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Chapter 1

Introduction

A large collection of problems in system identification and control theory can
be reformulated as optimization problems. That is, given an objective (or crite-
rion) function, one needs to compute its optimal value (minimum or maximum)
attained on a given domain (the feasibility domain).

In this thesis, we are interested in algorithms for global optimization. It is
well known that, except rather specific classes of problems, global optimization
is still widely open as far as algorithms are concerned. In fact, “in practical
problems, even if the problem which is posed is of a global character, we often
are content with using results and algorithms from local optimization ... for lack
of something else. ” ([33]). The theory of global optimization has developed in
two main directions. On the one hand, attempts were made for designing algo-
rithms which approximate the optimum of a general, arbitrary function. Since
such algorithms use no information on the criterion to be optimized, they are
also called black-box optimization algorithms. This is the case of probabilistic
methods, interval methods, homotopy methods, etcetera. On the other hand,
there are the algorithms ‘specialized’ to particular classes of problems. The spe-
cific properties of the functions in such a class are exploited in order to derive
theoretical results and better computational time.

Consider for example the so-called convex optimization problems. These are
optimization problems where both the feasibility set and the criterion (objec-
tive) function are convex. Convex problems have important theoretical proper-
ties; in particular, any local minimum is a global minimum . This means that
any algorithm that can compute a local minimum for a convex optimization
problem will compute in fact a global minimum. For convex optimization prob-
lems, powerful algorithms exist, which are guaranteed to converge to a global
minimum efficiently. See for example, the interior point methods designed by
Karmarkar (1984) for linear programming and generalized by Nesterov and Ne-
mirovsky (1989) to a variety of convex non-linear optimization problems. In
system and control theory, a particular class of convex non-linear optimization
problems finds a large number of applications (see [7]). These are optimization
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2 Chapter 1 Introduction

problems over the cone of positive semidefinite symmetric matrices, more com-
monly known in system theory as linear matrix inequalities problems.

Problems which do not fall into the convex class are called non-convex optimiza-
tion problems. In general, they are much harder than the convex optimization
problems, both theoretically and practically. As far as we are concerned, there
are two main issues to be considered when comparing algorithms for global op-
timization. Firstly, the algorithm should guarantee finding the global optimum.
There exist a number of special classes of non-convex optimization (see [34])
for which algorithms, guaranteed to compute the global optimum, can be de-
signed. Secondly, we are interested in the computational complexity of such
algorithms. Unfortunately, except the convex optimization problems, there are
very few problems which have efficient algorithms. A vast majority of prob-
lems are shown to be NP-hard, see e.g. [69]. However, for practical purposes,
it is believed that design of problem-tailored algorithms might improve on the
computational complexity, even if the algorithm remains impractical for large
problems.

In this spirit, we have considered here two classes of functions for optimization:
multivariate polynomial and rational functions. We are therefore in the area
of non-convex optimization. As for the computational complexity, optimization
of a multivariate polynomial is known to be an NP-hard problem. And since
polynomial functions are a particular case of a rational function (where the
denominator equals the constant polynomial 1), optimization of a multivariate
rational function is NP-hard as well. That limits from the start our hopes for
having algorithms able to deal with large problems. Nevertheless, it is impor-
tant to have a procedure which computes, in principle, the global optimum. Our
interest is in designing algorithms which guarantee finding the global solution.

Let us now state the problem more precisely for the polynomial case. Let
p ∈ R[x1, x2, ..., xn] be a polynomial of total degree larger than 1. Then we
want to compute

inf
(x1,...,xn)∈Rn

p(x1, . . . , xn).

Regarding the terminology, we use infimum (inf) instead of the more common
minimum (min), or, supremum (sup) instead of maximum (max), simply to
stress that the optimal value may not be attained in Rn but only approached
asymptotically.

The problem of finding the infimum of a polynomial is an old one. In fact,
one related question, namely deciding whether a given multivariate polynomial
is nonnegative everywhere, was studied by David Hilbert more than one hundred
years ago. His investigations and hypothesis led to the development of the field
called real algebraic geometry. Various tools and results form this field, together
with results from the so-called complex algebraic geometry were employed in this
thesis for deriving our guaranteed algorithms. A brief introduction into these
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fields is given in Chapter 2. There we restrict ourselves to notions and results
that will be later used in the thesis.

Chapter 3 starts with a review of two recently developed methods for polyno-
mial optimization, based on convex relaxations of the problem (Sections 3.1.1,
3.1.2). One main contribution of the thesis is an algorithm for global opti-
mization of polynomial functions which can be found in Section 3.2. When the
polynomial has a minimum the algorithm returns the global minimal value and
finds at least one point in every connected component of the set of minimizers.
A characterization of such points is given. When the polynomial does not have
a minimum the algorithm computes its infimum. No assumption is made on the
polynomial. As an extra, the algorithm turns out to be exact. In fact, the algo-
rithm is suited for symbolic computations, that is, suited for instances which are
not fully specified numerically and, therefore, may depend on some parameters.
The advantages of exact, symbolic computations, are not fully developed in the
thesis. A few steps are made in this direction when discussing families of poly-
nomials (Section 3.3) or exact methods for optimization of rational functions
(Section 4.1.2).

In Chapter 4, several algorithms for global optimization of polynomial func-
tions are extended in order to deal with rational functions. The extensions
are based on a known result from real algebraic geometry ([9]), which is in-
dependently proved here. The problem of computing the global optimum of
rational functions is certainly not new. Only [58] contains more than 1000 ref-
erences concerning the so-called fractional programming, presenting, as well,
several applications of such problems in economy, information theory, operation
research, etcetera. Also [49] considers the rational optimization problem in a
manner similar to the one of Section 4.1.3. However, all methods referred above
make an assumption on the sign of the denominator of the rational function,
namely that the denominator is either strictly positive or strictly negative. In
this thesis, using the real algebraic geometry result, we prove that the assump-
tion on the sign of the denominator, although relaxed to non-strict inequalities,
is in fact a necessary condition for the rational function to have a finite opti-
mum. We believe the connection is rather important, since it enables one to
treat the general case, without making any assumptions.

The rest of the thesis discusses several applications of the algorithms devel-
oped in Chapters 3 and 4 to problems of system theory. The objects of study
in system identification are approximate, simplified models of real phenomena.
The process of matching a model to the observed reality bears the name of
system identification. The models one deals with in practice are simplified, for
complexity reasons. For example, one simplifying assumption is that the system
is constant in time, leading to the class of time-invariant systems. Or, one could
describe the dependency of the output of the system on the input of the system
as being linear, leading to the class of linear systems. In this thesis we consider
mainly linear and time-invariant systems.
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Some immediate questions arise in the system identifiability context. The first
main question is how to chose a model? In this situation, one needs to compare
different models, according to a specified criterion, and choose the model that
satisfies best the selected criterion. Typically, the criterion relates to the error
that the model gives, compared to the observed data. In this case, one attempts
to chose a model having minimal error in the chosen class of models. Thus, the
need for optimization results and algorithms becomes clear. The literature on
system identification is quite broad, see for example the textbooks [46], [60] and
it is an active research area. A model, once it is chosen, may be used to derive
information about the behavior of the real system in order to predict or control
the system.

In the thesis we present a few problems for linear time-invariant systems, show
how they translate into optimization of polynomial or rational functions and
analyze how the algorithms of Chapters 3 and 4 perform on them. The fact
that the algorithms are able to find the global optimum is rather important in
these examples.

An important problem in system identification is the approximation problem
which can be formulated in the following way: given a system (or model) find
a less complex model which has approximately the same input-output behav-
ior. Since in this thesis we are concerned with time-invariant, linear systems,
the reduction in complexity refers to reduction of the order of the system, and
this is called the model order reduction problem. Two linear systems of finite
order have ‘close’ input-output behavior if the difference between their transfer
functions, evaluated in some norm (or semi-norm), is small. In Chapter 5 we
consider the model order reduction in H2 norm. This problem was originally
introduced in 1967 in [47] and subsequently analyzed in [2], where several re-
sults, regarding the existence and generic properties of a solution, are deduced.
Since an analytic solution to the problem is not known, other papers, like [61],
[35], [3] to cite just a few, are concerned with designing algorithmic solutions.
These however return, in the best case, local optima. An exact method, which
under certain assumptions computes the global optimum, is presented in [26].
The method is based on computing all critical points of the criterion function,
therefore it is rather expensive. Since the H2 model reduction can be rewrit-
ten as an optimization problem whose criterion is a rational function, we apply
the algorithms of previous chapters for computing a global optimum, hence for
computing the best approximant of a given order. This can be done in an exact
manner, at a certain computational cost.

Chapter 6 is divided into three sections, each treating a different problem. Each
section of the chapter can be read independently from the others. In Section
6.1 we treat the optimal model order reduction for stationary Gaussian systems
with respect to the divergence rate criterion. It is shown that essentially, this
reduces to an optimization of rational functions.
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A completely different problem is treated in Section 6.2. When working with
approximate models of the reality, one needs to take possible errors into consid-
eration. Since the reality is in general too complex to be described by a single
model, one may work with a class of models in which a representation of uncer-
tainty is included. Uncertain models are the subject of the so-called robustness
analysis. There, results on stability or performance are derived for the whole
class of models (robust stability, respectively robust performance). In Section
6.2, we compute the H2-norm (which is a performance criterion) of an uncertain
model with structured uncertainty. In fact, we perform a worst-case analysis by
computing the largest H2-norm of a model in that class. The procedure can be
adapted in order to derive a robust stability test.

Section 6.3 discusses the global identifiability of a given parameterization. This
problem is closely related to a basic question in mathematics, that is, estab-
lishing the injectivity of a multivariate polynomial function. Although for the
latter problem several necessary conditions are known, the famous conjecture
of Jacobi is still open ( for an overview, see [43] and [14], [54]). In applications,
one is interested in the injectivity of an n-variate polynomial function in a given
domain Ω ⊆ Rn. We argue that this question can be answered algorithmically,
as discussed in Section 6.3.

Part of the results of this thesis have appeared as journal papers, conference
papers or research reports. This is the case of Section 3.2 which has appeared
as [25]. The extension to families of polynomials of Section 3.3 is new. Sections
4.1.1 and 4.1.3 formed [37], but the exact method described in 4.1.2, as well as
the methods for constrained rational optimization of Section 4.2 have not been
submitted for publication. In Chapter 5, the Sections 5.3 and 5.5 have appeared
as [39], respectively have been submitted as [53]. In Chapter 6, Sections 6.1 and
6.3 have appeared as [40], respectively [38], but the results of Section 6.2 have
not been submitted for publication.
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Chapter 2

Background material

The thesis is concerned with several problems in system theory like optimal
model reduction, global identifiability, systems with uncertainties. The system
theoretical problems themselves may not have that much in common. However,
in their mathematical formulations one will see the same questions coming up.
These questions relate to polynomial or rational functions, whether that is find-
ing the global optimum of such a function or deciding whether a certain system
of polynomial equations and inequalities has solutions and if so, how many. We
start therefore by presenting in this chapter known results concerning (systems
of) polynomials, which will be later used in the thesis.

2.1 Solving polynomial equations

Let K be a field, in our case K is either R, the field of real numbers, or C,
the field of complex numbers. We work with the field K whenever a certain
definition can be stated or a result is valid in both fields R and C, otherwise
we specify K.

Studying the set of solutions of polynomial equations with n variables and co-
efficients in the field K, as a subset of Kn is, at a very basic level, the object of
algebraic geometry. Let us introduce now a few basic notions and notations.

2.1.1 Ideals and varieties

To begin, we recall some definitions and results regarding the solution set of a
system of polynomial equations. Let us denote by K[x1, . . . , xn] the set of all
polynomials in variables x1, . . . , xn with coefficients in the field K.

Definition 2.1.1 Let us consider the polynomials f1, . . . , fs ∈ K[x1, . . . , xn].
The set of all simultaneous solutions in Kn of a system of polynomial equations

{(x1, . . . , xn) ∈ Kn | f1(x1, . . . , xn) = 0, . . . , fs(x1, . . . , xn) = 0 }
is called the affine variety (or algebraic set) defined by f1, . . . , fs and it is de-
noted by V (f1, . . . , fs).

7



8 Chapter 2 Background material

Definition 2.1.2 The set

I = {p1f1 + . . . + psfs : pi ∈ K[x1, . . . , xn], i = 1, . . . , s}

is called the (polynomial) ideal generated by f1, . . . , fs. The set {f1, . . . , fs} is
called a set of generators (or a basis) of I, with the notation I =< f1, . . . , fs >.

It is easy to see that I =< f1, . . . , fs > is indeed an ideal in K[x1, . . . , xn], that
is, for all g1, g2 ∈ I and q1, q2 ∈ K[x1, . . . , xn] we have q1g1 + q2g2 ∈ I.

In algebraic geometry one exploits the duality existing between the notion of
variety, which is a geometric notion, and that of ideal, which is an algebraic
notion. Given an affine variety V ⊆ Kn, one can define the associated ideal

I(V ) = {f ∈ K[x1, . . . , xn] | f(x) = 0, ∀x ∈ V }.

Conversely, given a polynomial ideal I one can define the associated affine variety

V (I) = {(x1, . . . , xn) ∈ Kn| f(x1, . . . , xn) = 0, ∀f ∈ I}.

Note that if I =< f1, . . . , fs >, then V (I) equals V (f1, . . . , fs). Note that the
set of generators of an ideal is in general not unique.

Proposition 2.1.3 If f1, . . . , fs and g1, . . . , gt are bases of the same ideal in
K[x1, . . . , xn], then V (f1, . . . , fs) = V (g1, . . . , gt).

This proposition shows that one has a certain freedom in describing a certain
variety, i.e. the zeros of a polynomial system, and one may wonder how differ-
ent bases of a given ideal compare and whether some particular basis presents
advantages over another basis of the same ideal. This will be treated in the next
section, but before that let us state a last important result. We have seen so far
that any finite set of polynomials generates a polynomial ideal. The converse is
also true, and it is one of the most important results in algebraic geometry.

Theorem 2.1.4 (Hilbert Basis Theorem) Every ideal I ⊆ K[x1, . . . , xn]
has a finite generating set. That is, there exists an s ∈ N∗ and the polyno-
mials f1, . . . , fs ∈ I such that I = 〈f1, . . . , fs〉.

2.1.2 Gröbner bases

Recall that our main interest here is finding the solution set of a system of poly-
nomial equations, i.e. an affine variety. Hence our emphasis is on computational
algebraic geometry, for which, undoubtedly, the most important tools are the
Gröbner bases. Let us first recall a few definitions. This section is based on
[11], Chapter 2, §2, §5, §7, and Chapter 4, §1.

Definition 2.1.5 A monomial ordering on K[x1, . . . , xn] is any relation > on
Zn

≥0, or equivalently, any relation on the set of monomials xα = xα1

1 . . . xαn
n ,

α ∈ Zn
≥0, satisfying:
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• > is a total ordering on Zn
≥0.

• If α > β and γ ∈ Zn
≥0, then α + γ > β + γ.

• > is a well-ordering in Zn
≥0, that is, every nonempty subset of Zn

≥0 has a
smallest element under >.

We present here two of the most used monomial orderings. Let α, β ∈ Zn
≥0.

• Lexicographic order α >lex β (and also xα >lex xβ) if in the vector
α− β, the left-most nonzero entry is positive.

• Total degree lexicographic α >tdeg β (and also xα >tdeg xβ) if

(

|α| =
n
∑

i=1

αi > |β| =
n
∑

i=1

βi

)

or
(

|α| = |β| and α >lex β
)

.

Example 2.1.6 x3
1x

1
2x3 >lex x8

2x
2
3 but x3

1x
1
2x3 <tdeg x8

2x
2
3.

Definition 2.1.7 Let f =
∑

α aαxα be a nonzero polynomial in K[x1, . . . , xn]
and let > be a monomial order.

• The degree of f is deg(f) = max{α ∈ Zn

≥0
| aα 6= 0}.

• The leading coefficient of f is lc(f) = adeg(f) ∈ K.

• The leading monomial of f is lm(f) = xdeg(f).

• The leading term of f is lt(f) = lc(f) · lm(f).

Remark 2.1.8 Occasionally we also speak about the total degree of a polyno-
mial, that is tdeg(f) = max{|α| = ∑n

i=1 αi | aα 6= 0}.

Definition 2.1.9 A polynomial f ∈ K[x1, . . . , xn] is homogeneous of degree k,
if, for every α ∈ K,

f(αx1, . . . , αxn) = αkf(x1, . . . , xn).

Definition 2.1.10 Fix a monomial ordering and let 〈lt(I)〉 denote the ideal
generated by the leading terms of elements of I. The set

B = {xα | xα /∈ 〈lt(I)〉}

is called the normal set of I.

Note that for an ideal I 6= K[x1, . . . , xn], the normal set B contains the constant
monomial 1, obtained for α = (0, . . . , 0). See also Example 2.1.12.

Definition 2.1.11 Fix a monomial order. A finite subset G = {g1, . . . , gs} of
an ideal I is said to be a Gröbner basis if 〈lt(g1), . . . , lt(gs)〉 = 〈lt(I)〉, where
lt(I) is the set of leading terms of elements of I.
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Example 2.1.12 [12] Let G = {x2
1+

3
2x1x2+

1
2x2

2− 3
2x1− 3

2x2, x1x
2
2−x1, x

3
2−x2}.

It can be shown that G is a Gröbner basis for the ideal I = 〈G〉 generated by
G with respect to the total degree lexicographical order x1 > x2. By examining
the leading monomials of G, we see that 〈lt(I)〉 = 〈x2

1, x1x
2
2, x

3
2〉 and the only

monomials not lying in this ideal are those in B = {1, x1, x2, x1x2, x
2
2}.

Proposition 2.1.13 Fix a monomial order. Then every ideal I ⊆ K[x1, . . . , xn],
I 6= {0} has a Gröbner basis. Furthermore, any Gröbner basis for an ideal I is
a basis for I.

It is well known that if G is a Gröbner basis, then the remainder of the division
of a polynomial f (also called the normal form of f) by G, obtained from the
division algorithm is independent of the order of the elements in G. That is in
general not true for an arbitrary basis of an ideal and this is the main reason
for which Gröbner bases are so important for computational purposes.

Definition 2.1.14 A monic reduced Gröbner basis for a polynomial ideal I is
a Gröbner basis G for I such that:

• lc(p) = 1 for all p ∈ G. (monic)

• For all p ∈ G, no monomial of p lies in 〈lt(G− {p})〉. (reduced)

For monic reduced Gröbner basis the following holds.

Proposition 2.1.15 Let I 6= {0} be a polynomial ideal. Then, for a given
monomial ordering, I has a unique monic reduced Gröbner basis.

Buchberger algorithm and its variants are used for computing monic reduced
Gröbner bases (see [18]). One can always compute in principle a monic reduced
Gröbner basis using the Buchberger algorithm, however it can be extremely de-
manding from a computational point of view.

Next we give an immediate application of Gröbner bases to solving polyno-
mial equations in Cn. On an algebraically closed field, in particular on C, the
following consequence of the Weak Hilbert Nullstellensatz holds.

Theorem 2.1.16 Let I ⊂ C[x1, . . . , xn]. Then V (I) = ∅ if and only if the
monic reduced Gröbner basis of I, with respect to any monomial ordering, is
G = {1}.

Remark that on Rn, which is not algebraically closed, this is not true. For
example I = 〈1 + x2〉 has an empty variety (over R).

2.1.3 Stetter-Möller method

This section is based on [12], [27], [62]. Given a polynomial ideal I one can define
the quotient space K[x1, . . . , xn]/I. This set together with an internal addition
operation and a scalar multiplication operation has a vector space structure.
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The elements of this space are classes of polynomials of the form [f ] = f̂ + I.
If G = {g1, . . . , gn} is a Gröbner basis for I, then for every f ∈ K[x1, . . . , xn]

there exists a unique f̂ ∈ K[x1, . . . , xn] such that f = f1g1 + . . . + fngn + f̂

and no term of f̂ is divisible by any of the leading terms of the elements in G.
f̂ is called the remainder of the division of f by G. Obviously, the remainder
is zero if and only if f ∈ I and polynomials in the same class have the same
remainder. The following theorem (Finiteness Theorem of [12]), characterizing
the finite dimensional quotient spaces, is of importance for us.

Theorem 2.1.17 Let K ⊆ C be a field and I ⊆ K[x1, . . . , xn] be an ideal. The
following conditions are equivalent:

a. The vector space K[x1, . . . , xn]/I is finite dimensional over K.

b. The associated variety V (I) ⊆ Cn is a finite set.

c. If G is a Gröbner basis for I, then for each i, 1 ≤ i ≤ n, there is an
mi ≥ 0 such that xmi

i is the leading monomial of g for some g ∈ G.

The following theorem (Theorem 2.10 of [12]) gives a bound on the cardinality
of V (I).

Theorem 2.1.18 Let I be an ideal in C[x1, . . . , xn] such that C[x1, . . . , xn]/I
is finite dimensional over C. Then the dimension of C[x1, . . . , xn]/I is greater
than or equal to the number of points in V (I).

Next we recall the Stetter-Möller method for solving a system of polynomial
equations or, in other words, for calculating the points of the variety associated
to the generated ideal. Throughout the remainder of this section we take the
field K to be equal to the field of complex numbers C. When the system of
equations has finitely many solutions, that is when C[x1, . . . , xn]/I is a finite
dimensional vector space over C, the method evaluates an arbitrary polynomial
at the points of V (I). In particular, considering f equal to xi, i = 1, . . . , n, the
method gives the i−th coordinate of each point in V (I).

Let f ∈ C[x1, . . . , xn] be an arbitrary polynomial. Define

Af : C[x1, . . . , xn]/I → C[x1, . . . , xn]/I, Af ([g]) = [f ][g] = [fg].

Note that the multiplication is well defined on C[x1, . . . , xn]/I due to the fact
that I is an ideal. As Af is a linear mapping from a finite dimensional space
to itself, there exists a matrix representation of it with respect to a basis of
C[x1, . . . , xn]/I. The normal set of I (see Definition 2.1.10) constitutes a basis
for the linear vector space C[x1, . . . , xn]/I ([12], Chapter 5§3, Proposition 1)
and it will be referred to as the normal basis of C[x1, . . . , xn]/I. Let B denote
the normal set of I and N denote the cardinality of B. In the following we use
the same notation for the linear mapping Af as well as for the matrix associated
to it. The following properties hold for the N ×N matrices Af (see [12]).
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Proposition 2.1.19 Let f, g ∈ C[x1, . . . , xn]. Then:

a. Af = 0 if and only if f ∈ I.

b. Af+g = Af + Ag.

c. Afg = AfAg.

d. Given a polynomial h ∈ C[t] we have Ah(f) = h(Af)

Consider the particular matrices Axi
, i = 1, . . . , n. Using the properties above

it is not difficult to see that (Ax1
, . . . , Axn

) is in fact a matrix element in the va-
riety V (I), that is ∀f ∈ I, f(Ax1

, . . . , Axn
) = 0. Here 0 denotes the zero matrix

and f(Ax1
, . . . , Axn

) is well-defined due to the commutativity of the matrices.

Since matrices Ax1
, . . . , Axn

are pairwise commutative, they have common eigen-
vectors and the n-tuple (ξ1, . . . , ξn) of eigenvalues of Ax1

, . . . , Axn
respectively,

corresponding to the same common eigenvector will be an element of V (I).
Moreover, all the points in V (I) are found as n-tuples of eigenvalues corre-
sponding to the same common eigenvector (see for example, [27]). For a general
polynomial f we have:

Theorem 2.1.20 Let I ⊆ C[x1, . . . , xn] be an ideal with the associated variety
being zero-dimensional, f ∈ C[x1, . . . , xn], and Af the associated matrix. Then
z is an eigenvalue of Af if and only if z is a value of the function f on V (I).

In their papers, [48], [62], Stetter and Möller use instead of Af the so-called mul-
tiplication table which is in fact the transpose of our matrix. By looking at the
eigenvectors of the multiplication table (which in our case become the left eigen-
vectors) Stetter makes the interesting remark that if the eigenspace associated
to a certain eigenvalue of Af is 1-dimensional, then the vector (ξα(1), . . . , ξα(N)),
where ξ is a solution of the system, is an eigenvector. In that case we call an
eigenvector a Stetter vector. Hence, if x1, . . . , xn ∈ B, the solutions of the
system can be retrieved from the (left) eigenvectors of Af .

2.2 Counting solutions in Rn

One is often interested only in the real solutions of a system of polynomial
equations. Moreover, when working on the reals, one might need to know only
the solutions satisfying certain constraints, expressed in general as polynomial
inequalities.

In Sections 2.1.2, 2.1.3 we have seen how Gröbner bases and Stetter-Möller
methods can be used for solving systems of polynomial equations in Cn. For
counting solutions in Rn, one might use the previous methods and simply dis-
card the strictly complex solutions (or the real ones which do not satisfy all the
constraints). However simple, this is not always possible, especially when the
number of solutions in Cn is not finite.
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Particular methods exist for dealing with the Rn case (see [8]). We discuss
here only the well-known algorithm of Sturm (1835), for counting the real roots
of a univariate polynomial, situated in a subinterval of (−∞,∞). By repeated
bisection of the interval one can obtain an approximation, as good as desired,
of every root. Hence the algorithm can also be used for approximating with
arbitrary precision all real roots of a polynomial. Section 2.2.1 reviews this
method for counting/approximating with arbitrary precision the real solutions
of a univariate polynomial. The method can be extended as in [21], Chapter
6, to deal with systems of multivariate polynomials having a finite number of
complex solutions.

In Section 2.2.2 we review some results related to the general case, that is
the case of a system of multivariate polynomials having an infinite number of
(real) solutions.

2.2.1 Sylvester and Sylvester-Habicht sequences

We present here two important tools for counting the number of real roots of
a polynomial. This section is based on Chapter 6 of [21]. We only discuss the
univariate polynomial case.

We start by presenting the algorithm for computing the Sylvester sequence
associated to two univariate polynomials A, B ∈ R[x]. The computation of a
Sylvester sequence is extremely simple, however it has certain short-comings
which are corrected in a variant of it called the Sylvester-Habicht sequence. No-
tice that when B = A′, the Sylvester sequence is also called the Sturm sequence
(or Sturm chain) of A.

Next we show how either sequence can be used for counting real solutions of
polynomial equations, possibly satisfying some extra sign requirements.

Algorithm 2.2.1 The following algorithm computes the Sylvester sequence
{Sj | j = 0, . . . , l} of two polynomials A, B.

1. Input: The polynomials A, B.

2. S0 ← A, S1 ← B, i← 1.

3. While Si 6= 0, compute Si+1 = −Rem(Si−1, Si); i← i + 1.

4. Output: {Sj , j = 0, . . . , l} (where Sl+1 = 0).

Since the only operation of the algorithm is polynomial division (for computing
the remainder Rem at step 3), the algorithm is suited for symbolic computation.
It means that one can compute the Sylvester sequence of two polynomials whose
coefficients may be denoted by symbols. In such a case the Sylvester sequence
may be a sequence of rational functions in the unknown coefficients of A, B (see
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Example 2.7 of [21]). In general one can compute the Sylvester sequence of
A, B for specific values of the coefficients from the generic Sylvester sequence.
However, since this is a sequence of rational functions, it may happen that for
particular values, a denominator of such a rational function vanishes. In such
cases one speaks about specialization problems.

Specialization problems can be avoided by modifying the algorithm such that all
elements in the sequence remain polynomials. In this case we call it a Sylvester-
Habicht sequence. Let us define polynomials

A = adX
d + ad−1X

d−1 + . . . + a0,

B = bqX
q + . . . + b0,

where ad 6= 0. The Sylvester-Habicht sequence associated to polynomials A
and B consists, for 0 ≤ j ≤ d, of polynomials SHj(A, B) of respective degrees
≤ j. The j-th principal Sylvester-Habicht coefficient, which is the coefficient of
degree j of SHj , will be denoted hj .

Algorithm 2.2.2 The following algorithm computes the Sylvester-Habicht se-
quence {SHj | j = 0, . . . , d} of two polynomials A and B, where deg(A) = d.

1. Input: The polynomials A, B.

2. SHd ← A, h̄d = a−1
d , and

SHd−1 ←
{

B , if q = deg(B) < d

Rem(a2e
d B, A) , otherwise, where e = d q−d+1

2 e

j ← d.

3. While j > 1 execute:
Let k = deg(SHj−1). The lacking SHl and h̄l are computed up to SHk−1

respectively h̄k as follows

(i) Computation of SHl for k < l < j−1: If k < j−2, then SHl ← 0.

(ii) Computation of h̄l for k < l < j − 1: Let cj−1 denote the leading
coefficient of SHj−1. If k = j − 1, then go to (iv), else (k < j − 1)
compute h̄l, l decreasing from j − 1 to k by

h̄j−1 ← cj−1

h̄l ← (−1)j−l−1 h̄l+1cj−1

h̄j

(iii) Computation of SHk

SHk ←
h̄kSHj−1

cj−1
, hk ← h̄k.
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(iv) Computation of SHk−1

SHk−1 ← −
1

hj h̄j
Rem(cj−1hkSHj , SHj−1);

j ← k.

4. Output: {SHj , j = 0, . . . , d} .

Let us see how we can use these sequences.

Definition 2.2.3 For two polynomials A, B, let us denote by

c+(A, B) = card({x ∈ R | A(x) = 0, B(x) > 0}),

c−(A, B) = card({x ∈ R | A(x) = 0, B(x) < 0}),

c0(A, B) = card({x ∈ R | A(x) = 0, B(x) = 0}).

Definition 2.2.4 Let VS(A, B, a) (respectively VSH(A, B, a)) denote the num-
ber of sign changes of the Sylvester (respectively Sylvester-Habicht) sequence of
A and B evaluated at a ∈ [−∞,∞], that is the number of sign changes in the
ordered sequence Sj(a), j = 0, . . . , l (respectively SHj(a), j = 0, . . . , d). Denote

VS(A, B) = VS(A, B,−∞)− VS(A, B,∞),

respectively VSH(A, B) = VSH(A, B,−∞)− VSH(A, B,∞).

See also [21], Chapter 6, §7.3. Let SQ(M, N) denote c+(M, N) − c−(M, N).
Then the following holds

Theorem 2.2.5 For M, N polynomials, where ′ denotes the derivative, we
have

VS(M, M ′N) = VSH(M, M ′N) = SQ(M, N)

Proof See [21], Corollaries 2.9 and 2.18 of Chapter 6. 2

According to [21], Proposition 4.1. of Chapter 6 we have:

Theorem 2.2.6 The following holds:





1 1 1
0 1 −1
0 1 1









c0(A, B)
c+(A, B)
c−(A, B)



 =





SQ(A, 1)
SQ(A, B)
SQ(A, B2)



 .

Hence any of the numbers c0(A, B), c+(A, B), c−(A, B) can be computed using
either the Sylvester or the Sylvester-Habicht sequences, as in Theorem 2.2.6.
In conclusion, counting/approximating with arbitrary precision the roots of a
univariate polynomial can be done using either the Sylvester or the Sylvester-
Habicht sequences.
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2.2.2 A few results of real algebraic geometry

In the previous section we discussed an approach for counting the real solutions
of a given univariate polynomial and we have mentioned that there exists an
extension of the method to the case of a system of polynomial equations having
a finite number of solutions on Cn. The question now is how should one proceed
in the general case, that is when the system of polynomial equations does not
necessarily have a finite number of solutions in Cn. Note that, in case there is an
infinite number of solutions in Cn, the number of solutions in Rn may be either
finite or infinite. The main purpose of this section is to present the following re-
sult concerning the set of real solutions of a system of polynomial equations (and
inequalities). Even when there is an infinite number of (real) solutions, there
is still a finite number of connected components which make up the solution set.

The main object of study here are the semi-algebraic sets. That is, the sets
defined by a boolean combination of polynomial equations and inequalities. As
a formal definition we use the following one.

Definition 2.2.7 A semi-algebraic set in Rn is a finite union of sets of the
form:

{x ∈ Rn | f1(x) = . . . = fl(x) = 0, g1(x) > 0, . . . , gm(x) > 0},

where l, m ∈ N∗, f1, . . . , fl, g1, . . . , gm ∈ R[x1, . . . , xn].

Definition 2.2.8 A semi-algebraic set A ⊆ Rn is called semi-algebraically con-
nected if for every two semi-algebraic sets F1 and F2, closed in A (with respect
to the Euclidean topology), such that F1

⋂

F2 = ∅ and F1

⋃

F2 = A, we have
F1 = A or F2 = A.

The following theorem (Theorem 2.4.5 of [6]) is important when studying the
number of elements in a semi-algebraic set.

Theorem 2.2.9 A semi-algebraic set A ⊆ Rn is semi-algebraically connected if
and only if it is connected. Any semi-algebraic set (and in particular any semi-
algebraic subset of Rn) has a finite number of connected components, which are
semi-algebraic.

The problem of counting the number of solutions of a system of polynomial
equations (and inequalities) may be reformulated now as how many connected
components has the solution set and are they zero-dimensional? Moreover, can
one find at least one point in each one of the connected components? Extensive
research has been done in this direction and methods like QE (quantifier elimi-
nation) and CAD (cylindrical algebraic decomposition) have been developed for
it. In Section 3.2 we give an algorithmic solution to this problem as well.

Real algebraic sets enjoy special properties, not valid in general for the complex
varieties. The following is noted in [6], Proposition 2.1.3.
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Proposition 2.2.10 Let V = {x ∈ Rn | f1(x) = . . . = fs(x) = 0} then there
exists an f ∈ R[x1, . . . , xn] such that V = {x ∈ Rn | f(x) = 0}.

Proof Take f =
∑s

i=1 f2
i . 2

Hence, a system of polynomial equations in Rn can always be rewritten as
a single equation. This result is important since it shows that checking the
existence of a solution of a system of polynomial equations in Rn can be treated
as a polynomial optimization problem. More precisely, fi(x) = 0, i = 1, . . . , s
has a solution in Rn if and only if minx∈Rn f = 0, where f =

∑s
i=1 f2

i .

2.3 Hilbert’s 17th problem

This section is based on [6], Chapter 6. Our presentation is specialized to
the real field R of real numbers. Searching for a characterization of non-
negative polynomials, Hilbert investigated whether any nonnegative polyno-
mial f ∈ R[x1, . . . , xn] can be written as a sum of squares of polynomials in
R[x1, . . . , xn]. The question has a negative answer in general. A very famous
example was given by Motzkin (1965). He proved that, for every n ≥ 3, the
polynomial

(x2
1 + . . . + x2

n−1 − nx2
n)x2

1 . . . x2
n−1 + x2n

n

is nonnegative on Rn but cannot be written as a sum of squares of polynomials
(see [55]).

There exist a few particular cases in which a nonnegative polynomial can always
be written as a sum of squares of polynomials. More precisely, for homogeneous
polynomials (see Definition 2.1.9), the following holds.

Theorem 2.3.1 Let Pn,m denote the set of nonzero homogeneous polynomials
in n variables of (total) degree m with coefficients in R, that are nonnegative
in Rn and let Σn,m denote the subset of polynomials of Pn,m which are sums of
squares of polynomials. The following hold:

• If n ≤ 2 or m = 2, then Pn,m = Σn,m.

