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The control of reasoning in resource-bounded
agents

M A R T I J N S C H U T and M I C H A E L W O O L D R I D G E
Department of Computer Science, University of Liverpool, Liverpool L69 7ZF, UK.
E-mail: m.c.schut@csc.liv.ac.uk; m.j.wooldridge@csc.liv.ac.uk

Abstract

Autonomous agents are systems capable of autonomous decision-making in real-time environments.
Computation is a valuable resource for such decision-making, and yet the amount of computation that
an autonomous agent may carry out will be limited. It follows that an agent must be equipped with a
mechanism that enables it to make the best possible use of the computational resources at its disposal.
In this paper we review three approaches to the control of computation in resource-bounded agents. In
addition to a detailed description of each framework, this paper compares and contrasts the approaches,
and lists the advantages and disadvantages of each.

1 Introduction

Until about the mid-1980s, research in the design of intelligent agents was dominated by STRIPS-style
classical planning approaches (Allen et al., 1990). These approaches focussed on algorithms for
automatic plan generation, where an agent generates a plan (cf. program) to achieve some state of
affairs more or less from first principles. This style of planning, it was believed, was a central
component in rational action. By the mid-1980s, however, a number of researchers, of whom Rodney
Brooks is probably the best known (Brooks, 1999), began to claim that planning approaches, which
directly depend upon explicit symbolic reasoning, were fundamentally flawed. First, it was argued,
symbolic reasoning systems tend to be computationally intractable – rendering them of limited value
to agents that must operate in anything like real-time environments (Bylander, 1994; Chapman, 1987).
Second, much everyday behaviour does not appear to involve abstract deliberation, but seems to arise
from the interaction between comparatively simple agent behaviours and the agent’s environment.

The challenge posed by the behaviour-based artificial intelligence (AI) research of Brooks and
colleagues has arguably led to some fundamental changes in the agenda of the AI community in
general. First, it has become widely accepted that intelligent behaviour in an agent is more closely
coupled to the environment occupied by the agent than was perhaps hitherto acknowledged. As a
consequence, there has been renewed interest in the use of more realistic environmental settings for the
evaluation of agent control architectures. Second, it has become accepted that while reasoning is an
important resource for intelligent decision-making, it is not the only such resource. As a consequence,
there has been much interest in hybrid approaches to agent design, which attempt to combine reasoning
and behavioural decision-making (Mueller, 1997; Wooldridge & Jennings, 1995).

The basic problem faced by an autonomous agent is that of decision-making and, in particular,
deciding what action to perform. But a normative notion of decision-making, (such as decision theory
(Von Neumann & Morgenstern, 1944)), is not suitable for implementation in intelligent agents:
decision theory has been highly successful as a tool with which to analyse formal mathematical models
of decision situations, but it was never intended for implementation. In fact, classical decision theory
seems to imply that an agent must have both unlimited time and computational resources in order to
reach a decision. In addition, it assumes that an agent always has complete access to its environment
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to gather all relevant information necessary to making a decision. For a resource-bounded agent
situated in a real-time environment, these assumptions are not valid.

Reasoning is thus a valuable resource for decision-making in intelligent agents. It follows that the
ability to effectively control reasoning – to apply it to best effect – is likely to be critical to the success
of rational agents. In this paper we present a survey of the three best-known approaches to the control
of reasoning in rational agents:

• Continuous deliberation scheduling (Boddy & Dean, 1989)
This planning algorithm is based on the idea that an agent has a fixed set of decision procedures to
react to events happening in the environment. The quality of the solution of a decision procedure
depends on the time given to the procedure. Continuous deliberation scheduling is an algorithm that
schedules decision procedures to achieve the highest overall satisfaction.

• Discrete deliberation scheduling (Russell & Wefald, 1991)
This planning algorithm is based on the idea that at every moment in time an agent must deliberate
or act. Discrete deliberation scheduling is an algorithm that decides, on the basis of the expected
values of deliberation or action, whether to deliberate or to act.

• Bounded optimality (Russell et al., 1993)
A perfectly rational agent bases its reasoning on decision theory, given what it knows of the
environment. In practice, where agents reason in real time, this type of rationality is not feasible, thus
we have to select a subset of these perfectly rational agents that are able to reason in real time. The
agents in this subset are called bounded optimal agents, and behave as well as possible given their
computational resources.

Research on resource-bounded agents originates in Simon’s work (1982a) on bounded rationality,
which investigates rationality assuming that the resources of the decision-maker are limited. All three
of the algorithms discussed above are based on ideas from bounded rationality.

The remainder of this paper is structured as follows. In Section 2 we explain the theoretical
background of the subject discussed in this paper: in Section 2.1 we set out the fundamentals of
decision theory and introduce utility theory and probability theory; in Section 2.2 we discuss the origin
of the research described in this paper, i.e. bounded rationality; and Section 2.3 explains how the
concept of meta-reasoning – reasoning about reasoning – is used here. In Section 3 we discuss the
three mentioned time-dependent planning algorithms and compare and contrast them. Finally, in
Section 4 we tease out some common threads from the three approaches and present some
conclusions.

2 Background

2.1 Decision theory

Decision theory makes a distinction between a decision-maker and an environment, and views the
decision process as an interaction between these two. A parallel can be drawn with the concept of
agency: the basic notion of an agent is a mapping from environment states to actions: depending on
the current state, an agent’s concern is to generate actions to respond to events in that state (Russell
& Norvig, 1995). In decision theory, the decision process is essentially a mapping from environmental
states to actions as well. But, additionally, decision theory imposes two important principles on the
action space: the principle of completeness requires that all possible actions must be represented
entirely, and the principle of exclusion requires that all actions must exclude the others, i.e. only a
single action can be chosen at any point in time. We explain later in this section how decision theory
accomplishes these principles. A mechanism that obeys these principles should be able to deal with
complete decision situations in which the occurrence of future environmental states is certain.
However, it cannot deal with incomplete decision situations. We consider two different kinds of
incompleteness with respect to the available information about the action outcome space. First,
decisions in risk: when there is risk involved in a decision situation, then for each future state the
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available information includes the probability of occurrence of this state. Thus the outcome set is
known and probabilities are assigned to every member of this set. Second, decisions in uncertainty: in
this case, the set of possible future states is known, but no information is available about the individual
probabilities of occurrence. Compared to the decisions in risk, this second kind of incompleteness
contains even less information: the outcome space is known, but no probabilities can be assigned to
its members.

In this section we formalise these thoughts on decision-making by discussing decision theory. We
regard decision theory as the theory of rational decision-making (Wilson & Keil, 1999):

Definition 1. Rational decision-making is choosing among alternatives in a way that “properly”
accords with the preferences and beliefs of a decision-maker.

The decision-maker can be an individual or a group making a joint decision. In this paper, we only
consider cases in which the decision-maker is an individual. The subject of decision-making has
received attention from a variety of research areas: economics and psychology (Von Neumann &
Morgenstern, 1944) and decision and game theory (Luce & Raiffa, 1957). The most abstract notion of
rational decision-making (Wilson & Keil, 1999) is concerned with alternatives, preferences that reflect
the desirability of the alternatives, and rationality criteria. On a more concrete level, we are concerned
with possible actions in the world, the desirability of states those actions would lead to and some
ordering on desirability. The basis for decision theory is utility theory and probability theory. Utility
theory provides us with a framework that formalises how desirable different states are, and probability
theory provides us with a way to formalise the probability that the world will be in a certain state.

By the term “utility theory”, we understand the following:

Definition 2. Utility theory is concerned with the measurement and representation of preferences.

The term utility refers to the measurement scale of preferences. Although in its initial definition, utility
only applied to monetary values (Von Neumann & Morgenstern, 1944), it can be applied to all sorts
of outcomes. The basis of utility theory is a preference order –�, which is normally a complete preorder
over an outcome space O. The order of preferences is then represented by a utility function U : O→�.
If y is weakly preferred over x, then we indicate this by x–�y, which can be represented by U(x) ≤ U(y);
if y is always preferred over x, then U(x) < U(y). Utility is thus measured on an ordinal scale (although
represented cardinal).

When faced with a decision, we have to select a choice from a set of possible choices. A specific
choice will have a certain relevant outcome o for the decision-maker (assuming the environment is
deterministic). Let O be the set of all possible outcomes. If we make a choice, this will lead to a certain
outcome. When a utility function is defined over all possible outcomes, we want to make a choice that
leads to the outcome with the highest utility. However, if the outcome of a choice is not completely
certain, we also have to take into account the probability distribution over the possible outcomes. A
well-known decision theoretic model that captures exactly this idea is the expected utility theory: we
calculate the expected utility of every possible choice and we make the choice with the highest
expected utility. Let P(o | c) denote the probability of outcome o given that the agent makes choice c
and U(o) be the utility of o. Then the expected utility EU(c) of choice c is

EU(c) =�
o�O

P(o | c)U(o)

Under this simple and idealised model, a “rational” agent is one that chooses c so as to maximise
EU(c). Appealing though this model of rational choice is, it is frequently not consistent with the
behaviour of individuals in practice: people seem to act irrationally from time to time. This apparently
irrational behaviour of people in practice needs some explanation. At least two explanatory factors can
be identified (from Gleitmann, 1991): experience, because while our mental machinery might only
have some limited capacity for reasoning, this capacity needs experience to come to its full purpose;
and our use of heuristics and biases, because while we might be educated with science and statistics,
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we occasionally still use heuristics and fall prey to biases. This does not mean that individuals indeed
are irrational; at worst, our rationality is bounded – resulting from circumstance, habit and limited
processing capacity. This leads to the viewpoint that decision-makers in practice do not optimise,
which gives rise to the study of “bounded rationality”. Whereas a decision theoretic model gives us an
normative view of decision-making, bounded rationality offers us a prescriptive one. In other words,
decision theory aims to answer the question of what to decide and bounded rationality aims to answer
the question of how to decide. Naive attempts to “implement” decision theory tend to be search-based,
and such search-based algorithms are rarely usable if decisions are required in anything like real-
time.

