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Coalgebraic Foundations of Linear Systems
(An Exercise in Stream Calculus)

J.J.M.M. Rutten

CWI and Vrije Universiteit Amsterdam

Abstract. Viewing discrete-time causal linear systems as (Mealy) coal-
gebras, we describe their semantics, minimization and realisation as uni-
versal constructions, based on the final coalgebras of streams and causal
stream functions.

1 Introduction

Linear systems are a fundamental mathematical structure with applications in
control theory, signal processing, and telecommunications. In computer science,
they are given but little attention. However, linear systems provide a mathe-
matical model for various types of networks, including signal flow graphs and
linear sequential Boolean circuits (see, for instance, [Koh78, Lah98]). Such net-
works are highly relevant for the foundations of computing, being elementary
and beautiful examples of the combined occurrence of memory and feedback.

In this paper, we give a coalgebraic account of the semantics of the following
elementary type of linear system: a (state-based) discrete-time (strongly) causal
linear system consists of a vector space V of states; vector spaces I and O
of inputs and outputs; and linear maps F : V → V , describing the system’s
dynamics, and G : I → V and H : V → O, describing the system’s input and
output. We shall model such a system as a Mealy automaton (V, Φ), defined by

Φ : V → (O × V )I Φ(v)(i) = 〈H(v), F (v) + G(i)〉

Such Mealy automata, or (I, O)-systems as we shall call them here, are coal-
gebras of the functor F : Set → Set defined by F(S) = (O × S)I . The choice
to model linear systems as Mealy automata or, in other words, as coalgebras
of this particular choice of functor F , is motivated by the following observa-
tion: In [Rut06], it is shown that the final coalgebra of F , which is to serve as
our semantic universe, is (isomorphic to) the set Γ of all causal functions from
the set of input streams Iω to the set of output streams Oω . In system theory,
the input-output behavior of a linear discrete-time causal system is often de-
scribed in terms of precisely such a causal stream function (traditionally called
the transfer function of the system).

Note that we work in the category of sets and functions rather than vector
spaces and linear maps. Although the functor F can also be defined on vector
spaces, the function Φ defined above will in general not be linear, even if F ,
G, and H are. However, linearity of these maps does play a role in the various
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426 J.J.M.M. Rutten

characterisations of the semantics of linear systems, as we shall see later. (And,
of course, vector addition in V is used in the definition of Φ.)

Once the functor (that is, the type of our systems) has been fixed and its
final coalgebra identified, a coalgebraic treatment of linear systems follows from
general insights of universal coalgebra: the behaviour (or semantics) of a system
is given by the unique homomorphism into the final coalgebra; the image of
this homomorphism constitutes the system’s minimisation; and systems can be
specified by elements of the final coalgebra and then realised (synthesised) by
the corresponding generated subsystems of the final coalgebra.

The exercise mentioned in the title then consists of working out the details of
all this. We view the formulation and the carrying out of this exercise as the main
contribution of the present paper. Technically, we had to extend our earlier work
[Rut03, Rut05] a bit in order to deal with streams of linear transformations, in
Section 3. After recalling the coalgebraic treatment of (I, O)-systems, in Section
4, the main technical contribution lies in Section 5. It will be based on the
elementary but crucial observation that the function Φ above factors through
three maps of the following type (see (21)):

Φ : V �� V × V �� O × V �� (O × V )I

This is the basis for Theorem 8, which presents the final behaviour of (V, Φ) as the
composition of three corresponding final homomorphisms. This final semantics
f assigns to each (initial) state v ∈ V a causal function f(v) : Iω → Oω (called
the transfer function in system theory). This leads then to characterisations
of system minimization and realisation, in Sections 6 and 7. Surprisingly, the
final semantics f turns out to be the composition of a (linear) final mapping
H × F̃ : V → Oω followed by a (non-linear) injection g : Oω → Γ . As a
consequence, minimization and realisation can be simply described in terms of
just output streams, ignoring the presence of input streams altogether.