• P3,4 = Σ3,4.

• If n ≥ 3, m ≥ 4 and (n, m) 6= (3, 4), then Pn,m 6= Σn,m.

The results above can be immediately translated for non-homogeneous polyno-
mials. A (non-homogeneous) nonnegative polynomial can be written as a sum
of squares in the cases n = 1, m = 2 and n = 2, m = 4. It is however possible
to write every polynomial, nonnegative on Rn, as a sum of squares of rational
functions, as it was shown by Emil Artin (1927).

Theorem 2.3.2 Let f ∈ R[x1, . . . , xn]. If f is nonnegative on Rn, then f is a
sum of squares in the field of rational functions R(x1, . . . , xn).
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Artin also characterized polynomials, nonnegative on a restricted semi-algebraic
set in Rn, using sums of squares of rational functions. More precisely let

W = {x ∈ Rn | g1(x) ≥ 0, . . . , gk(x) ≥ 0},

with g1, . . . , gk ∈ R[x1 . . . , xn], then there exist f1, . . . , fr ∈ R[x1 . . . , xn], all
nonnegative on W such that every polynomial f ∈ R[x1 . . . , xn], nonnegative
on W can be represented as f =

∑r
i=1 sifi, with si sums of squares of rational

functions. Explicitly, we can take for fi all products
∏k

j=1 g
εj

j , where εj ∈
{0, 1}, j = 1, . . . , k. This characterization of polynomials which are nonnegative
on a restricted subset of Rn stands at the basis of some known algorithms for
global optimization of polynomial functions with constraints (see [42], [50]). We
also discuss a certain application of these results in Section 4.2.



Chapter 3

Global optimization of polynomial

functions

The chapter deals with methods for global polynomial optimization. The hope
is that, by looking at specific classes of functions and exploiting their particu-
larities, one can design more efficient algorithms for global optimization. The
class of polynomial functions is a good candidate for such an investigation for
at least two reasons. Firstly, they have been studied extensively, as illustrated
in Chapter 2, and their behavior is quite well understood. Secondly, as we shall
argue in the latter chapters, they are quite important in several applications
coming from system theory. Nevertheless, even for this particular class, global
optimization proves to be a rather difficult task. In this chapter, in Section 3.2,
we provide an algebraic, and therefore exact, method for this problem. The
method makes no assumptions on the polynomial to be optimized. We believe
it is the first exact method dealing with polynomial global optimization in this
generality.

The algorithm for solving this problem has a high computational complexity
(increasing exponentially with the number of variables). However, this is to be
expected since, according to [49], ‘it is well-known that some NP-hard combi-
natorial problems can be rewritten as a problem of minimizing a multivariate
polynomial ’. Therefore, minimizing a multivariate polynomial is itself an NP -
hard problem.

We discuss in this chapter several methods for constrained and unconstrained
optimization of polynomial functions. We present the methods of [50] and [42]
based on relaxations of the polynomial optimization problem in Sections 3.1.1,
respectively 3.1.2. The main contributions of this chapter can be found in
Sections 3.2 and 3.3. In Section 3.2 we discuss an original, exact method for un-
constrained optimization. Section 3.3 takes advantage of the algebraic nature of
the method of Section 3.2 and employs it for discussing families of polynomials.

19
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3.1 Numerical algorithms based on LMI relaxations

We start by describing some of the recently developed numerical methods for
minimization of polynomial functions. In these algorithms, the polynomial
structure of the problem is exploited. The algorithm of [50] is designed for
unconstrained optimization and solves in fact an LMI relaxation of the poly-
nomial optimization problem. The algorithm of [42] is designed for polynomial
constraint optimization and constructs, although in a different manner, an LMI
relaxation of the original problem which returns in general a bound on the sought
optimum. If, for some reason, the bound is not satisfactory, it can be improved
as much as desired using a sequence of LMI relaxations. In principle, this gives
a method for computing the optimum of the initial problem. However, the more
steps one takes in this sequence, the more demanding the computations are.

There are several reasons for considering LMI relaxations for polynomial mini-
mization. First of all, LMI problems are convex, therefore any local minimum is
a global minimum as well. This gives, for the polynomial minimization problem,
a guaranteed lower bound. The sharpness of the bound can be checked under
certain conditions. Optimization of polynomial functions by using LMI relax-
ations is currently an active research area. Moreover, efficient polynomial-time
algorithms, as for example interior point algorithms, can be employed for solving
LMI problems. It should be mentioned though that, for relatively low degree
polynomials with a small number of variables, the size of the corresponding LMI
relaxation can be quite large (see the examples in Chapter 5).

3.1.1 The method of Shor-Parrilo

Let us consider the problem of minimizing a multivariate polynomial with real
coefficients

inf
x∈Rn

p(x), p ∈ R[x]. (3.1)

and present the approach described in [50]. There, one actually wants to find
the largest real number α such that the polynomial p(x) − α is nonnegative
everywhere on Rn, i.e. solve

sup α
s.t. p(x)− α ≥ 0, ∀x ∈ Rn.

(3.2)

The two problems are obviously equivalent. Note that when the solution to
(3.1) is −∞, problem (3.2) is infeasible, meaning that its solution is −∞ as well.

For this method, the formulation (3.2) is preferred due to a particular feature
of polynomials which are nonnegative on Rn. Obviously, in order to prove that
a polynomial is nonnegative on Rn it is sufficient to show that the respective
polynomial can be written as a sum of squares of other polynomials. The con-
verse is true in certain particular cases, see Theorem 2.3.1. However in general
the converse does not hold. It is known that any polynomial nonnegative on
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Rn can be written as a sum of squares of rational functions, see Theorem 2.3.2.

From the computational point of view it is still more advantageous to con-
sider writing a polynomial as a sum of squares of polynomials, rather than as
a sum of squares of rational functions. That is because in the first case we
would have an upper bound on the total degree of the polynomials appearing
in the sum, given by the total degree of the original polynomial. However in
the general case, no upper bound is known for the total degree of the rational
functions involved. Moreover, it turns out that if a polynomial can be written
as a sum of squares of polynomials, writing it effectively is equivalent to check-
ing the feasibility of a linear matrix inequality (LMI) problem. This is a linear
semidefinite programming problem and there exist several numerical algorithms
for it (see [66] and the references contained therein). Unfortunately, one does
not know in advance whether a given polynomial can be written as a sum of
squares of polynomials, except for some very special cases (see Section 2.3).

Let us describe in more detail how one can obtain a relaxation of the prob-
lem (3.2), following [50]. Let us consider a polynomial F (x), x ∈ Rn. If the
total degree of F is odd, then its infimum will be −∞. Hence, in this case
the polynomial cannot be nonnegative everywhere. We can therefore restrict
ourselves, without loss of generality, to the case of even degree polynomials. We
follow closely [50] and produce a relaxation of the problem (3.2). Let F have a
total degree 2d. We want to find a matrix Q, positive semi-definite, such that,
for every x ∈ Rn, the following holds

F (x) = zT Qz, zT = [1, x1, x2, . . . , xn, x1x2, . . . , x
d
n]. (3.3)

z contains all monomials in the variables x1, . . . , xn of degree less than or equal
to d. A matrix Q satisfying (3.3) is called a Gram matrix associated to F (see
[55]).

For that, we first compute the set of all symmetric matrices Q, satisfying (3.3).
Note that this is in general a subset of the set of all matrices Q, satisfying (3.3).
Let Q denote an arbitrary symmetric matrix, whose size equals the dimension of
z. We compute the matrix Q by making the computation on the right-hand side
of F (x) = zT Qz, where z depends entirely on x’s, and equalize the coefficients
of the corresponding monomials. Note that Q is computed by solving a linear
system of N1 =

(

n+2d
2d

)

equations (this is the number of monomials of degree
less than or equal to 2d in n variables) with N2(N2 + 1)/2 unknowns, where
N2 =

(

n+d
d

)

(the number of monomials of degree less than or equal to d in n
variables).

To show that there exists at least one such Q, it suffices to remark that any
monomial (of F ) of degree less than or equal to 2d can be written as a product
of two elements of z. By writing this in a matrix form and adding up we obtain
a matrix Z, not necessarily symmetric, which satisfies (3.3). A symmetric ma-
trix Q which satisfies (3.3) is obtained by Q = (Z + ZT )/2. Since a monomial’s
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decomposition into a product of monomials is in general non-unique, Q is not
uniquely determined.

In fact all symmetric matrices Q satisfying (3.3) determine an affine space (see,
e.g. [50]). Let us denote by Q(λ) the generic matrix of the affine space, where
λ ∈ Rκ. More precisely

Q(λ) = Q0 +

κ
∑

i=1

Qiλi. (3.4)

It is known that the matrices Qi, i = 1, . . . , κ are completely determined by
the vector z. Hence, if we consider a different polynomial F̃ in the variables
x1, . . . , xn of degree smaller than or equal to 2d and compute its matrix repre-
sentation Q̃ as before, we obtain that, up to ordering, Q̃i = Qi, i = 1, . . . , κ.
What differs of course, is the free term, i.e. Q̃0 6= Q0.

We have shown so far how Q(λ) can be constructed. The following property
however is very important for our problem. According to [55], F (x) is a sum
of squares of polynomials if and only if there exists a λ∗ such that Q(λ∗) � 0
(that is Q(λ∗) is positive semidefinite). In consequence, if there exists a λ∗ such
that Q(λ∗) � 0, then F (x) ≥ 0, ∀x ∈ Rn. Deciding whether such λ∗ exists
reduces to checking the feasibility of an LMI problem and for that there exist
quite efficient algorithms.

Suppose now that one is interested in actually writing F as a sum of squares
of polynomials after a Q(λ∗) � 0 was computed. Then it is known that there
exists a matrix R such that Q(λ∗) = RT R. Hence F (x) = (Rz)T Rz which is a
sum of squares of polynomials.

To resume, if there exists a λ∗ such that Q(λ∗) � 0, then F (x) ≥ 0, ∀x ∈ Rn.
The converse is not always true. There exist examples of polynomials which are
nonnegative on Rn and for which no matrix Q, constructed as described above,
is positive semi-definite (see Motzkin’s example in Section 2.3). However, a
nonnegative polynomial can always be written as a sum of squares of rational
functions (Theorem 2.3.2). This can be reformulated as follows. There exists a
polynomial G(x) such that G2(x)F (x) is a sum of squares of polynomials. It is
not clear however how to choose the polynomial G(x).

For a good exposition on Hilbert’s 17th problem see [6] and [55]. More remarks
on this method will be made in the examples of Section 4.1.3 and Chapter 5.

Here we are interested in applying this method to the polynomial F (x) =
p(x) − α. We construct as above a generic symmetric matrix Q, which now
depends on α as well. In fact, this matrix, denoted Q(α, λ), is affine in (α, λ)
(see [50]), that is Q(α, λ) = Q0 +

∑κ
i=1 Qjλj + Qκ+1α. Then the problem

sup α
s.t. Q0 +

∑κ
i=1 Qjλj + Qκ+1α � 0

. (3.5)
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constitutes an LMI relaxation of (3.2), i.e. (3.5) returns in general a lower bound
of (3.1). The lower bound is tight if and only if p−α can be expressed as a sum
of squares of polynomials. Note however that any method which can provide
a lower bound on (3.1) would be very interesting. Upper bounds are of course
easy to obtain since every value of the function is an upper bound for its infimum.

In practical situation, one is mostly interested to know whether, for the given
instance, by solving the relaxation one obtains the global infimum or just a
lower bound of it. The following checking procedure, which makes use of the
dual formulation of the LMI problem, is indicated in [50]. Let us recall first the
(primal (P) and dual (D)) problems in semi-definite programming.

(P ) max cT w

s.t. A0 +
∑J

j=1 Ajwj � 0

(D) min trace(A0Y )
s.t. trace(AjY ) = −cj , j = 1, . . . , J

Y � 0.
(3.6)

Here Y and Aj , j = 0, . . . , J are symmetric matrices in RM×M and c, w are
vectors in RJ . It is known that, with this formulation, the value of the primal
is smaller than or equal to the value of the dual (weak duality property). More-
over, under certain conditions, e.g., existence of a strictly feasible solution for
one of the two problems, the value of the primal equals the value of the dual
(strong duality property).

Let us return to the polynomial optimization problem (3.1) and its relaxation
(3.5). By comparing (3.5) with (P ), we have that, in this case, J = κ + 1,
Aj = Qj , j = 0, . . . , J , wT = (λT , α) and cT =

(

0 . . . 0 1
)

. In order to
prove that the relaxation is tight, i.e. that the lower bound equals the global
optimum, it is sufficient to determine a point x∗ such that p(x∗) equals the lower
bound. If such a point exists, then let us denote by z∗ the vector z evaluated
at x∗ using (3.3). It is not difficult to show that the matrix Y ∗ = z∗z∗T is an
optimal solution of (D). Conversely, if Y ∗, the computed solution of (D), has
rank 1, then there exists a vector z∗ such that Y ∗ = z∗z∗T . Hence, from the
solution Y ∗ of (D), one could compute the vector z∗ and further, the point x∗

where the optimum is attained. It is argued in [50] that, under no degeneracies,
the solution Y ∗ of the dual problem is a matrix of rank 1. Then x∗ is found
from z∗ using (3.3). The fact that Y ∗ is solution of (D) of rank 1, implies that
z∗ has the structure given by (3.3). Notice also that practical implementations
of semi-definite programming compute both the optimal vector solution w of
the primal and the optimal matrix solution Y of the dual.

Since in general the polynomial p(x) − α need not be a sum of squares of
polynomials, (3.5) is just a relaxation and not equivalent to the initial poly-
nomial optimization problem (3.1). We do not intend here to discuss further
the method. Both its advantages and disadvantages are well explained by their
authors (see [59], [50]).
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3.1.2 The method of Lasserre

We sketch briefly the method of [42]. The method is based on the strong relation
between the theory of moments, the theory of nonnegative polynomials, and
Hilbert’s 17th problem on the representation of nonnegative polynomials. The
polynomial minimization problem, of finding

inf
x∈Rn

p(x), (respectively min
x∈K

p(x)) (3.7)

where K is a (not necessarily convex) compact set defined by polynomial in-
equalities, has an equivalent moment problem

inf
µ∈P(Rn)

∫

p(x)µ(dx), (respectively min
µ∈P(K)

∫

p(x)µ(dx)) (3.8)

where P(Rn) (respectively P(K)) is the space of probability measures with sup-
port contained in Rn (respectively in K). A proof of the equivalence of these
problems can be found in [42].

Notice now that the problem (3.8) is linear with respect to {
∫

xαdµ}, the mo-
ments of the monomials of p with respect to the probability measure µ. This
linearity is exploited by using semi-definite programming algorithms for solving
efficiently the moment problem (3.8). This direct approach may also fail to
return the global minimum when p(x)−p∗, where p∗ = infx∈Rn p(x), cannot be
written as a sum of squares of polynomials. In general it returns a lower bound.
However the approach can be extended to return an increasing sequence of lower
bounds, convergent to the global minimum of the problem (3.7). Unfortunately,
to do that, one is required to constrain the feasibility domain, modifying in this
way the problem. Moreover, as one advances with computing elements in the se-
quence of lower bounds, the complexity of the computations increases extremely
rapidly. For details on this interesting method, please see [42].

3.2 An exact algebraic method

This section introduces an exact method for solving (3.1). It represents one of
the main theoretical contributions of the thesis. Further developments of this
method will be presented in Section 3.3.

Other exact methods can be found in [22] and [68]. The first paper looks at the
first order conditions. They form a system of polynomial equations that can
be solved for example by using Gröbner basis techniques. However, in the case
of an infinite number of critical points, even when a Gröbner basis is known,
its elements may describe very complicated sets of points. It is not explained
in the paper how one would proceed from there. The second paper mentioned
makes some assumptions on the given polynomial, restricting in this way its
applicability. The algorithms mentioned above work when the given polynomial
has a minimum, without considering an approach for finding the infimum.
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The method that we present in this section makes no assumptions on the polyno-
mial p. Note also that we do not include in this setting any domain constraints.

The remainder of the section is organized as follows. In Section 3.2.1 we propose
a certain perturbation on the given problem which allows us to treat the general
case using the method of Stetter-Möller, and we give some theoretical results.
Sections 3.2.2, 3.2.3, 3.2.4 deal with the actual computations, describing in more
detail the output of the algorithm. In the end, in Sections 3.2.5 and 3.2.6, we
discuss the algorithm in three particular examples and draw the conclusions.

3.2.1 Construction of an auxiliary polynomial

Consider a family of polynomials, depending on the real positive parameter
λ ∈ (0,∞), given by

pλ(x1, x2, ..., xn) = p(x1, x2, ..., xn) + λ(x2m
1 + x2m

2 + . . . + x2m
n ),

where m is a fixed positive integer such that m > tdeg(p)/2 and tdeg(p)
stands for the total degree of p. One can rewrite pλ(x) = p(x) + λ‖x‖2m,
where ‖x‖ denotes the Minkowski 2m norm of x = (x1, x2, ..., xn), namely
‖x‖ = (

∑n
i=1 x2m

i )1/2m.

If λ > 0 is fixed, the problem

min
x∈Rn

pλ(x1, . . . , xn)

has two major advantages over the problem of finding infx∈Rn p(x1, . . . , xn).
Firstly, the minimum of pλ is always attained, hence the global minimum equals
the smallest critical value of pλ. Secondly, the first order conditions, used to
compute the critical points and critical values, form a reduced Gröbner basis
with respect to any total degree ordering (irrespective of the ordering of the
variables). Hence a Gröbner basis is available by construction.

When λ goes to zero, from the family of polynomials pλ we obtain again the
polynomial p. We will study the relation between the minima of the polynomials
pλ and the infimum of p. Actually, we shall prove that infx∈Rn p(x1, x2, ..., xn) =
limλ↓0 minx∈Rn pλ(x1, x2, ..., xn). Therefore, we can concentrate on solving the
new problem minx∈Rn pλ(x1, x2, ..., xn), from which we deduce the answer for
the original one. But let us first discuss in detail the relation between the two
problems.

Let us denote by I the ideal generated by the first order derivatives of pλ.

Proposition 3.2.1 The first order derivatives of the polynomial pλ form a re-
duced Gröbner basis for the ideal I generated by themselves.
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Proof The partial derivatives of pλ are ∂pλ(x)/∂xi = 2mλx2m−1
i +∂p(x)/∂xi,

∀i = 1, . . . , n. With our choice of m, we have 2m > tdeg(p) hence
2m− 1 > tdeg(∂p(x)/∂xi), ∀i = 1, . . . , n. In other words, the leading term of
∂pλ(x)/∂xi is 2mλx2m−1

i and it depends on xi only. According to [11], Ch.
2, § 9, Theorem 3 and Proposition 4, the set {∂pλ(x)/∂xi | i = 1, . . . , n} is a
Gröbner basis of I (with respect to any total degree ordering). It is obvious
that {∂pλ(x)/∂xi | i = 1, . . . , n} is a reduced Gröbner basis. 2

Throughout the rest of the section we use as a Gröbner basis, the set consisting
of the derivatives of pλ with respect to the variables x1, . . . , xn. The associ-
ated normal set B, as defined in Section 2.1.2, contains all monomials

∏n
j=1 x

αj

j

with αj ∈ {0, 1, . . . , 2m − 2}, j = 1, . . . , n. Therefore, the cardinality of B is
N = (2m− 1)n.

In the following we discuss the relation between the infimum of the polyno-
mial p and the minima of the polynomials pλ.

Lemma 3.2.2 For every positive λ, the polynomial pλ has a minimum.

Proof We want to show that for every λ > 0 there exists an rλ such that the
minimum of pλ is reached inside the Minkowski ball B(0, rλ).

Let x ∈ Rn with the Minkowski norm ‖ x‖ = r. Then for every component
of x we have −r ≤ xi ≤ r, i = 1, . . . , n and

pλ(x) = ‖x‖2m(λ + p(x)/‖x‖2m).

But −pabs(r) ≤ p(x) ≤ pabs(r) for all x with ‖x‖ = r implies

r2m(λ− pabs(r)/r
2m) ≤ pλ(x).

Here pabs is the polynomial obtained from p by replacing all its coefficients by
their absolute value and taking all its variables equal. By construction we have
that 2m is strictly larger than the total degree of the polynomial p (and also of
pabs), therefore pabs(r)/r

2m is a rational function in the variable r having the
degree of the numerator strictly smaller than the degree of the denominator.
Hence limr→∞ pabs(r)/r

2m = 0 and so there exists an r1
λ > 0 such that for

every r ≥ r1
λ we have λ > pabs(r)/r

2m. That means that for every x with
‖x‖ = r ≥ r1

λ we have

0 < r2m(λ− pabs(r)/r
2m) ≤ pλ(x). (3.9)

From (3.9) we see that pλ(x) goes to infinity for r →∞, r = ‖x‖. Hence ∃rλ ≥
r1
λ such that ∀r ≥ rλ and x, ‖x‖ = r, we have pλ(x) > pλ(0), where pλ(0) = p(0)

is a fixed number. Hence ∀x, ‖x‖ ≥ rλ we have pλ(x) > pλ(0) which implies that
the minimum value of pλ must be attained inside the Minkowski ball B(0, rλ).
This completes our proof. 2
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Denote by Xλ the set of real points where the minimum of pλ is attained

Xλ = {xλ ∈ Rn | pλ(xλ) = min
x∈Rn

pλ(x)}.

From Lemma 3.2.2 we know that Xλ is nonempty for every λ positive. Also
Xλ is a finite set for every positive value of λ. That can be seen from Theorem
2.1.17, part c, applied to the ideal I, generated by the first order derivatives of
pλ. In the following we will use the notion of limit set as defined below. The
set L given by

L = {x ∈ Rn | ∀ε > 0 ∃ λε s.t. ∀λ, 0 < λ < λε, Xλ ∩B(x, ε) 6= ∅}

is called the limit set of Xλ. For a multi-valued function with branches, by
definition, the limit set will be simply the set of limits on the branches, assuming
they exist.

Theorem 3.2.3 The following statements are true:

(i) limλ↓0 minx∈Rn pλ(x) = infx∈Rn p(x).

(ii) limλ↓0 p(xλ) = infx∈Rn p(x), ∀xλ ∈ Xλ.

(iii) If p has a minimum then L ⊆ {x ∈ Rn | p(x) = minx∈Rn p(x)}.

Proof (i) We consider two cases. First, we treat the case when p has a mini-
mum attained at some point x. Then

p(x) = inf
x∈Rn

p(x) ≤ inf
x∈Rn

(p(x) + λ‖x‖2m) ≤ p(x) + λ‖x‖2m.

The above relation holds for every λ > 0, hence the relation is also valid at the
limit λ ↓ 0:

p(x) ≤ lim
λ↓0

inf
x∈Rn

pλ(x) ≤ p(x)

which proves our statement.
Suppose now that infx∈Rn p(x) = pinf and ∀x ∈ Rn, p(x) > pinf . Here,

pinf may be finite or infinite. Let M be a real number M > pinf , arbitrarily
close to pinf . Although p does not reach pinf , there exists an x 6= 0 such that
p(x) < M ; then there is an ε > 0 such that p(x)+ε < M . Define λε = ε/‖x‖2m,
where ‖x‖ is the Minkowski norm. Then we have that for every λ < λε

min
x∈Rn

[p(x) + λ‖x‖2m] ≤ p(x) + λ‖x‖2m < M.

Since for every positive λ1, λ2 with λ1 < λ2 we have pλ1
(x) ≤ pλ2

(x), ∀x ∈ Rn,
the limit exists and

inf
x∈Rn

p(x) ≤ lim
λ↓0

[ min
x∈Rn

[p(x) + λ‖x‖2m]] ≤M
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As M is arbitrarily close to pinf ,

lim
λ↓0

[ min
x∈Rn

[p(x) + λ‖x‖2m]] = pinf

(ii) It follows immediately from (i) since infx∈Rn p(x) ≤ p(xλ) ≤ pλ(xλ),
∀xλ ∈ Xλ.

(iii) Define S = {x ∈ Rn | p(x) = minx∈Rn p(x)}. By hypothesis, S 6= ∅.
We want to show L ⊆ S. If L = ∅ then the claim is obviously true. Let us
consider the case L 6= ∅. Suppose that ∃x0 ∈ L. From the definition of the limit
set L, we can construct a function which associates to every λ > 0 an xλ ∈ Xλ

such that

∀ε > 0 ∃λε > 0, s.t. ∀λ, 0 < λ < λε xλ ∈ B(x0, ε)

But this says exactly that limλ↓0 xλ = x0. As p is a continuous function
we have that limλ↓0 p(xλ) = p(x0). From part (ii) we have limλ↓0 p(xλ) =
minx∈Rn p(x), hence x0 ∈ S. 2

According to the theorem, one can obtain the infimum of p from the minima
of the family of polynomials pλ and, in case the minimum exists, one can also
obtain a set of points at which the minimum is attained, the limit set denoted
here by L. To complete the discussion, we need to prove that L is a nonempty
set, whenever the minimum of p is attained, and moreover is finite.

Theorem 3.2.4 The set L is finite.

Proof According to Theorem 2.1.18, the number of critical points of pλ is
bounded by N = dim(C[x1, . . . , xn]/I) for every positive λ, where I is the ideal
generated by the first order derivatives of pλ. It follows that the cardinality
of Xλ is also bounded by N for every positive λ, since every point in Xλ is a
critical point of pλ. We will show that L has at most N points. Suppose that L
has more than N distinct points and consider N + 1 of them l1, . . . , lN+1. Let
δ > 0 denote the smallest distance between any two of these points. For every
i = 1, . . . , N +1 construct the pairwise disjoint balls B(li, δ/2). By definition of
L we have that there exists a λδ/2 > 0 such that every B(li, δ/2) has a nonempty
intersection with Xλ, for each λ ∈ (0, λδ/2). But for every λ > 0, Xλ has at
most N elements, hence for each λ ∈ (0, λδ/2), each of the N + 1 disjoint balls
should contain at least one of the N elements, which is impossible. Therefore
L has at most N points. 2

For our purposes, the non-emptiness is the most interesting part. In this way we
have a guarantee that at least one point of global minimum is always obtained
with our procedure, that is, when the minimum is attained.

Theorem 3.2.5 If the polynomial p has a minimum, then L is nonempty.
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The proof of this theorem is given in Section 3.2.2.

So far we have shown that with this method we can find the minimum value
of every polynomial and some of the points in which the minimum is attained.
When the number of points of global minimum is infinite, we do not find all
such points (see Example 3.2.20). One may wonder then which points we do
find and the answer is partially given in the next proposition.

Theorem 3.2.6 If p has a minimum, then the set L contains only points of
minimum of p which have minimal Minkowski norm. In other words,

L ⊆ {x0 ∈ Rn | ‖x0‖ = min
{x | p(x)=pmin}

‖x‖},

where pmin denotes the minimal value of p.

Proof i) Let x0 be a point where the minimum of p is attained, of minimal
Minkowski norm. We prove that

‖xλ‖ ≤ ‖x0‖, ∀λ > 0, ∀ xλ ∈ Xλ. (3.10)

From

pλ(xλ) = p(xλ) + λ‖xλ‖2m, pλ(x0) = p(x0) + λ ‖x0‖2m

and pλ(xλ) ≤ pλ(x0) (by definition of xλ) we have

λ [‖xλ‖2m − ‖x0‖2m] ≤ p(x0)− p(xλ) ≤ 0

(using the definition of x0) and therefore ‖xλ‖ ≤ ‖x0‖, ∀λ > 0.
ii) Since p has a minimum, by Theorem 3.2.5 L is non-empty. As the norm

is a continuous function, using the result of part i) we have

∀x ∈ L , ‖x‖ = ‖ lim
λ↓0

xλ‖ ≤ ‖x0‖

But ∀x ∈ L we have from Theorem 3.2.3, part (iii), and from the fact that x0 is
a point of minimum of p of minimal Minkowski norm that ‖x‖ ≥ ‖x0‖. Hence
‖x‖ = ‖x0‖ which implies x ∈ {x0 | ‖x0‖ = min{x | p(x)=pmin} ‖x‖} for every
x ∈ L, so L ⊆ {x0 | ‖x0‖ = min{x | p(x)=pmin} ‖x‖}. 2

Denote by X the multi-valued function defined on (0, λ1) which associates to
each λ ∈ (0, λ1) the set Xλ. To give more insight into the properties of the
branches of X, we prove their monotonicity. However, this result will not be
used in the remainder of the thesis.

Proposition 3.2.7 The multi-valued function X satisfies:
for any λ1, λ2 with 0 < λ1 < λ2 and any xλ1

∈ Xλ1
, x̃λ2

∈ Xλ2
we have

‖xλ1
‖ ≥ ‖x̃λ2

‖.
In particular, for one branch (x = x̃) the proposition states that the branch is
non-increasing with respect to λ in Minkowski norm.
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Proof Given λ1 < λ2 we have

{

pλ1
(xλ1

) ≤ pλ1
(x̃λ2

)
pλ2

(x̃λ2
) ≤ pλ2

(xλ1
)

or equivalently

{

p(xλ1
) + λ1‖xλ1

‖2m − p(x̃λ2
)− λ1‖x̃λ2

‖2m ≤ 0
p(x̃λ2

) + λ2‖x̃λ2
‖2m − p(xλ1

)− λ2‖xλ1
‖2m ≤ 0

By adding the two inequalities we obtain

(λ1 − λ2)(‖xλ1
‖2m − ‖x̃λ2

‖2m) ≤ 0

which implies ‖xλ1
‖ ≥ ‖x̃λ2

‖. 2

To summarize, we have constructed a family of polynomials pλ, such that the
infimum of our initial polynomial p can be obtained from the minima of the
polynomials in the family, by letting the parameter λ decrease to 0. If the origi-
nal polynomial has a minimum, the method will find at least one point at which
the minimum is attained. We also have the Stetter-Möller method for solving
the system of first order conditions which is by construction a reduced Gröbner
basis. Hence, we need to compute the limits of the eigenvalues of a matrix Apλ

associated to the polynomial pλ for λ going to 0.

In the following section, we propose a method for computing these limits.

3.2.2 Computing the minimum

From the previous section we know that we can find the minimum of the original
polynomial p by computing the limits, when λ goes to 0, of the eigenvalues of
the matrix Apλ

.

Proposition 3.2.8 For each polynomial g ∈ C[x1, . . . , xn], the associated ma-
trix Ag is a polynomial matrix in 1/λ. In particular, for each i = 1, . . . , n, Axi

is polynomial in 1/λ and Apλ
is polynomial in 1/λ.

Proof The proof goes by induction on the number of reduction steps, that is
polynomial reduction modulo the ideal I. Recall that our Gröbner basis has a
particular form in which the leading monomials are pure powers of the variables
and λ appears only in the leading coefficient. Hence we start with constant
entries but, due to the particular form of the Gröbner basis, whenever we make
a reduction step (see for example [12]), we introduce a 1/λ or a power of it in
some entries. Therefore, the entries of the final matrix will be polynomials in
1/λ. 2
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In order to underline the dependency on λ, we denote Ag = Ag(λ), where g is
an arbitrary polynomial. The size of Ag(λ) is given by the dimension of the
basis B which is N = (2m− 1)n.

Recall the interpretation of the eigenvalues in the Stetter-Möller method. The
eigenvalues of Ag(λ) are the values of the polynomial g evaluated at the critical
points of pλ. In particular, when g = pλ, these eigenvalues are the critical values
of pλ. The global minimal value of pλ is among them and it converges to the
infimum of p when λ ↓ 0. The eigenvectors of Apλ

will give the corresponding
points and their limits for λ ↓ 0 will allow us to read off a critical point of p
where the minimum is attained. However if the set of critical points of p is not
finite we are not able in general to find the whole set, but we find a finite subset
of it.

For this reason, we study in the following the limits for λ decreasing to 0 of
the eigenvalues of a matrix Ag(λ). The equation

det(Ag(λ)− zI) = 0 , λ > 0 , z ∈ C

is satisfied if and only if

λk det(Ag(λ)− zI) = 0 , λ > 0 , z ∈ C (3.11)

where k is the highest power of 1/λ appearing in the determinant. The second
equation, polynomial in both z and λ, was studied extensively in the literature.
Its solutions z(λ) which satisfy the equation for every positive λ are known as
algebraic functions (see [5]). An algebraic function is a multi-valued function
having a finite number of branches ζi(λ) , i = 1, . . . N . The values of each
branch around an arbitrary λ0 ≥ 0 are given by a Puiseux expansion in rational
powers of λ − λ0. To be more precise, the following proposition holds ([5],
Theorem 13.1).

Proposition 3.2.9 In a neighborhood V of every finite point λ = λ0 (λ, λ0 ∈
C) all (complex) values of an algebraic function z(λ) are determined by branches
of the form

λ = λ0 + tr , z = z−κt−κ + z−κ+1t
−κ+1 + . . . + z0 + z1t + . . . (3.12)

in which r is a positive integer (r ∈ N∗), the coefficients z−κ, z−κ+1, . . . indicated
are complex, possibly zero (z−κ, . . . ∈ C), and κ is a non-negative integer (κ ∈
N). For a value λ 6= λ0 in V , (3.12) determines r distinct values of z(λ) when
the r values of the root t = (λ− λ0)

1/r are substituted in the series for z.

In [5], λ0 ∈ C, but obviously the proposition above holds for λ0 ∈ R as well.
We are now able to give the proof of a previously stated proposition.
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Proof of Theorem 3.2.5.
In the definition of L, Xλ denotes the set of real points where the minimum

of pλ is attained. To show that L is nonempty we first prove that the coordinates
of Xλ are algebraic functions, and therefore are continuous on branches on an
interval (0, λ̄) for λ̄ sufficiently small. For that, we refer to Stetter-Möller theory.
From Theorem 2.1.20 it follows that the coordinates of the point in Rn where
the minimum of pλ is attained, i.e. the coordinates of Xλ, can be obtained as
the eigenvalues of the matrices Axi

(λ) for i = 1, . . . , n, where Axi
(λ) denotes

the linear mapping associated to the polynomial xi.
From Proposition 3.2.8 we have that the matrices Axi

(λ) are polynomial
matrices in 1/λ. So, the eigenvalues of Axi

(λ) are the solutions of the equation
in z, det(Axi

(λ) − zI) = 0 or equivalently, λki det(Axi
(λ) − zI) = 0 where ki

is the highest power of 1/λ appearing in the determinant. As the equation is
polynomial in z and λ, the solutions Xi(λ) are algebraic functions, for every
i = 1, . . . , n. Let λ0 = 0 in Proposition 3.2.9. Then the algebraic functions
Xi(λ), i = 1, . . . , n, admit in a neighborhood of λ0 = 0 an expansion in which
radicals or (a finite number of) terms with negative exponent may be involved
(see Proposition 3.2.9). This implies in particular that the branches of Xi as
functions of λ are continuous in an open right neighborhood of 0, say (0, λ̄i)
for λ̄i, i = 1, . . . , n sufficiently small. Since Xi(λ) are coordinates of Xλ, then
also Xλ is continuous in an open right neighborhood of 0, namely (0, λ̄), where
λ̄ = min{λ̄i | i = 1, . . . , n}.