2.2 Bounded rationality

It is clear that when AI problems are moved towards reality, decision situations will become real-time.
An important characteristic of a real-time decision situation is that the utility of an action varies over
time. On the one hand, the utility might increase over time, e.g. the output quality of an anytime
algorithm (described in Section 3.1) increases when it is executed for longer. On the other hand, the
utility might decrease over time, e.g. when the agent misses an opportunity like a deadline. An exact
method to resolve a decision situation is inherently intractable, because it typically involves search,
which is usually intractable. Instead, an agent uses an algorithm with one of two properties:
approximation, where the solution is guaranteed to be within some � of the optimal solution, or
probably correct, where the algorithm will return the optimal solution with probability p. Research on
these kinds of algorithm, generally referred to as bounded rationality, was initiated by Simon (1982a)
in the early 1950s. This work is described in this section. In the 1960s Good (1971) distinguished a
“type II” rationality from classical “type I” rationality. Type II rationality maximises expected utility
taking into account deliberation costs.

In this paper, the term “bounded rationality” is used for indicating the field of research that is
concerned with the problems that real-time agents are faced with: finite computational power and finite
time in which to reason. Bounded rationality is defined as follows (Wilson & Keil, 1999):

Definition 3. Bounded rationality is rationality as exhibited by decision-makers of limited abilities.

Bounded rationality has received attention from a variety of research fields: economics (Simon,
1982c), philosophy (Dennett, 1987), cognitive science (Wilson & Keil, 1999) and artificial intelligence
(Russell, 1997). It is closely related to the disciplines of rational decision-making, decision theory,
utility theory and meta-reasoning. As mentioned previously, rational decision-making is choosing
among alternatives in a way that corresponds with the preferences and beliefs of a decision-maker, but
implicitly assumes infinite time, infinite computational power and complete information. Simon
(1982b) proposed a behavioural model of rational choice, the “administrative man”, which replaces the
concept of “economic man” with a kind of rational behaviour that is compatible with the access to
information and the computational capacities that organisms (including man) possess. Experimental
evidence for this model is given in Simon (1982c). It documents cases in which decision-makers do
not live up to the ideal of rational decision-making. Ideal probability and utility distributions imply a
degree of omniscience that is incompatible with the psychological limitations of the organism.
Organisms adapt well enough to “satisfice” (concatenation of satisfy and suffice); they do not
“optimise” as postulated by decision theory (Simon, 1982c). Simon presented a simulated organism
that could survive in its environment, despite the fact that its perceptual and choice mechanisms were
very simple. In the same work, he identified some structural characteristics that are typical of the
“psychological” environments of organisms, which refer to the relation between the organism’s goals
and access to information in the agent’s environment. Examples of such characteristics are that access
to information and the environment limit the planning horizon for the organism, and that the
organism’s needs and the environment separate “means” from “ends” very naturally. Some of these
characteristics reappeared some 30 years later in the agents literature on environmental properties
(Russell & Norvig, 1995):
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• Accessible vs. inaccessible
If an agent has access to the complete state of the environment, the environment is accessible.

• Deterministic vs. non-deterministic
If the next state of the environment is uniquely determined, the environment is deterministic.

• Episodic vs. non-episodic
If the agent’s experience is divided into “episodes” which consist of perceiving and acting, and
episodes do not depend on past or future episodes (regarding quality and action), the environment
is episodic.

• Static vs. dynamic
If the environment cannot change while an agent is deliberating, the environment is static.

• Discrete vs. continuous
If there are a limited number of distinct, clearly defined perceptions and actions, the environment is
discrete.

A subtle distinction must be made between bounded rationality as used in economics or cognitive
science and the way we use it here. In economics and cognitive science, bounded rationality is used
to explain why human behaviour is irrational. In this paper, bounded rationality is more narrowly
defined: it only addresses the issue of resource bounds (in terms of time and computational power) in
decision-making. When designing agents that are in continuous interaction with a real-time
environment, we have to account for the fact that these agents have to consider their own resources.
An agent cannot deliberate indefinitely, because at some point in time it has to act. Agents have to be
able to control their deliberation in order to seize opportunities and to act effectively in their
environment. A well-known mechanism that could be used as control is meta-reasoning, which is
discussed in the next section.

2.3 Meta-reasoning

Meta-reasoning, or meta-level reasoning, means “reasoning about reasoning” (Wilson & Keil, 1999).
Meta-level reasoning is distinguished from its counterpart, object-level reasoning. Object-level
reasoning is deliberation about external entities, e.g. considering which action to take, whereas meta-
level reasoning is deliberation about internal entities, e.g. deciding whether it is worth deliberating
about a specific action. If the universe of discourse is a game of chess, object-level reasoning might
for example be concerned with which opening move to make and meta-level reasoning with deciding
whether it is worth deliberating about which opening move to make. Russell gives the following
definition of meta-reasoning (Wilson & Keil, 1999):

Definition 4. Meta-reasoning is any computational process that is concerned with the execution of
other computational processes within the same agent.

Meta-reasoning serves two important purposes in an intelligent agent (Wilson & Keil, 1999). First, it
gives the agent control over its (object-level) deliberation. Second, it increases the flexibility of the
agent in the way it enables the agent to recover from errors in its object-level deliberation.

We touch upon using meta-reasoning for agents by describing three meta-reasoning architectures
(from Russell & Wefald, 1991): TEIRESIAS, MRS and SOAR. TEIRESIAS (Davis, 1982) is built
upon a MYCIN-type rule-based system (Buchanan & Shortcliff, 1984a) and provides explanation,
knowledge acquisition and strategy knowledge facilities to control the reasoning in MYCIN. Like
MYCIN, TEIRESIAS is used for giving consultative advice on diagnosis and therapy for infectious
diseases. One limitation of MYCIN is that it is not able to deal with time considerations. For example,
when it takes 48 hours to positively identify whether some specimen is infected, MYCIN cannot make
a decision before those 48 hours have passed. However, in reality, a physician often must make a
decision based on early evidence of bacterial growth in the specimen. In that case, TEIRESIAS can
assist the physician by explaining why MYCIN waits 48 hours and then the physician can take
appropriate action to further the reasoning in MYCIN. The meta-reasoning level in TEIRESIAS
decides which rule to execute in MYCIN. In TEIRESIAS, object-level rules are given a value; the
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concept of values is used for comparing various possible computation steps. The meta-level rates
values of applicable object-level rules and can decide that some rule should be applied. Meta-reasoning
in TEIRESIAS is done over the values of object-level rules (or possible computation steps) and is not
used for describing the outcomes of computation steps.

In the MRS architecture (Genesereth & Smith, 1981), meta-reasoning selects computational tasks
and methods to be carried out. Task selection happens through a preference mechanism similar to the
one used in TEIRESIAS: a task is selected if no runnable task is preferred to it. There is a method
selection component in MRS that reduces abstract tasks to concrete procedures; these procedures are
directly executable whereas abstract tasks are not. Reasoning about preferences is done using a
backward-chaining theorem-prover (Russell & Norvig, 1995) and object-level inference steps are
selected depending on the probability of success of a proof beginning with the given step.

The SOAR (Newell et al., 1989) system uses a goal-based execution architecture: reasoning is done
in problem states defined by a goal, initial state and set of operators. Example domains of SOAR
include the well known Eight Puzzle, industrial expert systems, natural language parsing and AI weak
methods (such as and/or search and hill-climbing). In SOAR, operators are selected in three stages: (1)
elaboration, in which all the rules in long-term memory are triggered, if matching the current state, to
provide preferences; (2) decision, in which preferences are resolved to select an operator to apply; and
(3) subgoaling – if resolution is unsuccessful, the system tries to solve it and commits itself to this
subgoal. The automatic subgoaling selection method is the most innovative feature in SOAR. The key
point about SOAR is that it can conduct a simulation of object-level computation steps in order to
select among them, unlike TEIRESIAS and MRS. However, the SOAR architecture cannot reason with
uncertainty and the model SOAR uses for computational actions cannot trade time for accuracy in
solutions. The ability to trade time for accuracy in solutions is possibly the most important issue when
we want to use meta-reasoning to model a resource-bounded agent.

2.4 Resource-bounded agents

We conclude this section with a brief overview of issues involving the resource-boundedness of agents.
We return to these issues in the next section, in which we discuss frameworks for time-dependent
planning. We show in the next section that every framework approaches the issues mentioned here
from different perspectives.

To start off on the highest level of abstraction, we are concerned with a system. The components in
such a system are agents1 and an environment. In this paper, we are not concerned with systems
containing more than one agent, i.e. multi-agent systems, but limit ourselves to single-agent systems.
The interaction between an agent and its environment is meant for the exchange of information.2 This
view corresponds with the most-accepted definition of an agent. The two primary issues that are
characteristic for situated resource-bounded agents are time and access to information. Both these
issues are to be taken into consideration by the agent, but are properties of the environment. This
concludes the issues that are external to the agent.

The two main processes within the agent are reasoning and acting. We distinguish two kinds of
reasoning: deliberation – reasoning about what to do, and means-ends – reasoning about how to do it.
The components that enable deliberative reasoning are an evaluation mechanism – on the basis of
which the agent decides what to do, and a control mechanism – which enables the agent to deal with
time-dependency. The evaluation mechanism is typically utility-based. However, it is open to
discussion over what one should define the utility, e.g. previous models have defined utilities over
environment states, actions, action histories and action sequences. The control mechanism is typically
based on some sort of meta-reasoning.