From the perspective of the theory of coalgebra, the relevance of our contri-
bution consists of the following points. (i) It adds one more basic but important
example to the family of mathematical structures that can be treated naturally
and fairly completely by coalgebraic means. Other well-known examples are
streams, automata, formal power series, infinite data types etc. (ii) Technically,
the interaction between algebra and coalgebra is interesting. In general, (I, O)-
systems (Mealy automata) live in the category of sets. As we shall see, linear
(I, O)-systems are completely determined by their underlying linear O-systems
(in which input plays no role), and these do live in the category of vector spaces
and linear maps. As a consequence, the final behaviour of linear (I, O)-systems,
which itself is obtained in Set, can be pleasantly characterised in terms of the
basic operations (of sum and convolution product) of stream calculus. (iii) It
also follows that streams – which constitute the prototypical example of a final
coalgebra – are essentially all that is needed for the modelling of linear systems,
since O-systems can be completely described in terms of O-streams. (iv) The
final behaviour of finite dimensional linear (I, O)-systems will be characterised
in terms of rational streams, in essentially the same way as finite deterministic
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automata, which can be viewed as elementary non-linear (I, O)-systems, cor-
respond to rational (regular) languages. (v) More generally, the present model
shows that from a coalgebraic perspective, there is no essential difference be-
tween the treatment of linear and non-linear systems. This opens the way for
future applications of coalgebraic techniques to non-linear phenomena in system
theory.

Some of these points may also be of interest for system theory, where the
semantics of the linear systems that we are considering is since long well under-
stood (see, for instance, [Kai80]). In particular, our emphasis on the central role
of (the final coalgebra of) streams leads to a very elementary treatment of system
realisation, which – depending on taste and background – might be considered
as a simpler alternative to Kalman’s [Kal63, KFA69] classical construction using
Hankel matrices. See the appendix for a further discussion of this.

We mention a few directions for further research. Since the semantics of both
linear and non-linear systems is given by finality, it would be interesting to try
and fit instances of non-linear systems from system theory (cf. [Son79]) into the
coalgebraic framework. Also generalisations to continuous systems could be con-
sidered. Finally, one of the hallmarks of coalgebra is the notion of bisimulation,
or observational equivalence, which comes along with every (functor) type of
system. It should therefore be possible to study notions of equivalence for linear
systems, including recently introduced ones such as in [Pap03] and [vdS04], from
a coalgebraic perspective.

2 Preliminaries

We define the set of streams over a given set A by

Aω = {σ | σ : {0, 1, 2, . . .} → A}

We will denote elements σ ∈ Aω by σ = (σ(0), σ(1), σ(2), . . .). We define the
stream derivative of a stream σ by

σ′ = (σ(1), σ(2), σ(3), . . .)

and we call σ(0) the initial value of σ. For a ∈ A and σ ∈ Aω we use the following
notation:

a : σ = (a, σ(0), σ(1), σ(2), . . .)

For instance, σ = σ(0) : σ′, for any σ ∈ Aω. Any function f : A → B induces a
function

fω : Aω → Bω fω(σ) = (f(σ(0)), f(σ(1)), f(σ(2)), . . .) (1)

Any function f : A → A induces a function

f̃ : A → Aω f̃(a) = (a, f(a), f2(a), . . .) (2)
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where f0 = 1, the identity on A and fn+1 = f ◦ fn. If V is a set and W is a
vector space (over some field k) then the set WV of all functions

WV = {f | f : V → W}

is a vector space, with addition and scalar multiplication given, for v ∈ V and
c ∈ k, by

(f + g)(v) = f(v) + g(v) (c · f)(v) = c · f(v)

In particular, if V is a vector space over k then so is the set V ω of all streams over
V . Both the operations of initial value and derivative are linear transformations:
for all c, d ∈ k, σ, τ ∈ V ω,

(c · σ + d · τ)(0) = c · σ(0) + d · τ(0) (c · σ + d · τ)′ = c · σ′ + d · τ ′

For any set A and n ≥ 1, we denote the elements v ∈ An by v = (v1, . . . , vn). It
will sometimes be convenient to switch between streams of tuples and tuples of
streams. We define the transpose as follows:

(−)T : (An)ω → (Aω)n (σT )i(j) = (σ(j))i (3)

This function is an isomorphism and has an inverse which we denote again by

(−)T : (Aω)n → (An)ω

A semi-ring is a set R with a commutative operation of addition c + d; a
(generally non-commutative) operation of multiplication c · d with c · (d + e) =
(c · d) + (c · e) and (d + e) · c = (d · c) + (e · c); and with neutral elements 0 and 1
such that c + 0 = c, 1 · c = c · 1 = c and c · 0 = 0 · c = 0. If every c ∈ R moreover
has an additive inverse −c (with c + (−c) = 0) then R is a ring.