Next we argue that, when p has a minimum, there will be a branch of Xλ

which does not contain negative powers of λ in its expansion around 0. As p has
a minimum, there exists a point in which the minimum is attained. We know
that the branches of Xλ are bounded in the Minkowski norm by such a point
(see equation (3.10)). Hence Xλ will have finite limits on the branches when
λ ↓ 0 and all these limits belong to the limit set L which is therefore nonempty.
2

Recall that we want to compute the limits of the branches when λ ↓ 0 so in our
case λ0 = 0 and V is a neighborhood of 0. The expansion of a branch of an
algebraic function may have a finite number of terms containing negative powers
of λ. We say that a branch has an infinite limit when λ ↓ 0 if its expansion
contains negative powers of λ. Otherwise we say that it has finite limit. The
branches that have finite limits will tend, when λ ↓ 0, to z0, the term of the
expansion which does not depend on λ, see equation (3.12).

Let

det(Ag(λ)− zI) = f(λ, z) = 1/λkf0(z) + 1/λk−1f1(z) + . . . + fk(z).

where f0, f1, . . . , fk are polynomials in z. Then equation (3.11) becomes

f0(z) + λf1(z) + . . . + λkfk(z) = 0
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We can easily see from Proposition 3.2.9 that the finite limits for λ ↓ 0, provided
they exist, are solutions of the equation f0(z) = 0. In fact one can show a bit
more.

Proposition 3.2.10 The values of an arbitrary polynomial g evaluated at the
critical points of pλ define a finite number of branches having, when λ ↓ 0, finite
or infinite limits. The set of finite limits on these branches coincides with the
set of solutions of f0(z) = 0. In particular, for g = pλ, the set of finite limits
(on branches) of the critical values of pλ coincides with the set of roots of a
univariate polynomial.

Proof The first part of the theorem was already discussed. For the last part,
consider ζ(λ) a branch having a finite limit. By replacing ζ(λ) by its expansion,
one can easily see that the lambda-free term in the expansion, is a solution of
f0(z) = 0. Hence the number of branches having a finite limit (multiplicities
included) is at most equal to the degree of f0, denoted by d. We will show that
in fact the equality holds, hence the two sets must be equal. For this purpose we
consider next the branches having infinite limits, i.e. their expansion contains
negative powers of λ. Let ζ(λ) be a solution of (3.11), with a certain multiplicity,
whose expansion around 0 contains negative powers of λ. Then ω(λ) = 1/ζ(λ)
is a solution of the equation f(λ, 1/w) = 0, with the same multiplicity, or
equivalently, a solution of

wNf(λ, 1/w) = 0. (3.13)

Note that equation (3.13) was obtained by bringing the terms in f(λ, 1/w) to
the common denominator wN and taking afterwards the numerator equal to 0.
Remark that limλ↓0 ω(λ) = 0 as can be seen for example from the expansion
of ζ(λ). Hence ω(λ) is solution of the polynomial equation (3.13) and, having
limit 0, is a finite solution of the equation. Rewriting the equation (3.13) we
have

wN [f0(1/w) + λf1(1/w) + . . . + λkfk(1/w)] = 0

and we need to compute the number of branches ω(λ) (multiplicities included)
that tend to 0 when λ ↓ 0. But as we have argued before, every 0 limit of
a branch ω(λ) is a root of the λ-free term, wNf0(1/w). But wNf0(1/w) has
exactly N − d zero roots, where d was the degree of f0. Hence the number
of branches ω(λ) (multiplicities included) having the limit 0, which equals the
number of branches ζ(λ) (multiplicities included) having infinite limits, is at
most N − d. To conclude, we have exactly N branches (multiplicities included)
having either finite or infinite limit and we have shown that among them at
most d have finite limits and at most N − d have infinite limits. Hence there
must be exactly d branches having finite limits and exactly N−d having infinite
limits (multiplicities included). 2

So far we have considered the sets Xλ containing all global minimizers of pλ.
However, more information can be obtained by looking at the set of all local
minimizers of pλ, which includes Xλ, as the following results show.
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Proposition 3.2.11 Suppose that p has a minimum and x is an isolated point
of minimum of the polynomial p. There exists a branch of local minima of pλ

convergent to x for λ ↓ 0.

Proof See the proof of Theorem 3.2.13 where a more general result which im-
plies the one stated above is shown. 2

Corollary 3.2.12 If p has a minimum, then for each isolated point of global
minimum of the polynomial p there exists a branch of local minima of pλ con-
verging to it for λ ↓ 0. In particular, if p has a finite number of points of
minimum, then they are all limits of branches of local minima of pλ.

Proof For each isolated point of minimum of p we apply Proposition 3.2.11.
For the second part, remark that if p has a finite number of points of minimum,
then they are all isolated. 2

Theorem 3.2.13 If p has a minimum then the set p−1({minx∈Rn p(x)}) con-
sists of one or more connected components. In each component there exists at
least one point which is the limit of a branch of local minima of pλ when λ ↓ 0.
Moreover, these points have minimal Minkowski norm inside the component.

Proof Note that the number of connected components of p−1({pmin}) is finite
(see Theorem 2.2.9 or [6], Th 2.4.5), where pmin = minx∈Rn p(x). Pick a point,
say x(j), in each component Cj , where

C =
⋃

j∈J

Cj = {x ∈ Rn | p(x) = pmin}.

Let Mj = ‖x(j)‖ and M > maxj∈J Mj .
We want to show that for every j ∈ J , there will be a local minimum of pλ

whose points of minimum are in the Minkowski ball B(0, M) and converge to
an element of Cj . If this holds then, from the local minima of pλ, we obtain at
least one point in each component Cj .

Note that in each component Cj there is a point, namely x(j), such that

pλ(x(j)) < pmin + λM2m ≤ pλ(x), ∀x /∈ B(0, M).

Hence
pλ(x(j)) < pλ(x), ∀x /∈ B(0, M)

and the minima of pλ are in the Minkowski ball B(0, M).

Consider pλ

∣

∣

∣

B(0,M)
. The number of connected components of C

⋂

B(0, M)

is still finite since the set {x ∈ Rn | ‖x‖2m ≤ M2m, p(x) = pmin} is a semi-
algebraic set (Theorem 2.2.9). Denote these connected components by Dl. Since
B(0, M) is a compact set and the sets Dl are closed and disjoint, it follows that



3.2 An exact algebraic method 35

∃ε0 > 0 such that ∀l1 6= l2, d(Dl1 , Dl2) > ε0, where d denotes the Minkowski
distance between sets.

Define the neighborhood of a component Dl as

Nε0/3(Dl) = {x ∈ B(0, M)| d(x, Dl) < ε0/3}.

We want to show that the minimum of pλ

∣

∣

∣

Nε0/3(Dl)
is not attained on the bound-

ary of Nε0/3(Dl) for all λ small enough. Note that any point on the boundary
satisfies either ‖x‖ = M or d(x, Dl) = ε0/3. We already know that the points
on the boundary of B(0, M) are not minima.

Let p̄ = min⋃
l
(∂Nε0/3(Dl)

⋂

B(0,M)) p(x). Then p̄ > pmin. For any l, we have

pλ

∣

∣

∣

∂Nε0/3(Dl)∩B(0,M)
≥ p̄.

On the other hand, for any x ∈ Dl we have pλ(x) = pmin +λ‖x‖2m ≤ pmin +
λM2m < p̄ for λ sufficiently small, namely λ < (p̄− pmin)/M2m. Therefore, if
λ < (p̄− pmin)/M2m then min

x∈Nε0/3(Dl)
pλ(x) is attained in the open set, not

on the boundary.
We have proved that for λ smaller than a certain value, for every component

Dl there exists an open neighborhood of it containing points of local minimum

of pλ

∣

∣

∣

B(0,M)
.

Let xl
λ be a global minimizer of pλ

∣

∣

∣

Nε0/3(Dl)
. Then xl

λ is a local minimizer

of pλ (on Rn). Since xl
λ is local minimizer, it is convergent when λ ↓ 0 as in the

proof of Theorem 3.2.5 to a point, say x∗ ∈ Nε0/3(Dl).
We want to show that x∗ ∈ Dl. We have p(x) ≤ pλ(x) and limλ↓0 pλ(x) =

p(x), ∀x ∈ Rn. Hence p(xl
λ) ≤ pλ(xl

λ) ≤ pλ(x∗). When λ ↓ 0 we obtain
limλ↓0 pλ(xl

λ) = p(x∗).
Take x0 ∈ Dl. We have pλ(xl

λ) ≤ pλ(x0) and at the limit it becomes
p(x∗) ≤ pmin or in fact p(x∗) = pmin. This implies that x∗ ∈ Dl. 2

We have proved here (Theorem 3.2.13) that, if p has a minimum, any algorithm
which is able to compute all the limits of the branches of local minima of pλ,
computes in fact at least one point in each connected component of the set
of minimal values of the polynomial p. Such an algorithm is described in the
following section (Algorithm 3.2.18).

3.2.3 Case: the polynomial p has a minimum

From Theorem 3.2.3 we know that minx∈Rn pλ(x) = pλ(xλ) converges to
minx∈Rn p(x). But pλ(xλ) satisfies the equation (3.11) where g = pλ, so
(pλ(xλ))λ>0 is a branch of the algebraic function associated to the equation
(3.11) for g = pλ. Moreover, we know it has a finite limit. Hence limλ↓0 pλ(xλ)
will be a root of f0. The smallest real root is our candidate for the minimum
of p. Note that we have been working over the field of complex numbers and
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it is possible that the smallest real root is a value of p attained in a complex
point. Hence, before deciding that the smallest real root is the minimum of p,
we need to do a check at the point where the minimum is attained. We will
discuss this issue later, but until then, in order to make the discussion easier,
we will assume that the smallest real eigenvalue is indeed the minimum.

The way to compute minx∈Rn p(x) becomes more clear now. Having constructed
the matrix Apλ

, one can calculate det(Apλ
− zI), polynomial in 1/λ and z, then

isolate the coefficient of the largest power of 1/λ. This is a polynomial in z
whose smallest real root gives us the minimum of p.

We have now a straightforward way to compute the minimum of our polynomial
p. However, the drawback of using the determinant is that, besides the high
computational complexity, it will not tell us anything about the correspond-
ing eigenvectors. As we already remarked, knowing the eigenvectors may be
helpful in finding not only the minimum but also (at least) a point in which
the minimum is attained. Hence we need a more refined method for the actual
calculations.

We describe here a method for computing the finite limits of the eigenvalues,
without actually computing the determinant. It will be clear that with this new
method, we can not only find the corresponding eigenvectors but also we do less
calculations, as we only need one term of the determinant.

The method is a special case of the well-known algorithm of [16] for minimizing
the sum of the row degrees of a polynomial matrix over an equivalence class of
polynomial matrices. With this method we obtain the coefficient of the highest
power of 1/λ in the expression of the determinant det(Ag(λ)− zI) as the deter-
minant of a polynomial matrix in z. After applying linearization techniques to
this polynomial matrix in z (see [20], § 7.2) we reduce the problem to finding the
eigenvalues of a pencil. Since the original matrix is nonsingular over R[z] and
the linearization procedure leaves the determinant unchanged, the generalized
eigenvalue problem obtained is always nonsingular.

Remark that the problem of finding the minimum of a polynomial and some
point where this is attained is reduced to solving a generalized eigenvalue prob-
lem. For this new problem, a large variety of algorithms exists and they can
handle quite large matrices.

Let us describe now in more detail how to find the coefficient of the highest
power of 1/λ in the expression of the determinant det(Ag(λ)− zI). The proce-
dure is quite general and can be applied to an arbitrary polynomial matrix. Let
B(µ) be a polynomial matrix in µ, B(µ) ∈ Rb×b[µ]. The degree of the i-th row,
denoted di, is the highest degree in µ of all its entries. The total row degree
of the matrix is the sum of its row degrees, d =

∑b
i=1 di. The associated high-

order coefficient matrix, denoted HOCM, is constructed by retaining from each
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entry of the i-th row, the coefficient of µdi (see also Example 3.2.16 for further
clarifications). The algorithm for finding the leading term of det(B(µ)), i.e. the
term containing the highest power of µ in the expression of the determinant
det(B(µ)), is based on the following:

Proposition 3.2.14 Let B(µ) be a polynomial matrix in µ and let d denote
its total row degree. The leading term of the polynomial det(B(µ)) in µ is
det(HOCM(B(µ)))µd if and only if HOCM(B(µ)) is nonsingular.

Proof It follows immediately from the well-known formula for computing de-
terminants. 2

If we apply the procedure for µ = 1/λ, we can find the leading coefficient of
det(Ag(λ)− zI), polynomial matrix in 1/λ, for any polynomial g. Note that by
construction of Ag(λ), each column of the matrix corresponds to multiplication
of g by an element in the normal basis. Consequently, the entries of each column,
which are polynomials in 1/λ, have similar degrees in µ. Hence, the total row
degree of (Ag(µ)− zI)T is in general much smaller than the total row degree of
Ag(µ)− zI. Therefore, for computational reasons, we work with (Ag(µ)− zI)T .

Algorithm 3.2.15 The following procedure returns a matrix, polynomial in µ
and rational in z, of minimal total row degree in µ, equivalent to the input
matrix (Ag(µ)− zI)T .

1. Input: B(µ)← (Ag(µ)− zI)T ,∆← 1.

2. Compute di, i = 1, . . . , N and HOCM(B(µ)). If HOCM(B(µ)) is nonsin-
gular, then go to step 7.

3. Else compute a nonzero vector v = (v1, . . . , vN ) in the left kernel of
HOCM(B(µ)). The vector can be chosen polynomial in z.

4. Construct the vector ṽ = (v1µ
d∗−d1 , . . . , vNµd∗−dN ), where

d∗ = max{i=1,...,N | vi 6=0} di.

5. Construct a matrix L(µ, z) from the identity matrix by replacing its
i-th row by ṽ, where i is chosen such that di = d∗.

6. B(µ)← L(µ, z)B(µ), ∆← ∆ · det(L(µ, z)). Go to Step 2.

7. Output: Āg(µ, z)← B(µ), with det((Ag(µ)− zI)T ) = 1
∆ · det(B(µ)) and

HOCM(B(µ)) nonsingular.

As Ag(µ) − zI is nonsingular, i.e. its determinant is non-identically zero, the

degree in µ in the expression det(Ag(µ) − zI) is a positive natural number d̃.
As we run the algorithm, the total row degree of the matrix is decreased by 1,
at least, every time we execute step 6. Hence the algorithm stops after a finite
number of steps, when the total row degree of B(µ) reaches the value d̃.
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Remark that HOCM(B(µ)) is polynomial matrix in z hence a vector as in step
3 always exists. Remark also that the determinant of L(µ, z) from step 5 does
not depend on µ. It may depend on z, therefore we need the corrections ∆.
Matrices like L(µ, z) depending on a parameter µ, whose determinant does not
depend on µ are called z -modular or unimodular over R[z] .

Since at step 6 we multiply with z -modular matrices, our HOCM may become
polynomial, not linear, in z. The nonsingular polynomial matrix in z can be
brought by a linearization procedure (see [20], § 7.2) into an equivalent matrix,
linear in z of a larger dimension. Note however that in the reduction process
while multiplying on the left with z-modular matrices we introduce some new
solutions. Hence we must keep track of the solutions we introduce and subtract
them in the end.

To be more precise, after running the algorithm we have

Āg(µ, z) = L̄(µ, z)(Ag(µ)− zI)T ,

where Āg(µ, z) has a nonsingular HOCM and L̄(µ, z) is z-modular. Here, L̄(µ, z)
denotes the product of all matrices L(µ, z) constructed at step 5 during the
execution of the algorithm. For the determinants, the following holds:

det(Āg(µ, z)) = det(L̄(µ, z)) det(Ag(µ)− zI)

and using Proposition 3.2.14 and the fact that det(L̄(µ, z)), which equals our
final value of ∆ in the algorithm, does not depend on µ it follows that the
leading term in µ of det(Ag(µ)− zI) satisfies

lt(det(Ag(µ)− zI)) = (det(L̄(µ, z)))−1 det(HOCM(Āg(µ, z))).

The roots of det(L̄(µ, z)) are artificially introduced so we must eliminate them.

The algorithm can be applied in general for finding a (left-)equivalent repre-
sentation of a matrix of minimal total row degree . In the following we give a
small example to illustrate how the algorithm works.

Example 3.2.16 Consider a matrix M(µ), polynomial in µ, of non-minimal
total row degree. M(µ) plays the role of Ag(µ), the difference being that M(µ)
is not associated to a polynomial. Let

M(µ) =





µ2 0 µ
1 0 −2
µ3 µ µ2



 .

The matrix B(µ) = (M(µ)− zI)T becomes

B(µ) =





µ2 − z 1 µ3

0 −z µ
µ −2 µ2 − z




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with the row degree vector (3, 1, 2), hence the total row degree 6. However its
HOCM is singular,

HOCM(B(µ)) =





0 0 1
0 0 1
0 0 1



 ,

hence its total row degree is not minimal. Pick up a vector in the left kernel
of HOCM(B(µ)), say v = (−1, 1, 0) and construct ṽ = (−1, µ2, 0). The matrix
L(µ, z) becomes

L(µ, z)←





−1 µ2 0
0 1 0
0 0 1





and by multiplication on the right with B(µ),

B(µ)←





−µ2 + z −1− zµ2 0
0 −z µ
µ −2 µ2 − z



 and ∆← −1.

Since the new matrix has a singular HOCM, we return to step 2 and continue
the reduction procedure. Hence

B(µ)←





−µ2 + z −1− zµ2 0
0 −z µ
µ µz − 2 −z



 and ∆← −1.

Remark that another reduction step is necessary and finally we obtain

B(µ) =





z −2µ− 1 −µz
0 −z µ
µ µz − 2 −z





whose high-order coefficient matrix

HOCM(B(µ))←





0 −2 −z
0 0 1
1 z 0





is nonsingular. Remark that the determinant of B(µ) is −2µ2z2 + z3 + 2zµ −
2µ3 − µ2 and it is equal to ∆ det(M(µ) − zI). In this example, the total row
degree was reduced from 6 to the minimal row degree which is 3.

In general, when ∆ depends on z we introduce false solutions during the reduc-
tion procedure, that is we introduce the roots of det(L̄(µ, z)). An improvement
on the algorithm would be to avoid introducing such solutions or if we do, to
eliminate them in a smarter way. The problem reduces basically to the following
one: Having a polynomial matrix M̃(z) and a polynomial in m̃(z) which divides
its determinant, find a polynomial matrix whose determinant is det M̃(z)/m̃(z).
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Obviously, such a matrix exists as well as an algorithm to compute it. The ques-
tion is whether we can compute such a matrix in an efficient way.

Note that the eigenvectors of the matrix HOCM(Āg(1/λ, z)), polynomial in
z, preserve the property of the Stetter vectors. Namely, when the eigenspace is
1-dimensional, the vector generating it is an eigenvector evaluated at the critical
point. More precisely, let Āg(1/λ, z) denote the output of the Algorithm 3.2.15
for the input matrix (Ag(λ) − zI)T . Let H(z) denote the HOCM(Āg(1/λ, z))
and recall that H(z) is polynomial in z.

Proposition 3.2.17 If ẑ is an eigenvalue of H(z), that is H(ẑ) is singular,
and its corresponding eigenspace is 1-dimensional, then there exists ξ ∈ Rn

such that (ξα(1), . . . , ξα(N))T is a generating eigenvector and g(ξ) = ẑ, where
(xα(1), . . . , xα(N))T is the normal basis vector.

Proof For every λ > 0 let ẑ(λ) be an eigenvalue of Ag(λ). Since the matrix
(Ag(λ)−ẑ(λ)I) is singular, there exists a nonzero vector v(λ) such that (Ag(λ)−
ẑ(λ))T v(λ) = 0. If the eigenspace corresponding to ẑ(λ) is 1-dimensional, then
v(λ) is a Stetter vector. That is, ∃ξ(λ) ∈ Rn such that
v(λ) = (ξ(λ)α(1), . . . , ξ(λ)α(N))T with g(ξ(λ)) = ẑ(λ).

Let ξ(λ) and ẑ(λ) have finite limits for λ ↓ 0 and denote limλ↓0 ξ(λ) = ξ. As
discussed earlier in this section, we know that limλ↓0 ẑ(λ) is an eigenvalue of
H(z) = HOCM(Āg(1/λ, z)).

When running the Algorithm 3.2.15 we multiply the matrix (Ag(λ) − zI)T

only on the left-hand side, hence its right-eigenvectors are preserved. In the end
we obtain,

L̄(1/λ, z)(Ag(λ)− zI)T v(λ) = 0, ∀λ > 0.

By premultiplying with diag(λd1 , . . . , λdN ), where dj is the (minimal) row de-
gree of row j we obtain an N -dimensional equation in λ, valid for every λ > 0
and well-defined in λ = 0. Then the equation must hold also for λ = 0,
but that is exactly HOCM(Āg(1/λ, z)) · limλ↓0 v(λ) = 0, where limλ↓0 v(λ) =
(ξα(1), . . . , ξα(N))T . That insures us that the eigenvector of H(z) =
HOCM(Āg(1/λ, z)) will indeed correspond to an eigenvalue ẑ of H(z).

2

In [12] a method is proposed for choosing the polynomial g such that the left-
eigenspaces of Ag are 1-dimensional, so that one can ‘read’ immediately not
only the values of g on V (I) but also the points where the value is obtained. As
suggested there, g can be an arbitrary linear combination of the variables, i.e.
g = c1x1 + . . . + cnxn where c1, . . . , cn are complex constants. Such choice may
be important if one wants to use the properties of the Stetter vectors.

To resume, the computational procedure we suggest is:

Algorithm 3.2.18 The following procedure can be used for computing the min-
imum of p.
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1. Select a polynomial g and construct the corresponding matrix Ag(λ).

2. Compute the HOCM(Āg(1/λ, z)) by running the Algorithm 3.2.15.

3. Compute those values of z for which HOCM(Āg(1/λ, z)) (polynomial ma-
trix in z) becomes singular. Compute the corresponding eigenvectors.

4. Read off the values of x corresponding to each z computed at step 3 from
the eigenvectors by using the Stetter interpretation.

5. Evaluate the polynomial p at all these critical points and identify the global
minimum as the smallest value.

The choice of the polynomial g at step 1 is left to the user. It may equal p or pλ,
or a linear combination of the variables which (ideally) leads to 1-dimensional
eigenspaces and therefore allows an immediate reading of the critical points.
Note however that for the latter choice of g, the assumption that the polynomial
p has a minimum is essential! In case this is not true, one can find the value of
the finite infimum (if this exists) only in a direct way, by choosing g equal to p
or pλ.

Remark 3.2.19 The global minimum and the point where this is attained can
be computed with arbitrary accuracy, therefore we call the method which employs
Algorithm 3.2.18 an exact method. Note that the global minimum is a root
in z of a univariate polynomial, namely det(HOCM(Āp(1/λ, z))), and can be
computed with arbitrary accuracy using, for example, Sylvester or Sylvester-
Habicht sequences (see Section 2.2.1). Similarly, for every i = 1, . . . , n, the
i−th coordinate of a point where the global minimum is attained is a root in z
of a polynomial, namely det(HOCM(Āxi

(1/λ, z))).

3.2.4 Case: the polynomial p does not have a minimum

In the previous section we have described an algorithm for computing the global
minimum of a polynomial, in case it exists. When the same procedure is applied
for g equal p or pλ, the algorithm actually computes the value of the (finite)
infimum, if that exists. We believe this is one of the very important features of
the algorithm.

At this point we do not have a direct way of deciding whether the infimum
is finite or not. However, the following procedure can in principle be used to
decide this. Compute the candidate for the finite infimum by running the Algo-
rithm 3.2.18 . Let us denote the obtained value by c. Then form the polynomial
(p − c + α)2, α being a positive constant, and run the algorithm again. If c
was indeed the infimum of p, then the new polynomial must have infimum α2.
If there are values of p strictly smaller than c, then due to the continuity of p
there must exist a point x such that p(x) = c − α. Hence the new polynomial
will have the minimum equal to 0.
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Further research will be useful into finding a direct way to decide upon this
matter.

3.2.5 Examples

We consider here rather small examples. There are a few reasons for our choices.
The first one is that the method we have proposed requires a number of calcula-
tions that increases rapidly with the degree of the polynomial and the number
of variables. The second, and more important reason, is that in these cases we
already know the minimum and the set of points where it is attained, therefore
it is possible to analyze the algorithm in these specific examples. We considered
interesting the case of an infinite number of critical points. In the finite case we
know from the theory that the algorithm finds all the points.

Example 3.2.20 Let p(x1, x2) = (x2
1 + x2

2 − 1)2. The minimum is obviously 0
and the set of points where it is attained is the circle of radius 1, centered in
(0, 0). We apply the algorithm by first constructing the family of polynomials

pλ(x1, x2) = (x2
1 + x2

2 − 1)2 + λ(x6
1 + x6

2).

The power in the extra-term was chosen to be an even number strictly larger
than 4, the total degree of p. Next we construct our matrices using the Stetter-
Möller method.

We follow the Algorithm 3.2.18. As g polynomial we choose the following lin-
ear combination of variables g = x1 + 3x2. We construct the associated matrix
Ag(λ), polynomial in 1/λ, of size (6−1)2×(6−1)2 = 25×25. The total row de-
gree of (Ag(λ)−zI)T is 12. However it is not minimal, i.e. the highest power of
1/λ appearing in the determinant of Ag(1/λ, z) = (Ag(λ)−zI)T is actually 6 as
results by running the total row degree reduction algorithm of Forney (Algorithm
3.2.15) on Ag(1/λ, z) which will return the matrix Āg(1/λ, z). At this point we
have also obtained the coefficient of the highest power of 1/λ in the expression
det(Ag(1/λ, z)). This is the determinant of the HOCM of Āg(1/λ, z). Comput-
ing the eigenvalues of HOCM, i.e. the zeroes of the determinant of HOCM, we
obtain (by Maple)

{0, 1,−1, 3,−3, 2
√

2,−2
√

2,
√

2,−
√

2}.

All eigenvalues have multiplicity 1, therefore from the corresponding eigenvectors
we read off the following corresponding points:

{(0, 0), (±1, 0), (0,±1), (±
√

2

2
,±
√

2

2
).

Evaluating the polynomial p at these points, we conclude that the candidate for
the minimum is 0 and it is attained at all points above except (0, 0). To be com-
pletely safe, we should check that p has indeed a minimum. It is easy to check
that p does not have a finite infimum and we do that by rerunning the algorithm
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for g = p. The value returned by the algorithm equals 0, the minimal value we
have found already.

In order to check that the polynomial does not have an infinite infimum, we
need to apply the trick described in Section 3.2.4. Therefore we run again the
algorithm for g = (p + 1)2 and obtain that the minimum of the new polynomial
equals 1. The critical points of the new polynomial coincide with the critical
points of p. If p had an infinite infimum, (p + 1)2 should have had a minimum
at 0. Therefore we conclude that the minimum of p is indeed 0.

Remark that the values (±
√

2/2,±
√

2/2) are points where the minimum of p
is attained, of minimal Minkowski norm. This was predicted in Theorem 3.2.6.
However we obtain some extra points which in this case are points of maxi-
mal Minkowski norm. It is an open question whether we find points of maxi-
mal Minkowski norm in every connected component whenever the component is
bounded.

The running time of Algorithm 3.2.18 depends mainly on the size of the ma-
trices involved and the number of iterations in the Forney reduction procedure
at step 2. Let us now give information about the running time of the algorithm
in this particular example. The computations were done on a SUNW Ultra-
4 Sparc station with 2048 Mb. We give here both the CPU-time, that is the
amount of time the Central Processing Unit is actually executing instructions,
and the approximate total execution time, that is CPU-time plus the time while
the computer fetches data from the keyboard or disk, or sends data to an output
device, etcetera.

The algorithm applied to minimizing p produces matrices of size 25. When
g = x1 + 3x2, the CPU-time is 6.83s while the total execution time is 15s and
the Forney procedure reduces the total row degree from 12 to 6. When g = p,
the CPU-time is 13.97s while the total execution time is 22s and the Forney
procedure reduces the total row degree from 44 to 16. When the algorithm is
applied to minimizing (p + 1)2, it produces matrices of size 81. For g = x1 the
CPU-time is 141.79s while the total execution time is 145s and the Forney pro-
cedure reduces the total row degree from 21 to 9. When g = x2, the CPU-time
is 171s while the total execution time is 184s and the Forney procedure reduces
the total row degree from 21 to 9.

Example 3.2.21 Let us consider now a polynomial having a finite infimum, as
in [68]:

p(x1, x2) = x2
1x

4
2 + x1x

2
2 + x2

1.

We run the algorithm for g = p and obtain the results 0 (with multiplicity 3)
and −1/4 (with multiplicity 12). Obviously, the candidate for the infimum is
−1/4, being the smallest among the two. If −1/4 were a minimum of the poly-
nomial, then we should be able to find out the coordinates of the respective point
by rerunning the algorithm for g = x1 and for g = x2. But by doing so, we



44 Chapter 3 Global optimization of polynomial functions

only obtain the point (0, 0), hence we conclude that −1/4 is not attained. We
should still check whether the infimum is not −∞ as we did in the first example,
however we do not make the computations here.

The algorithm applied to minimizing p produces matrices of size 49. When
g = p, the CPU-time is 37.97s while the total execution time is 50s and the
Forney procedure reduces the total row degree from 72 to 54. When g = x1 the
CPU-time is 13.18s while the total execution time is 23s and the Forney algo-
rithm produces no reduction. When g = x2 the CPU-time is 14.89s while the
total execution time is 25s and the Forney procedure reduces the total row degree
from 11 to 9.

Example 3.2.22 The last example illustrates a technicality related to the method
of Algorithm 3.2.18. At step 1, Algorithm 3.2.18 requires the choice of a poly-
nomial g. Since we are interested in the infimum of a given polynomial p, we
might choose g = p and compute the smallest real eigenvalue z of the matrix
HOCM((Ap(λ)− zI)T ), which is polynomial in z. However we cannot conclude
immediately that this is the infimum of p. It might happen, as we illustrate in
this example, that the the smallest real eigenvalue is attained at a complex value
of x. Therefore it is always necessary to check the so-called admissibility of the
smallest real eigenvalue. Let us consider

p(x1, x2) = (x2
1 + x2

2 + 1)2.

The minimum of p equals 1 and is obtained at (x1, x2) = (0, 0). However, there
exist complex critical points of p, satisfying x2

1 + x2
2 + 1 = 0, for which the cor-

responding critical value is 0. This will also be reflected in the results of the
algorithm, when we run it for g = p. Namely, we obtain the eigenvalues 0,
with multiplicity 8, and 1 with multiplicity 9. However, at this point we cannot
conclude anything. We need to rerun the algorithm for a different choice of g,
say g = x1 + 2x2. This actually produces different eigenvalues, each having
1-dimensional eigenspaces form which we can read off the critical points, as in
step 4 of Algorithm 3.2.18. Since the only admissible (real) value for (x1, x2) is
(0, 0), we conclude that the minimum of p is 1.

The algorithm applied to minimizing p produces matrices of size 25. When
g = p, the CPU-time is 13.11s while the total execution time is 22s and the For-
ney procedure reduces the total row degree from 44 to 16. When g = x1 +2x2 the
CPU-time is 6.65s while the total execution time is 16s and the Forney algorithm
reduces the total row degree from 12 to 6.

We refer to Example 3.2.22 in Section 3.3 where the admissibility issue comes
into play.

3.2.6 Conclusions

The proposed method is guaranteed to find the global minimum of a general
polynomial, whenever the minimum exists. Moreover, if the minimum does not



3.3 Families of polynomials 45

exist, we can decide if the infimum is finite or not, and give its value in the first
case. The method avoids Buchberger algorithm, which is known to be compu-
tationally very demanding.

Another very important feature of the algorithm is that it returns a point in
every connected component of the set of global minimizers. Using the algorithm
we can in fact answer a different problem as well. Given a set of polynomial
equations fi(x1, . . . , xn) = 0, i = 1, . . . s, we can find a point in every connected
component of the solution set, simply by minimizing f =

∑s
i=1 f2

i . Such prob-
lems received much attention (see for example [56] and the references contained
therein).

At last, as we shall argue in the next section, due to the fact that this is an al-
gebraic, therefore exact method, we can treat with it a larger class of problems,
namely optimization of polynomials depending on some parameters.

3.3 Families of polynomials

We argued in the Section 3.2 that using exact algebraic methods it is possible, at
least in principle, to obtain the optimum in (3.1) with any desired accuracy. In
this section, we emphasize another main difference (and advantage) of the exact
methods over the numerical ones. Imagine a situation in which the polynomial
to be optimized is not known exactly, but depends on the parameter (vector)
x ∈ Rn. There are various ways in which one can end up with such a problem.
One application can be found in Chapter 4 where we extend the methods for
optimization of polynomial functions to the class of rational functions.

Let us formulate the problem. Let p ∈ D[y], where D denotes the field of
real, n-variate functions in x and D[y] is the set of polynomials in variable y
with coefficients in D. We are interested in computing

inf
y∈Rm

p(x, y), (3.14)

where x ∈ Rn is considered as a parameter. The infimum in (3.14) depends
obviously on the parameter x. We intend to prove that a slight variation of
Algorithm 3.2.18, namely Algorithm 3.3.1, provides the answer to (3.14) in an
implicit form, namely as a root z of P (z, x), where P is polynomial in z. That
is, of course when the infimum is finite.

Algorithm 3.3.1 The following procedure computes P (z, x), a polynomial in
z, which defines in an implicit form the value of (3.14).

1. Construct the matrix Ap(λ).

2. Compute the HOCM(Āp(1/λ, z)) by running the Algorithm 3.2.15.

3. Compute P (z, x) = det(HOCM(Āp(1/λ, z)))/∆, polynomial in z.
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Since we are interested in the value of the infimum, we have modified the Algo-
rithm 3.2.18 accordingly and have chosen at step 1, as polynomial g(y) = p(x, y).
Let us go through the steps of Algorithm 3.3.1. The matrix Ap(λ) constructed
at step 1 is polynomial in 1/λ. At step 2, we apply the procedure for reducing
the total row degree in 1/λ of Ap(λ)− zI (Algorithm 3.2.15). However, all op-
erations performed there are multiplications and additions, hence the resulting
HOCM matrix will be polynomial in z. Its determinant, as well as P (z, x),
computed at step 3, are also polynomial in z. From Section 3.2 we know that
the infimum of (3.14), if it is finite, is a root of P (z, x) in z. Hence we have
obtained the infimum (in case it is finite) of a family of polynomials in an im-
plicit form, that is as a root of a particular polynomial equation. In fact, the
candidate for the infimum is the smallest real root of P . However, as discussed
in Example 3.2.22, it might happen that the smallest real root is attained at a
complex value, and therefore it is not admissible as a solution. Although it is
not very likely to have real critical values for complex critical points, one should
be aware of this possibility. To conclude,

inf
y∈Rm

p(x, y) =







−∞, x ∈ K ⊆ Rn

z, z is the smallest admissible
real root of P (z, x), x ∈ Rn \ K.

