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Summary

Selective genotyping concerns the genotyping of a portion of individuals chosen on the basis of their
phenotypic values. Often individuals are selected for genotyping from the high and low extremes of
the phenotypic distribution. This procedure yields savings in cost and time by decreasing the total
number of individuals genotyped. Previous work by Darvasi et al. (1993) has shown that the power
to detect a QTL by genotyping 40–50% of a population is roughly equivalent to genotyping the
entire sample. However, these power studies have not accounted for different strategies of analysing
the data when phenotypes of individuals in the middle are excluded, nor have they investigated the
genome-wide type I error rate under these different strategies or different selection percentages.
Further, these simulation studies have not considered markers over the entire genome. In this paper,
we present simulation studies of power for the maximum likelihood approach to QTL mapping by
Lander & Botstein (1989) in the context of selective genotyping. We calculate the power of
selectively genotyping the individuals from the middle of the phenotypic distribution when
performing QTL mapping over the whole mouse genome.

1. Introduction

Experimental crosses are used routinely to map the
genetic loci (QTL) contributing to variation in quan-
titative trait values. The objective is to identify regions
in the genome where there exists an association be-
tween the phenotype and marker genotypes. Selective
genotyping is a strategy in which only a portion of
individuals are genotyped; the subset is chosen on
the basis of the individuals’ phenotypes (generally
those with extremely high or low phenotypic values).
The advantage of this is that fewer individuals can be
genotyped while hardly changing the probability of
identifying putative QTLs. Selective genotyping yields
significant savings since genotyping is expensive.

Lander & Botstein (1989) used expected LOD
scores to make a strong case for selective genotyping

and recommended that the phenotypes of the un-
genotyped individuals be included as missing values in
order to prevent bias in parameter estimation. Power
under selective genotyping for a genome-wide scan in
QTL mapping experiments with backcrosses has not
been studied. This is the typical context in all mapping
experiments, including ENU mutagenesis (described
below). Further, the type I error rate under the
different strategies of selective genotyping has not
been investigated in this context. ENU mutagenesis is
a phenotype driven or forward mutagenesis approach
which is performed for identifying new genes and
new roles for known genes associated with disease
phenotypes. Mutations are randomly introduced
into an organism’s genome, and then its progeny
are tested for specific defects in a biological
process. Studying the mouse mutants reveals the
underlying gene responsible for the disease phenotype
(Brown & Hardisty, 2003). The alkylating agent
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ethylnitrosurea (ENU) is currently the most powerful
mutagen for the production of mutants in mice. In
mutagenesis experiments, male mice are injected with
ENU and then mated to females in order to produce
offspring which carry ENU mutations.

In this paper, we present a standard power analysis
under selective genotyping for (a) performing genome-
wide scans with sample sizes and marker spacings
typically present in ENU mutagenesis, (b) exploring
type I error rates, LOD thresholds and power under
different selection strategies and different percentages
of selective genotyping, (c) contrasting power ob-
tained under maximum likelihood (ML) methods and
ANOVA or regression at markers, and (d) providing
software for investigators in order to calculate sample
size with relevant experimental parameters. To our
knowledge existing power studies do not address the
concerns listed above. Darvasi & Soller (1992) pres-
ented power calculations for selective genotyping in a
single marker-QTL linkage setting when no recombi-
nation is present.

Most mapping experiments today involve multiple
markers. Subsequently, Darvasi et al. (1993) devel-
oped simulation mechanisms for investigating power
when infinitely dense markers are present on a single
chromosome. This investigation, however, did not
address selective genotyping. Next, assuming a single
QTL located at the centre of a chromosome with in-
finitely dense markers, Darvasi (1997) used simulation
to investigate the effects of selective genotyping.
Again, the context of a genome-wide scan, small sam-
ple sizes and different strategies of selective genotyp-
ing were not considered.

In the context of rapid genotyping in ENU muta-
genesis experiments, the investigator typically breeds
about n=100 to n=150 offspring. The individuals
with phenotypes in the middle of the distribution are
excluded from genotyping. Only the individuals at the
extremes are genotyped to reduce cost. Each individ-
ual is genotyped with moderately spaced markers, say
100–150, over the entire mouse genome. After the
markers are genotyped for each individual animal, the
data are analyzed by standard QTL mapping soft-
ware, such as Mapmaker (Lander et al., 1987) or
R/qtl (Broman et al., 2003), searching for a QTL-
marker linkage somewhere on the genome.

We begin by introducing the simulation we use for
investigating power under selective genotyping in
backcross experiments and mention the methods for
analysis in Section 2. In Section 3, we present our re-
sults. Finally, in Section 4, we discuss our findings.