1 In a decision-theoretic context, an agent is called a decision-maker.
2 This issue is open to discussion: for example, decision theory views the system’s decision process as the
interaction between an agent and its environment. However, this means the decision process is external to the
agent, which we regard as unintuitive.
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The main issue we then concern ourselves with in this paper is how an agent deals with time-
dependency, which is the essential issue underlying the frameworks discussed in the next section.
These frameworks assume that information about deadlines is available, on the basis of which optimal
actions (or action sequences) have to be generated. A disadvantage of this assumption is that it makes
the frameworks only directly applicable in deliberative agents, i.e. reactive behaviour – the immediate
responding to events – cannot be easily modelled using this approach. This means that in order to
model a wider range of agents – including reactive agents – these frameworks have to be changed.

To summarise, in this section we discussed some background issues in the control of reasoning in
resource-bounded agents. The popular way to theorise about decision-making in agents is classic
decision theory. A limitation of decision theory is that it does not gives us any method for how to make
a decision; it merely tells what to decide. All naive ways of implementing classic decision theory tend
to be search-based and therefore inherently intractable and not likely to be very useful in practice. Both
the decision-maker and the environment constrain the decision process: the decision-maker has
bounded resources, specifically computational power, and a real-world environment is obviously real-
time, i.e. decisions have to be made within a certain amount of time. This means the decision-maker
must control its decision-making, or, in a more general context, control its reasoning. To do this, it
needs to reason about reasoning, i.e. it needs to meta-reason.

3 Time-dependent planning

Time-dependent planning is concerned with determining how best to respond to predicted events when
the time available to make such determinations varies from situation to situation (Boddy & Dean,
1994). The intuition behind time-dependent planning is that an agent should make optimal use of its
available time. In this section, we discuss three time-dependent planning frameworks. Two are based
on the idea of scheduling the necessary deliberation – continuous and discrete; the third, bounded
optimality, extends discrete deliberation scheduling to apply it to agents. Throughout the discussions
of these frameworks, we use the TILEWORLD planning scenario (Pollack & Ringuette, 1990) to
illustrate how to apply the frameworks. Finally, we discuss the Belief-Desire-Intention (BDI) agent
architecture and the general Markov Decision Process (MDP) planning framework, in which time-
dependent planning algorithms can be applied.

3.1 Continuous deliberation scheduling

In Boddy & Dean (1989), a framework is introduced called expectation-driven iterative refinement.
This framework enables one to construct solutions to time-dependent planning problems. The planning
in this framework is done using a set of decision procedures called anytime algorithms. A decision
procedure is a procedure used by an agent to select an action which, if executed, changes the world
(Zilberstein 1996). Two types of action are distinguished. The first are inferential, which denote purely
computational actions. The second type are physical actions, that change the state of the external
world, and may require some computation. Essentially, anytime algorithms are algorithms whose
quality of results improves monotonically as computation time increases. The characteristics of these
algorithms are (1) they can be suspended and resumed with negligible overhead; (2) after termination
at any point, they will return an answer; and (3) answers returned improve in some well-behaved
manner as a function of time. Many conventional algorithms satisfy these characteristics. Zilberstein
(1996), for example, shows how the solution of randomised tour improvement (Lawler, 1985) to the
Travelling Salesman Problem (TSP) can be used as an anytime algorithm.

Boddy and Dean investigated the randomised tour improvement as an anytime algorithm in a
problem involving a robot courier assigned the task of delivering packages to a set of locations. The
robot’s only concern here was time: it tried to minimise time consumed deliberating about what to do.
This task actually involves two primary tasks: tour improvement and path planning. Anytime
algorithms are employed for solving both problems and statistics are gathered on their performance to
be used at run time in guiding deliberation scheduling. The process of deliberation scheduling is the
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“explicit allocation of computational resources based on the expected effect of those allocations on the
system’s behaviour” (Boddy & Dean, 1994). Deliberation scheduling is accomplished by a sequence
of allocation decisions made by the system as time passes, as events happen and as new information
becomes available. The gathered statistics represent the performance of the algorithm and are called
performance profiles. A performance profile of an anytime algorithm is the expected output quality as
a function of run time (Zilberstein 1996).

Figure 1 shows a simple example of continuous deliberation scheduling. The problem in this
example is as follows: assume the current time is t̂ (in Figures 1.iii and 1.iv indicated by “now”), at
which the agent has two events to respond to, c1 and c2, respectively, and construct a schedule for
deliberation to respond to those events, maximising the quality of the responses. Figures 1.i and 1.ii
show the performance profiles for the decision procedures for c1 and c2 respectively. Figure 1.iii shows
the allocation of time per decision procedure after executing the continuous deliberation scheduling
algorithm, and Figure 1.iv shows the allocation of time after collecting and sorting the time slices for
the decision procedures for c1 and c2. The algorithm works from right to left and starts by allocating
all time between c1 and c2 to the decision procedure for c2, because there is no use in spending time
on the decision procedure for c1 when event c1 has occurred. The algorithm then decides which
decision procedure to allocate time for, based on the increase in quality of the solution of the decision
procedures. This is done for an interval of time over which the increase is continuous. In this example,
time is allocated first to the decision procedure for c1, then for c2, for c1 and the rest for c2. This is
shown in Figure 1.iii. After all available time is allocated, the time slices are collected and ordered and
the agent can start executing the anytime algorithms, which results in the graph shown in Figure 1.iv.
Here, the agent executes the decision procedure for c1 until a certain moment and then starts executing
the decision procedure for c2. Because the decision procedures are anytime algorithms, the agent can
respond to event c1 by giving the solution it reached when the decision procedure for c1 was stopped.

In the remainder of this section, we explain how Boddy and Dean formalise continuous deliberation
scheduling. This formalisation results in a deliberation schedule procedure DS, that is described below.
An important assumption Boddy and Dean make is that at any moment in time the agent knows about

Figure 1 A simple example of continuous deliberation scheduling (from Boddy & Dean, 1994). Assume that an
agent has two future events, c1 and c2, to respond to, and aims to maximise the value of both responses. The agent
has at its disposal decision procedures for responding to events c1 and c2. In (i) and (ii) the respective performance
profiles of these decision procedures are shown. Such a performance profile defines the expected response value
(�c) as a function of the allocated time (�) for that decision procedure. Panel (iii) shows the allocation of time for
the respective decision procedures, resulting from the continuous deliberation scheduling algorithm. Panel (iv)
shows the final deliberation schedule, after collecting and sorting the timeslices
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a set of pending conditions it has to respond to.3 A second assumption they make is that the value of
the agent’s response to one condition is independent of the response to other conditions. The decision
about how long to execute which decision procedure is based on the values of the responses to
conditions. Let Response(c) denote the response to condition c, and let V(Response(c) | c) be the value
of responding to condition c with Response(c) given the occurrence of c. The total value of the
response to a set of conditions C is the sum of all values of the conditions, given that that condition
occurs:

�
c�C

V(Response(c) | c)

The value of a response is the output quality of a performance profile and, in terms of decision theory,
denotes the utility of a response. The agent has a decision procedure dp(c) for each condition c�C. A
decision procedure is an anytime algorithm (as described above). A performance profile (as described
above) for this algorithm is formalised by a function �c : �→�. An example of such a function is
shown in Figure 1.i. Let alloc(�, dp(c)) denote the allocation of � time units to dp(c) and let
V(Response(c) | c, alloc(�, dp(c))) be the value of the response to c, given the occurrence of c and the
allocation of � time units to dp(c) to calculate Response(c). Then �c takes the amount of time, �, and
returns the expected value of the response to c with dp(c) running for the specified amount of time:

�c(�) = E(V(Response(c) | c, alloc(�, dp(c))))

Because we assume that the result quality of anytime algorithms improves monotonically as run time
increases and performance profiles denote the expected output quality of run time, the results of
performance profile functions will also improve monotonically. This means that performance profile
functions have diminishing returns, i.e. slopes of consecutive line segments must be decreasing:
�c�C : �f, �c(t) = f(t) such that f is monotonically increasing, continuous and piecewise differentiable
and �x, y��+ such that f �(x) and f �(y) exist, (x < y)⇒ (f �(y) ≤ f �(x)).

The idea behind the DS procedure is to work backwards, starting at the time of occurrence of the
last condition to respond to. Let C = {c1, . . . , cn} be the set of conditions to be responded to. Let
time(c) be the time of occurrence of condition c, and let ∧(t) be the set of all conditions whose time
of occurrence is later than some particular time t:

∧(t) = {c | (c�C)∧ (time(c) ≥ t)}

Next, let last(t) be the time of occurrence of condition c that is not in ∧(t):

last(t) = max{time(c) | c�(C � ∧(t)}).

In DS, t is initially set to + �. In that case, we actually do not need to be concerned with ∧(t), because
there are no conditions with time of occurrence later than + �. Clearly, if t takes any value other than
+ �, then it is possible there are conditions with a time of occurrence later than t – these conditions
are taken into account using ∧(t).

Next, we have to decide how to allocate processor time to decision procedures. This is based on the
expected gain in value for the decision procedures for conditions in ∧(t). Let 	i(x) be the gain of the
ith decision procedure having already been allocated x amount of time. The term 	i(x) is formulated
as the slope of the linear segment of �i at x. If �i is discontinuous at x, then 	i(x) is the slope of the
linear segment at the positive side of x. Finally, let min_alloc({�i}) be the minimum of time interval

3 The term event is used interchangeably with condition in the formalisation, because an event can be viewed as
a condition for the agent to act.
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lengths for the next linear segments for performance profiles given the time allocated thus far. This is
required, because when selecting decision procedures, the current gains have to be constant.