(3.15)

In general we do not have a description of the set K, however for each particular
value of x we can decide, as described in Section 3.2.4, whether x belongs to K
or not.

In the sequel, we restrict ourselves to the case of p ∈ R[x][y] in (3.14), that
is p is a polynomial in both x and y. This implies that Ap(λ) is a polynomial
matrix in both 1/λ and x, HOCM is polynomial in both z and x, and conse-
quently, P (z, x) is polynomial in both x and z.

Let us consider now the relation (3.15). Aside from the technical problems,
related to cases where either the infimum is not finite or if it is finite, the small-
est real root is not admissible, the infimum of a family of polynomial functions is
obtained as the smallest real root of a certain polynomial. In the sequel, we give
an algebraic description of the smallest real root in z of a polynomial P (z, x),
where x ∈ Rn. It turns out that the conditions for a z to be the smallest real
root of P (z, x) describe a semi-algebraic set. The explicit description of such an
algebraic set is obtained using Sylvester-Habicht sequences.

Assumption 1 K = ∅, i.e. ∀x ∈ Rn, infy∈Rm p(x, y) is bounded.

Notice that in general the assumption may be difficult to check. However in
certain applications it is automatically satisfied.

For the rest of this section we consider that Assumption 1 is satisfied. We
do not deal with the admissibility of the real smallest root here. Notice however
that the smallest real root of P (z, x), even if it is not admissible, returns a lower
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bound on (3.15). We do not expect the admissibility problem to show up very
often and therefore, believe that in general (3.16) equals (3.15.)

z, such that z is the smallest real root of P (z, x), (3.16)

where P (z, x) is the polynomial obtained by applying the Algorithm 3.3.1.

Next we give an approach for solving (3.16). More formal, the problem could
be written as

z, such that P (z, x) = 0 and {z ∈ R | z < z, P (z, x) = 0} = ∅ (3.17)

This problem is equivalent to (3.16). Notice that the difficult part of (3.17) is the
empty set condition. However the condition {z ∈ R | z < z, P (z, x) = 0} = ∅
can be read as the number of real roots of the polynomial P (in z), where z−z <
0, is 0. This can be approached using the theory described in Section 2.2.1. Let
us denote by c(x, z) the cardinality of the set {z ∈ R | z < z, P (z, x) = 0}.
Then according to Section 2.2.1, Theorems 2.2.6 and 2.2.5, we have

c(x, z) =
1

2
[V (P, (z − z)2P ′)− V (P, (z − z)P ′)], (3.18)

where V (A, B) = V (A, B,−∞)−V (A, B, +∞) and V (A, B, a) denotes the num-
ber of sign changes in the Sylvester-Habicht sequence. Since Sylvester-Habicht’s
algorithm, for computing the Sylvester-Habicht sequence of (A, B) evaluated at
a, is based on Euclidean division, it can be applied to polynomials with symbolic
(non-numeric) coefficients. What we obtain then is a Sylvester-Habicht sequence
with coefficients depending on z, xi, i = 1, . . . , n, actually rational functions
in these variables. Requiring that c(x, z) = 0 is equivalent to the satisfiability
of certain sign conditions for these coefficients, hence with the feasibility of a
finite union of semi-algebraic sets (i.e. sets described by polynomial equations
and inequalities).

The idea of applying (different variants of) Sturm’s algorithm for rewriting
the condition above is not new. It has been noted already in [67] and the ba-
sic idea is summarized in [67], Note 12: Apart, however, from technicalities
connected with the notion and construction of Sturm chains, the mathematical
content of Sturm’s theorem essentially consists in the following: given any alge-
braic equation in one variable z, and with coefficients a0, a1, . . . , an, there is an
elementary criterion for this equation to have exactly k solutions (which may be
in addition subjected to the condition that they lie in a given interval): such a
criterion is obtained by constructing a certain finite sequence of systems, each
consisting of finitely many equations and inequalities which involve the coeffi-
cients a0, a1, . . . , an of the given equation (and possibly the end points of the
interval); it is shown that the equation has exactly k roots if and only if its coef-
ficients satisfy all the equations and inequalities of at least one of these systems.

In our case the number of solutions must be 0. With the idea above, z of
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problem (3.17) is the unique solution of a semi-algebraic set. We present the
procedure for obtaining this semi-algebraic set on a particular example.

Example 3.3.2 Let us consider the following problem

min
y∈R

(y4 + y2x1 + yx2 + x1). (3.19)

Notice that the Assumption 1 is satisfied. By applying the Algorithm 3.3.1 we
obtain that (a lower bound for) the solution of (3.19) is given by (3.17) with

P (z, x) = z3 +

(

−3x1 +
1

2
x1

2

)

z2 +

(

−x1
3 + 3x1

2 +
1

16
x1

4 +
9

16
x2

2x1

)

z

− 1

16
x1

5 − 9

16
x2

2x1
2 +

1

2
x1

4 − x1
3 +

27

256
x2

4 +
1

64
x2

2x1
3.

We know that the condition {z ∈ R | z < z, P (z, x) = 0} = ∅ can be rewritten as
a finite union of semi-algebraic sets using either Sylvester or Sylvester-Habicht
sequences. Let us explain the procedure on this particular example.

Due to (3.18), we need to construct the Sylvester sequences associated to the
pairs of polynomials (P, (z − z)P ′), respectively (P, (z − z)2P ′). We start with
the pair (P, (z − z)P ′) and obtain the following sequence {r0(z) = P, r1(z) =
(z − z)P ′, r2(z), r3(z), r4(z)} where

r2 =
(

1
2x1

2 − 3x1 + 3z
)

z2 +
(

6x1
2 + zx1

2 − 6zx1 + 9
8x2

2x1 + 1
8x1

4 − 2x1
3
)

z

−3x1
3 + 1

16zx1
4 + 3

2x1
4 + 3

64x2
2x1

3 + 81
256x2

4 + 3zx1
2 + 9

16zx2
2x1

− 27
16x2

2x1
2 − zx1

3 − 3
16x1

5

r3 = − 1

128

(

16x1
7 − 936x1

4x2
2 − 64z2x1

4 − 486zx2
4 + 486x1x2

4 + . . .
)

(−6x1 + x1
2 + 6z)

2

r4 =
1

256

(x2
2
(

−6x1 + x1
2 + 6z

)2 (
8x1

3 + 27x2
2
)3 (

16x1
5 − . . .

)

(16x1
7 − 936x1

4x2
2 − 64z2x1

4 − 486zx2
4 + 486x1x2

4 + . . .)

In order to compute the number of sign changes in the the sequences

{r0(∞), r1(∞), r2(∞), r3(∞), r4(∞)},

respectively
{r0(−∞), r1(−∞), r2(−∞), r3(−∞), r4(−∞)}

we need to consider all possible combinations of signs of ri(∞) respectively
ri(−∞), where ri(∞), ri(−∞) are in general functions of x1, . . . , xn and z.
They are of course determined by the signs of the highest degree coefficients of
each polynomial in the sequence. Now, computing the Sylvester sequence asso-
ciated to the second pair of polynomials (P, (z− z)2P ′) we obtain another set of



3.3 Families of polynomials 49

conditions on the parameters z, xi, i = 1, . . . , n. Requiring that c(x, z) = 0 is
satisfied, where c(x, z) given by (3.18), allows us to select the right conditions
and obtain the desired semi-algebraic set.

Notice however that there is a small technical problem related to the Sylvester
sequence of a polynomial, known as specialization problem. The term refers to
a situation in which we want to specialize the parameters z, xi, i = 1, . . . , n to
numerical values. In the example above, when the high order coefficient of r2,
(

1/2x1
2 − 3x1 + 3z

)

, becomes 0, the value we computed for r3 is not well defined
since 0 appears in the denominator and the computation has to be redone for
this particular case.

Fortunately, there is a way to avoid such technical difficulties by using instead of
Sylvester sequences the so-called Sylvester-Habicht sequences (see Section 2.2.1).

We have made the computations of the Sylvester sequence above in order to
make clear what the problems are. Also Sylvester sequences are better known
and therefore it is easier to explain the theory. However, for practical applica-
tions we use always Sylvester-Habicht sequences.

Let us now compute the Sylvester-Habicht sequences associated to the pairs
(P, (z − z)P ′) and (P, (z − z)2P ′) . They are {SH1

3 , SH1
2 , SH1

1 , SH1
0} respec-

tively {SH2
3 , SH2

2 , SH2
1 , SH2

0} computed as in Section 2.2.1, Algorithm 2.2.2,
or [21], Algorithms 2.11 and 2.13 of Chapter 6. We have SH1

3 = P and

SH1
2 (z) =

(

−1

2
x1

2 + 3x1 − 3z

)

z2 +
(

−6x1
2 − zx1

2 + 2x1
3 + 6zx1 − . . .

)

z

SH1
1 (z) =

(

− 1

32
x1

7 +
117

64
x1

4x2
2 +

1

8
z2x1

4 +
243

256
zx2

4 − 243

256
x1x2

4 − . . .

)

z

SH1
0 (z) = − 1

16777216
x2

2
(

8x1
3 + 27x2

2
)3 (

16x1
5 − 16zx1

4 − 128x1
4 + . . .

)

All elements in the Sylvester-Habicht sequence are polynomials, hence well de-
fined for any values of z, x1, x2. Let us denote for simplicity

SH1
3 (z) = α3,3(z, x1, x2)z

3 + α3,2(z, x1, x2)z
2 + α3,1(z, x1, x2)z + α3,0(z, x1, x2)

SH1
2 (z) = α2,2(z, x1, x2)z

2 + α2,1(z, x1, x2)z + α2,0(z, x1, x2)

SH1
1 (z) = α1,1(z, x1, x2)z + α1,0(z, x1, x2)

SH1
0 (z) = α0,0(z, x1, x2)

Now we need to evaluate the sign sequence of {SH1
i (∞), i = 0, . . . , 3} and of

{SH1
i (−∞), i = 0, . . . , 3}.

Let us look at the first element. Since α3,3(z, x1, x2) = 1 we have that
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sign(SH1
3 )(±∞) is well determined. For the next element, SH1

2 we have

sign(SH1
2 (∞)) =







sign(α2,2) , α2,2 6= 0
sign(α2,1) , α2,2 = 0 and α2,1 6= 0
sign(α2,0) , otherwise

and

sign(SH1
2 (−∞)) =







sign(α2,2) , α2,2 6= 0
−sign(α2,1) , α2,2 = 0 and α2,1 6= 0

sign(α2,0) , otherwise

In the same way we can consider the signs of all the elements in the Sylvester-
Habicht sequence, for −∞ as well as for ∞, and evaluate V (P, (z − z)P ′).
For example, when α2,2 > 0, α1,1 > 0, α0,0 = 0 the sign sequence at +∞ is
{+, +, +, 0} (no sign changes) while at −∞ is {−, +,−, 0} (two sign changes),
so in this case V (P, (z − z)P ′) = 2.

Next we evaluate V (P, (z − z)2P ′). We obtain a sequence of polynomials
{SH2

3 , SH2
2 , SH2

1 , SH2
0}. We notice that SH2

3 = SH1
3 since they are both equal

to P . The expressions for SH2
2 , SH2

1 , SH2
0 are rather complicated and we do

not reproduce them here.

Then we select all cases which satisfy our condition c(x1, x2, z) = 0 (see (3.18)),
i.e. which satisfy V (P, (z − z)P ′) = V (P, (z − z)2P ′). Their union is exactly
defining the semi-algebraic set we were looking for.

The procedure is straight-forward but the symbolic expressions of the coefficients
of SH1

i , SH2
i are complicated, therefore we do not write down these condi-

tions. We remark however that P (z, x) appears as a factor in both SH1
0 (z) and

SH2
0 (z). That implies that the only interesting case for us, due to the condi-

tion P (z, x) = 0, is when the both Sylvester-Habicht sequences end in 0. Since
0 does not affect the number of sign changes we will simply ignore it in the
following. Let us construct now a table containing all possible sign sequences
of {SH1

3 (−∞), SH1
2 (−∞), SH1

1 (−∞)} and {SH1
3 (∞), SH1

2 (∞), SH1
1 (∞)} de-

pending on the signs of their coefficients, and the difference in the number
of sign change corresponding to each such pair of sequences. Note that, for
brevity, the table below corresponds to the situation where α1,1 6= 0. The first
group of 4 columns corresponds to the situation α2,2 6= 0, the second group to
α2,2 = 0 ∧ α2,1 6= 0, the third group to α2,2 = 0 ∧ α2,1 = 0 ∧ α2,0 6= 0 and
the last one, consisting out of 2 columns, to the situation in which SH1

2 (z) ≡ 0.
The sign of SH1

i (±∞) depends on the sign of the highest degree (non-zero) co-
efficient and the parity of the highest degree.
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SH1
3 (−∞) - - - - - - - - - - - - - -

SH1
2 (−∞) + + - - + + - - + + - - 0 0

SH1
1 (−∞) + - + - + - + - + - + - + -

SH1
3 (∞) + + + + + + + + + + + + + +

SH1
2 (∞) + + - - - - + + + + - - 0 0

SH1
1 (∞) - + - + - + - + - + - + - +

V 1 0 2 0 -2 0 0 0 0 0 2 0 -2 0 0

Here V 1 stands for V (P, (z − z)P ′). After considering in a similar way the
sequence {SH2

3 (z), SH2
2 (z), SH2

1 (z)}, one has to consider all cases (that is, all
sets of conditions on the coefficients of SH1

i (z), respectively SH2
j (z)) which lead

to V (P, (z − z)P ′) = V (P, (z − z)2P ′). These conditions will be in the form of
polynomial equalities or inequalities and, considered in the problem (3.17).

The method can be applied in principle to the following problem

max
x∈Rn

σ(A(x)), (3.20)

where σ(A(x)) denotes the smallest singular value of the matrix A(x), whose en-
tries are real rational functions of x ∈ Rn. Clearly, problem (3.20) can be rewrit-
ten in the form (3.17) with P (z, x) being the numerator of det(zI−AT (x)A(x)).
Using the Sylvester-Habicht procedure, problem (3.20) reduces to solving a poly-
nomial optimization problem, more precisely, a constraint optimization prob-
lem with linear criterion function and polynomial equality and inequality con-
straints. The latter problem can be solved for example using numerical methods
of Section 3.1.2.

3.4 Conclusions

We have presented in this chapter both numerical (approximative) methods and
algebraic (exact) methods for optimization of polynomial functions. We will try
to summarize here the main aspects characterizing each type of method.

It is easy of course to note that from the point of view of the computational
complexity, the numerical methods seem to have an advantage over the alge-
braic methods. This is of course not a surprise. However we should remark
here that even the numerical algorithms cannot easily solve the problem, their
complexity increasing exponentially with the degree of the polynomial or the
number of variables.

An important remark is that the numerical methods do not solve the polynomial
optimization problem (3.1) but convex relaxations of it, returning therefore, in
general, not the sought infimum (supremum) but a lower (upper) bound of it.
As we have noted already, this is still interesting enough and these methods may
be the first to give such bounds. Also, the hope is that for a particular problem
at hand, one might be lucky that the bound and the actual optimum coincide.
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Another problem that might occur in the numerical algorithm case is related
to round-off errors. It may be crucial in some cases to decide whether a given
polynomial is nonnegative everywhere or not. We do not enter into details here,
however one can find such an example in the next chapter.

Of course, in the case of the algebraic methods, the actual optimum (and not a
lower/upper bound of it) is found and one can decide with arbitrary accuracy
the value of the optimum.

Besides, we have tried to show in Section 3.3 that the algebraic algorithms
can reach much further than the numerical ones and can be employed for sym-
bolic computations. The section hints to a new area of applications of these
algorithms but it may be, at the moment, still somewhat underdeveloped.



Chapter 4

Global optimization of rational functions

This chapter presents extensions of the algorithms of Chapter 3 to the class of
rational functions. The main contribution here is constituted by the different
reformulations of the problem based on theoretical results from real algebraic
geometry, as well as by the exact and the numerical algorithms proposed for
solving them (see Sections 4.1 and 4.2). We also compare our methods with a
numerical algorithm based on [42] (see Section 4.2.2). The basic ideas of the
methods presented in this chapter are indeed different and that reflects on their
performance in different examples. We intend to illustrate these ideas in a few
cases.

4.1 Unconstrained optimization of rational functions

In this section we will be concerned with the following problem

inf
x∈Rn

p(x)

q(x)
with p(x), q(x) ∈ R[x] relatively prime. (4.1)

It will be considered, using different methods, throughout the entire Section
4.1. Here we rewrite the rational optimization problem as a certain constrained
polynomial optimization problem for which exact or numerical methods can be
subsequently used for solving it.

4.1.1 An equivalent formulation

In this subsection, a necessary condition is given for the function to have a finite
infimum. In case the condition is satisfied, the problem is shown to be equiva-
lent to a specific constrained polynomial optimization problem.

Let us first give a theoretical result. The result can be found in [9], although
stated and proved differently, and constitutes a basic result in real algebraic
geometry. However, we chose to give here a direct proof.

If f ∈ R(x) is a polynomial or rational function and ∃x1, x2 ∈ Rn such that

53
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f(x1) > 0 and f(x2) < 0, we say that f changes sign on Rn. Otherwise we say
that f does not change sign on Rn.

Theorem 4.1.1 Let a(x)/b(x) be a real rational multivariate function, with
a(x), b(x) relatively prime polynomials. If a(x)/b(x) ≥ 0, ∀x ∈ Rn with b(x) 6=
0, then one of the two following statements holds:

• a(x) ≥ 0, b(x) ≥ 0 ∀x ∈ Rn,

• a(x) ≤ 0, b(x) ≤ 0 ∀x ∈ Rn.

Proof Note that the condition a(x)/b(x) ≥ 0, ∀x ∈ Rn with b(x) 6= 0 is
equivalent, by multiplication with b2(x), to a(x)b(x) ≥ 0, ∀x ∈ Rn.

We want to prove that the decomposition of the polynomial a(x)b(x) into
irreducible factors has the following form

a(x)b(x) =

K1
∏

i=1

gi(x)2mi

K2
∏

j=K1+1

gj(x)mj , (4.2)

where gi, i = 1, . . . , K1 are all the factors that change sign on Rn and gj , j =
K1 + 1, . . . , K2 the factors that do not change sign on Rn. In other words, we
want prove that if there exists an irreducible divisor of a(x)b(x) that changes
sign on Rn, it actually has an even power in the decomposition of a(x)b(x). In
this case, using the fact that a, b are relatively prime polynomials, it follows
that all irreducible factors of a (respectively b), either do not change sign or, if
they do, they appear at an even power in the decomposition of a (respectively
b) into irreducible factors. This proves that neither a nor b changes sign on Rn.
Since their product is non-negative, it also implies that in fact they are both
either non-negative or non-positive.

In order to prove (4.2), let us consider g1 ∈ R[x], an irreducible divisor of
g(x) = a(x)b(x) which changes sign. By Theorem 4.5.1 of [6], the ideal generated
by g1, and denoted (g1), is a real ideal.

Let us denote
g(x)

g1(x)
= g̃1(x),

which can be rewritten equivalently

g(x) = g̃1(x)g1(x) ≥ 0 ∀x ∈ Rn.

A nonnegative polynomial can be written as a sum of squares of rational func-
tions (Theorem 2.3.2 or [6], Theorem 6.1.1). Formally, there exist polynomials
r(x), si(x), i = 1, . . . , m such that

r2(x)g̃1(x)g1(x) =
m
∑

i=1

s2
i (x) ∀x ∈ Rn. (4.3)

Take r minimal with respect to the division, having the property that
r2(x)g̃1(x)g1(x) can be written as a sum of squares of polynomials.
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The left hand side obviously belongs to the real ideal (g1). By the definition
of a real ideal ([6], Definition 4.1.3), the relation (4.3) implies that si ∈ (g1), i =
1, . . . , n. Hence there exist polynomials ti(x) such that si(x) = ti(x)g1(x).

By replacing si’s in (4.3) and dividing both sides of the equality by g1 we
get

r2(x)g̃1(x) = g1(x)

m
∑

i=1

t2i (x) ∀x ∈ Rn. (4.4)

Therefore g1 must divide r2(x)g̃1(x) and since g1 is irreducible, g1 divides g̃1 or
g1 divides r.

Suppose first that g1 divides r. Then there exists a polynomial r1(x) satisfy-
ing r(x) = g1(x)r1(x). By replacing r into (4.4) and dividing both sides of the
equality by g1(x) we obtain

r2
1(x)g̃1(x)g1(x) =

m
∑

i=n

t2i (x), ∀x ∈ Rn.

However, by comparing with (4.3) we obtain a contradiction with the minimality
of r. Hence it must be that g1 divides g̃1 which implies g2

1 divides g.
If the polynomial g/g2

1 also has irreducible divisors which change sign, the
same procedure can be applied to the g/g2

1 . In this way, one can show that
any irreducible factor of g(x) = a(x)b(x) which changes sign must have an even
power in the decomposition of g(x). 2

The theorem above states that when a rational function a(x)/b(x), with a, b
relatively prime, does not change sign on its entire domain of definition, then
neither the denominator nor the numerator changes sign on Rn. This is quite
a strong result.

Remark 4.1.2 The hypothesis a, b are relatively prime polynomials can be
checked by computing the greatest common divisor GCD(a, b), using for example
the algorithms of [13] or [12]. If GCD(a, b) 6= 1, then one can divide both a and
b by GCD(a, b). The equivalent representation of the rational function obtained
in this way satisfies the hypothesis of Theorem 4.1.1.

In the following we use Theorem 4.1.1 in order to obtain some criteria for our
problem. An immediate consequence of Theorem 4.1.1 is formulated below:

Theorem 4.1.3 Let p(x)/q(x) be a rational function with p(x), q(x) relatively
prime polynomials. If q(x) changes sign on Rn then infx∈Rn p(x)/q(x) = −∞.

Proof We prove this result by reductio ad absurdum, that is, we assume that
there exists a finite lower bound on the function p(x)/q(x). Let α ∈ R be such
that p(x)/q(x) ≥ α ∀x ∈ Rn with q(x) 6= 0. Then (p(x)−αq(x))/q(x) satisfies
the hypothesis of Theorem 4.1.1 hence both p(x)−αq(x) and q(x) do not change
sign on Rn. That contradicts the hypothesis that q changes sign. 2
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Note that the converse is not true, i.e. infx∈Rn p(x)/q(x) may be −∞ even if q
does not change sign on Rn. An obvious example is infx∈R−1/x2.

In case q does not change sign on Rn, we can reformulate the problem (4.1) in
the following way. Assume, without loss of generality, that q(x) ≥ 0, ∀x ∈ Rn.
Then using the proof of Theorem 4.1.3, problem (4.1) is equivalent to

sup α
s.t. p(x)− αq(x) ≥ 0, ∀x ∈ Rn.

(4.5)

Obviously the largest α satisfying the condition is the infimum of p(x)/q(x).

Note that the feasibility domain of (4.5) may be the empty set. That is, there
is no α ∈ R satisfying the polynomial inequality for every x ∈ Rn. In this case
the supremum will be −∞.

The fact that q does not change sign on Rn can be checked in the following
way:

1. Evaluate q at an arbitrary point and suppose that it is positive (otherwise
work with the fraction −p/(−q));

2. Then q is non-negative on Rn if and only if infx∈Rn q(x) ≥ 0. Hence we
only need to compute the infimum of a polynomial on Rn and this can be
done using for example the algorithms described in Chapter 3.

Note the importance of the condition infx∈Rn q(x) ≥ 0 at step 2. If the infimum
is just slightly smaller than 0, the conclusion may be a completely different one.
Therefore, one might have to use exact methods, as in Section 3.2, for comput-
ing the value infx∈Rn q(x).

To conclude, in this section we have rewritten the rational optimization problem
as a constrained polynomial optimization problem. Several options are possible
now. We intend to discuss here an exact method as well as a numerical method.
Throughout the rest of the Section 4.1, we consider the case q(x) ≥ 0, ∀x ∈ Rn.

4.1.2 An exact solution

We deal here with equation (4.5) which is a particular constrained polynomial
optimization problem. We claim that we can solve this in an exact way using a
variant of Algorithm 3.2.18 of Section 3.2.

The problem (4.5) is nothing else than finding the largest α for which the fol-
lowing holds:

inf
x∈Rn

[p(x)− αq(x)] ≥ 0. (4.6)

Let us look at (4.6) which is a polynomial optimization problem over x ∈ Rn of
a family of polynomials, family parameterized by α. However, as discussed in
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Section 3.3, an exact algorithm for polynomial optimization, can handle param-
eters in the expression of the polynomial to be optimized. The optimum would
obviously depend on the parameter, in this case α, either implicitly or explicitly.
The fact that one can optimize over a class using an exact algorithm constitutes
actually a major difference (and advantage) of the exact algebraic algorithm
compared to numerical algorithms. We are going to exploit this feature in our
approach.

In Section 3.3 we have discussed the optimization of an arbitrary family of
polynomials under the Assumption 1. However the problem at hand (4.6) is a
particular case in which the family of polynomials depends linearly on a single
parameter. We want to exploit this particularity here and give a general theory
for this case, without considering the Assumption 1 satisfied.

Let us first study more closely the infima of the family of polynomials. For
that, we define

M(α) = inf
x∈Rn

[p(x)− αq(x)] .

Proposition 4.1.4 The function M : R→ R∪{−∞} is non-increasing on R.

Proof Let α1, α2 ∈ R, with α1 < α2. Using the fact that q(x) ≥ 0, ∀x ∈ Rn,
it follows immediately that p(x) − α1q(x) ≥ p(x) − α2q(x), ∀x ∈ Rn. Hence
M(α1) ≥M(α2). 2

One can prove immediately the following.

Corollary 4.1.5 The following hold:

• If ∃α0 ∈ R such that M(α0) > −∞, then M(α) > −∞, ∀α < α0.

• If ∃α1 ∈ R such that M(α1) = −∞, then M(α) = −∞, ∀α > α1.

Proposition 4.1.6 The function M : R→ R∪{−∞} is piecewise continuous.

Proof According to Section 3.3, if M(α) is finite, then M(α) is the smallest
(admissible) real root in z of P (z, α), polynomial in both z and α (P (z, α) was
obtained by running the Algorithm 3.2.18). The roots z of P (z, α) describe
actually an algebraic function and therefore the smallest admissible real root,
M(α), will be piecewise continuous. 2

Problem (4.5) can be reformulated as

sup α
s.t. M(α) ≥ 0.

(4.7)

Various methods, like bisection, can be applied now to problem (4.5), using the
fact that M(α) is piecewise continuous and decreasing. Note that the bisection
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method is an exact method in the sense that it returns, at a certain computa-
tional cost, an arbitrarily precise approximation of the solution.

We would like however, for computational purposes, to use the polynomial
P (z, α), which is known, instead of M(α), which is only implicitly given. We
notice that the problem simplifies in the case when the infimum of (4.1) is
attained.

Proposition 4.1.7 If infx∈Rn p(x)/q(x) is attained, then the problem (4.5) is
equivalent to

sup α
s.t. M(α) = 0.

(4.8)

In general however, ( 4.8) is a lower bound of ( 4.7).

Proof The value of (4.7) is always larger than or equal to the value of (4.8)
since its constraint is less restrictive. Now we prove that if our hypothesis is
satisfied, they are actually equal. Let α∗ ∈ R denote the value of (4.7) and let
x∗ ∈ Rn such that α∗ = p(x∗)/q(x∗) = infx∈Rn p(x)/q(x). This implies that

p(x)− α∗q(x) ≥ 0, ∀x ∈ Rn and p(x∗)− α∗q(x∗) = 0.

In other words,
M(α∗) = inf

x∈Rn
[ p(x)− α∗q(x) ] = 0

and therefore the value of (4.7) is smaller than or equal to the value of (4.8).
Hence they are equal. 2

Recall that, when M(α) is finite, M(α) satisfies P (M(α), α) = 0, where P (z, α)
is the polynomial obtained by running Algorithm 3.3.1 for the family of poly-
nomials p(x) − αq(x). The solution of (4.8) is therefore obtained as a root of
P (0, α) = 0. Note that P (0, α) is a univariate polynomial, hence it has a finite
number of roots. These will be our candidates for the solution of (4.8). Note
that one needs to check the positivity of p(x) − αq(x) for a finite number of
values of α, that is for the roots of P (0, α). In this case M(α) decreases through
0.

Let us formalize the procedure into an algorithm, based on Algorithm 3.3.1
for families of polynomials depending on a parameter.

Algorithm 4.1.8 The following procedure computes the solution of (4.8), which
is the solution, or a lower bound, of (4.1).

1. Construct the matrix Ap−αq(λ).

2. Compute the HOCM((Āp−αq(1/λ, z)) by running the Algorithm 3.2.15.

3. Compute P (z, α) = det(HOCM((Āp−αq(1/λ, z))/∆, polynomial in z and
α.
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4. Compute the roots α1, . . . , αr ∈ R of P (0, α), with α1 ≥ . . . ≥ αr; i← 1.

5. If infx∈Rn [p(x)− αiq(x)] is indeed nonnegative, then go to step 6. If not,
i← i + 1 and repeat step 5.

6. Output: αi.

Remark that at step 5, αi is a number, hence we have an infimization of a
polynomial. It is important to verify whether infx∈Rn [p(x)− αiq(x)] = −∞ or
not, and this can be done as in Section 3.2.4. In certain applications, where
optimization of a rational function is involved, it is known apriori that the
minimum is attained. In such case Algorithm 4.1.8 turns out to be very useful.
For the optimization of an arbitrary rational function (i.e., the minimum is not
necessarily attained), bisection can be applied for determining the value of α at
which M(α) passes over 0. Such a procedure is computationally more involved.
Note also that the Algorithm 4.1.8 returns in general a lower bound for the
sought value of α. To illustrate the approach we present here a simple example.
All computations were done using a Maple implementation of the Algorithm
3.2.18.

Example 4.1.9

inf
(x1,x2)∈R2

x2
1 + x2

2

(x1 − 1)2
.

The infimum is obviously 0 and it is actually attained at (x1, x2) = (0, 0). Fol-
lowing our approach from the previous section we first check that the numerator
and denominator have no common factors and that the denominator does not
change sign on R2. Then we rewrite the problem as in (4.5)

sup α
s.t. x2

1 + x2
2 − α(x1 − 1)2 ≥ 0, ∀(x1, x2) ∈ R2.

(4.9)

By applying the Algorithm 4.1.8 to our family of polynomials, p(x) − αq(x) =
x2

1 + x2
2 − α(x1 − 1)2, we obtain

P (z, α) = (α− 1)3(2− 2α + α2)4(−α + z(α− 1)) (4.10)

where the smallest root of P (0, α) is our candidate for M(α). By solving
P (0, α) = 0 we obtain as values for α, 0 with multiplicity 1, 1 with multi-
plicity 4 and a few complex solutions (1 + i and 1 − i, both with multiplicity
4). The largest among the real values, 1, is our first candidate. However, it
turns out that for α = 1 the infimum is indeed infinite (M(1) = −∞), but finite
for α = 0. Hence we conclude that 0 is the solution. Note that the CPU-time
needed to compute the polynomial P (z, α) equals 0.97s.

In this simple example it is possible to obtain an explicit expression of the func-
tion M(α). We compute

M(α) = inf
x∈Rn

[

(1− α)x2
1 + 2αx1 − α + x2

2

]
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by noticing that it is the sum of two univariate polynomials, depending on dif-
ferent variables. Therefore, the infimum of the sum equals the sum of the infima
of the two polynomials. Since each of the two polynomials is quadratic, the two
infima can be computed for any value of α. We have

inf
x∈R2

[ (1− α)x2
1 + 2αx1 − α ] =

{

−α/(1− α) , α < 1,
−∞ , α ≥ 1,

and
inf

x∈Rn
x2

2 = 0,

hence

M(α) =

{

−α/(1− α) , α < 1,
−∞ , α ≥ 1.

With the computed value of M(α), we obtain immediately that α = 0 is the
solution of problem (4.7). Notice however that the jump to −∞ occurs at α = 1.

Notice that in Example 4.1.9, the polynomial P (z, α) could be factored as
P (z, α) = P0(α)P̃ (z, α). It is clear that every root α0 of P0 plays a special
role in this approach since P (z, α0) ≡ 0 for every z ∈ R. Notice also that the
jump point (i.e. the value of α at which M(α) jumps to −∞) was a root of
the polynomial P0(α). This behavior was observed in all examples we ran. We
conjecture that the jump point of M(α) to −∞ is a root of P0(α) in general.

4.1.3 A numerical solution using LMI’s

In this subsection we propose to solve (4.5) using a numerical method. For
that, we study the extension to rational functions of the method presented in
Section 3.1.1 (see also [59] and [50]), used previously for polynomial functions.
As in Section 3.1.1, we want to rewrite the rational optimization problem into a
semi-definite programming (SDP) problem, also called a linear matrix inequal-
ity (LMI) problem, which is known to have good computational complexity.
In general, as in the polynomial case, we obtain an LMI relaxation of the orig-
inal problem, which gives a lower bound for the solution of the original problem.

Let us study now how to rewrite the problem (4.5) as an LMI. For this we
consider the polynomial F (x) = p(x) − αq(x). We use of course the method
described in Section 3.1.1 in order to construct a matrix Q corresponding to F .
Here F is considered as a polynomial in x, and α is a parameter. Let 2d be the
total degree of F in x. Define zT = [1, x1, x2, . . . , xn, x1x2, . . . , x

d
n]. Then using

relation (3.3) one can construct the generic symmetric matrix Q which satisfies
(3.3).

Note that in Section 3.1.1 (3.4), Q describes an affine subspace, parameter-
ized by a vector λ. We extend this result to the case of F (x) = p(x) − αq(x)
(hence depending on α) and show that the generic matrix Q, satisfying (3.3),
describe a subspace which is affine in α and in the entries of the vector λ.
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Theorem 4.1.10 Let the symmetric matrix Q satisfy p(x) − αq(x) = zT Qz.
Then Q describes an affine subspace, that is

Q = Q0 +
κ
∑

i=1

Qiλi + Qκ+1α, (α, λ) ∈ Rκ+1. (4.11)

Proof It is well known that the linear part of the affine subspace is com-
pletely determined by the relations between monomials of z. The fact that Q
is affine in α is due to the fact that the polynomial p(x)−αq(x) is linear in α. 2

Let us denote the matrix of (4.11) by Q(α, λ), with λ ∈ Rκ, α ∈ R.

Let us look at the LMI problem:

sup α
s.t. Q(α, λ) � 0.

(4.12)

Indeed, since Q(α, λ) is symmetric, the matrix coefficients of α and the elements
of the vector λ will be symmetric matrices. Moreover, Q(α, λ) is affine in α and
λ, hence the problem is a standard LMI problem (or equivalently an SDP).