2. Design of simulations

We simulated the genomes of a backcross population
of mice for 19 chromosomes and 105 marker assign-
ments under a chi-square model of the recombination
process (Zhao et al., 1995; Armstrong, 2001). The
marker placements are shown in Fig. 1 and were
based on an unpublished study at the Walter and
Eliza Hall Institute of Medical Research.

The QTL of interest was placed on chromosome 2.
Markers flanking the QTL position on chromosome 2
are separated by 22 cM. The phenotypes were gener-
ated according to the mixture densities for the QTL

Fig. 1. Marker placement in the mouse genome; 105 markers.
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with the means of the two groups, maa and mbb, sep-
arated by the gene effect, d.

If we denote the percent genotyped as p, then p/2
represents the percent in each symmetric tail of the
phenotypic distribution. We compared three strat-
egies for analysing data under selective genotyping
that are currently used in real biological assays:

Strategy A: All genotypes and phenotypes are con-
sidered for the n individuals.
Strategy B: All phenotypes are considered for the n
individuals but only the genotypes of individuals in
the tails (p) of the phenotypic distribution are selec-
ted; the genotypes for those in the middle are entered
as missing.
Strategy C: Only the phenotypes and the genotypes at
the tails (p) are selected; the genotypes and the pheno-
types for those in the middle are entered as missing.

To our knowledge, many investigators are performing
QTL mapping with selective genotyping under strat-
egy C and we should carefully compare power and
type I error rate for this method relative to others.

We primarily use the method of interval mapping
(IM) using flanking markers, proposed by Lander &
Botstein (1989), for our simulation study of single
QTL segregation in backcrosses. Under interval
mapping, for each locus in the genome, Lander &
Botstein (1989) proposed using the EM algorithm
(Dempster et al., 1977) under a mixture model for-
mulation to obtain the ML estimates for QTL geno-
type effects and variance parameters.

Under selective genotyping, we feel it is best to
focus on the ML methods for QTL mapping, since
analysis of variance (ANOVA) at each marker would
(a) exclude the individuals with missing marker geno-
types and yield biased estimates of the parameters
(Lander & Botstein, 1989) under selective genotyping,
(b) give less precise information about QTL location
and (c) suffer in low- to moderate-density scans. ML
methods based on mixture models would give more
precise estimates of QTL effects, the QTL location, as
well as properly accounting for selective genotyping
using missing data mechanisms for parameter esti-
mation. Since we are exploring ENU mutagenesis
assays which use selective genotyping over the entire
genome with the aim of mapping the gene, we would
most probably use the interval mapping ML method
to interpolate between markers and to accommodate
selective genotyping when analysing the data.
Therefore, power studies must be based on methods
which will eventually be used to analyse the data after
the experiment is complete. Other interval mapping
methods, such as Haley & Knott (1992) regression
mapping or Kearsey & Hyne (1994) marker re-
gression, yield near-identical LOD curves, and there-
fore power, to the interval mapping ML method. But
again, the interval mapping ML method would yield

unbiased estimates for QTL effects and position under
selective genotyping since it properly handles incom-
plete data.

Using interval mapping ML, we performed a gen-
ome-wide scan in R/qtl to (a) obtain appropriate
LOD thresholds and (b) map or identify the QTL
correctly under the three strategies. Note that we are
defining power as the probability of the LOD score
exceeding the threshold in the region between flanking
markers of the putative QTL. In this regard, this is
not a traditional definition of power which rejects the
null hypothesis of no QTLs anywhere on the genome.
We chose this definition of power to reflect the reality
of gene mapping experiments designed with the aim of
detecting a putative QTL.

For (a) we identified proper cutoffs for all three in-
terval mapping strategies, as well as for ANOVA at
each marker, by considering 10 000 replicates of geno-
me-wide marker data for all 100 individuals under
the null hypothesis of no QTLs. We then recorded the
maximum LOD scores obtained anywhere over the
genome for each replicate. For the ANOVA method,
we recorded the maximum F-test value obtained over
all the markers. We computed the 95th percentile of
these maximum scores. We repeated this procedure
for different selection percentages (p).

For (b) we performed 5000 simulations to generate
power curves for detecting QTLs using the cutoffs
obtained above. Here we used the criterion that the
maximum LOD score in the region between markers
flanking the QTL exceeded the appropriate threshold
under the different strategies. When comparing results
with the ANOVA method, we checked whether the
F-test statistic at either the left or the right flanking
marker exceeded the threshold obtained from simu-
lations.

For our simulations we considered p=(10,
20, …, 90) as selection percentages with p=100%
reducing to strategy A above. For the gene effect,
we present simulations for d=(1, 2, …, 5) with d=0
reducing to estimate the type I error rate.