Now we can introduce the deliberation schedule procedure DS. DS consist of three main loops:

1. Initialise allocation variables (use last( � �)).
2. Decide how much time to allocate per decision procedure (use last(t), min_alloc({�i}), 	i(�i)).
3. Decide when to run the decision procedures: for all selected decision procedures, run the ith

decision procedure from t till t + �i and increase t by �i.

Boddy and Dean prove (1994) that DS is optimal, i.e. it generates {�i} which maximises 
n
i �i(�i). For

the detailed formulation of DS and the optimality proof, we refer the reader to Boddy & Dean
(1994).

The deliberation schedule procedure DS assumes that there is no uncertainty about the times of
occurrence of events. Boddy and Dean (1994) describe an extension of DS, which assumes there is
only uncertain information about the times of occurrence of events. This procedure is called DS �. In
DS �, conditions are assumed to have probability distributions defined over them and to have some
earliest and latest time of occurrence. Then the total value of the response to a set of conditions is the
combination of the probability that some event happens and the value of the response to that event at
the time of occurrence. As DS allocated processor time intervals to a decision procedure, we now have
to account for the possibility that the event, corresponding to the decision procedure, might already
have occurred. DS � computes an optimal sequence of processor time allocation for which the sum of
expected values of responses to the conditions to occur is maximal. An important difference between
DS and DS � is that DS � works with processor allocation windows instead of allocating all processor
time at once. This multi-pass approach enables DS � to take advantage of the fact that it is no use
deliberating about an event after its occurrence. Again, a detailed description of DS � is given in Boddy
& Dean (1994).

To conclude, the continuous deliberation scheduling procedure discussed in this section originated
in research on search algorithms. It defines a class of search algorithms, called anytime algorithms,
with certain properties, like increasing solution quality over time. Boddy and Dean argue that most
search algorithms can be implemented as anytime algorithms. These algorithms form the basis of the
continuous deliberation scheduling procedure: they are the decision procedures that enable an agent to
respond to events in its environment. When the agent has a set of future events it needs to respond to,
and decision procedures are available to respond to the events, the procedure schedules the agent’s
deliberation by maximising the quality of the response for each single event. We later discuss how the
procedure relates to the other algorithms discussed in this paper.

Example. We briefly illustrate the continuous deliberation scheduling procedure in an examplar
TILEWORLD planning scenario. The TILEWORLD is an agent testbed that is used for experimentally
evaluating agent architectures. Consider the following description which explains the TILEWORLD
scenario:

The TILEWORLD consists of an abstract, dynamic, simulated environment with an embedded
agent. It is built around the idea of an agent carrying “tiles” around a two-dimensional grid,
delivering them to “holes”, and avoiding obstacles. During the course of a TILEWORLD run,
objects appear and disappear at rates specified by the researcher. The objects include tiles, holes,
obstacles, tile stores and a gas station. The “lifetime” of any given object is determined by user-
specified appearance and disappearance rates for that type of object. The researcher can also specify
other properties of the objects, such as their size and score. The agent’s primary task is to fill holes
with tiles. To do this, it must pick up tiles, either from a tile store or from wherever it has previously
dropped them, carry the tiles to a hole, and deposit a tile in each cell of the hole. If the agent
successfully fills all the cells in the hole with tiles that match the hole’s shape, it is awarded with
the full amount of the hole’s score. A lesser score is received for filling the holes with non-matching
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tiles. The agent is responsible for maintaining its fuel level. It consumes fuel as it moves around the
world; the more tiles it is carrying, the more quickly it burns fuel. To obtain more fuel, it must travel
to the gas station and fill its tank. If the agent runs out of fuel, it cannot move for the duration of
the run.

(Pollack et al., 1994)

The robot courier example that Boddy and Dean used to illustrate continuous deliberation scheduling,
as mentioned above, can be easily represented in the TILEWORLD scenario. Assume that some
number of holes are scattered around in the world and the agent has the task of delivering tiles to the
appropriate holes; the agent is currently in the tile store and must deliver its tiles to the holes. This is
a typical Travelling Salesman Problem – which rules out a brute force approach to the problem. We
use continuous deliberation scheduling to find a suitable solution. The agent cannot deliberate
indefinitely, because of the dynamic structure of the TILEWORLD – holes might disappear before the
agent reaches them.

The two problems the agent now faces are, first, tour improvement, constructing a minimal distance
tour that brings it to all holes in the world and, second, path planning, figuring out for every hole the
fastest way to get from that hole to the next hole in the tour. For both problems we assume the agent
has at its disposal an anytime algorithm with a performance profile with the desired performance
profile properties, i.e. monotonically improving quality over time and diminishing returns. For reasons
of space, we assume that the performance profile for tour improvement is given as performance profile
�1 as shown in Figure 1.i and the profile for path planning �2 as shown in Figure 1.ii. We also use
events c1 and c2 from Figure 1 here. Assume that c1 indicates the earliest time that the courier might
have to start delivering, and c2 the latest time that he has to start delivering. At c1, the courier must thus
have some tour readily available for execution, although that tour might be far from optimal. At c2, the
courier has no time left to improve the delivery time and has to start delivering. The DS algorithm then
works as follows. It starts allocating time for the algorithms backwards, starting from the time point
of the last event, here c2. It continually selects an amount of time, selects the algorithm to allocate this
time to, and adds the selected time to the execution time for the selected algorithm. The methods of
selection are explained in detail above and in Boddy & Dean (1994). Basically, the time between c1

and c2 is allocated to the path-planning algorithm, since no tour improvement can be done after c1. The
time from the current time to c1 is then divided up in turns between tour improvement and path
planning, depending on which algorithm gives the maximum gain. When DS has finished, the
deliberation schedule resembles Figure 1.iv.

Having completed its deliberation scheduling, the agent is still in front of the tile store, and now
starts executing the algorithms by using the deliberation schedule just computed. Then, at some time
between c1 and c2, the agent has to start delivering by executing the tour as computed by the algorithms.
Continuous deliberation scheduling is thus used as a meta-reasoning method to control the search
algorithm for finding a best tour, given time constraints.

3.2 Discrete deliberation scheduling

The term discrete deliberation scheduling comes from Boddy & Dean (1994). It denotes a kind of
allocation of deliberation which treats deliberation as being divisible into discrete chunks, such that the
allocation of each chunk is a separate decision. Work on this subject has been carried out by Russell
and Wefald (1991) and Etzioni (1989). We discuss the work of Russell and Wefald here. This work
preceded Russell’s theory on bounded optimality, which is discussed in Section 3.3.

The idea behind discrete deliberation scheduling is that at any moment in time, the agent has to
choose between performing a default action � and a computational action from a set of computational
actions Sj. Performing a computational action might cause the agent to change its default action. In this
way, computations are treated as actions, and are selected on the basis of their expected utilities. The
utility of a computation depends on the passage of time (because of possible changes in the
environment) and the possible revision of the agent’s intended actions in the real world. Then it follows
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that the utility of an action outcome is uncertain, since we do know beforehand how the environment
changes. We assume that the outcome of external actions is known.

Russell and Wefald (1991) distinguish three progressively more specific models of deliberation that
form the foundation of their theory:

• External model
Analyse the system as an external object by ascribing utilities and probabilities to the system’s
actions and internal states. The goal of further computation is to refine the choice of the default
action.

• Estimated utility model
An agent might select its current best action by making explicit numerical estimates of the utilities
of actions. The best action is then the action that currently has the highest utility estimate. Further
deliberation is done in order to revise and refine utility estimates.

• Concrete model
Here, the decision algorithm is specified as far as the results of a computation step revise the agent’s
intended action. Russell and Wefald implemented meta-reasoning systems up to the concrete model
in forward-search programs – programs that revise the utility estimates for outcome states by
generating and evaluating their successors. Because this model involves the object-level reasoning
of the agent, we do not discuss it in much detail in this paper.

In this section, we progressively build up to the concrete model by discussing the three models.
Throughout the discussion we use an example, similar to one presented in Russell and Wefald, which
is as follows:

A CEO is faced with an unpopular management policy, for example the closing down of factories,
and might decide to run a coarse-grained simulation model; if the results are equivocal, a more
detailed model might be run, but eventually the policy will have to be executed.

Two important assumptions are made. The first is that the outcomes of external actions are known at
the time when the agent is choosing among them. The second is that the utility of each outcome state
is not immediately known, but some computation might be necessary. Decision theory tells us the
agent should choose the action which maximises the agent’s expected utility, as discussed in Section
2.1. Let A be the set of possible actions, assume some action Ai�A, and let [Ai] be the world state that
results from taking action Ai in the current state. Let P(Wk) denote the probability that the current state
is Wk and [Ai, Wk] is the result of taking action Ai in world state Wk. The expected utility of an action
is then

E[U([Ai])] =�
k

P(Wk) U([Ai, Wk])

In the management example, this would mean that the action is chosen with the best outcome.
However, this outcome might still be considered bad, e.g. cutting spending. The calculation is easy to
perform for physical actions, but slightly more complicated for computational actions: when
calculating the expected utility for computational actions, we have to take into consideration the fact
that the world changes during computing and that the agent’s future action might change. This
translates into the value of a computational action being the utility of the computation itself minus the
utility of the current default action. In our example, if the simulation takes a week, then its value is the
difference between doing � (cutting spending) now and closing down factories a week later. We call
this value the net value of a computational action Sj and define it as follows:

V(Sj) = U([Sj]) � U([�]).