The relation between the problems (4.12) and (4.5) is studied in the follow-
ing.

Theorem 4.1.11 Let us denote by αRAT ∈ R ∪ {−∞} the solution of the
problem (4.5), and consequently of the rational optimization problem (4.1), and
by αLMI ∈ R ∪ {−∞} the solution of (4.12). Then we have

αRAT ≥ αLMI .

If p(x)− αRAT q(x) can be written as a sum of squares of polynomials, then

αRAT = αLMI .

Proof Let λLMI be such that (αLMI , λLMI) satisfy (4.12). Since

p(x)− αLMIq(x) = zT Q(αLMI , λLMI)z and Q(αLMI , λLMI) � 0

we have
p(x)− αLMIq(x) ≥ 0, ∀x ∈ Rn.

Hence αLMI satisfies the constraints of (4.5) and therefore

αRAT ≥ αLMI .

If p(x)−αRAT q(x) can be written as a sum of squares, then there exists a λRAT

such that

p(x)− αRAT q(x) = zT Q(αRAT , λRAT )z, Q(αRAT , λRAT ) � 0.
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Hence
αRAT ≤ αLMI .

From the result above, equality holds in fact. 2

If the polynomial F (x) = p(x)−αq(x) is in one of the first two cases of Theorem
2.3.1 then, according to Theorem 4.1.11, the algorithm will find the infimum. If
not, then there is always a polynomial G(x) such that F (x)G2(x) can be written
as a sum of squares of polynomials (see Theorem 2.3.2). It is not clear however
how to choose the polynomial G(x).

From the practical point of view we are more interested in deciding whether
for a particular rational function the infimum was found or just a lower bound
of it. For that, the checking procedure of Section 3.1.1 can be used.

Although in general it returns just a lower bound of the sought infimum, the
numerical approach of this section may be very important in applications. The
translation of the rational optimization problem into this setting was immediate.
We illustrate the method by an example.

Example 4.1.12

inf
x∈R3

(x1 + x2)
4 + x1

3x3

x1
4 + x3

4
.

This translates, using (4.5), into

sup α
s.t. (x1 + x2)

4 + x1
3x3 − α(x1

4 + x3
4) ≥ 0, ∀x ∈ R3.

Since the polynomial is homogeneous of even degree, according to [50] it is suf-
ficient to consider in the vector z, all monomials in the variables x having as
degree half the degree of the original polynomial. In our case, this will be 2,
hence we define zT =

[

x1
2 x2

2 x3
2 x1x3 x1x2 x2x3

]

.
We compute the symmetric matrix Q(α, λ) using the identity of polynomials

zT Q(α, λ)z = x1
4 + x2

4 + x1
2x2

2 − α
(

x1
2 + x3

2
)2

. (4.13)

We obtain

Q(α, λ) =



























−α + 1 λ3 λ4 1/2 2 −λ5

λ3 1 λ2 −λ6 2 0

λ4 λ2 −α 0 −λ1 0

1/2 −λ6 0 −2λ4 λ5 λ1

2 2 −λ1 λ5 −2 λ3 + 6 λ6

−λ5 0 0 λ1 λ6 −2 λ2



























. (4.14)
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Q(α, λ) given by (4.14), with (α, λ) varying over R×R6, gives a complete de-
scription of the set of symmetric matrices Q(α, λ) satisfying (4.13). With this
Q(α, λ), let us solve the LMI problem (4.12). Suitable algorithms can be em-
ployed for solving it. By running SeDuMi 1.03 (see [66]) for the above LMI
problem, we obtain the solution of (4.12), -0.5699. Since our problem is one of
the special cases mentioned in Theorem 2.3.1, we know that this is the actual
infimum.

Let us however, perform the checking procedure as described in Section 3.1.1.
We compute the solution Y ∗ ∈ R6×6 of the dual problem of (4.12) and notice,
by running Gaussian elimination, that the matrix Y ∗ has indeed rank 1. Hence,
there exists a z∗ such that Y ∗ = z∗z∗T , where

z∗T = (0.7514, 0.7529, 0.4338,−0.5709,−0.7521, 0.5715).

From z∗ and the definition of the vector z we recover the solution point x∗ =
(−0.8668, 0.8677, 0.6587). The rational function evaluated at x∗ is equal to the
value we have previously found, -0.5699, as expected. We therefore conclude
that the infimum of the function is actually attained and one such point is x∗.

4.2 Constrained optimization of rational functions

The problem studied in this section is an optimization problem where the ob-
jective is a rational function and the constraints are polynomial inequalities. To
formalize

inf p(x)/q(x)
s.t. ri(x) ≥ 0, i = 1, . . . , l.

(4.15)

with p(x), q(x), ri(x) ∈ R[x], i = 1, . . . , l and p(x), q(x) relatively prime.

One idea for constrained optimization is, especially when the constraints are
equalities, to work modulo the feasibility set. However a bit of care is required
when working with equivalent representations of the criterion function, as shown
in the following example (Example 6.1.8 of [6])

Example 4.2.1

inf [x2 + y2 − z2]
s.t. x3 = z(x2 + y2).

The feasibility set describes the Cartan umbrella. One can check that the crite-
rion x2 + y2 − z2 is equivalent, modulo x3 = z(x2 + y2), to (3x4y2 + 3x2y4 +
y6)/(x2 + y2)2. They are indeed equal except a thin subset {(0, 0, z) | z ∈ R} ⊂
R3 on which the second rational function is not defined. However, while the
first function has no lower bound on the feasible set, that is its infimum is −∞,
the other one is nonnegative everywhere. Hence

inf [x2 + y2 − z2] 6= inf (3x4y2 + 3x2y4 + y6)/(x2 + y2)2.
s.t. x3 = z(x2 + y2)
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However

inf [x2 + y2 − z2]
s.t. x3 = z(x2 + y2)

=

= min {inf(x,y)6=(0,0)
3x4y2+3x2y4+y6

(x2+y2)2 , inf(x,y)=(0,0)−z2} =

= min {0,−∞} = −∞.

In this section, we investigate the possibility of extending the results of Section
4.1 to constrained rational optimization. There are two aspects that need to be
considered in such an extension. The first one is the extension of theoretical
results. More precisely, we want to know whether Theorem 4.1.1 of Section
4.1 can be extended to the constrained case. It is probably the more impor-
tant aspect, in the sense that, it would allow us to rewrite rational constrained
optimization problems as polynomial constrained optimization problems. The
second aspect is more practical, involving methods, exact or numerical, to solve
the new constrained polynomial optimization problem.

Let us investigate now the possibility of extending the theoretical result of Theo-
rem 4.1.1 to the constraint case mentioned. We will show some of the difficulties
that appear in the constrained case, when the feasible set is thin, that is when
its dimension drops. For that, we give an extremely simple counterexample, in
two variables.

Example 4.2.2

inf(x− y + z + 1)/(x + y + z + 1) = 1
s.t. y2 + z2 = 0.

Here the numerator and denominator are relatively prime polynomials and the
denominator changes sign on R3. However, when restricted to the feasible set
{(x, 0, 0) | x ∈ R} (which is a thin set), the rational function becomes (x +
1)/(x + 1) = 1, ∀x ∈ R. Hence, in general, Theorem 4.1.1 will not hold in the
constrained case as well.

Example 4.2.2 shows that the results of Section 4.1 do not extend immediately
to the constrained case. However, as we prove in the following, they can be
extended for particular classes of feasible sets. In particular we discuss in Section
4.2.1 open feasible sets, and more specifically the simple case when the feasible
domain is a ball B = B(x0, r). In Section 4.2.2 we present a different numerical
method for this problem based on [42].

4.2.1 A particular case

We consider here the case when the feasible domain is a ball B = B(x0, r).

Theoretical results

Theorem 4.2.3 Let a(x), b(x) be relatively prime polynomials and B an open
ball in Rn. If a(x)b(x) ≥ 0, ∀x ∈ B, then one of the two following statements
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holds:
• a(x) ≥ 0, b(x) ≥ 0 ∀x ∈ B,

• a(x) ≤ 0, b(x) ≤ 0 ∀x ∈ B.

Proof Assume that a changes sign on B, therefore there must exist an irre-
ducible factor of a, denoted a1, which changes sign on B.

We follow the proof of Lemma 6.14 of [41]. We want to prove that f = a1

divides g = b. We know that f changes sign in B, that is there exist two points
x̃, x̂ ∈ B such that f(x̃) > 0 and f(x̂) < 0. Let us make a suitable change
of coordinates such that f(y, z1) < 0 < f(y, z2) where y ∈ Rn−1, z1, z2 ∈ R.
This can be achieved by considering a system of coordinates for which one axis
passes through x̂ and x̃. After the change of coordinates, B becomes the ball
B̃. Let G = R[x1, . . . , xn−1] and F the quotient ring of G. View f and g as
polynomials in xn in the ring G[xn] ⊂ F [xn]. Suppose that f does not divide g
in G[xn](= R[x1, . . . , xn]). We know that f remains irreducible in F [xn] and f
does not divide g also in F [xn]. Since F [xn] is a principal ideal domain, there
exist ρ, γ ∈ F [xn] such that fρ + gγ = 1. Write ρ = ρ0/h and γ = γ0/h, where
ρ0, γ0 ∈ G[xn] and 0 6= h ∈ G. Then fρ0 + gγ0 = h. Choose a neighborhood V
of y in Rn−1 such that V × {z1}, V × {z2} ⊂ B̃ and f(V, z1) < 0 < f(V, z2).
For any v ∈ V , f(v, z1) < 0 < f(v, z2) implies that f(v, bv) = 0 for some bv

between z1 and z2. Actually, since f(x)g(x) ≥ 0 we have g(V, z1) ≤ 0 ≤ g(V, z2)
and there exists a bv where both f(v, bv) = 0 and g(v, bv) = 0. Therefore
fρ0 +gγ0 = h implies that h(v) = 0, ∀v ∈ V and so h(x1, . . . , xn−1) vanishes on
a non-empty open set in Rn−1. This forces h ≡ 0, a contradiction. Hence a1 = f
divides b = g, but this contradicts the hypothesis that a and b are relatively
prime. Hence, a cannot change sign on B. 2

Remark 4.2.4 In Theorem 4.2.3 the condition a(x)b(x) ≥ 0, ∀x ∈ B is equiva-
lent to, and therefore can be replaced by, a(x)/b(x) ≥ 0, ∀x ∈ B, with b(x) 6= 0.

As in Section 4.1 we formulate the following result.

Corollary 4.2.5 Let p(x)/q(x) be a rational function with p(x), q(x) relatively
prime polynomials. If q(x) changes sign on B then infx∈B p(x)/q(x) = −∞.

Proof The proof is identical to the one of Theorem 4.1.1. Assume ∃ α ∈ R a
lower bound of the function. For every x ∈ B, with q(x) 6= 0, we have

p(x)

q(x)
≥ α ⇐⇒ p(x)− αq(x)

q(x)
≥ 0 .

Applying Theorem 4.2.3, we deduce that both p(x) − αq(x) and q(x) do not
change sign on B which contradicts the hypothesis. 2

Remark 4.2.6 Theorem 4.2.3 and Corollary 4.2.5 remain valid if the open ball
B is replaced by the closed ball B̄ = {x ∈ Rn | ‖x− x0‖ ≤ r}.
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We have shown that, in this simple case, when the feasible set is a ball B, the
theoretical result, Theorem 4.1.1, can be extended to the constrained case. In
fact, Theorem 4.2.3 and Corollary 4.2.5 hold when the open ball B is replaced
by a set C such that D ⊆ C ⊆ D̄, where D ⊆ Rn is a connected open set. The
proof is immediate. For simplicity, we choose to work in the following with the
initial case, where the feasibility set is an open ball.

Let us now consider the practical aspects, namely the computations. For sim-
plicity we consider here that B = B(0, 1). The extension to the case B(x0, r)
above is immediate.

Let us assume now that q(x) ≥ 0, ∀x ∈ B. An equivalent formulation of the
problem infx∈B p(x)/q(x) is, according to Theorem 4.2.3, the following:

sup α
s.t. p(x)− αq(x) ≥ 0, ∀x ∈ B.

(4.16)

The two problems remain equivalent if B is replaced by B̄.

Exact methods-special case

We want to briefly mention here that a reparametrization which maps the whole
space Rn into the closed ball B̄ brings us into the well-known unconstrained
problem. For example,

m : Rn → B̄, m(y1, . . . , yn) =

(

2y1

1 + y2
1 + . . . + y2

n

, . . . ,
2yn

1 + y2
1 + . . . + y2

n

)

is such a mapping. One can easily check that the mapping m is surjective.
Moreover, m|

B̄
: B̄ → B̄ is a bijection (which maps ∂B into ∂B), and

m|Rn\B : Rn \B→ B̄ is bijective as well.

Using the mapping m, the problem

inf
x∈B̄

p(x)

q(x)
(4.17)

can be reduced to the unconstrained case by considering the problem

inf
y∈Rn

p(m(y))

q(m(y))
. (4.18)

Obviously the two problems, (4.17) and (4.18), are equivalent and for (4.18) the
methods of Section 4.1 (exact or numerical) can be applied.

Numerical methods based on LMI’s

Obviously, the numerical methods can be applied to the reparametrized prob-
lem as in the previous subsection. However, that doubles the total degree of the



4.2 Constrained optimization of rational functions 67

polynomial. We believe it is worthwhile to investigate here a different approach.
The approach may turn out to be more efficient in some cases.

For the new formulation we use Section 6.2 of [6] (see also Section 2.3 of this
thesis). Hence, we know that

p(x)− αq(x) ≥ 0, ∀x ∈ B̄ ⇐⇒

p(x)− αq(x) =
I
∑

i=1

s2
i (x) +

J
∑

j=1

t2j (x)(1− x2
1 − . . .− x2

n), (4.19)

for some si, tj rational functions. Let us remind here that 1− x2
1 − . . .− x2

n ≥ 0
is equivalent to x ∈ B̄. For the actual computations we will consider si, tj poly-
nomials, not rational functions, solving in this way only a relaxation of the
problem.

This is a good moment to notice the first difficulty arising in this setting. Due
to the negative signs in the right-hand side of the formula (4.19), we do not have
a bound on the degrees of the polynomials si and tj . Hence a sequence of LMI’s
must be used, corresponding to increasing degrees of some of the si and tj poly-
nomials. One element of the sequence would have the correct degree and the
sequence would therefore be convergent (actually constant, once it reaches the
correct degree). Let us consider now the case when max{tdeg(si) | i = 1, . . . , I}
is 2d (see Definition 2.1.7 for tdeg(si)). Then, the maximum degree for the
tj polynomials is 2(d − 1). We want to rewrite the formula (4.19) in terms of
positive semi-definite matrices as in the unconstrained case. Let z be the vector
containing all the monomials of degree less than or equal to d. We consider the
generic matrices N, L, L1, . . . , Ln such that

I
∑

i=1

s2
i (x) = zT N(α, λ)z,

J
∑

j=1

t2j(x) = zT L(α, λ)z

J
∑

j=1

t2j(x)x2
k = zT Lk(α, λ)z, k = 1, . . . , n.

Actually, by considering the relation between the sums above, we can actually
describe the matrices Lk, k = 1, . . . , n using only elements of the matrix L, by
doing some permutations of the zero rows and columns of the (free coefficient)
matrix of L. This observation may be useful in order to save computational
time. However, we do not pursue here this idea any further.

We are able now to formulate an LMI relaxation of (4.16)

sup α
s.t. N(α, λ) + L(α, λ)−∑n

k=1 Lk(α, λ) � 0.

which can be subsequently solved using standard algorithms.
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4.2.2 Numerical methods for the general case

The method presented here is a very basic extension of the method presented
in [42] for solving the constraint polynomial optimization problem

inf p(x)
s.t. ri(x) ≥ 0, i = 1, . . . , l, p, ri ∈ R[x], ∀i = 1, . . . , l.

Obviously, the problem (4.15) can be easily recast into the above formulation by
introducing a new variable, say xn+1, and a new equality (or two inequalities)
constraint in the following way

inf xn+1p(x)
s.t. ri(x) ≥ 0, i = 1, . . . , l.

xn+1q(x) = 1

It seems that this trick would solve, at least numerically, the general problem of
rational optimization with constraints. However, we have encountered examples
where this is not the case. It may be that the approach relies a bit too strongly
on the constraints, preferring (and performing well in) the situations where the
feasible domain is actually a bounded set.

Example 4.2.7 (Example 4.1.12 revisited)

inf
(x1,x2,x3)∈R3

(x1 + x2)
4 + x3

1x3

x4
1 + x4

3

=
inf x4[(x1 + x2)

4 + x3
1x3]

s.t. x4[x
4
1 + x4

3] = 1

This is an example of an unconstrained rational optimization problem and the
(implementation [32] of the) algorithm does not perform well on it. The user
is required to enforce a so-called feasibility radius. That changes the problem
into a constrained optimization problem, with the same criterion function, and
bounded feasible domain. However, for this particular example, choosing a large
radius bound does not seem to help while choosing a small one changes the
problem radically (one cannot estimate how well the infimum of the modified
problem approximates the infimum of the original problem). Without imposing
a feasibility radius, the algorithm reports that that problem may be infeasible,
i.e. the infimum of the original problem is −∞ which is of course not correct.
Note that the method of the previous section found the correct value without any
problems.

4.3 Conclusions

In this chapter we extend algorithms, designed for global polynomial minimiza-
tion, to the larger class of rational functions. The extensions are based on
results in real algebraic geometry, which allow us to rewrite a rational optimiza-
tion problem over Rn (or B ⊂ Rn) as a constrained polynomial optimization
problem of a particular type. We develop here both exact and numerical meth-
ods for unconstrained and (a particular case of) constrained optimization.
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However, as the Example 4.2.7 above intends to illustrate, the algorithms devel-
oped in this section do not perform equally well on every instance. Hence, there
may be no best method, even for optimization in the special class of rational
function. Example 4.1.12 supports in this sense our effort for describing various
approaches.
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Chapter 5

The H2 model reduction problem

Let us introduce first the general model reduction problem. Suppose that a time-
invariant, continuous-time or discrete-time linear system of order n is given. In
practical applications, very often the order n is very high, making it very dif-
ficult to operate with the model. In this situation, one wants to work with an
approximant of the original system which has a lower order. The model re-
duction problem consists in finding an approximant of low order which is close
in some sense to the original. There are different ways to estimate how close
two systems are. Typically, one uses the distance induced by some well-known
norms, say H2, H∞ or the Hankel norm (see, for example [72]).

One of the most used model reduction methods is based on truncation of a
balanced realization of the original system. This method has been shown to be
closely related to the Hankel norm approximation problem. For the H2 and H∞

norms, no analytic solution is known. The H∞ norm is extremely popular in
robust control theory. However, we only discuss here the H2 model reduction
problem. The literature on the H2 problem is quite broad. See for example [71],
[2], [61], [4], [26], [17], [35] and the references contained therein.

We approach the H2 model reduction here in a different manner, as a rational
optimization problem, and show how the algorithms of the previous chapters
can be applied. Sections 5.1 and 5.2 review certain aspects related to the H2

norm and H2 model reduction problem. There, it is also shown that the problem
reduces to optimization of rational functions. Section 5.3 discusses H2 optimal
model reduction for continuous-time linear SISO (single-input-single-output)
systems and is based on [39], while Section 5.4 discusses the same problem for
MIMO (multi-input-multi-output) systems. Section 5.5 is based on [53]. The
method of Section 5.5 was proposed by the first two authors, while the author
of the thesis has contributed with results in Section 5.5.2 and the computations
in the example section.

71
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5.1 Computing the H2 norm

There are different formulas available in the literature for computing the H2

norm of a linear system (see [24], [72]) both for continuous-time systems and
discrete-time systems. Let us treat these cases separately. Note that we assume
here stability of the system. We restrict ourselves to the case of real systems
although the formulas are similar for the general case of complex systems.

5.1.1 Continuous-time systems

Using the (matrix) transfer function T of a system Σ̃, one defines:

‖Σ̃‖22 =
1

2π
trace(

∫ ∞

−∞

(T (iy)− D̃)∗(T (iy)− D̃)dy + trace(D̃T D̃).

Using a state space representation (Ã, B̃, C̃, D̃) of Σ̃

‖Σ̃‖22 = trace(D̃T D̃) + trace(B̃T MoB̃) = trace(D̃T D̃) + trace(C̃McC̃
T ),

with
ÃMc + McÃ

T = −B̃B̃T , ÃT Mo + MoÃ = −C̃T C̃.

A proof of the equivalence between the two formulations can be found in [72].

5.1.2 Discrete-time systems

We have

‖Σ̃‖22 =
1

2π
trace(

∫ 2π

0

T ∗(eiy)T (eiy)dy).

and an equivalent formulation is

‖Σ̃‖22 = trace(D̃T D̃) + trace(B̃T LoB̃) = trace(D̃T D̃) + trace(C̃LcC̃
T ),

with
Lo − ÃT LoÃ = C̃T C̃, Lc − ÃLcÃ

T = B̃B̃T .

In this thesis we work with the formulas for the norm involving state space
representations of the system rather than with their (matrix) transfer functions.
The advantage for us is that the H2 norm can be expressed as a rational function
in the entries of Ã, B̃, C̃, D̃.

5.2 The H2 distance and the optimization problem

Let us come back now to the H2 model reduction problem. We denote by
Σ = (A, B, C, D) a time-invariant, continuous-time or discrete-time, linear, sta-
ble system of order n. By stable, we mean that all eigenvalues of A are in the
open left-half plane in the continuous-time case, respectively in the open unit
circle in the discrete-time case. The H2 model reduction problem is finding the
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closest (in H2 distance) system Σ̂ = (Â, B̂, Ĉ, D̂) time-invariant, continuous-
time respectively discrete-time, linear, stable system of given order n̂. Formu-
lated differently, we want to solve:

min
Σ̂−stable, order(Σ̂)≤n̂

‖Σ− Σ̂‖22.

It is well known that the minimum of the above optimization problem is at-
tained. Moreover, any best approximant of order at most n̂ has exactly order
n̂. For discrete-time systems the proof can be found in [2]. For continuous-time
systems, the same holds due to the existing bijective isometry which maps the
transfer function of a discrete-time system of order n to the transfer function of
a continuous-time system of order n, and vice versa (see, e.g., [23], [3]).

In order to compute the H2 distance it is sufficient to apply the formulas of
Section 5.1 for the H2 norm to the difference system Σ̃ = Σ− Σ̂ defined by

Ã =

(

A 0

0 Â

)

, B̃ =

(

B

B̂

)

, C̃ =
(

C −Ĉ
)

, D̃ = D − D̂.

Then we obtain the following formulas.

5.2.1 Continuous-time systems

‖Σ− Σ̂‖22 = trace((D − D̂)T (D − D̂)) + trace(BT Mo
1 B + 2BT Mo

2 B̂ + B̂T Mo
3 B̂)

= trace((D − D̂)T (D − D̂)) + trace(CM c
1CT − 2CM c

2 ĈT + ĈM c
3 ĈT )

with

AT Mo
1 + Mo

1 A = −CT C, AT Mo
2 + Mo

2 Â = CT Ĉ, ÂT Mo
3 + Mo

3 Â = −ĈT Ĉ,

AM c
1 + M c

1AT = −BBT , AM c
2 + M c

2 ÂT = −BB̂T , ÂM c
3 + M c

3 ÂT = −B̂B̂T .

5.2.2 Discrete-time systems

‖Σ− Σ̂‖22 = trace((D − D̂)T (D − D̂)) + trace(BT Lo
1B + 2BT Lo

2B̂ + B̂T Lo
3B̂)

= trace((D − D̂)T (D − D̂)) + trace(CLc
1C

T − 2CLc
2Ĉ

T + ĈLc
3Ĉ

T )

with

Lo
1 −AT Lo

1A = CT C, Lo
2 −AT Lo

2Â = −CT Ĉ, Lo
3 − ÂT Lo

3Â = ĈT Ĉ

Lc
1 −ALc

1A
T = BBT , Lc

2 −ALc
2Â

T = BB̂T , Lc
3 − ÂLc

3Â
T = B̂B̂T .

Obviously, in both cases the criterion is minimized for D = D̂ and trace((D −
D̂)T (D − D̂)) becomes 0.

Note that, in order to compute the H2 distance between the systems Σ and
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Σ̂, one needs to solve the Lyapunov/Sylvester equations in M o
1 , Mo

2 , Mo
3 or

M c
1 , M c

2 , M c
3 (respectively Lo

1, L
o
2, L

o
3 or Lc

1, L
c
2, L

c
3 ). Clearly the H2 distance

is invariant with respect to similarity transformations of the triples (A, B, C)
or (Â, B̂, Ĉ). Therefore, when choosing a parameterization, one might consider
simplifying the computations of the solutions of the Lyapunov/Sylvester equa-
tions. Indeed, some canonical forms of (A, B, C) are more advantageous for this
problem, as we will see later. It should be remarked however that M o

1 , Mo
2 , Mo

3

and M c
1 , M c

2 , M c
3 (respectively Lo

1, L
o
2, L

o
3 and Lc

1, L
c
2, L

c
3) will be multivariate ra-

tional functions, depending on the entries of (Â, B̂, Ĉ). Therefore the criterion
to be minimized will be a multivariate rational function as well.

Notice also the particular structure of the problem. The role of B, B̂ and
C, Ĉ respectively are somehow symmetric. Moreover, the criterion function is
quadratic in either B̂ or Ĉ. This leads to an optimization in two steps. By first
optimizing with respect to B̂, using derivatives, one obtains a criterion which is
rational in the entries of Â, Ĉ. Let us give also the exact formulas here. The
optimal B̂ is

B̂ = −Mo
3
−1Mo

2
T B, respectively B̂ = −Lo

3
−1Lo

2
T B

for continuous-time systems, respectively for discrete-time systems. The exis-
tence of the inverse matrix M o

3
−1, respectively Lo

3
−1 follows from the fact that

(Â, Ĉ) is an observable pair. Then, the squared H2 distance between the two
systems (for D̂ = D) becomes

trace(BT Mo
1 B)− trace(BT Mo

2 Mo
3
−1Mo

2
T B),

respectively trace(BT Lo
1B)− trace(BT Lo

2L
o
3
−1Lo

2
T B),

for continuous-time systems, respectively for discrete-time systems. Remark
that trace(BT Mo

1 B) and trace(BT Lo
1B) depend only on the initial system, hence

they are known constants. If instead of B̂ we choose to optimize with respect
to Ĉ, we have

Ĉ = CM c
2M c

3
−1, respectively Ĉ = CLc

2L
c
3
−1

for continuous-time systems, respectively for discrete-time systems. The exis-
tence of the inverse matrix M c

3
−1, respectively Lc

3
−1 follows from the fact that

(Â, B̂) is an controllable pair. Then, the squared H2 distance between the two
systems (for D̂ = D) becomes

trace(CM c
1CT )− trace(CM c

2M c
3
−1M c

2
T CT ),

respectively trace(CLc
1C

T )− trace(CLc
2L

c
3
−1Lc

2
T CT ),

for continuous-time systems, respectively for discrete-time systems. Remark
that, as before, trace(BT M c

1B) and trace(BT Lc
1B) depend only on the initial

system, hence they are known constants.
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We are therefore left with a nonlinear optimization problem and here we employ
the algorithms of Chapter 4. Let us now make a few remarks concerning the
complexity of the problem, which is related to the complexity of the rational
function, and is expressed in terms of its total degree and number of variables.
Suppose the original system has n states m inputs and p outputs and assume
that m ≥ p. Then an approximant of order n̂ will have m inputs and p outputs
as well. The parameterization of the approximant in any canonical form requires
(m + p)n̂ parameters (the number of parameters equals the dimension of the
manifold). Let us consider now that (Â, B̂, Ĉ) is in a canonical form which leaves
either B̂ or Ĉ free. For example, in the observable canonical form the matrix B̂
is free, with the only condition that the pair (Â, B̂) is controllable. Similarly,
the controller canonical form provides a free matrix Ĉ, with the only condition
that the pair (Â, Ĉ) is observable. Then, as we noted before, it is possible to
optimize first with respect to either B̂ or Ĉ reducing in this way the number
of free parameters. Since we have assumed m ≥ p we optimize with respect to
B since this would reduce mostly the number of remaining parameters, in fact
it would reduce it to n̂p. Notice also that at the optimal value of B̂, the pair
(Â, B̂) is indeed controllable, due to the minimality of the optimal approximant.
Similarly, for the optimal value of Ĉ, the pair (Â, Ĉ) is observable. So far, we
have seen that by optimizing with respect to B̂ or Ĉ, we can reduce quite a lot
the number of variables in the optimization criterion.

Let us assume now that (Â, Ĉ) is in an output normal form. That means
Mo

3 = In̂, respectively Lo
3 = In̂, which simplifies the criterion function even

further. As one can see from the expression of the criterion, the total degree of
the denominator of rational function, which is larger than the total degree of
the numerator, is (at most) (nn̂)2 (in the entries of Â and Ĉ).

To resume, the number of parameters required is completely determined by the
approximant system, namely, the number of parameters equals n̂min{m, p}.
However, the complexity of the rational function is also determined by its de-
gree, namely, the degree is at most (nn̂)2 and it is influenced by the order of the
original system. In practical application, large systems are reduced to systems
of small or very small order, therefore the number of variables in the expression
of the rational function is in general rather small.

In the following we are going to discuss in full detail a few examples of model
reduction in the SISO, respectively MIMO continuous-time case where we apply
the numerical algorithm of Section 4.1.3. A MIMO discrete-time example will
be treated using exact methods.

5.3 H2 model reduction: continuous-time SISO case

We treat here a particular case of the H2 optimal model reduction, namely re-
duction of SISO continuous-time systems. As we have mentioned before, we still
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have at this point the choice for a parameterization of (A, b, c). In the following
we choose the parameterization trying to satisfy two criteria. The first one is the
stability requirement, therefore we use canonical forms for stable systems. Sec-
ondly we want to simplify our calculations (i.e. solving the Lyapunov/Sylvester
equations) as much as possible. One way is to choose a so-called output nor-
mal form for (A, c) (respectively (Â, ĉ)), that is equivalent to saying that M1,
the solution of the Lyapunov equation associated to (A, c), satisfies M1 = In

(respectively M3 = In̂). Both mentioned requirements are satisfied by the so
called Schwarz-like canonical forms (see [26]). Notice also that in a Schwarz-
like canonical form the b vector is free with the sole condition that (A, b) is a
reachable pair. Therefore optimization with respect to b is possible in a first step.

Let us describe now the Schwarz-like canonical form for SISO stable systems.
A triple (Â, b̂, ĉ) is in a Schwarz-like canonical form when

Â =





























− 1
2x2

1 −x2 0
. . . 0 0

x2 0 −x3
. . . 0 0

0 x3 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 0 0
. . .

. . . −xn̂

0 0 0
. . . xn̂ 0





























, ĉ =
(

x1 0 0 . . . 0
)

(5.1)

with xi > 0, i = 1, . . . , n̂, and b̂ ∈ Rn̂×1 is a free vector, with the condition that
(Â, b̂) is a reachable pair. Notice that the conditions xi > 0, ∀i = 1, . . . , n̂ imply
that the pair (Â, ĉ) is observable. The proof for the fact that this is indeed a
canonical form can be found in [28]. It is easy to see that (Â, ĉ) is output-normal,
i.e. ÂT + Â = −ĉT ĉ. Since Â is stable, the equation ÂT M3 + M3Â = −ĉT ĉ has
a unique solution, namely M3 = In̂.

Let us return to the H2 model reduction problem and consider (A, b, c), (Â, b̂, ĉ),
with A and Â stable, in Schwarz-like canonical form. Then using the fact
that (A, c) and (Â, ĉ) are output-normal, the equations AT M1 + M1A = −cT c,
ÂT M3 + M3Â = −ĉT ĉ have each a unique solution, namely M1 = In, M3 = In̂.

The criterion is quadratic in b̂. By optimizing first with respect to b̂ one obtains
b̂ = −MT

2 b and ‖Σ − Σ̂‖22 = bT b − bT M2M
T
2 b, where M2 is the solution of the

Sylvester equation AT M2 + M2Â = cT ĉ. The optimization problem becomes

min
xi>0,i=1...,n̂

bT b− bT M2M
T
2 b = bT b− max

xi>0,i=1...,n̂

p(x1, . . . , xn̂)

q(x1, . . . , xn̂)
. (5.2)

Schwarz-like canonical forms have the following property.

Proposition 5.3.1 If the approximant (Â, b̂, ĉ) is in Schwarz-like canonical
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form, then the criterion p(x)/q(x) = bT M2M
T
2 b contains only even powers of

x1, . . . , xn̂.

Proof It is well-known that the H2 distance between the two systems, and
therefore our criterion p(x)/q(x) , does not depend on a particularly chosen

(Â, b̂, ĉ) representation of the approximant system. It is not difficult to check
that in the following two cases:

i) If for a certain i = 2, . . . , n̂ one replaces xi by −xi in a given Schwarz-like

canonical representation (Â, b̂, ĉ),

ii) If one replaces x1 by −x1 and simultaneously b̂ by −b̂ in a given Schwarz-

like canonical representation (Â, b̂, ĉ),
then one obtains an equivalent Schwarz-like representation. That implies

p(x1, . . . , xi−1, xi, xi+1, . . . , xn̂)

q(x1, . . . , xi−1, xi, xi+1, . . . , xn̂)
=

p(x1, . . . , xi−1,−xi, xi+1, . . . , xn̂)

q(x1, . . . , xi−1,−xi, xi+1, . . . , xn̂)

and therefore the criterion p/q contains only even powers of xi, i = 1, . . . , n̂. 2

Notice also that the global optimum of p(x)/q(x) can not be attained at a point
where xi = 0 for some i = 1, . . . , n̂. That holds because if xi = 0 for some
i = 1, . . . , n̂, then the approximant looses its minimality, which contradicts the
(well-known) result (see, e.g. [3]) which states that the optimal approximant
of order at most n̂ has order n̂. In conclusion, one only needs to solve an un-
constrained rational optimization problem. In this case, when minimizing over
(x1, . . . , xn̂) ∈ Rn̂ we obtain symmetric solutions with respect to the axes, i.e.
for any solution (x1, . . . , xn̂), we know that (±|x1|, . . . , ± |xn̂|) are solutions as
well.

For the convenience of the reader, we structure the above discussion into a
procedure.

Procedure 5.3.2 The following procedure computes the optimal approximant
of a given order with respect to the H2-norm.

1. Compute a state-space representation (A, b, c) of the initial system Σ (for
example, in Schwarz-like canonical form (5.1)).

2. Construct a parameterized representation (Â, b̂, ĉ) of the approximant Σ̂
in a Schwarz-like canonical form.

3. Compute symbolically the solution of the Sylvester equation AT M2+M2Â =
cT ĉ.

4. Compute analytically the optimal value for b̂ = −MT
2 b.

5. Compute the global maximum of bT M2M
T
2 b over Rn̂, using either one of

the algorithms of Chapter 4 for optimization of rational functions.
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6. Evaluate the approximant (Â, b̂, ĉ) at the global optimum.