Any field is a ring. The following example of a ring will be used later. Let V
be a vector space (over some field k). The set V →L V of linear maps F : V → V
is a ring with addition and multiplication defined by

(F + G)(v) = F (v) + G(v) (F × G)(v) = F (G(v))

and with the everywhere zero map and the identity map as neutral elements 0
and 1.

3 Stream Calculus

Let R be a ring. We define the following operators on the set Rω of streams over
R, for all c ∈ R, σ, τ ∈ Rω, n ≥ 0:

[c] = (c, 0, 0, 0, . . .) (often simply denoted again by c)
X = (0, 1, 0, 0, 0, . . .)

(σ + τ)(n) = σ(n) + τ(n) [sum]

(σ × τ)(n) =
n∑

i=0

σ(i) · τ(n − i) [convolution product]
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(where · denotes multiplication in the ring R). A stream σ has a (unique)
multiplicative inverse σ−1 in Rω:

σ−1 × σ = [1]

whenever its initial value σ(0) has a multiplicative inverse σ(0)−1 in R. As
usual, we shall often write 1/σ for σ−1 and σ/τ for σ × τ−1. Since X2 =
(0, 0, 1, 0, 0, 0, . . .), X3 = (0, 0, 0, 1, 0, 0, 0, . . .) and so on, the following infinite
sum is well defined, for all σ ∈ Rω:

σ = σ(0) + (σ(1) × X) + (σ(2) × X2) + · · ·

(Note that we write σ(i) for [σ(i)]; similarly below.) It shows that σ can be
viewed as a formal power series in the indeterminate X (which here in fact is a
constant stream). What distinguishes our approach from formal power series is a
systematic use of the operation of stream derivative and the universal property
of finality it induces (see Section 4). This leads to a somewhat non-standard
algebraic calculus, which we call stream calculus. We mention a few identities
which are helpful for the computation of stream derivatives. (Computing stream
derivatives is crucial in our approach to system realisation, in Section 7).

Lemma 1 ([Rut03]). Let R be a ring. For all σ, τ ∈ Rω,

(σ + τ)′ = σ′ + τ ′

(σ × τ)′ = (σ′ × τ) + (σ(0) × τ ′)
(σ−1)′ = −σ(0)−1 × σ′ × σ−1

and (σ + τ)(0) = σ(0) + τ(0), (σ × τ)(0) = σ(0) · τ(0), and σ−1(0) = σ(0)−1 (if
the latter exists). Moreover, σ = σ(0) + (X × σ′) and X × σ = σ × X . �

We call a stream polynomial if it is of the form

c0 + (c1 × X) + (c2 × X2) + · · · + (ck × Xk)

A stream is rational if it is the quotient σ/τ = σ × τ−1 of two polynomial streams
σ and τ for which τ(0)−1 exists. We denote the set of all rational streams over R by

Rat(Rω) = {σ ∈ Rω | σ is rational}

A prototypical example of a rational stream in Rω, for c ∈ R, is

1
1 − (c × X)

= (1, c, c2, . . .)

If we consider the ring V →L V , for a vector space V , then streams φ ∈ (V →L

V )ω are infinite sequences φ = (φ(0), φ(1), φ(2), . . .) of linear transformations
φ(i) : V → V . For a linear transformation F ∈ (V →L V ), the example above
becomes

1
1 − (F × X)

= (1, F, F 2, · · ·) (4)
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which, under the isomorphism (V → V )ω ∼= V → V ω, is equal to F̃ defined in
(2) above.