But it is not certain that a computation will immediately result in an action; a distinction must be made
between complete computations, which result in a commitment to an external action, and partial
computations, which do not result in a commitment. In the example, if the simulation results in one
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single decision, it is a complete computation; if it does not, it is partial. When a computation is
complete, the utility of Sj is solely the utility of the action committed to after the computation: �Sj

. Let
[�sj

, [Sj]] denote the outcome state of action �sj
that resulted from computation Sj . Hence

V(Sj) = U([�sj
, [Sj]]) � U([�])

When the computation is partial, it will change the internal state of the agent, which affects the value
of further computational actions. We thus have to define the utility of the internal state in terms of how
it affects the agent’s ultimate choice of action – the expected utility of the action the agent ultimately
takes, given its internal state. We thus have to take into account all possible computation sequences
following Sj. Let a computation sequence be represented by T and let the external action resulting from
T be denoted by �T. Let P(T ) be the probability that the agent will perform T. Then

U([Sj ]) =�
T

P(T )U([�T , [Sj , T ]]).

The problem stated above translates to taking the action (being either physical or computational) with
the maximum expected utility from the set {�, S1, . . . , Sk }. The ideal control algorithm is then defined
as follows:

1. Keep performing that Sj with highest expected net value, until none has positive expected net
value.

2. Commit to action �.

In a real-time environment, we are concerned with the time cost of computational actions, that is, we
want to capture the dependence of utility on time as the cost of time. In our formalisation so far, this
cost has been included implicitly in the utility function of the agent. In order to make the analysis less
complicated, we want to represent the time cost explicitly. Therefore we have to distinguish between
the total utility and the intrinsic utility: the total utility is the time-dependent utility of an action; the
intrinsic utility is the utility of an action if it is performed immediately. Let UI denote the intrinsic
utility and let C express the difference between the total and intrinsic utilities. The total utility and
intrinsic utility are related as follows:

U([Ai , [Sj]]) = UI([Ai]) � C(Ai , Sj)

We can draw a parallel with the previous section on continuous deliberation scheduling. This function
could be an anytime algorithm: it defines in what way the utility of an action is discounted over time.
But note that here the utility of an action normally decreases as time progresses, whereas the utility of
an action in an anytime algorithm increases. If we want the cost of time to be independent of the
agent’s choices, we require the identity of the best action to remain fixed over time. This means that
the agent’s optimal action is always that with the highest intrinsic utility, and it suffices to require that
the cost of the computation is independent of the action under evaluation:

U([Ai, [Sj]]) = UI([Ai]) � C(Sj).

Furthermore, the utility of an action that occurs during Sj only depends on the length of Sj (in elapsed
time) and the course of events happening in the world during that time (because computations only
change the internal state). In our example this means that while running the simulation model, events
happen in the world; however, one cannot respond to these events, because the simulation is still in
progress. The computation Sj will not affect that course of events, thus Sj only depends on its own
length. We can then calculate the time cost TC of Sj as a function of its length, denoted by | Sj |. Thus
TC gives the loss in utility when delaying an action. Hence

U([Ai, [Sj]]) = UI([Ai]) � TC(| Sj | ).

Alternatively, we can easily separate the benefit from the cost of a computation. The net value of a
computation is the difference between (1) the action that results from the computation and the current
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default action, i.e. the benefit of the computation, and (2) the time-cost of the computation, i.e. the cost
of the computation. Now, let �(Sj) denote the estimated benefit of the computation:

�(Sj) = U([�Sj
]) � U([�])

Then it is possible to rewrite the definition of the net value for a complete computation as its benefit
minus its cost:

V(Sj) = �(Sj) � TC( | Sj | ).

To summarise, the model developed so far gives us a way of formalising the decision-making process
under certain assumptions. This can be illustrated using our management example. The basic idea is
that the decision-maker (the CEO) is faced with doing a physical action (closing down factories) or a
computational action (running the simulation model). For now, we assume that we know the utilities
of the possible outcomes of actions, i.e. we know what conclusions to draw from the results of the
simulation model – we later drop this assumption to maintain consistency with the claim that the model
assumes we do not know the utilities. However, we do not necessarily know the outcomes of internal
actions, i.e. we do not know the outcome of the simulation, otherwise we would not need to run it. We
keep performing the computational action with the highest expected value until no computational
actions have a positive expected value; we then commit to performing the physical action. We
distinguish between complete (immediately resulting in a physical action) and partial (not resulting in
a physical action) computations and we are able to explicitly represent the loss in action utility over
time.

An important assumption in the external model, as described above, is that utilities are available at
the time the agent must make a choice. But this assumption is hardly feasible for a “realistic” agent,
i.e. an agent that is non-omniscient and resource-bounded. If we do not assume the utilities to be
available, the agent has to estimate utilities before making a choice. This refines the external model and
is called, as mentioned before, the estimated utility model: we replace the utility function U by a
function Û that represents the estimated utility function. We assume that the object level has a current
estimate of the utility of each action. Let the computation sequence to date be S and the evidence
generated by that sequence be e. Then the utility estimate of action Ai after computation S is then:

Û S([Ai]) = E(U([Ai]) | e).

Let S . Sj denote carrying out computation Sj after computation sequence S and let ej denote the evidence
generated by Sj . When computation Sj has been carried out:

Û S . Sj([Ai ]) = E(U([Ai]) | e∧ ej ).

But this function implicitly incorporates the cost of time and, as in the external model, we want to be
able to represent this explicitly. Therefore, assuming a time cost is available, the expected value of
complete computation Sj, given evidence e, is

V̂([Sj]) = E[(U([�Sj
]) � U([�])) | e∧ ej] � TC( | Sj|).

This value resides in the probability distributions for the effect of evidence for the external actions. Let
u = {u1, . . . , un} where u1 to un are new utility estimates for actions A1 to An. Let pj(u) be the joint
probability distribution for the new estimates; this results in a probability distribution over the new
utility estimates for every action. Thus there exists such a probability distribution for the current best
action �, since ��{A1, . . . , An}. Let this probability distribution be denoted by p�j

. Finally, let
max(u) = max{u1, . . . , un}. Then we have:

E[V̂(Sj)] =�
u

max(u) pj(u) du ���

��

up�j(u) du.

This equation says that the expected value of a computational action is the expected value of the
external action with maximum utility minus the expected utility of the current best action; this idea
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agrees with what we have formally represented in the discrete deliberation scheduling model.
Probability distributions may be obtained by gathering statistics on past computations in the same way
we obtain performance profiles of anytime algorithms by gathering statistics on past computations.

The estimated utility model thus drops the assumption that utilities are available at the time an agent
makes its choice. However, assessing the expected value of all continuations of a computation is in
practice still infeasible, because computations can be arbitrarily long. By making two simplifying
assumptions, we avoid important issues concerning the tractability of the model. The first assumption
is that the algorithms used are meta-greedy, in that they consider single primitive steps, estimate their
ultimate effect and choose the step appearing to have the highest immediate benefit. The second
assumption is the single-step assumption: a computation value as a complete computation is a useful
approximation to its true value as a possibly partial computation.

The next step of refinement – the concrete model – depends on the domain in which the model is
applied. Russell and Wefald applied the model in search algorithms used in game-playing programs.
The concrete model makes assumptions about the object-level decision mechanism, and not about the
meta-reasoning mechanism. The meta-reasoning mechanism is specified completely in the external
model and the estimated utility model. In the concrete model, the object-level reasoning is structured
in a way that makes it suitable for meta-level control. However, the focus in this paper is on the
modelling of the meta-level reasoning mechanism and not on the object level, and therefore a
discussion of the concrete model is beyond the scope of our interest.

To conclude, the discrete deliberation scheduling model discussed in this section basically gives a
decision-maker the choice between executing a physical action and a computational action at any
moment in time. A physical action changes the external state of the system, i.e. the environment of the
agent, whereas a computational action only changes the internal state of the agent. The model is
decision-theoretic in that it bases the agent’s decision-making process on the expected utilities of
actions, being either physical or computational. An important property of the model is that it enables
the agent to explicitly represent its knowledge about the relation between action and time. We show
later how discrete deliberation scheduling relates to the other algorithms discussed in this paper.

Example. Assume the TILEWORLD as explained in Section 3.1. In the context of discrete
deliberation scheduling, we first have to distinguish between external actions and computations of the
agent. Let an external action be a move by the agent (up, down, left, or right) and let a computation
be the planning of a path to some location in the world, typically with a hole. We let utility be
represented as the result of an order-reversing mapping on the distance between the agent and the hole
it is currently closest to. It is clear that the agent tries to maximise its utility. Let a world state be a cell
in the grid of the TILEWORLD. The agent adopts some default external action, i.e. to move up, down,
left or right. As explained above, the purpose of a computation is to revise the default action,
presumably to a better one. This is obvious here; without computation the default action is simply a
random move action, but a computation leads to actions that direct the agent to a hole.

The discrete deliberation scheduling framework enables us to define expected utilities for external
actions and computations, compare these and, consequently, by executing the ideal control algorithm,
perform either a move action or compute a path to get to a hole. We restrict our attention to complete
computations, i.e. after having carried out a computation, there is immediately an external action to be
executed. The utility of an external action is simply the inverse of the distance between the agent and
the closest hole after performing that action; the utility of a computation is then the utility of the action
that results from the computation. The net value of a computation is then the difference between the
utility of the computation and the utility of the default external action. With these definitions, the agent
can at any moment in time determine if it is best to move or to plan a path.

