Mnl/3 + Vcir(Li(nt,nt)) Mn1'3 + 0{(nt)2^3) _ _{ - 
[Mnl/3 + 2nt-[2nt]}2 

~ 
M2^3 

~ ?{M }* 

We similarly get 

F{n-l/3{znt([2nt]) 
- 

nt} < 
-M] 

= 
0(M~l), 

using that, if nt ? 
Mn~1/3 > 0, 

(7.5) n-l/3{znt([2nt]) 
- 

nt} < -M <=^ L(nt 
- 

Mnl/3, nt) > [2nt], 

which proves the tightness of the sequences (7.3). 

Although the tightness of the sequence (Yn/n1^3) for the Hammersley process 
without sources or sinks, as defined in (7.2), is known from the results of [2], it 

is of some interest to derive this from the results of the preceding sections. The 

tightness will follow from 

(7.6) n~l/3{L0(nx,nt)-2y/xt} 
= 

Op(l), 
n -+ oo, 

for all x, t > 0, where Lo(nx, xt) is a strictly NE path from (0, 0) to (nx, xt), and 

where the intensity of the Poisson process in the first quadrant is equal to 1. 

We again have a "switch relation" similar to (7.4): 

n-l/3{znt([2nt]) -nt}>M ?=> L0(nt + Mnx'3, nt) < [2nt]. 

From [1], we know that 

Lo(nx, nt) = 
Lo(nVxt, n^/xt), 

so if we show that, for each t > 0, 

(7.7) n~x/3{L0(nt, nt) 
- 

2nt} 
= 

Op(l), 
n -> oo, 
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we get, for each e > 0 and t > 0, 

?{n~l/3{znt([2nt])-nt}>M} 
= ?{L0(nt + Mnl/3, nt) 

- 2nt - 
Mnl/3 < [2nt] 

- 2nt - 
Mnl/3} 

= 
?{L0(ntyJl+Mn-2/3/t, ntjl + Mn~2'3/t) 

- 
2nt^l 

+ Mn~2/3/t + 0(M2rc~1/3) 

<[2rc?]-2rc?-Mrc1/3} 

for sufficiently large M = M (s) > 0 and all n > no(M, s). Relation (7.7) similarly 

implies 

?{n-l/3{znt([2nt]) 
- 

nt} < 
-M) 

< e, 

for sufficiently large M = M(s) > 0 and all n > no(M, s), using 

n-l/3{znt([2nt]) 
- 

nt} < -M ^=> L0(nt 
- 

Mnx/3, nt) > [2nt]. 

In order to prove (7.7), it is sufficient to show 

(7.8) t~l/3{L0(t, t) 
- 

2t} = 
Op(X), t -* oo. 

Now first note that the length Lo(t, t) of a longest strictly NE path from (0,0) 
to (t, t) is the same as At (0) in the proof of Theorem 5.1. Let, for X = 1 ? 

rt~1/3, 

Lx be defined as in the proof of Theorem 5.1. By (5.3), we have 

sup {N(z) + At(z)} 
- 
MO) > Ltl/3 

z [0, Kt2/3] 

(7.9) 
< P sup {N(z) 

- 
Nx(z)} > Li1/3 + P{X^(i) < t}. 

he[0,Kt2/3] ' 

We first deal with the second term on the right-hand side of (7.9). By (5.4), we 

have 

(7.10) F{X'x(t)<t} 
= 

0(r~3), 

uniformly for r e [1, \tl?3]. 
To deal with the first term on the right-hand side of 

(7.9), we first note that 

z ̂  Mr(z) = 
rl/3{N(zt2/3) 

- 
?x(zt2/3)} -rz, z> 0, 

is a zero-mean martingale. So we get 

p( sup {N(z)-?x(z)}>Ltl/3}=?\ sup {Mr(z) + rz} > 
l] 

^ze[0,Kt2/3] J he[0,K] J 

sup Mr(z)>L-rK\. 
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Taking r = 
L/(2K) and using Doob's submartingale inequality, we get 

sup {N(z)-Nx(z)}>Ltl?\ <p( sup Mr{z)>L/l\ 
ze[0,KtV3] > h [0,K] i 

sup Mr(z)2>L2/4 
z [0,K] 

4EMAK)2 ^ - 

We also have, by Corollary 4.4, 

sup {N(z) + At(z)}? sup {N(z) + At(z)} 
ze[-Kt2?,KtW] ze[-t,t] 

< 2P{Z(i) > Kt2?) < \/K3. 

So, taking K = L1/n [note that this means that r = L/(2K) = 
jL5'n 

< 

?i1/3, for L < t4/5], we obtain 

sup {N(z) + 
At(z)}-At(0)>Ltl/3\ lze[-f,?] i 

= P{Li(f, ?) 
- 

A,(0) > Li1'3} < L'5'*, 

for all L<t4>5. 

If L > t4/5, we first note that 

P{Li (/, /) 
- 

A,(0) > Lt1/3} < P{Li (r, i) > Li1/3} 
< 2?{P, 

> 
?Li1/3} 

< 
2P{Pf 

> 
2L1/6?}, 

where f, is a Poisson variable with expectation t. Let [x] denote the largest integer 
< x and let a = 

jL1/6. Then, using the Lagrange remainder term in an expansion 
of ?, we get, for a 0 (0,1), 

t[at]e-(l-9)t {[at] 

F{Pt 
> 

?L1/6i} 
< P{/>, > [fli]} =-?- < ?-. z 

[aty. [at]\ 

Stirling's formula for the gamma function T(x) yields that, uniformly in t > 1, 

tat 1 
:g-?(loga-l)f a^oo. 

r(a? + l) V2?H7 

This implies that ?{Pt > 
\Ltx?) 

tends to zero faster than any negative power of 

L, if L > t4/5, uniformly in all large t and hence, we can conclude that 

P{Li(f, 0 
- 

A,(0) > Ltl/3} = 0(L_5/4), 
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for all L > 1, implying 

0 < 2f - EAt(0) = E{Li(t, t) 
- 

Af(0)} 
(7.11) 

<?1/3{l+^??L-5/4dL} 
= 0(?1/3). 

Thus, 

E|At(0) 
- 

2t\ = E\L0(t, t) 
- 

2t\ = 0(tx'3). 

This proves (7.8) and, as noted above, (7.6) now also follows. This, in turn, proves 

tightness of the sequence (Yn/n1^3), for Yn defined by (7.2) for Hammersley's 

process, starting with the empty configuration on the axes. 

Notice that we also proved at the same time 

EL0(nx, nt) = 
EL0{nVxt, nVxi) 

= 
EAn^(0) 

= 2njxt + 0(nl/3), 

for all x, t > 0; see (7.11). 
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