We shall also use the following type of convolution product. Let V and W be
vector spaces. For streams φ ∈ (V →L W )ω and σ ∈ V ω, we define φ ×σ ∈ Wω by

(φ × σ)(n) =
n∑

i=0

φ(i) × σ(n − i) (5)

where on the right we write φ(i) × σ(n − i) for φ(i)(σ(n − i)). For a linear map
H : V → W , we have as a special case

[H ] × σ = (H, 0, 0, 0, . . .) × σ = (H(σ(0)), H(σ(1)), H(σ(2)), . . .)

which equals Hω(σ) defined in (1) above. Note that if W = V , the set of streams
(V →L V )ω has itself also an operation of convolution product, which interacts
nicely with the product defined in (5). For example, for φ, ψ ∈ (V →L V )ω and
σ ∈ V ω,

(φ × ψ) × σ = φ × (ψ × σ) (6)

Let k be a field. A linear transformation F : kn → km between finite dimen-
sional vector spaces corresponds to an m × n matrix MF with values Fij in k:

F : kn → km MF =

⎛

⎜⎜⎜⎝

F11 F12 · · · F1n

F21 F22 · · · F2n

...
...

. . .
...

Fm1 Fm2 · · · Fmn

⎞

⎟⎟⎟⎠

Here and in what follows, the matrix is with respect to the standard basis

(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)

of kn and km. Any stream φ = (φ(0), φ(1), φ(2), . . .) of linear transformations
φ(i) : kn → km corresponds to a stream of matrices

(Mφ(0), Mφ(1), Mφ(2), . . .) = Mφ(0) + (Mφ(1) × X) + (Mφ(2) × X2) + · · ·

If we consider Mφ(i)×X i as an m×n matrix obtained from Mφ(i) by multiplying
each of its entries by X i, then the infinite sum on the right can itself be viewed
as an m × n matrix Mφ with entries in kω:

(Mφ)ij = (Mφ(0))ij + ((Mφ(1))ij × X) + ((Mφ(2))ij × X2) + · · · (7)

For the special case of [H ] = (H, 0, 0, 0, . . .), for a linear transformation H :
kn → km, we have

(M[H])ij = ((MH)ij , 0, 0, 0, . . .) (8)

We will let the context determine whether entries in k or kω are intended, and
we shall simply write

M[H] = MH (9)
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The correspondence between φ and Mφ is given by the following commutative
diagram:

(kn)ω
φ×(−)��

(−)T

��

(km)ω

(−)T

��
(kω)n

Mφ×(−)
�� (kω)m

(φ × σ)T = Mφ × σT (10)

(Recall the definition of (−)T from (3).) Here φ×(−) denotes convolution product
and Mφ × (−) denotes matrix multiplication. Note that M1 = 1, where 1 on the
left denotes the stream (1, 0, 0, 0, . . .) (consisting of the identity map followed by
zero maps), and 1 on the right denotes the identity matrix (having 1’s on the
diagonal and 0’s everywhere else). Also note that

Mφ×ψ = Mφ × Mψ (11)

We have the following proposition.

Proposition 2. Let ρ ∈ (kn →L kn)ω be a stream of linear transformations
ρ(i) : kn → kn. If ρ is rational then Mρ defined in (7) has entries in Rat(kω).

Proof: Consider two polynomial streams φ, ψ ∈ (kn →L kn)ω. The entries of
the matrices Mφ and Mψ are polynomial streams in kω. If ψ moreover has an
inverse ψ−1 then M1 = 1 and (11) imply Mψ−1 = (Mψ)−1, which has values in
Rat(kω). It follows that Mφ×ψ−1 = Mφ × (Mψ)−1 has values in Rat(kω). �

Example 3. Let k = IR and let F, G : IR2 → IR2 be linear transformations
defined by

MF =
(

1 1
0 0

)
MG =

(
0 −1
1 2

)

We compute the matrices of the rational streams F̃ = ( 1 − (F × X) )−1 and
G̃ = ( 1 − (G × X) )−1:

MF̃ = (M1−(F×X))−1 =
(

1 − X −X
0 1

)−1

=
( 1

1−X
X

1−X

0 1

)

MG̃ = (M1−(G×X))−1 =
(

1 X
−X 1 − 2X

)−1

=
1

(1 − X)2
·
(

1 − 2X −X
X 1

)

�

4 Systems Coalgebraically

We recall the coalgebraic semantics of systems with input and output. States,
inputs and outputs will be represented by plain sets, and homomorphisms will
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be simply functions between sets. In Section 5, we will look at the coalgebraic
modelling of linear systems, involving vector spaces and linear maps.