But, corresponding to the discussion of the theory of discrete deliberation scheduling, until now it
is assumed that performing a computation in the TILEWORLD, i.e. path planning, does not have a
time cost associated with it. As in applying continuous deliberation scheduling in the TILEWORLD,
the real-time aspect of the world is that holes appear and disappear throughout the existence of the
world. We can easily encode the cost of path planning by introducing a new parameter, namely one that

The control of reasoning in resource-bounded agents 229



represents the number of time steps it takes to construct a path. Now it is straightforward to separate
the benefit of planning (the difference between the utility of the revised action and the utility of the
default action) from the cost of planning (the time it takes to plan). The value of a computation is then
its benefit minus its cost. Alternatively, we can represent the value of a computation as the intrinsic,
or time-independent, utility of the action that results from the computation, minus the planning cost.
Carrying out these calculations of utilities and expected values is easy in the TILEWORLD, since they
only involve calculating distances between cells on the grid.

But although calculating utilities is easy, since they are based on simple distances in the grid, the
agent still needs to perform some computation in order to find out the utility of its actions. For
example, utility depends on the distance to the closest hole, and the agent needs to find out what the
closest hole is. Although this exploration might be trivial in the TILEWORLD, it is a computation
nevertheless. It is in the interest of the agent to have estimates of these utilities, collected from previous
computations. In the TILEWORLD, these estimates might, for example, result from distributions that
indicate what the distance is to a closest hole from the agent’s current location. These distributions can
be easily generated for the TILEWORLD. As the agent is then able to revise these estimates by means
of exploration, it is obvious that the agent can now estimate utilities by performing computations. Thus
we have shown how to construct an estimated utility model for the TILEWORLD using discrete
deliberation scheduling.

3.3 Bounded optimality

Russell (1997) gives four possible formal definitions of rational action:

• Perfect rationality
The system always maximises its expected utility, given what it knows about its environment.

• Calculative rationality
The system maximises its expected utility, based on the state of the environment before
deliberation.

• Meta-level rationality
The system optimises over object-level computations for selecting actions.

• Bounded optimality
The system behaves as well as possible given its computational resources.

The key notion in bounded optimality is the move from optimisation over actions or computations to
optimisation over programs. Russell argues that too much emphasis in AI has been given to techniques
that will select the correct action in principle, as opposed to techniques that will be capable of selecting
the correct action in practice. He suggests that bounded optimal agents – those that select the best
action possible, given their computational resources – are therefore a more appropriate goal for AI
research.

Let an abstract agent be defined as a mapping from percept sequences to actions and let a physical
agent consist of an architecture (by which Russell means an actual computational device) and a
program. An architecture is responsible for interfacing between environment and program and for
running the program. A program implements the abstract agent and is constrained by the environment
and the architecture it is run by. Based on this intuition, Russell et al. (1993) define bounded optimality
as follows:

Definition 5. An agent is bounded optimal if its program is a solution to a constraint optimisation
problem presented by its architecture and the task environment.

The idea behind bounded optimality is to formalise on the one hand an abstract agent and on the other
hand a physical agent (a “real” agent). We then show that a perfect rational agent is an optimal abstract
agent and a bounded optimal agent is an optimal physical agent.

We first formalise an abstract agent as a mapping from percept sequences to actions. Besides
formalising this mapping in the model, we want to explicitly represent time in the model of an abstract
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agent. The primitives we thus need to specify an agent are drawn from a set of time-points T, actions
A and perceptions O. The set T is a totally ordered by a relation < with a unique least element. We
model percept sequences as percept histories, i.e. a complete sequence of percepts indexed by time. A
history prefix is a projection of a history, thus a partial sequence, until a certain time. For reasons of
completeness, for both actions and perceptions, we define sets of histories and history prefixes:

OT = {OT : T→O} denotes the set of percept histories,

Ot = {Ot : t�T, OT�OT} denotes the set of percept history prefixes,

AT = {AT: T→A} denotes the set of action histories, and

At = {At : t�T, AT�AT} denotes the set of action history prefixes.

Then an abstract agent is a mapping from a set of percept history prefixes to a set of possible actions:
an abstract agent receives at a certain time a percept history prefix and generates an action history
based on this. Hence

Definition 6. An agent function has the signature f : O t →A, where AT(t) = f(O t).

This function says that an agent maps partial percept sequences to some action; if we apply this
function to the set of all percept prefixes, this generates the set of all action histories. But this function
does not reflect the fact that an agent is situated in an environment: let XT = {XT : T→X} be the set of
environment state histories. The model represents the fact that the agent might not have complete
access to its environment by a perceptual filtering function fp that determines the perceptions of the
agent. A transition function fe represents the effects of the agent’s actions; it specifies the next state
given the current state and the agent’s action. Then we can define an environment as follows:

Definition 7. An environment E is a set of states X with initial state X0 and functions fp and fe, such
that

XT(0) = X0,

XT(t + 1) = fe(A
T(t), XT(t)) and

OT(t) = fp(X
T(t)).

Notice that the agent’s environment can, to some extent, be inaccessible but is assumed to be
deterministic. In the model, effects(f, E ) denotes the state history generated by agent function f in
environment E; and [E, AT ] denotes the state history from applying action history prefix in the initial
state of environment E. We use this notation later in the model.

Now that we have defined an abstract agent – the agent function – we continue with the definition
of an agent program. An agent program l is an implemented agent function on an architecture M. With
M, we define a programming language LM and l�LM. An agent program receives a percept as its input
and has an internal state. In order to formalise this internal state, let

IT = {IT: T→ I } be the set of internal state histories and

It = {It: t�T, IT�IT } the set of internal state history prefixes.

Then

Definition 8. An architecture M is a fixed interpreter for an agent program that runs the program for
a single time step, updating its internal state and generating an action:

M: LM  I  O→ I  A,

where �IT(t + 1), AT(t)� = M(l, IT(t), OT(t)).

The signature of this function shows that an architecture takes an agent program l (defined in the
programming language LM ), a percept and an internal state as its input and on the basis of those
generates an internal state and an action.
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Now we have both defined the abstract agent (the agent function) and the “real” agent (the agent
program) and are ready to relate the two as follows. We implement the agent function f = Agent(l, M )
by an agent program l on architecture M. The basic idea then is that agent function f is constructed by
specifying the action sequences produced by an agent program l on architecture M for all possible
percept sequences. Thus an agent function f can be defined as follows:

Definition 9. An agent function f(Ot) is an action history AT(t) such that the following holds for any
environment E = (X, fe, fp)

�IT(t + 1), AT(t)� = M(l, IT(t), OT(t)) (1)

OT(t) = fp(X
T(t)) (2)

XT(t + 1) = fe(A
T(t), XT(t)) (3)

XT(0) = X0 (4)

IT(0) = I0 (5)

In this definition, equation (1) comes from the definition of an architecture; equations (2), (3) and (4)
come directly from the definition of an environment; and equation (5) initialises the internal state of
the agent. Note that in definition 9 we formalise an agent function and not a real agent, which, in other
words, means that we define the set of all possible agents, implementable or not implementable.

It is important to note that not every agent function f maps to an agent program l�LM. This is
because some agent programs cannot be implemented on a particular architecture (they may require
more memory than is available on the architecture, for example). This leads to an important
observation: the set of agent programs is a subset of the set of agent functions. If an architecture M and
corresponding language LM are given, we can even constrain the set of agent programs: the remaining
set of agent programs are called feasible agent programs. Again, the set of feasible agent programs is
a subset of the set of agent programs. A formal notion of feasibility is necessary to denote all
implementable agent functions on a given architecture M and language LM:

Feasible(M) = {f : �l�LM, f = Agent(l, M)}.

The model developed thus far does not enable us to measure the agent’s performance. To be able to
evaluate the agent’s performance, a utility function U : XT →� is introduced, which maps environment
state histories to utilities. The combination of an environment and a utility function is called a task
environment – the utility function is thus external to the agent and environment. The value of an agent
function f in environment E is the utility of its state history:

V(f, E ) = U(effects(f, E )).

Similarly, the value of program l executed in architecture M is based on the utility of agent function
f implemented by l:

V(l, M, E ) = V(Agent(l, M ), E) = U(effects(Agent(l, M ), E)).

If there is a probability distribution defined over a set of environments E, one can easily adapt the
above definitions to capture expected values.

We are now ready to define a perfectly rational agent and a bounded optimal agent. A perfectly
rational agent selects the action that maximises its expected utility, given the percepts so far. In the
model, this corresponds to an agent function that maximises V(f, E) over all possible agent functions.
However, the problem with perfect rationality is that the optimisation over the agent functions is
unconstrained. Instead, we have to account for a machine-dependent kind of rationality that optimises
constraints on programs. A bounded optimal agent thus maximises V over the set of agent functions
Feasible(M ) that are implementable. Then we can define for a set of environments E:

• a perfectly rational agent: fopt = arg maxf V( f, E) and
• a bounded optimal agent: lopt = arg maxl�LM

V(l, M, E).
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The most important difference between a perfectly rational agent and a bounded optimal agent is the
fact that the former is unconstrained, while the latter is constrained by its architecture.

Example. Consider the TILEWORLD scenario as used above. As we here want to implement a
bounded optimal agent that operates in the TILEWORLD, we first define an abstract agent for the
TILEWORLD. We then constrain this agent by acknowledging the real-time characteristics of the
TILEWORLD and the bounded resources of the agent.