Note that at step 5, the user is allowed the choice of an algorithm. In Chapter
4 we have proposed both a numerical algorithm (Section 4.1.3) and an exact
algorithm (Section 4.1.2) for the unconstrained optimization of a rational func-
tion. In general, we expect the numerical algorithm to be more efficient. Note
however that the numerical algorithm is only guaranteed to find a lower bound
of the global infimum while by using the exact algorithm with the above proce-
dure, we obtain an exact solution to the H2 optimal model reduction problem,
provided we start with an exact representation of (A, b, c). It is important to
note that the H2 model order reduction can be solved exactly in the SISO case,
using Procedure 5.3.2 with an exact algorithm at step 5.

We consider now a concrete example, namely the Oscillatory system of [26].
There, an optimal approximant was constructed using constructive algebra
methods. In the end we intend to compare the results.

Example 5.3.3 Find the best H2-approximant of second order (n̂ = 2), of the
system

T (s) =
s2 − s + 2

s3 + 0.5s2 + 2s + 0.5
(n = 3).

T corresponds to a Schwarz-like canonical form with parameters x1 = x2 = x3 =
b1 = b2 = b3 = 1, d = 0.

Let us consider a general second order, stable system in Schwarz-like canonical
form

Â =

(

− 1
2x2

1 −x2

x2 0

)

, ĉ =
(

x1 0
)

, x1 > 0, x2 > 0

We want to find the values of the parameters x1, x2 for which the criterion
bT b− bT M2M

T
2 b is minimized. Since b is given, let us now compute the matrix

M2 ∈ R3×2 (as function of x1, x2) from the linear system of equations AT M2 +
M2Â = cT ĉ. We obtain

M2 =
2

∆





x1(−4− x4
1 + 8x2

2 − 4x2
1x

2
2 − 4x4

2) 2x1x2(8 + x4
1 − 12x2

2 + 4x4
2)

2x1(x
2
1 + 8x2

2 − 4x4
2) 4x1x2(1− x2

2 − x2
1x

2
2)

−4x1(1− x2
2 − x2

1x
2
2) 2x1x2(8 + x2

1 + x4
1 − 4x2

2)





with ∆ = 4 + 8x2
1 + x4

1 + x6
1 + 56x2

2 − 4x2
1x

2
2 + 8x4

1x
2
2 − 60x4

2 + 4x2
1x

4
2 + 16x6

2.

The criterion will be

bT b + min−bT M2M
T
2 b = 3 + min−p(x1, x2)

q(x1, x2)

where
p(x1, x2) = 4x2

1(64− 32x2
1 + 20x4

1 − 4x6
1 + x8

1 + 848x2
2 + 256x2

1x
2
2 + 236x4

1x
2
2 +

16x6
1x

2
2 + 16x8

1x
2
2− 1616x4

2− 480x2
1x

4
2− 280x4

1x
4
2− 32x6

1x
4
2 + 1200x6

2 + 320x2
1x

6
2 +

80x4
1x

6
2 − 432x8

2 − 64x2
1x

8
2 + 64x10

2 )
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and
q(x1, x2) = (4 + 8x2

1 + x4
1 + x6

1 + 56x2
2 − 4x2

1x
2
2 + 8x4

1x
2
2 − 60x4

2 + 4x2
1x

4
2 + 16x6

2)
2
.

We apply now the procedure described in Section 4.1.3. Note that the de-
nominator of the rational function is the square of a polynomial, hence it is
non-negative on R2. For solving the problem (4.5), we construct the LMI
relaxation (4.12), using the vector of monomials z. In order to reduce the
size of our problem, and since the polynomials p, q contain only even pow-
ers of the variables, we consider only monomials of even power in the vec-
tor z as well. We have tdeg(p(x) − αq(x)) = 12, therefore the vector z will
contain monomials of degree less or equal its half, that is m = 6 and zT =
(

1 x2
1 x4

1 x6
1 x2

2 x4
2 x6

2 x2
1x

2
2 x4

1x
2
2 x2

1x
4
2

)

. In this case, consider-
ing this vector z turns out to be sufficient for finding the global minimum. In
general however, restricting the number of monomials in z may lead to a strict
lower bound of the global minimum.
Let us now construct an arbitrary, symmetric matrix Q ∈ R[α, λ]10×10. Its
dimension is obviously determined by the length of z. We compute Q(α, λ) by
equalizing the coefficients of the polynomials −p(x) − αq(x) and zT Qz, as in
Section 3.1.1. It turns out from the computations that λ ∈ R28. The only
thing left now is to compute the solution for the LMI relaxation. We obtain,
as a lower bound of min−p(x1, x2)/q(x1, x2) the value −1.7642. At this point
we still need to decide whether this is a strict lower bound or not. In this case
we have run a standard steepest descent algorithm which finds a (local) mini-
mum at (x1, x2) = (1.1916, 0.4183) for which the (numerically) computed value
of the criterion equals the (numerically) computed value of the lower bound!
This tells us two things, first that the lower bound was sharp, secondly that the
point (1.1916, 0.4183) is actually a global minimum. Hence, we have found a
best approximant in H2 norm and this is given by

Â =

(

−0.7099 −0.4183
0.4183 0

)

, ĉ =
(

1.1916 0
)

, b̂ =

(

0.2080
−1.3118

)

.

The approximant coincides with the one found in [26] by exact methods. The
optimal H2 distance between the given system and its approximant is obtained
by taking the square root of 3−1.7642, that is 1.1117. Under certain conditions,
other (more direct) methods than the one presented here can be used to decide
whether the obtained lower bound is exact or not. For more details see [50] or
Section 3.1.1 of this thesis.

For obtaining the lower bound we have run an algorithm which consists of
two parts. The first one, for constructing the LMI relaxation was implemented
in Mathematica 4.0 and takes 12 seconds and 16.7 Kb on a Sun Ultra 5 station.
Then, for solving the LMI problem we use SeDuMi 1.03, a free software package
(see [66]) running under Matlab. This takes another 5 seconds (of which 2 are
used to read the data obtained with Mathematica). Unfortunately, we have
experienced numerical problems with SeDuMi 1.03. This problems seem to be,
at least partly, solved in the next version, SeDuMi 1.05.
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The method is not restricted to model order reduction by 1. To make this
clear, we consider here reduction from a 6-th order system to a 2-nd order
system. The following example was considered in [61] (Example 3).

Example 5.3.4 Given the stable continuous-time system with the transfer func-
tion

T (s) =
0.00001s2 + 0.011s + 1

s6 + 0.222s5 + 22.1242s4 + 3.5445s3 + 122.4433s2 + 11.3231s + 11.11

find its H2 optimal approximant of order 2.

We apply the procedure and construct a realization of the original system in the
Schwarz-like canonical form (see (5.1)). We obtain the values of the parameters
of the 6-th order system, in (5.1) (0.666, 2.4815, 2.0893, 0.5745, 2.4091, 2.3382).
The approximant has also a Schwarz-like canonical form with the unknowns
(x1, x2), x1 > 0, x2 > 0.

Next we compute the H2 distance between the original system and its approx-
imant, as a rational function in x1, x2. More precisely, in the formula (5.2) we
have

p(x1, x2) = 123.432x2
2 − 2590.99x1

2x2
2 + 15372.4x1

4x2
2 − 5236.47x1

6x2
2 +

667.289x1
8x2

2 − 35.347x1
10x2

2 + 0.466075x1
12x2

2 +

0.01208x1
14x2

2 + 1.× 10−10x1
16x2

2 + 13.5775x2
4 + 1049.3x1

2x2
4 +

1206.16x1
4x2

4 − 510.89x1
6x2

4 + 73.3059x1
8x2

4 − 4.62864x1
10x2

4 +

0.109996x1
12x2

4 + 2.22× 10−11x1
14x2

4 + 0.373999x2
6 +

3640.91x1
2x2

6 − 1299.41x1
4x2

6 + 247.668x1
6x2

6 − 24.3873x1
8x2

6 +

0.96937x1
10x2

6 − 0.00605951x1
12x2

6 + 5.× 10−11x1
14x2

6 +

0.0000339438x2
8 + 156.993x1

2x2
8 + 87.0313x1

4x2
8 − 38.4692x1

6x2
8 +

4.48862x1
8x2

8 − 0.162334x1
10x2

8 + 1.09999× 10−6x1
12x2

8 +

7.71451× 10−10x2
10 + 338.262x1

2x2
10 − 135.118x1

4x2
10 +

19.2398x1
6x2

10 − 0.870429x1
8x2

10 + 0.00530232x1
10x2

10 −
1.875× 10−11x1

12x2
10 + 7.15503x1

2x2
12 + 2.94556x1

4x2
12 −

1.05916x1
6x2

12 + 0.0749554x1
8x2

12 − 2.74999× 10−7x1
10x2

12 +

11.4991x1
2x2

14 − 3.40262x1
4x2

14 + 0.250758x1
6x2

14 −
0.00094686x1

8x2
14 + 1.5625× 10−12x1

10x2
14 + 0.132126x1

2x2
16 +

0.0553241x1
4x2

16 − 0.0102705x1
6x2

16 + 1.71875× 10−8x1
8x2

16 +

0.173038x1
2x2

18 − 0.0269622x1
4x2

18 + 0.0000473438x1
6x2

18 +

0.000867188x1
2x2

20 + 0.000429688x1
4x2

20 + 0.000976563x1
2x2

22
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and q(x1, x2) is the square of the polynomial

123.432− 2592.48x1
2 + 15403.7x1

4 − 5422.55x1
6 +

732.793x1
8 − 44.1991x1

10 + 1.x1
12 + 62.8998x2

2 + 634.15x1
2x2

2 −
152.606x1

4x2
2 + 26.7437x1

6x2
2 − 2.86096x1

8x2
2 +

0.111x1
10x2

2 + 340.086x2
4 − 235.766x1

2x2
4 + 699.724x1

4x2
4 −

122.247x1
6x2

4 + 5.53105x1
8x2

4 + 4.92242x2
6 + 29.7728x1

2x2
6 −

3.67914x1
4x2

6 + 0.443063x1
6x2

6 + 15.3625x2
8 − 4.00914x1

2x2
8 +

7.65271x1
4x2

8 − 1.49639× 10−16x1
6x2

8 + 0.0770756x2
10 +

0.353847x1
2x2

10 − 4.67621× 10−18x1
4x2

10 + 0.173594x2
12

The vector z has in this case length 36, therefore the matrix Q belongs to
R[α, λ]36×36. It turns out that the dimension of the affine space of the LMI
relaxation is 547, that is (α, λ) ∈ R547. By running an SDP algorithm we find
a lower bound at 0.0042. By using a local search algorithm we also find a local
minimum at (x1, x2) = (0.4327, 0.3049) whose value equals the value of our
lower bound, therefore we conclude it is actually the global minimum. Hence,
the approximant we obtain is given by the transfer function

T̂ =
−0.0085− 0.0004s

0.0930 + 0.0936s + s2
.

The optimal H2 distance between the given system of order 6 and its 2-nd order
approximant is 0.0661.

Again we have used an algorithm which consists of two parts. The first part
implemented in Mathematica 4.0 takes 105 seconds (plus 70 seconds to write
the data into a file readable with Matlab) and 178 Kb. Then, for solving the
LMI problem we use SeDuMi 1.05 (an update of SeDuMi 1.03) running under
Matlab. This takes another 70 seconds (of which 13 are used to read the data
obtained with Mathematica).

5.4 H2 model reduction: continuous-time MIMO case

The MIMO continuous-time case can be treated in a similar manner. The main
difference here is that the space of MIMO models of specified order n̂ is a real
analytic manifold (see [31]), but there is no continuous canonical form which
covers it entirely. However, the manifold can be covered by a finite number of
charts, where each such chart is generic, i.e. the chart covers the whole mani-
fold except for a thin subset. Now, given a finite number of charts it is possible
in principle to run an H2 optimization algorithm on each chart and choose af-
terwards the global optimum. However, since the charts can be chosen to be
generic, we claim that it is sufficient to run such an algorithm on a single chart.
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That is true even if the minimum is not attained on the chart, but on its bound-
ary. It may happen that for the particularly chosen chart the global optimum is
situated on the boundary of the chart. Theoretically this is not a problem since
we employ algorithms which compute the infimum of the criterion. However,
for computing an optimal approximant, one might have to switch to a different
chart. We do not go into details concerning this problem here.

Another question that one may raise in this situation is whether certain parame-
terizations, or even specific charts of a chosen parameterization, have advantages
over other parameterizations, respectively charts, from the computational point
of view. We do not give an answer here. Note that the choice of a parame-
terization is already restricted by the fact that the approximant system must
be stable. We use the input-normal canonical form for stable MIMO systems
introduced in [29]. The property of being input-normal proved to be very ad-
vantageous in the SISO case. As for the choice of a chart, we discuss this later,
on a particular example.

Example 5.4.1 We present here some preliminary results. The example is
meant to exhibit the high complexity of the problem, even for initial systems of
small order.

We have applied the procedure to a MIMO model reduction problem. The orig-
inal system is given by

A =





0 1 0
0 0 1
−1 −3 −2



 , B =





0 1
1 0
2 1



 , C =

(

1 0 0
0 1 0

)

. (5.3)

We want to approximate this by a lower order system (Â, B̂, Ĉ), of order 2.
For this example we construct the set of all charts necessary for covering the
manifold, corresponding to a input-normal canonical form. We follow closely
[29] in order to parameterize the pair of matrices (Â, B̂) with Â, B̂ ∈ R2×2. A
set of overlapping parameterizations, which covers the entire manifold, can be
constructed in the following way. Each nice selection determines in a unique
manner a chart. In our case, we have exactly 3 such nice selections of indices
in the reachability matrix

[

B̂ ÂB̂
]

, namely (1, 2), (1, 3) and (2, 4). Conse-
quently we have exactly 3 charts, as described below

Â =

(

−x2

1
+x2

2

2 −x2x3 − x4

x4 − x2

3

2

)

, B̂ =

(

x1 x2

0 x3

)

, x1, x3 > 0, (5.4)

or,

Â =

(

−x2

1
+x2

2

2 −x2x3 − x4

x4 − x2

3

2

)

, B̂ =

(

x1 x2

0 x3

)

, x1, x4 > 0, (5.5)
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or,

Â =

(

−x2

1
+x2

2

2 −x2x3 − x4

x4 − x2

3

2

)

, B̂ =

(

x2 x1

x3 0

)

, x1, x4 > 0. (5.6)

We chose to work with the chart (5.4). In this case, as discussed in Section
5.2.1, the optimal Ĉ can be determined as a function of (Â, B̂) from the for-
mula Ĉ = CM2 where M2 is the solution of AM2 + M2Â

T = −BB̂T . We
have computed symbolically the matrix M2, solution of the above equation using
Mathematica 4.0. We also compute the criterion to be maximized CM2M

T
2 CT .

Since its expression is very complicated, we do not reproduce it here. Let us
mention though that the criterion is a rational function whose numerator and
denominator are polynomials in 4 variables having degree 22 and 1091 terms,
respectively degree 24 and 726 terms.

Following the procedure in Chapter 4 we construct a polynomial p(x)−αq(x) in
4 variables and 1 parameter, of degree 24, having 1817 terms.

At first sight, we cannot detect any special structure in our problem, hence we
go on and apply the algorithm directly by constructing the LMI relaxation. Since
our vector z, of monomials in x1, . . . , x4 of degree less or equal to 12, has in
this case length 1820, we would have to work with (symmetric) square matrices
of the same size. That is, each matrix can be represented using 1820×1820/2 =
1657110 elements. The algorithm we run, SOSTOOLS 1.0 reports however the
size of 1 731 857 such elements. It also reports that the dimension of the affine
subspace is 15 015, information which we do not check by other means. Con-
structing the corresponding LMI took approximately 22 hours using SOSTOOLS
1.0.

We have mentioned this case here in order to show the increase in computa-
tional complexity that the MIMO case brings about. The procedure failed by
running out of memory, hence we conclude that, at least at this moment, the
method is too complex to be applied even for small examples.

5.5 Analysis on a lower bound for the H2 model reduction:

discrete-time MIMO case

As we have seen in the previous section, although it is in principle possible to
compute exactly an optimal solution of the H2 model order reduction problem,
the expressions involved (i.e. the H2 distance expressed as a rational function)
become extremely complicated in the MIMO case. Therefore, the exact methods
become less attractive even for small sized problems. In this section we discuss
a relaxation of the H2 model reduction problem in the discrete-time MIMO
case. The relaxation reduces to optimizing a rational function, having however
a much simpler expression than the one of the H2 distance. Then we compare
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the exact H2 model reduction with its relaxation on two particular examples.
It turns out that the relaxation is sharp in the first example. We prove this
by using the exact methods of Chapter 3. In the second example, we do not
know the exact value of the H2 optimal approximant. However, numerical com-
putations of the optimal approximant indicate that the relaxation gives a very
good approximation of the optimal reduced order model, although it may be
slightly different. In general, we do not expect the relaxation to be always sharp.

Let us consider the H2 model order reduction problem in the MIMO discrete-
time case. The method is based on rewriting the H2 distance in a novel way
using Faddeev reachability matrices. Let us describe briefly the method. Let
(A, B, C) be a state-space representation of a time-invariant, discrete-time, lin-
ear stable system with A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. We denote by
(Â, B̂, Ĉ) an approximant of order n̂. After optimizing with respect to B̂, the
criterion becomes:

‖Σ− Σ̂‖22 = trace(BT L1B)− trace(BT L2L
−1
3 LT

2 B).

See also the notation of Section 5.2.2 where the matrices Li
o there are here de-

noted for simplicity by Li, i ∈ {1, 2, 3}.

Since the term trace(BT L1B) depends only on the initial system, it is constant,
and therefore we concentrate on the criterion to be maximized

Wc = trace(BT L2L
−1
3 LT

2 B). (5.7)

The main idea is to rewrite Wc as

trace
(

ZP (PT P )−1PT
)

, (5.8)

where the matrix Z depends on the original system (A, B, C) as well as on the
unknown, parameterized matrix Â and the matrix P depends on the matrices
Â, Ĉ of the approximant. The exact definition of Z respectively P can be
deduced from the construction of the following subsection.

5.5.1 An equivalent formulation of the H2 criterion

As in Section 5.3, we work with parameterized representation of the approximant
(Â, B̂, Ĉ). Although in the MIMO case there is no continuous parameterization
of the whole manifold, we may work with a single generic chart. In order to fix
the ideas, let us consider the following parameterization for our approximant

Â =











0 1 0
...

. . .

0 0 1
? ? · · · ?











, B̂ =













? · · · ?
...

...
...

...
? · · · ?













, Ĉ =











1 0 · · · 0
? ? · · · ?
...

...
...

? ? · · · ?











.
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Here the starred entries denote parameters to be chosen freely under the sole
constraint that stability of Â holds. This parameter chart involves n̂(m + p)
parameters. Since the optimal B̂ is computed analytically, after fixing B̂ at its
optimal value we are left with only n̂p parameters, that is the free entries of
(Â, Ĉ).

Based on [30], we have the following definitions and results.

Definition 5.5.1 Let X be a matrix of size s× s, and y a vector of size s× 1.
Then:
(i) The characteristic polynomial of X is denoted by

χX(z) = det(zIs −X) = zs + χ1z
s−1 + . . . + χs−1z + χs.

(ii) The controller companion form matrix associated with X is denoted by Xc

and defined by

Xc =











−χ1 · · · −χs−1 −χs

1 0 0
. . .

...
0 1 0











.

(iii) The Faddeev sequence of X is denoted by {X0, X1, . . . , Xs−1} and defined
recursively by

X0 = Is,

Xk = XXk−1 −
trace{XXk−1}

k
Is, (k = 1, 2, . . . , s− 1).

Equivalently, if we define χ0 = 1, it holds (for k = 0, 1, . . . , s− 1) that

Xk = χ0X
k + χ1X

k−1 + . . . + χk−1X + χkIs.

(iv) The Faddeev reachability matrix of (X, y) is denoted by FX(y) and defined
by

FX(y) =
(

X0y X1y · · · Xs−1y
)

.

It then follows (see [30]) that the matrices L2 and L3 of (5.7) are given by

L2 =

p
∑

i=1

FAT (ci)∆̂(FÂT (ĉi))
T ,

L3 =

p
∑

i=1

FÂT (ĉi)∆(FÂT (ĉi))
T , (5.9)

where (for i = 1, . . . , p) the column vectors ci and ĉi denote the transposed rows
of C and Ĉ, respectively, whence:

C =







cT
1
...

cT
p






, Ĉ =







ĉT
1
...

ĉT
p






,
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and where the matrices ∆̂ (of size n× n̂) and ∆ (of size n̂× n̂) are the unique
solutions of the associated highly structured Sylvester and Lyapunov equations
in controller companion form:

∆̂−Ac∆̂ÂT
c = e1e

T
1 ,

∆− Âc∆ÂT
c = e1e

T
1 .

Here, eT
1 =

(

1 0 . . . 0
)

and Ac, respectively Âc, denote the controller

companion form of A, respectively Â. It is noted that the expression for L3

involves a finite number of Faddeev reachability matrices, but also the positive
definite symmetric matrix ∆. Let Γ ∈ Rn×n, invertible, such that ∆ = ΓΓT .
We introduce the following matrices:

GÂT (ĉi) = FÂT (ĉi)Γ, (of size n̂× n̂),

GAT (ci) = FAT (ci)∆̂(ΓT )−1, (of size n× n̂).

Then:

L2 =

p
∑

i=1

GAT (ci)(GÂT (ĉi))
T ,

L3 =

p
∑

i=1

GÂT (ĉi)(GÂT (ĉi))
T .

The matrices GÂT (ĉi) and GAT (ci) depend linearly on the entries of ĉi and ci,
respectively. Therefore, these matrices can also be rewritten as:

GÂT (ĉi) =
(

M̂1ĉi · · · M̂n̂ĉi

)

,

GAT (ci) =
(

M1ci · · · Mn̂ci

)

,

with M̂1, . . . , M̂n̂ of size n̂ × n̂ depending only on Â, and M1, . . . , Mn̂ of size
n× n̂ depending only on Â and A. For later use we introduce the matrices

GÂT =
(

GÂT (ĉ1) · · · GÂT (ĉp)
)

, (of size n̂× n̂p),

GAT =
(

GAT (c1) · · · GAT (cp)
)

, (of size n× n̂p).

We have:

L2 =

p
∑

i=1

n̂
∑

j=1

Mjciĉ
T
i M̂T

j =
n̂
∑

j=1

MjC
T ĈM̂T

j ,

L3 =

p
∑

i=1

n̂
∑

j=1

M̂j ĉiĉ
T
i M̂T

j =

n̂
∑

j=1

M̂jĈ
T ĈM̂T

j . (5.10)

Finally we therefore may write:

L2 = M(C)(M̂(Ĉ))T ,

L3 = M̂(Ĉ)(M̂(Ĉ))T ,
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where

M(C) =
(

M1C
T · · · Mn̂CT

)

, (of size n× n̂p),

M̂(Ĉ) =
(

M̂1Ĉ
T · · · M̂n̂ĈT

)

, (of size n̂× n̂p).

Notice that M(C) is in fact obtained from the matrix GAT by reordering its
columns in a particular way. The same holds true for M̂(Ĉ) and GÂT . Substi-
tution of the expressions (5.10) into the expression for Wc yields:

Wc = trace
(

[

M(C)T BBT M(C)
]

(M̂(Ĉ))T (M̂(Ĉ)(M̂(Ĉ))T )−1(M̂(Ĉ))
)

.

(5.11)

5.5.2 A relaxation of the H2 criterion

Note that the criterion Wc of (5.11) is indeed of the form trace(ZP (P T P )−1PT )
with

Z = M(C)T BBT M(C) and P = M̂(Ĉ)T .

The criterion Wc needs to be maximized now. We use the following known
result (see [53] for a proof):

Theorem 5.5.2 Let Z be a fixed n×n hermitian matrix. Consider the expres-
sion

W (P ) = trace(ZP (P T P )−1PT )

where P ranges over the set of n× n̂ matrices of full column rank n̂ ≤ n. Then:

a. The (globally) maximal value of W (P ) is equal to the sum of the n̂ largest
eigenvalues of Z (multiplicities included).

b. This maximal value is attained for any matrix P of which the column space
is spanned by n̂ independent eigenvectors of Z corresponding to these n̂
largest eigenvalues.

The idea now is that the optimal matrix P of (5.8) is determined by Z, according
to Theorem 5.5.2 b. Hence, using now Theorem 5.5.2 a, we can concentrate on
maximizing the sum of the n̂ largest eigenvalues of Z = M(C)T BBT M(C).
By construction, Z is a positive semidefinite matrix in Rn̂p×n̂p of rank at most
min {n, n̂p, m}.
Lemma 5.5.3 The following holds

trace(M(C)T BBT M(C)) = trace(BT (

p
∑

s=1

FAT (cs)∆̂∆−1∆̂T FAT (cs)
T )B).

Proof Let Z = M(C)T BBT M(C). We have

trace(Z) = trace(M(C)T BBT M(C)) = trace(BT M(C)M(C)T B) =

= (
∑

l,j(B
T M(C))(l, j)2)
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Here we have used the fact that trace(SST ) =
∑

l,j S(l, j)2, where S is an
arbitrary matrix and S(l, j) denote the (l, j) entry of S. Next using the fact
that M(C) was obtained from GAT by rearranging its columns, we obtain

trace(Z) = (
∑

l,j(B
T GAT )(l, j)2) = trace(BT GAT GT

AT B) =

= trace(
∑p

s=1 BT GAT (cs)GAT (cs)
T B)

By using now the definition of GAT (cs) we have

trace(Z) = trace(

p
∑

s=1

BT FAT (cs)∆̂∆−1∆̂T FAT (cs)
T B)

which had to be proved. 2

Theorem 5.5.4 Let n̂ ≥ m. Then

1. The sum of the n̂ largest eigenvalues of M(C)T BBT M(C) equals the sum
of all eigenvalues, that is trace(M(C)T BBT M(C)).

2. trace(M(C)T BBT M(C)) is a rational function in the entries of Â.

Proof 1. This is obvious since the rank of M(C)T BBT M(C) is at most m
and therefore n̂−m eigenvalues (multiplicities included) of M(C)T BBT M(C)
are equal to 0.
2. Use the formula in the Lemma 5.5.3. Since both matrices ∆, ∆̂ are rational,
hence ∆−1 is rational, trace(M(C)T BBT M(C)) is also a rational function. 2

In the following we concentrate on the case n̂ ≥ m, that is, the order of the
approximant is larger than or equal to the number of inputs. Hence our prob-
lem becomes now maximizing trace(Z) which is a rational function, but whose
expression is much more compact than the one corresponding to the original
H2 criterion. Also the number of variables in the rational function has de-
creased from n̂p to n̂, due to the parameterization chosen in Section 5.5.1. It
is interesting to compare the formulas of the H2 criterion and the constructed
relaxation.

Remark 5.5.5 The following hold:

• Using the formulas (5.7) and (5.9) we obtain the following expression for
the H2 criterion:

trace

(

BT (

p
∑

i=1

FAT (ci)∆̂(FÂT (ĉi))
T )(

p
∑

i=1

FÂT (ĉi)∆(FÂT (ĉi))
T )−1

(

p
∑

i=1

FAT (ci)∆̂(FÂT (ĉi))
T )T B

)

.
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• Lemma 5.5.3 gives the following expression for the relaxation of the H2

criterion

trace(

p
∑

s=1

BT FAT (cs)∆̂∆−1∆̂T FAT (cs)
T B).

Notice the resemblance between the two criteria. The formulas above also
explain why the second criterion has always a much more compact expres-
sion that the first one. Notice also that the unknown (parameterized) vectors
ĉi, i = 1, . . . , s do not appear in the second criterion.

5.5.3 A comparison of the exact H2 criterion with its relaxation

The following remark is rather important for this approach, based on Theorem
5.5.2. Our P in (5.8) equals M̂(Ĉ) (see (5.11)), and hence, has a certain struc-
ture. On the other hand, the optimum P returned by Theorem 5.5.2 may not
have the required structure. Therefore the above procedure returns in general
an upper bound of the sought maximum, and therefore a lower bound on the
H2 minimization problem. The lower bound is proved to be sharp for reduction
to order 1 models (see [53]). Naturally, one would like to know how good or bad
such relaxation is in the general case, that is reduction to n̂ ≥ 1 order models.
Let Wc be the criterion of (5.11) and W its relaxation (where the structured
matrix M̂(Ĉ) is replaced by an arbitrary, unstructured matrix P ). In fact, al-
though the two criteria (Wc and W ) do not coincide as functions, one might
hope that they still coincide at their global maximum. And this is truly the
question we are interested in. In order to answer this question two examples
are considered. In each example a 4-th order model with 2 inputs and 2 out-
puts is considered together with an H2 (locally) optimal approximant of order
2. Then we want to know whether W has a global maximum equal to the global
maximum of Wc at the given approximant. If that were true, then it would
mean both that the approximation is sharp at the optimum and that the (local)
optimum for the H2 problem is actually a global optimum. For this we used the
methods developed in Chapters 3 and 4 in order to establish whether, in each
example, the H2 optimal approximant was also an optimal approximant for our
relaxation designed. Exact methods were employed. In the first case, it turned
out that the H2 optimal approximant coincided with an optimal approximant
of our relaxation. However, in the second example we were less lucky since the
locally optimal approximant at hand, of the H2 criterion, proved to be indeed
a local, not global, optimum. But other, numerical methods indicated that the
global optimum of our relaxation was, if not equal, at least extremely close to
the numerical value of the H2 optimum. We present here the first example.

Example 5.5.6 This example was constructed by Ralf Peeters in [53], such
that both the original system and its approximant are known exactly, i.e. their
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entries are rational numbers. The system Σ is given by:

A =









0 1 0 0
0 0 1 0
0 0 0 1
0 − 1

8
1
2

1
4









, B =





















1
2 − 3

4

383
2080

279
1040

1839
8320 − 1317

4160

1419
33280

99
1280





















, C =

(

1 0 0 0
1 1 0 0

)

.

The following second order approximation Σ̂ is known to be a local maximum
of Wc.

Â0 =

(

0 1
4
9 0

)

, B̂0 =

(

1
2 − 3

4
1
6

1
4

)

, Ĉ0 =

(

1 0
1 1

)

The exact expression for Wc was computed. It is a rational function involving
4 variables, the entries of

Â =

(

0 1
−x2 −x1

)

, Ĉ =

(

1 0
y1 y2

)

.

The numerator polynomial has total degree 14 and consists of 705 terms, while
the denominator has total degree 12 and consists of 277 terms. The exact
criterion turns out to be too complicated to be handled by the exact meth-
ods of Chapter 4. Next we compute the relaxation of the problem and obtain
trace(Z) = p(x1, x2)/q(x1, x2) where p, q are the polynomials

p(x1, x2) = −(−1 + x2)(7907854144 + 3296829824x1 − 6927169920x1
2 −

2897270720x1
3 + 818184528x1

4 + 438089920x1
5 − 18864576x1

6 +

18209891616x2 + 6894389696x1x2 − 5524025360x1
2x2 − 2356001232x1

3x2 −
65091328x1

4x2 − 56513808x1
5x2 + 60932736x1

6x2 + 14986490756x2
2 +

5732635144x1x2
2 − 1324024308x1

2x2
2 − 583912552x1

3x2
2 −

270351000x1
4x2

2 + 30466368x1
5x2

2 + 5601025568x2
3 +

2101676108x1x2
3 + 244751432x1

2x2
3 − 85974588x1

3x2
3 −

57124440x1
4x2

3 + 1003427217x2
4 + 357191240x1x2

4 + 128010888x1
2x2

4 −
30466368x1

3x2
4 + 91843237x2

5 + 57115746x1x2
5 + 11424888x1

2x2
5 +

5940378x2
6 + 7616592x1x2

6 + 952074x2
7)

q(x1, x2) = 1081600(16 + 4x1 + x2)
2(−4 + 2x1

2 − 4x2 − x2
2)

2
.

Notice how simple this expression is compared to the exact expression of the
H2 criterion. We optimize now the relaxation with respect to x1, x2 in the
stability region. It turns out that (x1, x2) = (0,−4/9), corresponding to Σ̂ de-
fined above, is an exact global optimum of the rational function trace(Z). For
that we have employed the exact methods developed in Section 3.2 of this thesis.
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Let us describe now briefly our calculations. We know that (Â, B̂, Ĉ) defined
above correspond to a local maximum of Wc and that trace(Z) above is an
upper bound on Wc. In order to show that (Â, B̂, Ĉ) is a global maximum of
trace(Z) = p/q it is sufficient to show that (p/q)(0,−4/9) ≥ (p/q)(x1, x2), for
all (x1, x2) in the stability region. That is, the (x1, x2) for which Â is stable,
which is S = {(x1, x2) | − 1 < x2 < 1, 1 + x1 + x2 > 0, 1 − x1 + x2 > 0}.
Since (p/q)(0,−4/9) = 35/16 and q(x1, x2), the denominator of p/q, is always
nonnegative, we need to show that the polynomial F = (35/16q−p)(x1, x2) ≥ 0
for all (x1, x2) in the stability region. We prove this by computing the mini-
mum of F using the method of Section 3.2 . We have computed all the critical
values of F and they were all nonnegative, with a single critical value equal to
0 attained in the stability region S at (0,−4/9). Next, we have evaluated the
polynomial F on the boundary of the stability region. F restricted to every edge
of the boundary of S is a univariate polynomial, and it is positive. Therefore
we concluded that F was nonnegative on the entire S.

It is a completely open question what are necessary conditions for sharpness
of the relaxation. Also we do not know why the bound was sharp in the Exam-
ple 5.5.6.

Remark that in this example we do not employ our optimization methods for
computing the optimal H2 approximant. Both the original system and a lo-
cal optimal approximant are given. Our purpose is to perform analysis on a
proposed approximation method. We have opted here for the exact methods
rather than their numerical counterparts (based on LMI’s) for two reasons.
Firstly, deciding whether the two optimal values are equal requires their exact
computation of the real numbers. Secondly, for the first example, we found that
the LMI method returned a strict lower bound (in fact it returned −∞) and
that was not sufficient for our purpose.

Let us give the second example (designed by Ralf Peeters in [53])

Example 5.5.7 The original system is given by

A =









0 1 0 0
0 0 1 0
0 0 0 1
0 1

8 − 1
2

3
4









, B =





















− 519
8 − 829

64

2573
16

569
8

− 951
8 − 25673

384

− 3767
96

2707
384





















, C =

(

1 0 0 0
1 1 1 0

)

,

while the local optimal approximant (which turns out not to be a global optimal
approximant) is

Â0 =

(

0 1
− 1

2
1
2

)

, B̂0 =

(

0 −1
0 1

)

, Ĉ0 =

(

1 0
1 −1

)

.
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We do not reproduce the calculation here.