A system (S, n) consists of a set S and a function n : S → S, assigning
to a state s ∈ S its next state n(s). We call the function n the dynamics of
the system (S, n). A system (S, 〈o, n〉) with output in a given set O (or simply
O-system) consists of a set S of states, a function n : S → S and an output
function o : S → O. (Categorically speaking, an O-system is a coalgebra of the
functor O × (−) : Set → Set.) A homomorphism of O-systems (S, 〈oS , nS〉) and
(T, 〈oT , nT 〉) is a function h : S → T such that nT ◦ h = h ◦ nS and oT ◦ h = oS ;
that is, such that the diagram below commutes:

S
h ��

〈oS,nS〉
��

T

〈oT ,nT 〉
��

O × S
1×h �� O × T

Here and throughout the paper, we use 1 to denote the identity function. The
set of all streams Oω is an O-system (Oω , 〈h, t〉) where

h : Oω → O, h(σ) = σ(0) and t : Oω → Oω , t(σ) = σ′

(Recall that σ′ = (σ(1), σ(2), σ(3), . . .).) Initial value and derivative are often
called head and tail , hence our choice of symbols. The O-system (Oω , 〈h, t〉) has
the following universal property, called finality: For every O-system (S, 〈o, n〉)
there exists a unique homomorphism f : (S, 〈o, n〉) → (Oω , 〈h, t〉), called the
final behaviour of (S, 〈o, n〉). It is given by

S

〈o,n〉
��

f ������� Oω

〈h,t〉
��

O × S
1×f ����� O × Oω

f(s) = (o(s), o ◦ n(s), o ◦ n2(s), . . .)

where n0(s) = s and nl+1(s) = n(nl(s)).
Any system (S, n) (without output) is an S-system (S, 〈1, n〉) with output

1 : S → S in S. We denote the corresponding final homomorphism by ñ:

S

〈1,n〉
��

ñ ������� Sω

〈h,t〉
��

S × S
1×ñ ����� S × Sω

ñ(s) = (s, n(s), n2(s), . . .) (12)
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We call ñ the fully observable behaviour of (S, n). The final behaviour f of an
O-system (S, 〈o, n〉) factors through its fully observable behaviour ñ as follows:

S

〈1,n〉
��

ñ
��

〈o,n〉

��

f

��
Sω

〈h,t〉
��

oω
�� Oω

〈h,t〉

��

S × S

o×1
��

1×ñ
�� S × Sω

o×1
��

O × S
1×ñ ��

1×f

��O × Sω 1×oω

�� O × Oω

f = oω ◦ ñ (13)

Next we consider systems with output and input. As before let O be a set
of outputs. In addition, let I be an arbitrary set, the elements of which we call
inputs . A system (S, φ) with input in I and output in O (or simply (I, O)-system)
consists of a set S of states together with a function φ : S → (O × S)I . The
function φ maps a state s ∈ S to a function φ(s) : I → O × S that sends an
input i to a pair φ(s)(i) ∈ O×S. We shall sometimes use the following notation:

s1
i|o �� s2 ⇐⇒ φ(s1)(i) = 〈o, s2〉

which can be read as: in state s1 and with input i the system changes to state
s2 while producing output o. Note that in general both the next state and the
output depends on both the starting state and the input. Systems with input in
I and output in O are also known in the literature as Mealy machines [Eil74].
Categorically, an (I, O)-system is a coalgebra of the functor F : Set → Set
defined by F(S) = (O × S)I .