Let us first identify the sets of observations O and actions A. An observation denotes an
observational action: the agent acquires knowledge about the location of holes in the world. An action
is to move up, down, left or right, thus A = {Up, Down, Left, Right}. Combining the set of perceptions
and actions with a set of timepoints T, results in a set of percept histories OT and a set of action
histories AT, and relevant histories as shown above. Now an abstract agent, according to definition 6,
is a mapping from observation history prefixes to actions. It is indeed intuitive that when the agent
observes some hole at some location in the world, it bases the actions to perform to reach the hole on
that observation. An environment state is here a configuration of the TILEWORLD, i.e. a description
of the world containing the location of the agent, holes and other objects in the world. It is obvious how
we can model the agent’s incomplete knowledge of the world using the perceptual filter function fe,
which takes as input an environment state and outputs observations to the agent. The world changes
after the agent acts, and the transition function fa defines how it changes. Since we do not assume a
static environment – holes can appear and disappear while the agent moves – here, this characteristic
is captured by fa as well. With definition 7 we then define what an environment E encompasses. The
agent receives its utility from the environment; here, when the agent ends up on a location in the world
with a hole, it receives a reward. Thus an agent’s utility is defined over environment state histories as
generated by that agent. Then a perfectly rational agent is an abstract agent with maximum utility.

But because of the constraints the environment puts on the agent, not all of these abstract agents are
either “useful” or implementable in practice. Although trivial in nature, an agent in the TILEWORLD
operates based on the amount of fuel it has. An abstract agent does not take this into account. We
introduce an architecture, with corresponding language, on which an abstract agent must be
implemented as an agent program. Such an agent program does take its bounded resources into
account. In the TILEWORLD, we can define the architecture and language relatively easily, since
precise metrics for computing the fuel level are available. Therefore we identify the set of feasible
agent programs as those programs that maintain an acceptable fuel level. It is clear that this set is a
subset of the set of abstract agents, as explained in the theory above. An agent is then executed on the
architecture, where execution simply boils down to a mapping between the observations made and the
best action as computed by the program. Here, an observation is a TILEWORLD configuration; this
observation corresponds to a possible observation (otherwise it could not have been observed); and this
possible observation has been mapped to a best action; this action is consequently executed.

Russell et al. (1993) recognise that the computation and specification of these bounded optimal
agents can still be very hard, and this is already apparent in this simple TILEWORLD application
domain. The approach to achieving bounded optimality is then also very different from the continuous
and discrete deliberation scheduling methods. Russell et al. (1993) show that, with additional
assumptions, these computation and specification problems can be tackled. Because it is not the main
intention of this paper to show how the methods behave computationally, we do not discuss these
assumptions and alternative methods here; they can be found in Russell et al. (1993).

3.4 The belief-desire-intention model

One popular approach to the design of autonomous agents that emerged in the late 1980s is the belief-
desire-intention (BDI) model (Bratman et al., 1988; Georgeff & Lansky, 1987). The BDI model gets
its name from the fact that it recognises the primacy of beliefs, desires, and intentions in rational
action. Intuitively, an agent’s beliefs correspond to information the agent has about the world. These
beliefs may be incomplete or incorrect. An agent’s desires are states of affairs that the agent would,
in an ideal world, wish to bring about. Finally, an agent’s intentions represent desires that it has
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committed to achieving. The idea is that an agent will not be able to deliberate indefinitely over which
states of affairs to bring about; ultimately, it must fix upon some subset of its desires and commit to
achieving them. These chosen desires are intentions. The BDI methodology enables an agent to
constrain its reasoning by clearly separating the process of choosing which intentions to achieve and
the process of deciding how to achieve an intention.

A major issue in the design of BDI agents is that of when to reconsider intentions (Kinny &
Georgeff, 1991; Wooldridge & Parsons, 1998). An agent therefore needs to reason about its intentions
from time to time, and change its current intentions by dropping them and adopting new ones.
However, intention reconsideration is a computationally costly process, and is a kind of meta-level
reasoning. It is therefore necessary to fix upon an intention reconsideration strategy that makes
optimal use of the available computational resources. Kinny and Georgeff (1991) conducted research
into different intention reconsideration strategies. The results of their experimental study show that
dynamic environments – environments in which the rate of world change is high – favour cautious
intention reconsideration strategies, i.e. strategies which frequently stop to reconsider intentions. The
intuition behind this is that such agents do not waste effort attempting to achieve intentions that are no
longer viable, and are able to exploit new opportunities as they arise. Static environments – in which
the rate of world change is low – tend to favour bold reconsideration strategies, which only
infrequently stop to reconsider intentions. The results of this study are shown in Figures 2(a) – the
result plots for a bold agent – and 2(b) – the result plots for a cautious agent. Parameter p indicates
the cost of planning. The issue of how an agent should commit to its intentions is essentially one of
balancing deliberative reasoning (the process of deciding what to do) and means-ends reasoning (the
process of deciding how to do it).

Intention reconsideration has been modelled on a conceptual level (Wooldridge & Parsons, 1998),
and only recently research has been undertaken to actually implement the intention reconsideration
process (Schut & Wooldridge, 2000). We propose investigation on using the models surveyed in this
paper, to serve as an implementation for intention reconsideration. Thus the BDI model must not be
seen as another time-dependent planning model, but rather as a model in which it is useful to
incorporate time-dependent planning.

3.5 Markov decision processes

We briefly touch upon Markov Decision Processes (MDPs) here, since these processes are widely used
to model general decision problems (Boutilier et al., 1999). The MDP model is another framework in

Figure 2 Experimental results on intention reconsideration strategies. The dynamism of the environment,
representing the action ratio between the agent and the environment, is varied, and the agent’s effectiveness is
measured. The cost of planning is represented by p. In (a) the results are shown for a bold agent – an agent that
executes its complete plan before reconsideration; in (b) the results are shown for a cautious agent – an agent that
reconsiders at every possible moment. Two observations can be made directly: (1) the planning cost influences
the agent’s effectiveness: as planning cost increases, effectiveness decreases; and (2) the cautious agent is much
more affected by an increasing planning cost than the bold agent is
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which the models discussed can be placed to create a more general decision-theoretical planning
structure.

An MDP can be understood as a very general decision-theoretic planning approach to agent design;
it is basically a system that at any point in time can be in one of a number of distinct states and in which
the system’s state changes over time resulting from actions. The main components in the MDP model
are: a state space S, in which all possible world states are contained; a set of actions A, which contains
all actions that can be performed by the agent; a set of observations �, a set of “messages” sent to the
agent after an action is performed; a value function V: S  A→�, which maps state histories into
utilities; and a state transition function �: S  A→�(S). Classic AI planning models can be represented
as an MDP. A policy �: St →A, where St�S denotes the possible states at time t, is a mapping from
states per time point to actions. In an optimal policy, these actions are optimal, such that the value of
the state history generated by that policy is maximal. Assuming that appropriate descriptions of states,
actions and value function are available, dynamic programming gives algorithms that find optimal
policies (Bellman, 1957). The standard dynamic programming algorithms are based on backwards
induction; value iteration and policy iteration are the best-known algorithms for solving MDPs. The
value iteration algorithm is shown in Figure 3. The algorithm computes the policy value function
Q: S  A→�, based on the value of state s and action a, i.e. V(s, a), and the value of the future policy.
The future policy value is the expected value of the successor states s�, reachable by executing action
a, of state s, discounted by a factor 	 (where 0 < 	 < 1). The probability that performing action a in state
s results in state s� is denoted by p(s� | s, a) and this probability can be computed using �(s, a); the value
of a state s is the maximum Q value of all actions in s (computed on line 8 in Figure 3). The Q function
has some maximum, denoted by Q *, and the algorithm stops when it achieves this maximum (or
approximates it sufficiently). A major problem in the MDP model is the complexity that is involved
with computing optimal policies, which is typically intractable. Therefore appropriate forms of
representing the components of an MDP are required and specific knowledge of the application domain
is used to speed up the computations. As such, the time-dependent planning models discussed here can
be used for that purpose. In this section, we discuss how the planning models are related to the MDP
model.

Comparing continuous deliberation scheduling with the MDP model is not immediately evident,
since the former originates in search algorithms and the latter in decision theory. But since the models
both compute optimal policies, or schedules, off-line, i.e. before execution, some cautious comparison
is possible. Whereas the MDP model considers individual actions to reach goals, continuous
deliberation scheduling is concerned with decision procedures to achieve some level of optimisation.
Such a decision procedure can be seen as a complex action with appropriate properties, i.e.
monotonically improving quality over time and diminishing returns, defined by its performance profile.

Figure 3 The value interation algorithm for constructing optimal MDP policies
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Then we can replace the set of MDP actions with a set of decision procedures and base the MDP
utilities on the performance profiles of these procedures. This requires a proper adjustment of the MDP
model in order to achieve an efficient representation of the problem. Assuming utilities for actions can
be accurately derived from performance profiles, dynamic programming algorithms can be used to
compute optimal schedules. However, integration of the two models means that a discrete time scale
is used, whereas the time scale in continuous deliberation is, of course, continuous.

Discrete deliberation scheduling is clearly decision-theoretically founded, and therefore it is not
hard to relate the model to the MDP model. Using the typical notions of states, actions and utilities,
the models are identical up to some level. To our best knowledge, no formal investigation has been
undertaken to represent discrete deliberation scheduling as an MDP. But the intuition behind an
integration of the two models is straightforward: replacing the set of (external) actions in a standard
MDP by the discrete deliberation scheduling action set – a default external action and the set of
computational actions – suffices to create an initial MDP representation of discrete deliberation
scheduling. We then use the concept of utilities as explained in Section 3.2, and a dynamic
programming algorithm to compute optimal policies.