5.6 Conclusions

We have approached the optimal H2 model reduction as an optimization prob-
lem with a rational criterion function. We argued that although in principle it
is possible to compute the criterion and its global minimum, the computational
complexity increases tremendously with the order of the system and the order
of the desired approximant. Even if small problems are manageable in the SISO
case, more effort has to be put into solving the MIMO case. There the H2

criterion function obtained has too high complexity. Since the complexity of
the criterion is strongly related to the parameterization of the approximant, the
hope is, based on the experience with the SISO case, that serious simplifications
can be obtained using different parameterizations. This idea was not pursued
in this thesis.

Section 5.5 explores a different possible approach to the problem in the MIMO
discrete-time case, by looking at a considerably simpler lower bound. The lower
bound was compared to the exact solution in two examples and proved to be
either tight, in one example, or at least very close to it, in the second example.



Chapter 6

Other applications of optimization

algorithms

In this chapter we present further applications of the algorithms developed in
Chapters 3, 4 of the thesis. Chapter 5 presented an application to optimal model
reduction in H2 norm. We show here that other problems, like optimal model
reduction with respect to the divergence rate criterion (Section 6.1) and esti-
mation of the worst case H2 norm of a system with uncertainties (Section 6.2)
reduce to finding the global optimum of a rational function. Moreover, the exact
algorithm for global optimization of a polynomial function (Algorithm 3.2.18),
which computes a point in every connected component of the set of minimizers,
finds application to the global identifiability question, as discussed in Section 6.3.

Section 6.1 is based on [40] while Section 6.3 is based on [38]. Section 6.2
is based on an idea of A. Stoorvogel and has not been published previously.

6.1 Optimal Model Reduction of Stationary Gaussian Sys-

tems with respect to the Divergence Rate Criterion

System identification for a particular approach (see Procedure 6.1.1) involves
model reduction, that is determining for a model with a high state-space dimen-
sion a model of low state-space dimension. For Gaussian systems the problem
of model reduction is considered with the divergence rate criterion. The diver-
gence or Kullback-Leibler pseudo-distance corresponds to the expected value of
the negative natural logarithm of the likelihood function. An algebraic method
is proposed for model reduction. The results are a procedure for infimization of
the criterion and a theorem that this problem reduces to an infimization prob-
lem for a rational function. As illustration, two examples of model reduction
are presented which show that in general one can expect many local minima of
the criterion. This section is based on [40] and is a sequel to the papers [65, 64].

93
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6.1.1 Introduction

The aim of Section 6.1 is to show that model reduction for Gaussian systems
by the divergence rate criterion reduces to optimization of a rational function,
for which the methods of Chapter 4 can be subsequently applied.

The motivation is system identification of Gaussian systems. A finite-dimensional
Gaussian system is a linear system driven by a Gaussian white noise process.
Here, attention is limited to discrete-time systems. As is well known, a station-
ary Gaussian system is a mathematical model for an observed stationary Gaus-
sian process. The system identification problem is to construct from observed
data and from assumptions a mathematical model, here a Gaussian system,
such that the observed processes of the model approximate the observed data
as well as possible according to an approximation criterion.

Methods of system identification for Gaussian systems often used include the
maximization of the likelihood function, the subspace identification algorithm,
and the least-squares method. The divergence between two probability mea-
sures is a well known pseudo-distance. It equals the expectation of the negative
of the natural logarithm of the likelihood function.

The approximation problem of system identification is one of the major prob-
lems of this area. The main questions of parameter estimation include: How
to find the global infimum? How to derive the first-order conditions? How to
compute the local minima? How many local minima are there? Is the global
infimum unique?

The aim here is: (1) To present an algebraic approach and an algorithm for
the infimization of the divergence rate criterion of Gaussian systems. (2) To
show for several low order Gaussian systems that model reduction leads for the
divergence rate criterion to two or more local minima. for system identification
of Gaussian systems by the maximum likelihood method. Though it is known
from theoretical investigations and from numerical experiments with examples
of system identification problems that two or more local minima exist, the con-
sequences of this for system identification practice seem not to be widely known.

The results of Section 6.1 include a procedure to determine the global infimum
by an algebraic method. Determining the global infimum is proven to be equiv-
alent to infimization of a rational function for which the methods of Chapter 4
can be applied. The approach is illustrated in Example 6.1.7 with the reduction
from a third order Gaussian system to a second order one. The set of local
minima is not completely determined in this case although an upper bound on
its cardinality is provided. Example 6.1.6 treats model reduction for a Gaussian
system of state-space dimension 2 to one of state-space dimension 1. In this case
there are two potential minima, one is the global minimum and the other a lo-
cal one. The values of the criterion estimated at these two points are quite close.
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The novelty here, compared to previous publications (see [65, 64]), is in the
algebraic approach to model reduction and to maximum likelihood parameter
estimation of Gaussian systems. A description of the contents follows. The
next subsection contains a short problem formulation. This subsection is best
read in combination with the appendix. Section 6.1.3 presents the procedure
for model reduction via divergence rate infimization. The algebraic method is
presented in Section 6.1.4. Examples are provided in Section 6.1.5. Conclusions
are stated in Section 6.1.6. Appendix 6.1.7 contains notation and terminology
on linear systems, on Gaussian systems, and the formulas for the divergence
rate of stationary Gaussian systems.

6.1.2 Problem formulation

The motivating engineering problem is to determine a simple mathematical
model for a time series. One speaks of the system identification problem or
of the approximate realization problem. Examples of such a problem are the
modeling of a signal in a noisy communication channel, of messages in a digital
communication network, and of the traffic flow on a motor-way.

Mathematical notation for the problem is summarized below. See the appendix
for further details. Let (Ω, F ) be a measurable space and T = Z denote the time
index set. Let P1 be a probability measure on (Ω, F ) induced by a stationary
Gaussian process y : Ω×T → Rp with zero mean value function and covariance
function W : T → Rp×p.

A time-invariant finite-dimensional Gaussian system on a probability space
(Ω, F, P ) is a stochastic system with representation

x(t + 1) = Ax(t) + Bv(t),

y(t) = Cx(t) + Dv(t),

(A, B, C, D) ∈ GSP (p, n, p),

x : Ω× T → Rn, y : Ω× T → Rp,

see Appendix 6.1.7 for the full specification of the system. If the parameters of
the model are in the set SGSPmin(p, n, p) then the output process is a station-
ary Gaussian process. The probability measure induced by this system on the
output process y is denoted by P (q) where q ∈ QD represents the parameter
of a selected parameterization and QD ⊆ Rk is the domain of parameterization.

In the following attention is restricted to the approximation problem of the
system identification procedure.

Procedure 6.1.1 1. Determine from a finite time series a high-order Gaus-
sian system.
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2. Model reduction: Determine from a high-order Gaussian system a low-
order Gaussian system.

In Section 6.1 attention for the approximation problem is restricted to the di-
vergence rate criterion. The concept of divergence of two probability measures
is used in information theory. In probability theory divergence corresponds to
the Kullback-Leibler measure, see [10]. For a stationary stochastic process the
concept of divergence rate of two probability measures has been defined. In Ap-
pendix 6.1.7 an expression is provided for the divergence rate of two measures in-
duced by stationary Gaussian processes which are outputs of two time-invariant
finite-dimensional Gaussian systems. Denote this divergence rate by Dr(P1‖P2).

Let n̄ ∈ N denote an upper bound on the dimension of the Gaussian system to
be determined.

Problem 1 Solve

inf
n≤n̄, fp(q)∈SGSPmin(p,n,p)

Dr(P1‖P (q)). (6.1)

The problem involves establishing whether or not a minimum exists, if a mini-
mum exists to characterize the set of minima, and to construct a procedure to
compute a minimum or to approximate an infimum.

6.1.3 Procedure for infimization of divergence rate

Algorithm 6.1.2 Infimization of the divergence rate of stationary Gaussian
processes.
Data: Below System 1 represents the given probability measure and System 2
represents the probability measure associated to the parameterized approximant.

System 1 n1 ∈ N, (A1, B1, C1, D1) ∈ SGSPmin(p, n1, p),

System 2 n2 ∈ N, (A2, B2, C2, D2) ∈ SGSPmin(p, n2, p).

1. Compute the parameters of System 3, the inverse system of the approxi-
mant model System 2, by n3 = n2 and

(A3, B3, C3, D3) = (A2 −B2D
−1
2 C2, B2D

−1
2 ,−D−1

2 C2, D
−1
2 )

∈ SGSPmin(p, n3, p).

2. Determine by an algebraic method described in Section 6.1.4, if there ex-
ists, a parameter value q̂3 ∈ QD such that

q̂3 = argminq∈QDfc(q), (6.2)

fc(q) := Dr(P1‖P2(q)), (6.3)

The expression for the divergence rate is expressed in terms of a real-
ization, (A4, B4, C4, D4), of the series interconnection of System 3 and
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System 1 ( see Appendix 6.1.7).

fc(q) = Dr(P1‖P2) (6.4)

=
1

2
trace(C4Q4C

T
4 + D4D

T
4 − I)− 1

2
ln det(D4D

T
4 ).

where Q4 ∈ Rn4×n4 is the solution of the discrete-time Lyapunov equation,

Q4 = A4Q4A
T
4 + B4B

T
4 . (6.5)

3. Set (Â3, B̂3, Ĉ3, D̂3) = fp(q̂3) according to the parameterization map.

4. Compute the approximant System 2 according to

(Â2, B̂2, Ĉ2, D̂2) =
(

Â3 − B̂3D̂
−1
3 Ĉ3, B̂3D̂

−1
3 , −D̂−1

3 Ĉ3, D̂
−1
3

)

. (6.6)

6.1.4 Algebraic method

For the divergence infimization an algebraic method will be used. The algebraic
method refers to the use of abstract algebra, computer algebra, and the use
of the computer programs like Maple and Mathematica. The difficulties to be
overcome in the algebraic methods are to organize the calculations and to find
an approach that is of low complexity.

Procedure 6.1.3 1. Select a parameterization for the matrices of System
3, A3, B3, C3, and D3, see Algorithm 6.1.2. In view of Theorem 6.1.4,
we choose a parameterization which leaves matrices C3, D3 free. The
control canonical form gives such a parameterization. Alternatively, one
can consider canonical forms for stable systems as in [29]. Then the matrix
C3 does and the matrix B3 does not explicitly depend on the parameter
vector q. Consequently, see Algorithm 6.1.8, step 2, the matrix C4(q) does
and matrix B4 does not explicitly depend on the parameter q ∈ QD.

2. Solve by computer algebra the discrete-time Lyapunov equation (6.5) for
the symbolic matrix Q4(q).

3. Calculate the value of the criterion according to formula (6.4). The crite-
rion fc is the sum of a rational function and of a natural logarithm of the
parameters of the model matrices A3, C3, and D3.

4. Apply the reduction technique formulated in Theorem 6.1.4 to solve ana-
lytically for the matrices C3 and D3 and to derive the simplified formula
for the criterion see (6.4). There remains then an infimization problem
for a rational function.

5. Determine the value of the infimum. If, moreover, the infimum is attained,
i.e. the global minimum exists, then determine its location as well. For
this use the approach of Chapter 4.
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6. If this is of interest then information on the local minima can be obtained.
Derive the first order conditions of the simplified criterion with respect to
the elements of the parameter vector q ∈ QD. Computer algebra provides
programs for this.

7. Determine all real solutions of the equation obtained by setting to zero the
first derivative of the criterion with respect to the parameter vector. This
is the most difficult and demanding part of the procedure.

8. Calculate for each solution the second derivative of the criterion. Discard
all points for which the second derivative is not positive semi-definite.

9. For each of the remaining points calculate the value of the criterion fc(q).
By comparing the different values numerically determine the global min-
imum or the set of global minima if there exist two or more parameter
vectors which attain exactly the same value.

Remark that steps 6-9 are optional. They should be executed only if there is
interest in local minima.

Theorem 6.1.4 Consider the infimization problem of step 2 of Algorithm 6.1.2,

inf
q∈QD

fc(q),

where the matrices (A3, B3, C3, D3) depend on the parameter vector q ∈ QD
except for B3.

(a) The minimization of the criterion with respect to the matrix C3, for fixed
A3, D3, is reached at the matrix

C3 = −D3C1Q2Q
−1
3 , where, (6.7)

Q4 =

(

Q1 Q2

QT
2 Q3

)

∈ Rn4×n4 is the solution of (6.5), (6.8)

Q2 ∈ Rn1×n2 , Q3 ∈ Rn2×n2 . (6.9)

Hence the criterion depends on the matrices A3 and D3 only.

(b) The minimization with respect to D3 ∈ Rp×p, for fixed A3, is reached for
D3 satisfying

DT
3 D3 = M−1,

and the criterion simplifies to,

fc(q) = −1

2
ln det(DT

1 M−1D1) , where (6.10)

M = C1

(

Q1 −Q2Q
−1
3 QT

2

)

CT
1 + D1D

T
1 ∈ Rp×p.

The simplified criterion is a natural logarithm of a function which is a
rational function with respect to the entries of the matrix A3. Thus the
infimization problem is reduced to an infimization problem for a rational
function.
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Proof Use in the proof is made of formulas of differentials of functions with
respect to matrices, see e.g. [1]. More precisely, we use

∂

∂X
trace[XS1X

T ] = XS1 + XST
1 and

∂

∂X
ln det[XS2X

T ] = 2(X−1)T .

From the formulas of Algorithm 6.1.8, we have

fc(q) =
1

2
trace

(

D3C1Q1C
T
1 DT

3 + C3Q
T
2 CT

1 DT
3 + D3C1Q2C

T
3 + C3Q3C

T
3 +

+D3D1D
T
1 DT

3 − I
)

− 1

2
ln det

(

D3D1D
T
1 DT

3

)

.

(a) Differentiation with respect to C3 leads us to the optimal value for C3, as
in (6.7), for which value of C3, the criterion becomes

fc(q) =
1

2
trace

(

D3MDT
3 − I

)

− 1

2
ln det

(

D3D1D
T
1 DT

3

)

.

where
M = C1Q1C

T
1 − C1Q2Q

−1
3 QT

2 CT
1 + D1D

T
1 .

(b) Differentiation with respect to D3 in the formula above leads us, by equat-
ing to 0, to DT

3 D3M = I. Hence, whenever M is invertible, D3 must satisfy
DT

3 D3 = M−1. Notice that, with our assumption on the invertibility of D1,
M is the sum between a positive definite matrix and a positive semi-definite
matrix, hence it is invertible.

Using the fact that trace(XY ) = trace(Y X) and det(XY ) = det(Y X) for
any two matrices X, Y for which the above products are defined, and the fact
that trace is linear, we obtain

fc(q) =
1

2
trace

(

DT
3 D3M − I

)

− 1

2
ln det

(

DT
3 D3D1D

T
1

)

= −1

2
ln det

(

DT
1 M−1D1

)

.

2

Remark 6.1.5 Relation (6.10) allows different formulations. The following
might be useful

fc(q) =
1

2
ln det (M)− ln det (D1) ,

where ln det (D1) is a constant.

6.1.5 Examples

Example 6.1.6 Consider a Gaussian system of order 2 with representation in
the control canonical form as

A1 =

(

−0.4 −0.32
1 0

)

, B1 =

(

1
0

)

,

C1 =
(

0 −0.28
)

, D1 =
(

1
)

.
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An approximant will be determined in the form of a Gaussian system of order
1, according to the divergence rate criterion. The class of Gaussian systems
in which an approximant is to be sought is taken to be SGSPmin(1, 1, 1). This
class is parameterized by the control canonical form, hence

(A2, B2, C2, D2) = (a2, 1, c2, d2).

If d2 > 0, |a2| < 1, |a2 − c2d
−1
2 | < 1, c2 6= 0, then (A2, B2, C2, D2) ∈

SGSPmin(1, 1, 1).

We construct the quadruple, in control canonical form

(a3, b3, c3, d3) = (a2 − c2d
−1
2 , 1,−c2d

−2
2 , d−1

2 )

and compute the criterion to be minimized. As remarked, the optimum with
respect to c3 and d3 can be computed analytically. The criterion becomes

fc(q) = −1

2
ln

(

−34
(

25 + 10 a3 + 8 a3
2
) (

56907 a3
2 − 230375− 79900 a3

)

(731 a3
2 + 1801 a3 + 19500) (391 a3

2 + 7039 a3 + 11000)

)

The critical points equation with respect to a3 is a univariate polynomial in a3

whose roots are computed by numerical approximation. It turns out that in the
stability region we find two points of minimum of the criterion fc((â3, b̂3, ĉ3, d̂3))
such that

fc((0.6353, 1, 0.1059, 0.9631)) = 0.0376,

fc((−0.7835, 1,−0.1269, 0.9693)) = 0.0312.

We conclude that the second point is a global minimum, while the first returns
a local minimum, although their values are close. As in Step (4) of Algorithm
6.1.2, we compute the approximants

(â2, b̂2, ĉ2, d̂2) = (0.5253, 1.0383,−0.1142, 1.0383),

respectively (−0.6525, 1.0317, 0.1351, 1.0317).

However the two approximant systems have a very different behavior. Below
we have plotted the impulse response of the true system against the impulse
response of the global approximant (left), respectively the impulse response of
the true system against the impulse response of the local approximant (right).
In both figures, the impulse response of the approximant is represented by a
dashed line.
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Example 6.1.7 We have also considered a model reduction from order 3 to
order 2, for the system

A1 =









−1/4 1/2 1/3

1 0 0

0 1 0









, B1 =









1

0

0









,

C1 =
(

1 2 1
)

, D1 =
(

2
)

.

The approximant is taken in the control canonical form, parameterized by α1, α2,
γ1, γ2, δ. After optimizing analytically with respect to γ1, γ2, δ we are left with
optimization of a logarithm of a rational function

−1

2
ln

(

(

5640α1
3 + 85896α1

2 + 201240α1 + 181548 + 64746α1
2α2 + . . .

)

(376α2
3 − 618α2

2 + 150α2 + 5139− 564α1α2
2 − 444α1α2 + . . .)

)

,

which reduces, due to the monotonicity of the logarithm function, to optimiza-
tion of a rational function. By computing a Gröbner basis with respect to a total
degree ordering for the first order conditions, we are able to establish that the
function above has at most 100 complex critical points, including multiplicities.
Note that we were not able to compute a Gröbner basis with respect to a lexi-
cographical ordering. Hence in order to solve the polynomial system, we have
applied the Stetter-Möller method (Section 2.1.3) to the already computed total
degree Gröbner basis. This method (i.e., its Maple 7.00 implementation) failed
as well. In principle, the methods of Chapter 4 for constrained optimization of
rational functions can be employed for computing global optimum. However, we
did not perform the calculations.

6.1.6 Conclusions

The main result of Section 6.1 is Procedure 6.1.3 with an algebraic method for
infimization of the divergence rate between a Gaussian system and a class of
such systems of lower state-space dimension. Theorem 6.1.4 establishes that the
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infimization problem reduces to an infimization problem for a rational function.
Two examples illustrate the approach. In general a model reduction problem
with this criterion and, by analogy, the parameter estimation with the likelihood
function, will have many local minima. Further research is required to make
the algebraic method more efficient and to streamline the computer algebra.

6.1.7 Appendix

Linear systems

In the body of this section concepts and results for time-invariant finite-dimensional
linear systems are needed.

A discrete-time time-invariant finite-dimensional linear system is a dynamical
system with the representation

x(t + 1) = Ax(t) + Bu(t), x(t0) = x0,

y(t) = Cx(t) + Du(t),

where T = {t0, t0 + 1, . . .} is called the time axis, x0 ∈ Rn for some n ∈ N is
called the initial state, u : T → Rm is called the input function, x : T → Rn

is called the state function, y : T → Rp is called the output function, and
A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m. The parameters of this system
will be denoted by

(A, B, C, D) ∈ LSP (p, n, m).

Denote the reachability matrix and the observability matrix of this model re-
spectively by

R(A, B) =
(

B AB . . . An−1B
)

∈ Rn×mn,

O(A, C) =











C
CA
...
CAn−1











∈ Rnp×n.

It is said that (A, B) is a reachable pair if rank(R(A, B)) = n and that (A, C)
is an observable pair if rank(O(A, C)) = n. Denote the spectrum of the matrix
A ∈ Rn×n by spec(A) and let C− = {λ ∈ C| |λ| < 1} denote the inside of the
unit disc in the complex plane. Define the subclasses of linear systems

LSPmin(p, n, m) =

{

(A, B, C, D) ∈ LSP (p, n, m) |
(A, B) reachable pair, (A, C) observable pair

}

,

SLSP (p, n, p) =

{

(A, B, C, D) ∈ LSP (p, n, p) | rank(D) = p,
spec(A) ⊂ C−, spec(A−BD−1C) ⊂ C−

}

,

SLSPmin = SLSP (p, n, p)∩ LSPmin(p, n, p).
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Gaussian systems

A time-invariant finite-dimensional Gaussian system (without inputs) is a stochas-
tic system with representation

x(t + 1) = Ax(t) + Bv(t), (6.11)

y(t) = Cx(t) + Dv(t), (6.12)

where r, n, p ∈ N, p ≥ 1, v : Ω×T → Rr is a Gaussian white noise process, thus
an independent sequence of random variables with for each t ∈ T , v(t) ∈ G(0, V )
(v(t) has a Gaussian probability distribution function with parameters 0 and V ),
V ∈ Rr×r, V = V T � 0 (positive definite); A ∈ Rn×n, B ∈ Rn×r, C ∈ Rp×n,
D ∈ Rp×r; x : Ω× T → Rn, y : Ω× T → Rp are stochastic processes satisfying
the recursions (6.11,6.12).

Below a canonical form is used for Gaussian systems with respect to the co-
variance function of the output of the Gaussian system. For this purpose the
reader is reminded of the theorem that a Gaussian system is a minimal stochastic
realization of its output process iff it is stochastically observable and stochas-
tically reconstructible, see [44, 45]. Consider a Gaussian system that is stable,
with spec(A) ⊂ C−. Let Q ∈ Rn×n be the solution of the discrete Lyapunov
equation Q = AQAT + BBT , and let G = AQCT + BDT ∈ Rn×p. Then
the Gaussian system is a minimal stochastic realization of its output process iff
(A, C) is an observable pair and (A, G) is an observable pair. A time-invariant
finite-dimensional Gaussian system is said to be a Kalman realization if in addi-
tion to being of minimal state-space dimension it satisfies r = p, rank(D) = p,
spec(A) ⊂ C−, and spec(A−BD−1C) ⊂ C−.

Define the set of parameters of Gaussian systems with p, n, r,∈ N by

GSP (p, n, r) =
{

(A, B, C, D) ∈ Rn×n ×Rn×r ×Rp×n ×Rp×r
}

,

SGSPmin(p, n, p) =







(A, B, C, D) ∈ SGSP (p, n, p) | rank(D) = p, V = I,
(A, B) reachable pair,(A, C), (A, G) observable pairs,
spec(A) ⊂ C−, spec(A−BD−1C) ⊂ C−







.

Divergence rate

The divergence or the Kullback-Leibler pseudo-distance on the set of probability
measures of a measurable space (Ω, F ) is defined by the formula

D(P1‖P2) = EQ[r1 ln(
r1

r2
)I(r2>0)]

=

∫

Ω

r1(ω) ln

(

r1(ω)

r2(ω)

)

I(r2(ω)>0)Q(dω),

where Q is a σ-finite measure on (Ω, F ) such that

P1 � Q,
dP1

dQ
= r1, P2 � Q,

dP2

dQ
= r2.
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Here P � Q stands for P is absolutely continuous with respect to Q, i.e.
Q(A) = 0 implies P (A) = 0 (see [10, Ch. 16], [36], and [65, Def. C.7]).

Let y1 : Ω × T → Rp be a stationary stochastic process on T = Z. Denote
by P1, P2 two measures for process y1 on (Rp)T . The divergence rate between
P1, P2 is defined by the formula

Dr(P1‖P2) = lim
n→∞

1

2n + 1
D(P1|[−n,n]‖P2|[−n,n]), (6.13)

if the limit exists, where P1|[−n,n], P2|[−n,n] denote the restrictions of P1, P2 re-
spectively to probability measures of processes defined on the time index set
{−n, . . . ,−1, 0, 1, . . . , n}, see [36, 2.1.6] or [65, Def. E.4]. The following algo-
rithm is based on a theorem of [65] and modified in [64].

Algorithm 6.1.8 Computation of the divergence rate of two probability mea-
sures induced by the output processes of two time-invariant finite-dimensional
Gaussian systems.
Data. Let p, n1 ∈ N∗, n2 ∈ N,

(A1, B1, C1, D1) ∈ SGSPmin(p, n1, p), (A2, B2, C2, D2) ∈ SGSPmin(p, n2, p).

1. Construct the parameters of the inverse system of System 2 by the formulas
n3 = n2,

(A3, B3, C3, D3) = (A2 −B2D
−1
2 C2, B2D

−1
2 ,−D−1

2 C2, D
−1
2 )

∈ SLSP (p, n3, p).

2. Construct the parameters of the series connection of System 3 and of Sys-
tem 1 according to the formulas n4 = n1 + n3,

(A4, B4, C4, D4) =

((

A1 0
B3C1 A3

)

,

(

B1

B3D1

)

,

(

D3C1 C3

)

, D3D1

)

∈ SLSP (p, n4, p).

3. Solve the following discrete-time Lyapunov equation for the matrix Q4 ∈
Rn4×n4 ,

Q4 = A4Q4A
T
4 + B4B

T
4 . (6.14)

4. Compute the expression for the divergence rate,

Dr(P1‖P2) =
1

2
trace(C4Q4C

T
4 + D4D

T
4 − I)− 1

2
ln det(D4D

T
4 ), (6.15)

where P1 and P2 are the probability measures associated with the output
processes of the Gaussian systems 1 and 2 respectively.
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6.2 Systems with uncertainties: the H2 norm

In this section we discuss aspects related to systems with uncertainties. Since
we work with a model (nominal system), which is an approximation of the true
system and study its properties, we would like to know whether these properties
extend to the true system as well. Typically, the nominal system is simple, say
linear, time-invariant, finite-dimensional. In robustness analysis, one actually
defines a class of systems by adding uncertainty to the nominal system. A very
important assumptions is that the true system belongs to this class. This class
can consist, for example, of the linear systems situated in the neighborhood of
the given nominal model. This can be useful when one is confident that the
true system is linear but unsure of its actual representation. More generally,
the uncertainty can include unmodelled dynamics of the plant such as nonlin-
earities, time-variance, etc. Therefore the uncertainty can be represented as a
(dynamical or static) system, connected to the nominal system. The literature
(see, e.g. [72]) treats the following two cases, where the transfer matrix ∆(s)
representing the uncertainty is: (1) unstructured (i.e. ∆ is a full matrix); (2)
has a block-diagonal structure.

Here we allow arbitrarily structured perturbations and we are interested in
answering two questions about our class of systems. One question relates to
stability, i.e. we want to know if all the systems in the class remain stable,
knowing that the nominal system is stable. In this case we say that the nominal
system is robustly stable against the perturbations ∆. Another question relates
to the performance of the system, namely we are interested in the worst case
H2 norm of the systems in this class.

Notice that the H2 norm was defined for linear, time-invariant systems. If one
wants to include time-variance and/or nonlinearities in the uncertainty, then
one needs to extend the notion of H2 to these classes of systems. Several ways
to do that are developed in [63]. Notice that for each class, there are few possi-
ble definitions for the H2 norm but they are not necessarily equivalent, nor do
they define a norm (only a pseudo-norm, i.e. it can be 0 for nonzero systems).
We do not discuss further this issue since we deal primarily with linear systems.

The robust stability problem has been previously addressed for general (not
necessarily linear stationary) uncertainty, see for example [63], [15]. For unstruc-
tured dynamic uncertainty, the so called small gain theorem gives a necessary
and sufficient condition for robust stability ([72], Theorem 9.1). For structured
uncertainty the problem is more complicated. The so-called structured singular
value is used, see e.g. [72], Section 11.2, to derive necessary and sufficient con-
ditions for robust stability in the case of block-diagonal structured uncertainty.
The structured singular value is difficult to compute in practice and in general
only upper and lower bounds of its value are known.
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6.2.1 Problem formulation

Let us introduce our problem formulation. We consider a particular case where
the uncertainty is in the state matrix, as follows

Σ :

{

ẋ = (A + M∆N)x + Bu
y = Cx

(6.16)

with A ∈ Rn×n stable, B ∈ Rn×m, M ∈ Rn×k1 , C ∈ Rp×n, N ∈ Rk2×n given
and ∆ ∈ Fk1×k2 is an unknown matrix representing the uncertainty (F is a field,
equal either to R or C). Notice that the uncertainty is in the state transition
matrix, the input and output matrices being considered known. This can be
extended to the general case in a straightforward manner.

The following situation reduces naturally to a formulation of the type (6.16).
Consider the interconnection:

∆

Σu y

zw

Here Σ̂ is a system described by

Σ̂ :







ẋ = Ax + Bu + Mw
z = N
y = Cx

We have w = ∆z and a simple calculation shows that the closed loop system
perturbed with the static matrix ∆, has the form of system Σ.

As we already mentioned, we are interested here in computing the H2 norm
of the system Σ. But since the system is not completely known, we can only
compute the worst case H2 norm, corresponding to the system with the largest
H2 norm in our class of interest.

Let us consider the matrix ∆ affinely parameterized by δ ∈ Rk, where k is
the number of parameters. We consider the case of a bounded uncertainty,
since in general a large enough perturbation can destabilize the system. We
consider here two cases for the condition ∆ bounded: (a) ‖∆‖2 ≤ 1 (boundness
in the 2-norm); (b) maxi,j |δi,j | ≤ 1. The bound 1 on the right-hand side of
each inequality can be replaced by an arbitrary number. Let us define the pa-
rameter domain Ω ⊆ Rk as the set of all parameters satisfying the boundness
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condition on ∆. It is not difficult to see that in both cases (a) and (b) above,
the corresponding Ω domain is convex, hence it is also connected. Moreover,
the interior of Ω is an open set (as the counter-image of an open set through
a continuous function). These properties of the domain will be used later in
proving Proposition 6.2.2.

To describe the perturbation matrix ∆ and the class of systems Σ given by
(6.16), we denote them by ∆(δ), respectively Σ(δ), with δ ∈ Ω. We may now
formulate the main problem of Section 6.2, namely we want to compute:

sup ‖Σ(δ)‖22
s.t. δ ∈ Ω

(6.17)

where ‖.‖2 denotes the H2 norm of a system. Notice that if
Σ(δ) : (A+M∆(δ)N, B, C) is stable for all δ ∈ Ω, its H2 norm can be computed
using the formulas of Section 5.1.1. Therefore we have:

Proposition 6.2.1 Let Σ(δ) given by (6.16) describe a class of uncertain sys-
tems with A stable and with ∆(δ), the bounded uncertainty as in cases (a), (b)
above, such that A + M∆(δ)N is stable for all δ ∈ Ω. Then the worst case H2

norm in the class is given by the square root of

sup trace(CL(δ)CT ) (6.18)

s.t. δ ∈ Ω

where L(δ) is the solution of (A + M∆(δ)N)L + L(A + M∆(δ)N)∗ = −BBT .

Proof Obvious, since all matrices A+M∆(δ)N , for δ ∈ Ω ⊆ Rk, are stable. 2

One may wonder however what happens to the H2-norm of a system Σ(δ) : (A+
M∆(δ)N, B, C) when A + M∆(δ)N becomes unstable. Does the norm become
unbounded? The answer is negative in general, but positive in the following
case.

Proposition 6.2.2 If any Σ(δ) in (6.16) is minimal for all δ ∈ Ω, then the
nominal system is robustly stable against the perturbations ∆(δ) if and only if
the supremum of (6.18) is finite.

Proof We show that with this hypothesis, the system is not robustly stable if
and only if its norm is ∞.

Suppose that there is a δ0 ∈ Ω, such that A + M∆(δ0)N is unstable.
Since all systems Σ parameterized by δ ∈ Ω are minimal, there is no pole-
zero cancellation. Using the fact that A has all poles in the left-half plane,
A + M∆(δ0)N has at least one pole in the right-half plane and the domain Ω
is connected, there must exist a δ1 ∈ Ω, such that A + M∆(δ1)N has a pole on
the imaginary axis (due to the fact that Ω is connected). Therefore, the norm
of Σ1 : (A + M∆(δ1)N, B, C) is ∞. 2
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Remark 6.2.3 The minimality hypothesis in Proposition 6.2.2 is quite impor-
tant for robust stability, without it the theorem is not true as the following
counter-example shows. We prove there that in a non-minimality situation,
the pole on the imaginary axis may cancel against one of the zeros, while the
criterion remains bounded.

Counter-example 6.2.4 Let us consider the nominal system given by the triple

A =

(

−3 −2
1 0

)

, B =

(

1
0

)

, C =
(

1 −1
)

, (6.19)

stable and minimal. Let

M =

(

0 1
1 0

)

, N =

(

1 0
0 1

)

, ∆ =

(

δ1 0
0 δ2

)

, (6.20)

where ∆ is the disturbance matrix. Hence,

A + M∆N =

(

−3 −2 + δ2

δ1 + 1 0

)

.

The transfer function of the system Σ (see (6.16)) is

Tf(s) =
s− (δ1 + 1)

s2 + 3s− (δ1 + 1)(δ2 − 2)
.

The example was designed such that, when δ1 = −1, the system has a pole on
the imaginary axis which is however unobservable or uncontrollable, since the
system looses minimality. We want to show that in this example the H2 norm
of Σ remains finite, even when the system becomes unstable for a disturbance
which is large enough (δ1 = −1 is in the Ω domain).

Let us compute now the criterion (6.18). We compute the solution of the
Lyapunov equation

L =
1

6

(

1 0

0 − δ1+1
δ2−2

)

.

The final expression for L was obtained by simplifying out the factor 1 + δ1 in
the entries of L. The criterion (6.18) equals

δ2 − δ1 − 3

6(δ2 − 2)
.

Notice that its denominator does not depend on δ1, hence we expect that by
varying δ1, the expression of the criterion will remain bounded. Indeed, let us
consider ∆ such that ‖∆‖2 ≤ 3/2, that is Ω = {(δ1, δ2) ∈ R2 | |δi| ≤ 3/2, i =
1, 2}. Since the denominator of the criterion is (strictly) positive on Ω, then the
criterion is bounded on the domain. Notice however that for (−5/4, 1) ∈ Ω, the
matrix A + M∆(−5/4, 1)N has an unstable eigenvalue, namely (

√
10− 3)/2.

As we have seen, the loss of minimality is quite essential. In this example,
the system Σ becomes non-minimal for 1 + δ1 = 0 (loss of reachability) or
δ2 − δ1 − 6 = 0 (loss of observability).
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Remark 6.2.5 The value (6.18) can serve as a criterion for testing the lack
of robust stability in the following way. If (6.18) is ∞, then the system is not
robustly stable. If (6.18) is finite we cannot draw immediately a conclusion.

The following example shows a somewhat peculiar behavior of the H2-norm of
a system.

Example 6.2.6 Let

A =

(

−3 −2
1 0

)

, B =

(

1
0

)

, C =
(

1 δ − 1
)

,

M =

(

1
0

)

, N =
(

1 2
)

, ∆ =
(

δ
)

,

with the transfer function

Tf(s) =
s + δ − 1

(s + 2)(s− δ + 1)
.