Let (S, φS) and (T, φT ) be two (I, O)-systems. For s1 ∈ S and i ∈ I let
φ(s1)(i) = 〈o, s2〉. A homomorphism of (I, O)-systems is a function h : S → T
such that φT (h(s))(i) = 〈o, h(s2)〉, for all s1 ∈ S and i ∈ I. Equivalently, h
should make the diagram below commute:

S
h ��

φS

��

T

φT

��
(O × S)I

(1×h)1 �� (O × T )I

A final (I, O)-system can be constructed as follows. We call a function g : Iω →
Oω causal (aka synchronous or letter-to-letter) if for any σ ∈ Iω the n-th element
of g(σ) depends on only the first n elements of the input σ; that is,

σ(0) = τ(0), . . . , σ(n) = τ(n) ⇒ g(σ)(n) = g(τ)(n)

for all σ, τ ∈ Iω and n ≥ 0. We denote the set of all causal functions by

Γ = { g : Iω → Oω | g is causal } (14)
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Let g : Iω → Oω be causal and let i ∈ I. We define the initial output of g on
input i by

g[i] = g(i : σ)(0) (15)

where σ ∈ Iω is arbitrary. Note that the value g[i] ∈ O does not depend on σ,
since g is causal. We define the stream function derivative of g on input i by

gi : Iω → Oω , gi(σ) = g(i : σ)′ (16)

We obtain an (I, O)-system (Γ, γ : Γ → (O × Γ )I ) by defining:

γ(g) (i) = 〈g[i], gi〉

Proposition 4 ([Rut06, HCR06]). The (I, O)-system (Γ, γ) of causal func-
tions is final: for every (I, O)-system (S, φ) there exists a unique homomorphism

S
f ���������

φ

��

Γ

γ

��
(O × S)I

(1×f)1 ������ (O × Γ )I

final behaviour of (S, φ)

Proof: Let s0 ∈ S, σ ∈ Iω and n ≥ 0, and define

f(s0) (σ) (n) = on where s0
σ(0)|o0 �� s1

σ(1)|o1 �� · · · σ(n)|on �� sn+1

Then f(s0) is causal and f is the unique function making the diagram above
commute. �

5 Linear Systems Coalgebraically

We will now model linear systems coalgebraically, by simply applying the results
from Section 4, and taking into account the fact that linear systems are defined
in terms of vector spaces and linear maps. As before, we shall first treat systems
with only output. Next we deal with systems that have both input and output.

We call a system (V, F ) linear if the state space V is a vector space (over a
given field k) and the dynamics F : V → V is a linear transformation. A system
(V, 〈H, F 〉) with output in O is linear if in addition O is a vector space (over
the same field k) and H : V → O is a linear transformation. A homomorphism
of linear O-systems (V, 〈HV , FV 〉) and (W, 〈HW , FW 〉) is a homomorphism of
O-systems which is linear:

V
h ��

〈HV ,FV 〉
��

W

〈HW ,FW 〉
��

O × V
1×h �� O × W

h is a linear transformation
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Recall from Section 4 that the O-system (Oω , 〈h, t〉) is final among all (not nec-
essarily linear) systems. We saw (in Section 2) that if O is a vector space then
Oω is also a vector space. Since initial value and derivative are linear transfor-
mations, (Oω , 〈h, t〉) is a linear O-system. The final behaviour f : V → Oω of an
O-system (V, 〈H, F 〉) is given, according to (13), by

V
F̃

��

f

��
V ω

Hω
�� Oω f(v) = Hω ◦ F̃ (v)

This is equivalent, for all v ∈ V , to

f(v) = Hω ◦ F̃ (v)
= (H(v), H ◦ F (v), H ◦ F 2(v), . . .)
= (H, 0, 0, 0, . . .) × (1, F, F 2, . . .) × (v, 0, 0, 0, . . .) [using (5) and (6)]
= (H, 0, 0, 0, . . .) × F̃ × (v, 0, 0, 0, . . .) [using (1, F, F 2, . . .) = F̃ , as in (4)]
= [H ] × F̃ × [v]

Thus:

V
F̃×[−]

��

f

��
V ω

[H]×(−)
�� Oω f(v) = [H ] × F̃ × [v]

It follows that f is a linear transformation and that (Oω , 〈h, t〉) is final in the
family of all linear O-systems and linear homomorphisms between them.