The approach that the MDP model takes towards decision-making is most similar to the bounded
optimality model. The most distinctive difference between the two is that bounded optimality explicitly
adopts a methodology to deal with computational resources, and a basic MDP does not. The abstract
agent in the bounded optimality model can be formalised as an MDP, in which we can identify sets of
percepts, actions and environment states. The optimal abstract agent is then one that optimises the
utility of the state history it generates, which is equivalent to the definition of an optimal policy in an
MDP. But the notion of bounded optimality cannot be directly represented in terms of an MDP,
because this notion prescribes the manipulation of computational resources, and this kind of meta-level
reasoning is not present in an MDP. Whereas the issue of meta-level reasoning has been applied to
MDPs in order to reduce MDP complexity (Boutilier et al., 1999), none of these approaches have
looked into the explicit allocation of the agent’s resources. In MDPs, the construction of optimal
policies happens before policy execution (i.e. off-line). However, in the bounded optimality model a
policy is dynamically constructed while executing a feasible agent program (i.e. on-line). As
mentioned above, the computation and specification of bounded optimal agents is still very hard to
perform for real-world situations. For this matter, the bounded optimality model could take the
example of the MDP model and focus on the representations of states, actions and values, because
these are not explored in the bounded optimality model.

3.6 Resource-bounded control of reasoning

In this section we discuss the similarities and differences between the models, and summarise the
relative advantages and disadvantages of each framework. We denote the continuous deliberation
scheduling procedure by CDS; discrete deliberation scheduling by DDS; and bounded optimality by
BO.

The most obvious similarity between the models is that they are based on some notion of agency
(although this is not mentioned explicitly in the discussion of CDS). If we consider an agent as an
entity situated in an environment that generates actions based on received percepts (Russell & Norvig,
1995), all three models adopt this entity as the decision-maker. This similarity is obvious, because the
models are basically decision-theoretic and, as pointed out in Section 2.1, the process of deciding is
essentially an interaction, in terms of percepts and actions, between a decision-maker and its
environment.

It is obvious as well that all three models are able to control the amount of necessary reasoning
before making a decision. Although it is less obvious, the mechanism that accomplishes this is meta-
reasoning. For CDS and DDS it is clear that they use meta-reasoning to control reasoning; the
meta-reasoning mechanism in BO is effectively the procedure that constructs sequences of decision
procedures. This procedure is similar to the CDS procedure.
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The models agree that the problem we face when designing a situated resource-bounded agent can
conceptually be split into two subproblems: time pressure is a property of the environment and task the
agent is to perform, while resource-boundedness is a property of the agent. The property of time
pressure corresponds with the environment characteristic of dynamism (mentioned in Section 2.2). The
models agree, explicitly or implicitly, on the other environment characteristics: environments are
completely accessible (not for BO – see the next section) and deterministic.

All three models adopt utility theory as a means of evaluating the performance of the agent. This
illustrates the key point in the design of situated resource-bounded agents: the model must enable the
designer to represent the effectiveness of the agent. The models disagree, however, on whether the
utility function is a property of the agent, the environment or neither.

The models all recognise that deadlines are the most important concept resulting from incorporating
time into decisions.4 All three models can deal with uncertain deadlines, i.e. deadlines that are
stochastic rather than fixed. But the way in which the models deal with deadlines is still static: it is only
possible to schedule deliberation if a set of pending events is known. In this way, the behaviour is
completely deliberative and it is not possible for the agent to exhibit “reactive behaviour” (Brooks,
1991).

The decision processes in the models are based on compilation rather than run time. This point is
closely related to the similarity mentioned in the last paragraph – that agents are not able to react to
their environment. Compilation means that all information must be available beforehand and a
consequence of this is that during run time it is not possible to make use of newly available
information. In this way it is difficult to use the models if the agents are in continuous interaction with
their environment. However, continuous interaction with an environment is a generally accepted
characteristic of agents in general (Wooldridge & Jennings, 1995).

Finally, the models approach the decision process at a rather high level. Even though the models are
applied in real-world situations, the formalisation of the environment and agent are kept high-level,
meaning that the focus was on the application rather than the model. A possible explanation for this
might be that the models were developed with the application as their main goal rather than the model
itself.

A key difference between the models is the way in which the utility of actions is discounted over
time. In CDS, actions are formulated as anytime algorithms. A property of an anytime algorithm is that
the quality of its solution improves as time progresses, which means, in a broader context, that the
utility of an action increases as time progresses. In BO, actions are formulated as anytime algorithms
as well, which also means that the utility of an action increases as time progresses. In DDS, however,
it is not specified whether an action’s utility increases or decreases over time, but it is mentioned that
the longer one waits until performing an action, so its utility decreases. But the model does not
guarantee that the utility of the default action always increases over time either.

We now weigh up the relative advantages and disadvantages of each model. The advantages of CDS
are:

• The model contains a well-defined procedure for execution. Assuming that the decision procedures
(anytime algorithms plus their performance profiles) are available, it is straightforward to implement
CDS.

• There has been further work done on metrics of performance measurement. Currently, performance
profiles only indicate the improvement in accuracy of the solution, but Zilberstein (1996) has made
a further categorisation of measuring the performance of an anytime algorithm: certainty (degree of
certainty that the result is correct); accuracy (how close the approximate result is to the exact
answer); and specificity (metric of the level of the result).

• The procedure is shown to be faster than conventional search algorithms, such as A* (Russell &
Norvig, 1995). The CDS procedure has been applied in game-playing programs.

4 In CDS deadlines are not explicitly mentioned, but conditions themselves can be viewed as deadlines.
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The disadvantages of CDS are:

• Because the footing of the procedure is so strongly in search algorithms, the model is only limitedly
applicable to more general decision problems. Since the development of anytime algorithms in the
late 1980s, they have not been used in a more general context.

• The procedure is less suitable for reasoning. It is not clear how to incorporate the procedure in more
sophisticated, intelligent, reasoning systems. The emphasis in further research on CDS seems to have
been on how and when to use anytime algorithms rather than the procedure itself.

• The model puts strong requirements on the properties of the performance profiles of anytime
algorithms. For example, if the slopes of the performance profiles are not decreasing over time, it
cannot be guaranteed that the procedure returns the optimal deliberation schedule.

• The procedure depends very much on the environment. First, much information is needed from the
environment before executing the procedure; second, the procedure is very sensitive to its
environment in the sense that if something minor changes, it is not flexible enough to react to that.

With respect to DDS, the advantages are:

• Although the theory was initially applied to search algorithms, it is moving to a broader application
area. An example of this is the BO model, which is partially based on DDS and is applied to a
broader area of problems.

• The model delivers an expressive language, that could be used for other areas of research. The model
itself does not emphasise the language, but development of it is an interesting issue for further
work.

• Similar to CDS, when applied in game-playing programs, the algorithm is shown to be faster that
conventional search algorithms. The CDS and DDS models have not been compared to each other.

The disadvantages of DDS are:

• The main application area of the model is search algorithms. Although the model is moving to a
broader application area, there is still much further work.

• The model avoids long-term reasoning, because it adopts the single-step assumption. This means that
the model works on the basis of short-term goals.

The advantages of BO are:

• Unlike the other two models, BO does not assume complete accessibility of the environment: the
function fp reduces the available information to a subset of all accessible information in the
environment.

• The model is applicable to a wider range of problems; a good example of this is the mail-sorter
application.

• When a BO problem is modelled, the BO theory delivers an executable model. This brings the BO
model much closer to real-world applications.

The disadvantages of BO are:

• The model has only been applied in episodic environments.
• The basic intuition behind the BO model is that instead of working bottom-up in program design,

one should work top-down, e.g. assume all possible sequences of memory configuration in a
computer and search for the sequence that solves the problem you have. The main problem with this
approach is that one loses control over the program: one ends up with a program that works, but one
does not know how it works. In this way, one surpasses one of the basic aims of AI, i.e. to control
intelligence in order to manipulate it. Of course, this point can be made about decision theory in
general – to know the definition of an optimal agent does not tell us how to implement it. Further
discussion about this point is more philosophical than technical and therefore does not fall within the
scope of this paper, but certainly needs more attention in further work.
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4 Conclusions

In this paper we discussed how agents control their own reasoning, because their resources are
bounded. We began by discussing the foundation of theoretical decision-making: decision theory. We
concluded this introduction by noting that, in practice, humans do not live up to the ideals of decision
theory. This observation is the foundation of bounded rationality. We cannot call this a theory, because
in the literature there is currently no agreement yet on a theory of bounded rationality. Bounded
rationality is a concept concerned with the limitations of an agent described above and specifically with
resource-boundedness. It is closely related to the concept of meta-reasoning. A meta-reasoning agent
is conscious of the decisions it makes, i.e. it can control its own reasoning regarding its own decisions.
Although there is no satisfying theory of bounded rationality, the concept has been applied to planning.
One approach to applying bounded rationality is time-dependent planning, which we discussed in this
paper. This kind of planning enables an agent to make optimal use of its available time. We discussed
three time-dependent planning frameworks: continuous deliberation scheduling, discrete deliberation
scheduling, and bounded optimality. Continuous deliberation scheduling is rooted in search
algorithms. Discrete deliberation scheduling is a more decision-theoretic approach. The difference
between the two approaches becomes clear if one considers discrete deliberation scheduling as a way
of constructing an optimal anytime algorithm. Finally, bounded optimality marries the concepts of
continuous and discrete deliberation scheduling by letting agents select the best action possible, given
their computational resources, in terms of a more general system.

Much further work can be done on this subject. The main emphasis in this work should be on the
development of a general theory on decision-making under bounded resources. This is a high-level and
long-term goal, but a first step towards it could be the development of a conceptual framework for
situated resource-bounded agents.
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