3. Results

Fig. 2 clearly shows that, for p=50%, the LOD
thresholds needed to ensure that the rate of false
positives is under 0.05 varies for the different strat-
egies under selective genotyping. Lander & Kruglyak
(1995) suggested the LOD threshold of approximately
2.8 for a genome-wide scan with moderately spaced
markers, as in our simulation setting. However, we see
that if QTL mapping is performed excluding the
middle 50% phenotypes and genotypes of all the in-
dividuals (strategy C), then a threshold of 3.1 is ap-
propriate for n=100.

Furthermore, we found that the type I error rate
varies also with the percent genotyped (p). Fig. 3
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shows the log ratio of the selective genotyping
threshold to the full genotyping threshold for interval
mapping (strategies B and C) and ANOVA at marker
locations, under different values for p. When less than
50% are genotyped at the tails, the type I error in-
flation rate is very high for interval mapping (strategy
C) and the ANOVA method. Therefore, if either in-
terval mapping strategy C or the ANOVA method is
used to analyse the data, then the appropriate LOD
threshold for the given p value must be used.

The results for estimating power as a function of
the QTL effect (d) are displayed in Fig. 4, with the

middle 50% not genotyped, for interval mapping
strategies A, B and C. Since the curves are very close
to each other in this figure, we note that the loss of
power is negligible for all the three selection strategies
under interval mapping, after proper calibration with
thresholds.

Fig. 5 provides an example of how percent geno-
typed (p) affects power under the three selection strat-
egies under interval mapping, as well as under the
ANOVA method, for d=0.25, s=0.32, n=100. Here
power under strategy A holds steady at about 0.44;
however, power under strategies B and C starts to
decline when p<60%. After proper calibration with
thresholds, the two strategies yield similar estimates
of power, with strategy B giving slightly higher power
when the percent genotyped (p) is low. Fig. 5 also
shows that power is lowest when selective genotyping
is carried out using the ANOVA method.

Table 1 explores power loss for different QTL ef-
fects (d) and the percent genotyped (p). Again we see
that the loss of power is negligible for selective geno-
typing (strategy A vs strategy B) when percent geno-
typed is more than 50%, for all values of d. However,
power rapidly decreases when p falls below 50%.
Finally, with less than 50% genotyped, increasing
values of d give rise to power loss.

4. Discussion

In this paper, we have presented a study of the power
to detect a single QTL with selective genotyping for
backcross mice using simulated genome-wide scans.
We have used the interval mapping methodology,

Fig. 2. Genome-wide type I errors for given LOD thresholds: selective genotyping under three different strategies ;
mean=8, s=0.32, n=100, p=50%.

Fig. 3. Log (threshold ratio) versus percent genotyped (p) :
selective genotyping under different strategies ; mean=8,
s=0.32, n=100.
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introduced by Lander & Botstein (1989), which is an
improvement over previous approaches of ANOVA
at each marker location, to map the putative QTL.
We compared power estimates obtained for different
selection strategies under interval mapping to those
under the ANOVA method. We investigated the type
I error rate and power under different selection per-
centages and different selection strategies, in order to
suggest specific guidelines for performing backcross
experiments.

We have presented simulations that attempt to
capture the usual realities of ENU mutagenesis assays

with backcross mice. Fig. 1 shows the placement of
the 105 markers. There are five key points that we
wish to highlight :

Type I error rate varies with different selection
strategies, as well as with different selection percent-
ages. The strategy of excluding the phenotypes and
genotypes of the individuals in the middle (strategy C)
should only be used with the appropriate threshold
for obtaining a genome-wide type I error rate of 0.05.
With 50% genotyped at the two tails, the type I error
rate is 0.075 for strategy C. While this is not a hugely
significant difference from the acceptable rate of 0.05,
Fig. 2 shows that the type I error rate is consistently
higher for strategy C relative to strategy B or A, for a
given p, for a range of threshold values. For p<50%,
type I error rate is even higher for strategy C. This is
an important finding of our analysis.

Fig. 4. Power for a given QTL effect (d) under two different strategies ; s=0.32, n=100, not genotyped=middle 50%.

Fig. 5. Power for a given percent genotyped (p) : two
different strategies ; mean=8, s=0.32, n=100, d=0.25.