The final behaviour of finite dimensional linear O-systems can be further
characterised as follows. Let n, m ≥ 1 and consider a system (kn, 〈H, F 〉) with
linear transformations F : kn → kn and H : kn → km. By (10), the following
diagram commutes:

(kn)ω
F̃×(−) ��

(−)T

��

(kn)ω

(−)T

��

[H]×(−) �� (km)ω

(−)T

��
(kω)n

MF̃ ×(−)
�� (kω)n

MH×(−)
�� (kω)m

([H ]×F̃×(−))T = MH×MF̃ ×(−)T

(17)
(where we use the convention (9) of writing M[H] = MH). It follows that the
final behaviour f satisfies

f(v)T = ([H ] × F̃ × [v])T = MH × MF̃ × [v]T (18)

We saw in (4) that F̃ = (1 − (F × X))−1 is a rational stream. By Proposition 2,
the matrix MF̃ has values in Rat(kω). And so we have proved the following.



436 J.J.M.M. Rutten

Proposition 5. For a finite dimensional system (kn, 〈H, F 〉) with dynamics F :
kn → kn and output H : kn → km, the final behaviour f : kn → km satisfies, for
all v ∈ kn,

f(v)T = MH × MF̃ × [v]T

and thus is obtained from [v]T by multiplication with an m×n matrix with values
in Rat(kω). �

Example 6. Let k = IR and consider the linear system (IR2, 〈H, F 〉) with output
H : IR2 → IR and dynamics F : IR2 → IR2 given by

H =
(
1 1

)
F =

(
1 1
0 0

)

The matrix MF̃ corresponding to F̃ has been computed in Example 3:

MF̃ =
( 1

1−X
X

1−X

0 1

)

The final behaviour f〈H,F 〉 : IR2 → IRω of this system is given, for any (a, b) ∈
IR2, by

f〈H,F 〉(a, b) =
(
1 1

)
×

( 1
1−X

X
1−X

0 1

)
×

(
a
b

)

=
a + b

1 − X

(omitting square brackets around a and b as usual). Repeating the example with
a different output function H̄ and the same dynamics F :

H̄ =
(
1 2

)
F =

(
1 1
0 0

)

leads to the following final behaviour:

f〈H̄,F 〉(a, b) =
( 1

1−X
2−X
1−X

)
×

(
a
b

)
=

a + 2b − bX

1 − X

�

Next we discuss linear systems with input and output. We shall model them as
(I, O)-systems, as defined in Section 4, and then study their final behaviour.

Let I, O and V be vector spaces over k, and let F : V → V , G : I → V and
H : V → O be linear transformations. We define the (I, O)-system (V, Φ〈H,F,G〉)
by

Φ〈H,F,G〉 : V → (O × V )I Φ〈H,F,G〉(v)(i) = 〈H(v), F (v) + G(i)〉 (19)

or equivalently, expressed in terms of transitions,

v
i |H(v) �� F (v) + G(i)
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We call (V, Φ〈H,F,G〉) a linear (I, O)-system because of the linearity of F , G,
and H . However, note that Φ itself is not linear and likewise, homomorphisms
of linear (I, O)-systems will generally not be linear. This is in contrast with the
family of linear O-systems, where everything is linear.

For a linear(I, O)-system (V, Φ〈H,F,G〉) we call (V, 〈H, F 〉) its underlying O-
system. The key to the coalgebraic understanding of a linear (I, O)-system is the
observation that its behaviour is in essence determined by that of its underlying
O-system.

The following lemma will be helpful. Consider the final O-system (Oω , 〈h, t〉)
and an arbitrary linear transformation ψ : I → Oω . This gives rise to a linear
(I, O)-system (Oω , Φ〈h,t,ψ〉), with Φ〈h,t,ψ〉 defined as in (19). The lemma below
describes its final behaviour g : Oω → Γ , introduced in Proposition 4.

Lemma 7. For all α ∈ Oω and σ ∈ Iω,

Oω
g ����������

Φ〈h,t,ψ〉

��

Γ

γ

��
(O × Oω)I

(1×g)1
������ (O × Γ )I

g(α)(σ) = α + (ψ × X × σ)

(On the right, we read ψ as a stream of linear transformations ψ ∈ (I →L O)ω ∼=
I →L Oω.)