The system Σ : (A + M∆N, B, C) is stable and minimal for δ = 0. It is
interesting to see that the H2-norm of Σ is constant, namely it equals 1/2,
on the entire stability region. This can also be seen immediately by using the
formulas of Section 5.1.1.

Since the H2-norm of the system Σ can be expressed as a rational function in
the parameters of ∆, we can treat the problem (6.17) as a rational optimization
problem. We investigate here the applicability of the rational optimization
algorithm algorithms developed in Chapter 4.

6.2.2 Computing the worst case H2 norm

The system Σ is given in a state-space representation as in (6.16). Suppose we
choose to compute the norm using the formula

‖Σ‖22 = trace(CLCT ),

where L is symmetric in the real case and hermitian in the complex case and
satisfies

(A + M∆N)L + L(AT + NT ∆∗MT ) + BBT = 0.

The latter equation is linear with respect to the entries of L, therefore the so-
lution L can in principle be computed symbolically.

Since this is a constrained rational optimization problem, we know that there
are several ways of solving it. We discuss here one possibility.
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Reparametrization method

It is possible to rewrite our constrained rational optimization problem as an
unconstrained one using a reparametrization of ∆, as follows. For a constraint
of type (a) ‖∆‖2 ≤ 1 we have:

Proposition 6.2.7 Let ∆ ∈ Fk1×k2 . Then ‖∆‖2 ≤ 1 if and only if there exist
a matrix Γ ∈ Fk1×k2 such that ∆ = 2Γ(I + Γ∗Γ)−1.

Proof Assume first that a matrix Γ such that ∆ = 2Γ(I + Γ∗Γ)−1 exists. We
make use of the fact that ‖∆‖2 ≤ 1 ⇐⇒ ∆∗∆− I � 0. Then

∆∗∆− I = 4(I + Γ∗Γ)−1Γ∗Γ(I + Γ∗Γ)−1 − I

= −[4(I + Γ∗Γ)−2 − 4(I + Γ∗Γ)−1 + I]

= −[2(I + Γ∗Γ)−1 − I]∗[2(I + Γ∗Γ)−1 − I] � 0.

Conversely, assume that ‖∆‖2 ≤ 1 and consider the singular value decompo-
sition of ∆ = UDV ∗ with U ∈ Ck1×k1 , V ∈ Ck2×k2 orthogonal matrices and
D = diag(d1, . . . , dk) with 1 ≥ d1 ≥ . . . ≥ dk ≥ 0 and k = min{k1, k2}. For
every i = 1, . . . , k, there exists (at least one) ti such that di = 2ti/(1 + t2i ).
Define T = diag(t1, . . . , tk) and Γ = UTV ∗. Then it is fairly easy to see that Γ
constructed in this way satisfies ∆ = 2Γ(I + Γ∗Γ)−1. 2

Remark that if ∆ is a block diagonal matrix, the above parameterization can be
applied to each block individually and in this way we obtain a parameterization
of the whole matrix.

For both cases of real and complex perturbation matrices ∆ (Γ), the objective
function of the optimization problem is a rational function, with real coeffi-
cients, in the entries of Γ, respectively in the real and imaginary parts of the
entries of Γ. Let us notice here that the reparametrization increases a lot the
computational complexity, especially in the case of full uncertainty matrix.

A constraint of type (b) maxi,j |δi,j | ≤ 1 is parameterized using the same idea
by δi,j = 2ti,j/(1 + t2i,j).

The choice of a canonical form: computational aspects

Obviously, no matter which of the equivalent representations we consider, the
objective, i.e. the H2 norm of the system, is the same in the end. However,
our choice might affect the complexity of the objective function computations.
Notice that the the solution L of the Lyapunov equation (linear equation in the
entries of L) can be in principle solved using Cramer’s rule. That is, computing
symbolically some determinants.
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Let us remark that we need not compute a full solution of the Lyapunov equa-
tion, just a few elements of the matrix L = (ls,r) may suffice. That is due to
the particular form of the criterion:

trace(CLCT ) =

p
∑

i=1

ciLcT
i ,

where ci denotes the i−th row of C. It is clear that if C is sparse, then not all ele-
ments of L need to appear in the criterion, hence we need not compute them. In
particular, if for i = 1, . . . , p the i-th row of C is ci =

(

0 . . . 0 1 0 . . . 0
)

with a 1 on the ji-th position, the criterion becomes

trace(CLCT ) =

p
∑

i=1

lji,ji
.

Hence, out of n(n + 1)/2 different elements of L we only need to compute p
elements, as described above. That helps, since with Cramer’s rule we compute
the entries of L individually, as the fraction of two determinants. Notice that
choosing a representation in which C has the required form is possible in the
MIMO case, as soon as we assume that C has full rank.

On the other hand, we have to take into account that computing determinants
symbolically may not be an easy task. It normally helps if the determinant is
sparse. That reduces in our case to having a sparse matrix A + M∆N . The
question is now whether we could combine the two requirements, having C as a
submatrix of In and having a sparse A + M∆N in the same parameterization.
Or, if not, what would be the right balance, between a sparse C and a sparse
A + M∆N? In other words, should we put more effort in computing just a
few determinants or should we go for computing many determinants, provided
that the computation of each of them is somewhat simpler? We do not expect
to give a general answer to this question, that may depend on the example at
hand. Our intention is merely to make the user aware of these issues and give,
say, some guidelines.

One main problem here is that it is difficult to estimate apriori how difficult
the symbolic computation of the determinant(s) would be. We claim here that
this is related to the sparsity of A + M∆N (and this is influenced by both the
sparsity of A and M∆N as well as by the overlapping of their zeros). Also, for
an intermediate complexity of the computations, we could choose A + M∆N
with as many numerical entries (not necessarily 0) as possible. This task seems
to be somewhat easier since all the parameters are contained in ∆ and M, N
have both rank smaller than or equal to n.

Procedure

We propose the following procedure for computing the worst case H2 norm.
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Procedure 6.2.8 The following procedure computes the worst case H2 norm
of an uncertain (robustly stable) system.

1. Compute the criterion (6.18) as a rational (constrained) optimization func-
tion.

2. Rewrite the optimization problem of step 1 as an unconstrained optimiza-
tion problem, using for example the reparametrization method discussed
earlier.

3. Compute the supremum, using either one of the methods of Sections 4.1.2,
4.1.3.

Remark 6.2.9 In case the algorithm of Section 4.1.2 is employed, an exact
value is obtained while the procedure of Section 4.1.3 may return in general an
upper bound on the actual supremum.

6.2.3 Example

We treat here a small example using the reparametrization method.

Example 6.2.10 Let us consider a system Σ̂ and the diagonal perturbation ∆
given by

A =





1 2 −3
0 −3 1
1 0 −2



 , B =





1
0
0



 , C =

(

1 2 0
−1 0 3

)

,

M =





−1 −2
0 3
0 1



 , N =

(

1 −4 0
0 1 −2

)

, ∆ =

(

δ1 0
0 δ2

)

.

We approach this example slightly differently, namely, instead of computing the
worst case H2-norm in a domain where the system is robustly stable, we deter-
mine an area Ω where the system Σ : (A + M∆N, B, C) is minimal. Then, in
Ω, we know that the boundness of our criterion (6.18) is equivalent to robust
stability. Straight-forward calculations show that:

(i) the system Σ : (A + M∆N, B, C) looses observability for (δ1, δ2) =
(16/81, 4/9);

(ii) the system Σ : (A + M∆N, B, C) losses reachability when δ2 = 1/6 (δ1

is free);
We are also interested to know whether the system has hidden unstable

modes. By studying the eigenvalues of A + M∆N in these two cases, we obtain
(i) all eigenvalues are stable;
(ii) all eigenvalues are stable if and only if δ1 ∈ (2(5−

√
21)/3, 2(5+

√
21)/3).

The above computation shows that in Ω = {(δ1, δ2) | δi ≤ 1/10, i = 1, 2},
the system Σ is minimal.
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The criterion (6.18) is a rational function, denoted here p(δ1, δ2)/q(δ1, δ2),
and was computed using Mathematica

p(δ1, δ2) = −319− 137δ1 − 20δ1
2 + 1271δ2 − 279δ1δ2 − 226δ1

2δ2 −
−1262δ2

2 + 27δ1δ2
2 + 46δ1

2δ2
2 + 245δ2

3 − 46δ1δ2
3

q(δ1, δ2) = 2(1 + 2δ1 − 6δ2 + 23δ1δ2)

(−15− 22δ1 − 5δ1
2 + 14δ2 + 36δ1δ2 + δ1

2δ2 − 4δ2
2 − δ1δ2

2)

Notice that unlike the H2 model reduction where the denominator was always
a positive polynomial, we are here in a different situation. The denominator
may become 0 if the system becomes unstable. If the system is minimal then the
denominator will become 0 whenever the system becomes unstable.

It turns out that for ‖∆‖2 ≤ 1/10 the system is not robustly stable. That
follows from Theorem 4.1.3 and the fact that the denominator changes sign in
the domain defined by ‖∆‖2 ≤ 1/10. Hence, according to Proposition 6.2.2, the
system is not robustly stable for a disturbance ∆ with ‖∆‖2 ≤ 1/10.

Let us consider a smaller disturbance, for example 1/20. In order to satisfy
the condition ‖∆‖2 ≤ 1/20 we make the substitution δ1 = γ1/10(1 + γ2

1), δ2 =
γ2/10(1 + γ2

2) and apply the optimization algorithm.
We know that if the denominator changes sign, the criterion (6.18) is ∞.

Hence we first check the denominator. Since the denominator is positive at a
certain point, we compute its minimum by constructing an LMI relaxation. The
LMI relaxation has a linear space of dimension 316 and uses square symmetric
matrices of size 28. The lower bound on the minimum of the denominator re-
turned by the algorithm is 1.42 106. Since this is positive, we conclude that the
denominator does not change sign, moreover q(γ) > 0, ∀γ ∈ R2.

Let us return to our problem. We want

max
p(γ)

q(γ)
= −min

−p(γ)

q(γ)
= −max{α | −p(γ)

q(γ)
≥ α ∀γ ∈ R2} =

= −max{α | − p(γ)− αq(γ) ≥ 0 ∀γ ∈ R2}. (6.21)

We consider now problem (6.21). The LMI relaxation for this problem has a
linear space of dimension 316 and uses square symmetric matrices of size 28 as
well. The upper bound on the supremum, returned by the algorithm is 17.3852.
By local search we find this value as a local maximum, and therefore conclude
the the bound is attained.

We draw two conclusions from here. Firstly, all the systems in the class
are stable for a disturbance ∆, with ‖∆‖2 ≤ 1/20. Secondly, the worst-case
H2 norm is 4.1696, while the norm of the nominal system is 3.2609. For these
calculations we took into account that our criterion returns the square of the H2

norm.
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6.2.4 Conclusions

We have shown here how the algorithms for rational optimization developed in
Chapter 4 can be applied to compute the worst case H2 norm of a robustly
stable system with (structured) uncertainty. It should be noted that we have
treated here only linear uncertainties since in this case the H2 norm is indeed a
rational function in the uncertainty parameters.
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6.3 Global identifiability analysis using algorithms for de-

tecting connected semi-algebraic components

In the process of modeling of phenomena, one proposes a model defined up to a
set of parameters. Determining the values of these parameters completely iden-
tifies the model. It may happen that in the proposed class of models, the value
of the parameter (vector) cannot be uniquely determined. Determining whether
there exists a unique value of the parameter vector in this model class is called
the identifiability problem. A system is considered globally identifiable if there
is exactly one model corresponding to the system in the given class of models.
The system is called locally identifiable if there exists a neighborhood in which
it is identifiable (equivalent to the concept of global and local injectivity of a
multidimensional, multivariable function). The global identifiability problem is
considered hard.

Formally, one proposes a model M(θ), θ ∈ Ω ⊆ Rn to be fit to the data.
The model may contain little information. It may just specify that the system
is linear, time-invariant and finite dimensional of a specified order n. The model
may also be represented in various ways. In the case of a linear, time-invariant,
finite dimensional system, the model could be described either using the transfer
function, that is a matrix rational function of degree n, or using a state-space
description, that is a tuple of matrices (A, B, C, D) of appropriate sizes. In
the first case, the parameter vector θ may represent the unknown coefficients
appearing in the transfer function. In the later case, θ may represent the un-
known entries in the matrices A, B, C, D, taken in a certain canonical form. In
this case, the model is called unstructured. If knowledge exists about ‘realistic’
values that the parameters θ can take, this may be included in Ω.

On the other hand, there may exist apriori knowledge about the system which
needs to be included in the model. One may think for example of a system
composed of smaller subsystems which are interconnected in a specified man-
ner. In this case we speak about structured systems. Linear structured systems
are typically represented by tuples (A(θ), B(θ), C(θ), D(θ)) with (highly) struc-
tured matrices. Very often, the values of the parameter vector θ have a certain
interpretation. Especially in this case, the identifiability question, that is the
existence of a unique corresponding value for θ, becomes extremely important.

Identifying an unstructured system means fitting the data to the chosen model
while minimizing a certain criterion, for example minimizing the prediction er-
ror criterion. The algorithms used for optimizing the criterion find in general a
local minimum. In general, there are no guarantees that this is a global mini-
mum as well, or if it is, there may still exist several values of θ, leading to the
same optimum but corresponding to different models in the same classM(θ). It
is desirable to have efficient algorithms which can locate multiple global minima
or local minima with a close value of the criterion.
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In the case of structured models, the problem becomes even more complicated.
There, one needs to make sure that the mapping θ ∈ Ω 7→ M(θ) is injective,
that is the identifiability of the structure. This is also our main object of study
in this section.

The question concerning the identifiability of the structure can be approached
in the following way (see, e.g., [70]). In case the model has a finite complete
set of invariants, the problem related to global identifiability of the structure
can be reduced to solving a system of equations. The existence of a unique
solution is equivalent to global identifiability. For specific classes of models such
equations are in fact polynomial, hence specific tools can be employed. The
Buchberger algorithm used for solving a system of polynomial equations has, in
the worst case, doubly exponential computational complexity. Moreover, as we
shall argue later, the algorithm cannot be easily adapted for handling inequality
constraints on the parameters. In practice, we are often interested in identifia-
bility on restricted real domains.

We propose here to split the problem of global identifiability into two separate
steps (problems): local identifiability plus a check on the existence of ‘remote’
indistinguishable values of the parameter. The second step aims to complete
the analysis on the global identifiability.

We work under the assumption that the system allows a finite complete m-tuple
of invariants and that the invariants are multivariable polynomial or rational
functions in terms of the parameters. Moreover, when the feasible region in
which we want to study identifiability is a strict subset of Rn, we assume that
it is in fact a semi-algebraic set, i.e. a set defined by polynomial equations and
inequalities. Note that for linear time-invariant state-space models there exist
finite complete sets of invariants (Markov parameters, coefficients of the transfer
function) and that in many cases they are polynomial or rational functions.

Section 6.3.1 reviews results on the problem of local identifiability which plays
an important role in our approach. Section 6.3.2 discusses briefly the existent
approach to global identifiability based on Gröbner bases and Buchberger algo-
rithm. Our approach is discussed in Section 6.3.3 and the section is concluded
with a small example.

6.3.1 Local identifiability

Let θ = (θ1, . . . , θn) denote the parameter and f = (f1, . . . , fm) be a complete

set of invariants. Assuming a nominal point θ̂ is given, one would like to know
whether the function f is locally injective at θ̂. The basic idea is that the sys-
tem is not locally identifiable whenever slight modifications on the parameters
exist that leave the invariants of the system unchanged. A natural approach
would therefore be to consider the Jacobian of the transformation which maps
the unknown parameters θ to the invariants of the system. The following holds
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(see [19]).

Let the parameter feasibility domain Ω be an open set in Rn and f : Ω → Rm

be a Ck map with k ≥ 1. Then if the Jacobian (∂f(θ)/∂θ) has constant rank r

in a neighborhood of θ̂, f is locally injective at θ̂ if and only if r = n.

In a stochastic framework for linear systems, a different approach based on
the Fisher information matrix can be used. Local unidentifiability implies the
singularity of the Fisher information matrix. Conversely, for some parameter-
ized classes of systems it has been shown that the asymptotic Fisher information
matrix becomes singular if and only if the system is non-identifiable due to over-
parameterization ([52], [51]).

In both cases, the analysis of the local identifiability reduces to the check on
the singularity of a certain matrix. A nonsingular matrix corresponds to local
identifiability. The converse is in general not true, the singularity of the matrix
is however a signal that there may be local non-identifiability.

6.3.2 Global identifiability

Gröbner bases are powerful tools for solving systems of polynomial equations
and obtaining complete solutions, i.e all solutions over the complex field. For
identifiability they are used in the following way:

Given a finite complete set of invariants of a system f1, . . . , fm depending on
θ = (θ1, . . . , θn), solve the system for θ ∈ Ω(⊆ Rn)











f1(θ1, . . . , θn) = f1(φ1, . . . , φn)
...
fm(θ1, . . . , θn) = fm(φ1, . . . , φn),

(6.22)

in the variables θ1, . . . , θn, where φ1, . . . , φn are parameters. Polynomial systems
are solved by the Buchberger algorithm which is known to return a complete
set of solutions over Cn, in case the system has a finite number of solutions in
Cn. This is the case we hope for. If the algorithm returns a unique solution
θi = φi, i = 1, . . . , n, then the function (f1, . . . , fs) is (globally) injective for
generic values of the parameters. That is, except maybe for a thin subset, the
parameterization is (globally) identifiable. The Buchberger algorithm is suited
for symbolic calculations, hence it can handle the parameters φ.

There are two drawbacks of such a method. One is the theoretical complex-
ity, the second is that the set of solutions is given over the whole Cn. It is not
clear how one would restrict the domain to (subsets) of Rn. Even if a system
is not identifiable on Cn, it may be (globally) identifiable on the feasible set in
Rn, and this is not clear from the approach presented above. In the following
section we look at algorithms that work over the reals and include constraints.
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6.3.3 Algorithms for obtaining partial solutions of systems of poly-
nomial equations and inequalities

In the particular problem of global injectivity we do not need to find all solutions
of f(θ) = f(φ) to decide on the injectivity. In fact we only need to know whether
there are at least two distinct solutions. We cannot answer this question very
easily. Let us fix for the moment θ̂ ∈ Ω. Our approach will be to characterize
the set of solutions S = {θ ∈ Ω| f(θ) = f(θ̂)}. The solution set of a polynomial
system of equations and inequalities consists of a finite number of connected
components, also called cells (see Theorem 2.2.9). Such components may have
dimension zero (one point) or may have higher dimension. Obviously, the global
injectivity corresponds to the case when S consists of a single, zero-dimensional
component. There exists local injectivity at a point θ̂ if the connected compo-
nent which contains the point is zero-dimensional (i.e. the component is equal

to {θ̂}).

Therefore the number of components and their dimension will give the answer
to problems of global identifiability. First we discuss a way to detect all con-
nected components. In fact we shall discuss below an algorithm that, given a
system of polynomial equations (and inequalities), returns at least one point in
every connected component. Hence, if there is more than one component, the
algorithm will return more than one point. The dimension of a component will
be studied by performing local analysis.

Although we do not find all the points in the components, we obtain sufficiently
rich information to give an answer to the global injectivity problem (at a given
point). To be more precise, let us consider the polynomials f1, . . . , fm, fm+1, . . . , fs

in (θ1, . . . , θn), n ≤ m, and the system

{

fi(θ1, . . . , θn)− fi(θ̂1, . . . , θ̂n) = 0, i = 1, . . .m

fj(θ1, . . . , θn, θ̂1, . . . , θ̂n) ≥ 0, j = m + 1, . . . s
(6.23)

where θ̂ = (θ̂1, . . . , θ̂n). Let S denote the solution set of (6.23) and Cl, l =
1, . . . , L denote the connected components of S, S = ∪L

l=1Cl. In the following
we indicate a method for computing at least one point in every connected com-
ponent Cl of the solution set.

Suppose for the moment that no inequality constraints are imposed on θ, i.e.
m = s. We form the polynomial f(θ) =

∑m
i=1(fi(θ) − fi(θ̂))

2. Obviously
f(θ) ≥ 0 for every value of θ and moreover f(θ) = 0 if and only if θ is a
(real) solution of (6.23). Hence the solution set of (6.23) is equal to the set
{θ ∈ Rn|f(θ) = 0}. An algorithm for finding a point in each connected com-
ponent of the latter set is described in Section 3.2, Algorithm 3.2.18. There,
the problem of finding the global minimum of a polynomial is discussed. The
problem is reformulated as a generalized eigenvalue problem for a certain matrix
of size at most (d+1)n, where d is the total degree of f . The algorithm returns
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together with the minimal value, (at least) one point in each connected compo-
nent of the set of minimal points, that is a point in each Cl. It is shown that at
least one of the points found in each Cl has minimal Minkowski norm within Cl.

Remark that we can introduce inequalities of the form fj(θ) ≥ 0 in our setup,
introducing in the same time a new variable xj , with x2

j = fj(θ). The system
(6.23) where the inequalities have been relaxed becomes

{

fi(θ1, . . . , θn)− fi(θ̂1, . . . , θ̂n) = 0, i = 1, . . .m

x2
j − fj(θ1, . . . , θn, θ̂1, . . . , θ̂n) = 0, j = m + 1, . . . s

(6.24)

in variables (x, θ). Since the algorithm finds a real solution in every connected
component of the solution set, the problem that we encountered with the Buch-
berger algorithm is avoided.

Notice that the problem of finding at least one point in every connected compo-
nent of the solution set of a system of the type (6.23) is extensively studied in
the literature. Consequently, various algorithms can be employed for solving it,
see for example [57], [8]. An important criterion for comparison of algorithms
should be their computational complexity.

We call a system globally distinguishable at θ̂ if it is locally identifiable at θ̂
and there are no remote values (in the feasible parameter domain) correspond-
ing to the same invariants of the system. A system is globally identifiable if it
is globally distinguishable at every point in the feasible set.

Remark 6.3.1 In our algorithm we are making use of the nominal value θ̂.
That is, the value that has been accepted for the parameter, after applying an
identification procedure. The nominal value is than used as input in the algo-
rithm in the search for other values of θ such that f(θ) = f(θ̂), i.e. the models

corresponding to θ̂ and θ are indistinguishable. Remark that such an approach
does not answer completely the question on the injectivity of the function. In
fact we would rather have the injectivity question answered on a neighborhood
of f(θ̂).

In the identification process, the nominal value is mostly found as a result of
a minimization procedure. In principle we could apply the Algorithm 3.2.18
or Algorithm 4.1.8 directly for estimating the parameter and simultaneously
finding different indistinguishable values of the parameter, in case they exist.

Remark 6.3.2 1) Assume that the nominal value is locally identifiable at the

nominal point θ̂ and we are interested in the global identifiability. We argue in
the following that the method based on Algorithm3.2.18 gives some important
extra information.
Suppose the system is not globally identifiable. Therefore there will be more than
one component. As we already mentioned, Algorithm 3.2.18 computes points (in
the cells) of minimal Minkowski norm. Suppose now that we apply the algorithm
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to the polynomial translated to the nominal point, i.e. f(θ1, . . . , θn) becomes

f(θ1 − θ̂1, . . . , θn − θ̂n). Then the algorithm, applied to f(θ1 − θ̂1, . . . , θn − θ̂n),
will return points (in different cells) situated at minimal Minkowski distance

from the nominal value θ̂. In other words we know the Minkowski distance be-
tween θ̂ and all other cells. This will insure us that inside the Minkowski ball
centered at the nominal value and radius equal to the distance returned by the
algorithm (the distance to the closest cell), the system is identifiable. This may
be useful if one can decide for example that the parameter feasible region is com-
pletely contained in the ‘identifiable’ region.
2) Suppose now that the system is globally distinguishable at θ̂. With some sup-
plementary computational effort Algorithm 3.2.18 will return other local minima
of the criterion function. Suppose we know the value of the smallest local mini-
mum, say α, different from the global minimum which is 0. Hence α > 0. Our
claim is that α measures how close we are to having a remote indistinguishable
parameter.

The biggest problem with our approach at this point is the computational com-
plexity of the algorithms involved. We work with matrices of size at most (d+1)n

where n is the number of variables and d is the degree of the constructed poly-
nomial f . Further improvements are required in order to make our approach
more efficient in practice.

Example 6.3.3 Let us consider the system described by:

A =

[

θ2
1 + θ2

2 −θ2
1 − θ2

2 − 1

θ2
1 + θ2

2 − 1 −θ2
1 − θ2

2

]

b =

[

1

0

]

c =
[

(θ1 − 1/2)
(

θ2
1 + θ2

2 − 1
)

θ2 − 2
]

The transfer function is

1
2

(θ2

1
+θ2

2
−1)((−1+2 θ1)s+2 θ3

1
+2 θ1θ2

2
+2 θ2−θ2

1
−θ2

2
−4)

s2−1
(6.25)

The example was designed in such a way that for different values of the param-
eter vector (θ1, θ2), we encounter different situations corresponding to global
identifiability and local but not global identifiability. In the latter case, the com-
ponents are either finite or infinite dimensional.
Since a linear system is completely described by the coefficients of its transfer
function, we obtain the following system of equations:















(

θ2
1 + θ2

2 − 1
)

(2 θ1 − 1) =
(

θ̂2
1 + θ̂2

2 − 1
)(

2 θ̂1 − 1
)

(

θ2
1 + θ2

2 − 1
) (

2 θ3
1 + 2 θ1θ

2
2 − θ2

1 − θ2
2 + 2 θ2 − 4

)

=
(

θ̂2
1 + θ̂2

2 − 1
)(

2 θ̂3
1 + 2 θ̂1θ̂

2
2 − θ̂2

1 − θ̂2
2 + 2 θ̂2 − 4

)

(6.26)

Remark 6.3.4 For different values of the parameter vector (θ̂1, θ̂2), we have
the following situations:
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1. For (θ̂1, θ̂2) = (1, 2) there is a single zero-dimensional component =⇒ the
system is globally identifiable on Rn at (1, 2).

2. For (θ̂1, θ̂2) = (−1, 2) there are three zero-dimensional components: (−1, 2),
(0.3938, 7.5755), (−1.7174,−0.8696) =⇒ the system is locally identifiable
on Rn at (−1, 2).

3. For (θ̂1, θ̂2) = (1/2, 2) we have 1 zero-dimensional component (1/2, 2) and
1 component of higher dimension {(θ1, θ2) ∈ R2 | θ2

1 + θ2
2 − 1 = 0} =⇒

the system is locally identifiable at (1/2, 2).

We apply the algorithm to the 3-rd case: (θ̂1, θ̂2) = (1/2, 2) and obtain the points
(1/2, 2) , (0.0004831158, 0.999999883) , (0,−1). The following hold:

• The Jacobian is nonsingular at (1/2, 2), hence we conclude that the system
is locally (but not globally) identifiable on Rn.

• The Minkowski distance from (1/2, 2) to the other component is 1.000242729,
hence the point (1/2, 2) is globally identifiable inside the Minkowski ball
B((1/2, 2), 1.000242729).

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Note also that the system is minimal (controllable and observable) in the first
two cases mentioned above, but it looses observability at (1/2, 2).

In the structured identifiability case, the loss of minimality does not imply
the loss of identifiability from the coefficients of the transfer function. See for
example

A =

(

1 θ

1 + θ 1 + θ

)

, B =

(

1

0

)

, C =
(

1 0
)

with the transfer function

Tf(s) =
s− (1 + θ)

s2 − s(θ + 2) + (1− θ2)
.

Here, the system is not observable at θ = 0 and not reachable at θ = −1 but it
is globally identifiable on R.
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6.3.4 Conclusions

We have proposed a new way of analyzing the global identifiability. In this ap-
proach, the global identifiability at the nominal value is established by studying
the local identifiability at the given point, plus the existence of indistinguish-
able remote values. The existence of remote indistinguishable values requires
the application of an algorithm. Its computational complexity is rather high
and this restricts, at the moment, its applicability.

However, the approach allows the study of global identifiability on a restricted
domain of Rn which is the interesting case in most examples.

The textbooks recommend to study the structural identifiability of a parameter-
ization, before performing the actual identification. However, as it is well-known
and also illustrated in the Example 6.3.3, global identifiability is not a property
of the model class. It may differ for specific values of the parameter. Since
structural identifiability is rather hard to establish and somewhat stronger than
what one needs, an alternative approach is as follows. By applying an iden-
tification procedure, find a value θ0 ∈ Ω, and then establish the existence or
nonexistence of other values θ ∈ Ω which are indistinguishable from θ0. In case
there are no indistinguishable θ’s, we say that the system is globally identifiable
at θ0. The drawback of this approach stems from the uncertainty present in the
data. Remark also that in most applications, the global identifiability issue is
most of the time ignored.



Chapter 7

Conclusions and directions for further

research

A fundamental question for the development of this thesis was the well-known
optimal H2 model reduction problem. Based on the paper [26], there was hope
that methods of constructive algebra can be employed for answering such a
question. The approach for the H2 model reduction problem presented in this
thesis is based on the well-known fact that the problem reduces to (global) con-
strained optimization of rational functions.

In this way, we started research in a different area of mathematics, that is global
optimization for particular classes of functions. The layout of the thesis follows,
relatively well and mostly by coincidence, the chronologic development of the
thesis. We started with the study of optimization of polynomial functions. A
first reason was that studying polynomials seemed to be a somewhat easier task
than studying rational functions since polynomials have in some sense a better
behavior. For example, polynomials in n variables are well-defined on the entire
Rn and that is not true for rationals. Hence, in the case of a rational function,
one needs to investigate the behavior of the rational function in a neighborhood
of such a point where the function is not defined and what the limits are, if they
exists, and what happens when both numerator and denominator cancel at the
same point, etcetera. A second reason for starting with the study of polynomials
was the hope that the extension to rationals could be realized relatively easy.
And indeed, we managed with our approach to avoid dealing with the different
situations and to give a unitary treatment for global optimization of rational
functions.

In Chapter 3 we present an algorithm which guarantees finding the infimum
of a polynomial. In case the infimum is attained the algorithm finds also at
least one point where the global minimum is attained. The examples we studied
suggested that, in case the set of global minimizers consists of several connected
components, then the algorithm finds at least one point in every connected
component. This hypothesis turned out to be true. Moreover, it led the investi-
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gations towards related questions and problems in real algebraic geometry. The
‘introduction’ to real algebraic geometry proved to be also very useful for ex-
tending the results obtained for optimization of polynomials to optimization of
rational functions (namely Theorem 4.1.1) in Chapter 4. The results of the two
above mentioned chapters were further developed in certain directions, to deal
with symbolic instances of polynomials (i.e. families of polynomial functions),
respectively with constrained optimization of rational functions.

Finally, the methods were applied to the optimal H2 model reduction in Chap-
ter 5. The application of the methods for global optimization is not straight
forward, and that can be noticed for H2 model reduction as well as for the
problems discussed in Chapter 6. One important step in all cases is choosing a
parameterization for the class of systems on which we want to optimize. Such
choice can improve a lot the actual performance of the algorithms and there
is still work to be done in this direction. In fact, we did not contribute to the
theoretical development of this issue in the present thesis. In one particular case
of the optimal H2 model reduction problem, namely the SISO continuous-time
case, a very ‘suitable’ parameterization was already known in the literature.
We refer to the Schwarz-like canonical form, used here to parameterize minimal
stable continuous-time systems, of a specific order. The canonical form is more-
over output-normal. It turns out that with this parameterization, the criterion
to be optimized (i.e. the rational functions) presents some interesting features
which can be exploited in order to decrease the running time and the memory
requirements of the algorithm. In the MIMO continuous-time case, although
there is no theoretical problem in applying the method, the computations are
extremely demanding even for small size problems. This may be related to the
chosen parameterization, input-normal, designed for MIMO stable continuous-
time systems of a given order. It remains an open question whether different
parameterizations of this class of systems would lead to better computational
time and memory requirements.

As expected, global (constrained) optimization of polynomial and rational func-
tions finds more than a single application in system identification and system
and control theory. Our purpose in Chapter 6 is to show this clearly by rewrit-
ing various problems in system identification and system and control theory as
rational optimization problems. In Chapter 6 we put less emphasis on the actual
calculations. In Sections 6.1 and 6.2, we encounter again the parameterization
problem. For example, in Section 6.1, the approximant is a stable system of a
given order with a stable inverse system. We did not investigate parameteri-
zations for this particular class of systems. Also the parameterization problem
did not constitute an important issue in our treatment of systems with uncer-
tainties. We were more interested in proving that the approach is theoretically
sound. Section 6.3 discusses parameterizations as well but from a different point
of view. There we show how the well-known problem of global identifiability of
a given structure can be approached with one of the algorithms developed in a
previous chapter.



Algebräısche optimalisatie met

toepassingen in de systeemtheorie

Samenvatting

Een fundamentele vraagstelling voor de ontwikkeling van dit proefschrift was
het bekende optimale H2 modelreductieprobleem. Op grond van het artikel [26]
was er de hoop dat methoden van de constructieve algebra toegepast kunnen
worden ter beantwoording van een dergelijke vraagstelling. De aanpak van het
H2 modelreductieprobleem zoals die gepresenteerd wordt in dit proefschrift is
gebaseerd op het bekende feit dat het probleem teruggebracht kan worden tot
(globale) optimalisering van een rationale functie onder nevenvoorwaarden.

Globale optimalisatie van polynomiale en rationale functies wordt hier onder-
zocht. In Hoofdstuk 3 presenteren we een algoritme dat garandeert dat het
infimum van het polynoom gevonden wordt. In geval het infimum aangenomen
wordt vindt het algoritme tevens een punt waar het globale minimum bereikt
wordt. In feite geeft het algoritme tenminste één punt in iedere samenhangende
component van de verzameling van punten waarin het globale minimum wordt
aangenomen. Deze resultaten worden verder ontwikkeld om te kunnen werken
met polynomen met onbekende parameters (families van polynoom functies).
Hoofdstuk 4 behandelt globale optimalisatie van rationale functies met of zon-
der nevenvoorwaarden.

De methoden ontwikkeld in Hoofdstuk 4 worden toegepast op het optimale H2

modelreductieprobleem in Hoofdstuk 5. De toepassing van de methoden voor
globale optimalisatie is niet triviaal, en dat kan opgemerkt worden voor zowel
H2 modelreductie als voor de problemen die behandeld worden in Hoofdstuk
6. Een belangrijke stap in al deze gevallen is het kiezen van een parametrisatie
voor de klasse van systemen waarover we willen optimaliseren. Deze keuze kan
de praktische werking van de algoritmen veel doen verbeteren.

Globale optimalisatie van polynomen en rationale functies onder nevenvoor-
waarden kent vele toepassingen in systeemidentificatie en systeem- en regelthe-
orie. Het doel van Hoofdstuk 6 is om dit duidelijk aan te tonen door problemen
in verschillende deelgebieden van systeemidentificatie en systeem- en regeltheo-
rie te herschrijven als rationale of polynomiale optimalisatieproblemen.
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