Table 1. Percent loss in power: by QTL effect (row)
and percent genotyped (columns) ; mean=8, s=0.32,
n=100

013511193456920.30

013714253962930.25

025915244665920.20

024617213559900.15

0158 15163958810.10

908070605040302010
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Fig. 3 shows the log ratio of selective genotyping
threshold to full genotyping threshold for the in-
terval mapping method using both strategies B and
C, as well as for the ANOVA method of analysis,
under different selection percentages (p). Both the
ANOVA method and interval mapping method
(strategy C) need to be calibrated with thresholds
quite different from the complete data threshold as
p decreases, for experimental parameters similar to
our simulation setting. The complete data threshold,
however, is fine for selective genotyping under strat-
egy B, where the phenotypes of all the individuals
are included in the analysis, for different selection
percentages.

Power under the ANOVA method is the lowest when
compared with the power under the ML method of
interval mapping for all strategies and for all selection
percentages (see Fig. 5). This finding differs from the
suggestion by Lynch & Walsh (1998) that t-test
guidelines are also reasonable for ML interval map-
ping. We feel this is another important finding of our
power investigation.

The percent genotyped (p) plays an important role
in power loss under selective genotyping. Fig. 5 shows
that with po50% and d=0.25, s=0.32, power loss is
negligible even for n=100. Thus there is no need to
increase n in this setting, since for ENU mutagenesis
assays, it is often quite infeasible to increase sample
size to 500 or to 1000. However, when p falls below
50%, power begins to decrease rapidly. This is the
lower limit for percent genotyped for minimally
acceptable power loss within our framework.

Gene effect (d) also determines power (see Fig. 4).
Power loss depends on both the magnitude of the
gene effect, d, and the percent genotyped, p. For
example, Table 1 demonstrates that with 40% geno-
typed and for a small gene effect, d=0.15, the
power loss could be 21% for n=100. We do not
recommend that experimenters genotype less than
50% in parameter settings similar to ours. Finally,
for increasing n, the percent power loss diminishes,
as expected. For example, when d=0.25, s=0.32,
n=150, with 50% genotyped, the percent power
loss is 6%, as opposed to 14% with n=100, after
resetting the threshold. This indicates that the power
loss under selective genotyping decreases with
increasing sample size, all other parameters being held
fixed.

The software for power calculations presented in
this paper is implemented in R/qtl and C and is
available from the first author.

We thank Karl Broman for his counsel and feedback in this
study. We thank the reviewers for their thoughtful com-
ments on the manuscript.

References

Armstrong, N. (2001). Incorporating interference into the
linkage analysis of experimental crosses. PhD disser-
tation, Department of Statistics, University of California,
Berkeley.

Broman, K., Wu, H., Sen, S. & Churchill, G. (2003). R/qtl :
QTL mapping in experimental crosses. Bioinformatics 19,
889–890.

Brown, S. & Hardisty, R. (2003). Mutagenesis strategies for
identifying novel loci associated with disease phenotypes.
Seminars in Cell and Developmental Biology 14, 19–24.

Darvasi, A. (1997). The effect of selective genotyping on
QTL mapping accuracy. Mammalian Genome 8, 67–68.

Darvasi, A. & Soller, M. (1992). Selective genotyping for
determination of linkage between a marker locus and a
quantitative trait locus. Theoretical and Applied Genetics.
85, 353–359.

Darvasi, A., Weinreb, A., Minke, V., Weller, J. & Soller, M.
(1993). Detecting marker-QTL linkage and estimating
QTL gene effect and map location using a saturated gen-
etic-map. Genetics 134, 943–951.

Dempster, A., Laird, N. & Rubin, D. (1977). Maximum
likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society B 39, 1–38.

Haley, C. S. & Knott, S. A. (1992). A simple regression
method for mapping quantitative trait loci in line crosses
using flanking markers. Heredity 69, 315–324.

Kearsey, M. J. & Hyne, V. (1994). QTL analysis : a simple
‘marker-regression’ approach. Theoretical and Applied
Genetics 89, 698–702.

Lander, E. S. & Botstein, D. (1989). Mapping Mendelian
factors underlying quantitative traits using RFLP linkage
maps. Genetics 121, 185–199.

Lander, E. S., Green, P., Abrahamson, J., Barlow, A.,
Daly, M. J., Lincoln, S. E. & Newburg, L. (1987).
MAPMAKER: an interactive computer package for
constructing primary genetic linkage maps of experimen-
tal and natural populations. Genomics 1, 174–181.

Lander, E. S. & Kruglyak, L. (1995). Genetic dissection of
complex traits : guidelines for interpreting and reporting
linkage results. Nature Genetics 11, 241–247.

Lynch, M. & Walsh, B. (1998). Genetics and Analysis of
Quantitative Traits, pp. 444–447. Sunderland, MA:
Sinauer Associates.

Zhao,H., Speed, T.&McPeek,M. (1995). Statistical analysis
of crossover interference using the chi-square model.
Genetics 139, 1045–1056.

N. Rabbee et al. 108