Proof: By finality of (Γ, γ), it is sufficient to show that the function g defined
as above is a homomorphism of (I, O)-systems. By definition of γ, we have
γ(g(α))(i) = 〈 g(α)[i], g(α)i 〉, for all i ∈ I. Now

g(α)[i] = ( g(α)(i : σ) ) (0) = α(0)

and, for all σ ∈ Iω,

g(α)(i : σ) = g(α)(i + (X × σ)) [by Lemma 1, with i = (i, 0, 0, 0, . . .)]
= α + (X × ψ × (i + (X × σ)) )
= α + (X × ψ × i ) + (X × ψ × X × σ) (20)

This implies

g(α)i(σ) = ( g(α)(i : σ) )′ [definition stream function derivative (16)]
= (α′ + (ψ × i) ) + (ψ × X × σ) [using (20) and Lemma 1]
= g(α′ + ψ(i))(σ) [using ψ × i = ψ(i)]

It follows that

γ(g(α))(i) = 〈α(0), g(α′ + ψ(i)) 〉
= (1 × g) ( 〈α(0), α′ + ψ(i) 〉 )
=

(
(1 × g)1 ◦ Φ〈h,t,ψ〉 (α)

)
(i) [definition Φ〈h,t,ψ〉 (19)]
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This shows that the diagram above commutes. Thus g is a homomorphism. �

Next we observe that for a linear (I, O)-system (V, Φ〈H,F,G〉), with Φ〈H,F,G〉 as
in (19), the function Φ〈H,F,G〉 can be decomposed as follows:

V 〈1,F 〉
��

Φ〈H,F,G〉

��
V × V

H×1
�� O × V

G+

�� (O × V )I (21)

where the function G+ is defined, for all o ∈ O, v ∈ V , and i ∈ I, by

G+(〈o, v〉)(i) = 〈o, v + G(i)〉

Theorem 8.
The final behaviour1 f : V → Γ of a linear (I, O)-system (V, Φ〈H,F,G〉) (as
defined in (19)) satisfies, for all v ∈ V and σ ∈ Iω,

f(v)(σ) =
(

[H ] × F̃ × [v]T
)

+
(

[H ] × F̃ × [G] × X × σ
)

Proof: Let ψ : I → Oω be defined by ψ = [H ] × F̃ × [G] and consider the
following diagram:

V

〈1,F 〉
��

F̃

��

Φ〈H,F,G〉

		

f

��
V ω

〈h,t〉
��

Hω
�� Oω

〈h,t〉

��

g
�� Γ

γ

��

V × V

H×1
��

1×F̃

�� V × V ω

H×1
��

O × V
1×F̃

��

G+
��

(∗)

O × V ω

1×Hω
�� O × Oω

ψ+
��

(O × V )I

(1×(Hω◦F̃ ))1
��

(1×f)1



(O × Oω)I
(1×g)1 �� (O × Γ )I

Recall that Hω = [H ] × (−), using the convolution product introduced in (5)
and, consequently, Hω ◦ F̃ = [H ]× F̃ . The function ψ has been defined precisely
such that the rectangle (∗) above commutes. (Note that a proof of (∗) will use
the linearity of [H ] × F̃ .) The right hand pentagon commutes by Lemma 7.
Everything else commutes by finality. �

The final behaviour of finite dimensional linear (I, O)-systems can be further
characterised, similarly to the case of linear O-systems. First we define for any
causal function g : (kl)ω → (km)ω a function.
1 We observe that the final behaviour f(0) of the initial state 0 corresponds to what

is known in system theory as the transfer function of the system, where F̃ is often
expressed as (zI − F )−1.
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〈g〉 : (kω)l → (kω)m 〈g〉(σ) = g(σT )T

for all σ ∈ (kω)l, and denote the image of Γ under this operation by 〈Γ 〉. (Note
that Γ ∼= 〈Γ 〉.)

Proposition 9.
For a finite dimensional linear (I, O)-system (kn, Φ〈H,F,G〉) with dynamics F :
kn → kn, input G : kl → kn, and output H : kn → km, the final behaviour
〈f〉 : kn → 〈Γ 〉 satisfies, for all v ∈ kn and σ ∈ (kω)l,

〈f(v)〉(σ) =
(
MH × MF̃ × [v]T

)
+ (MH × MF̃ × MG × X × σ )

where all these matrices have values in Rat(kω).

Proof: By (10), all squares below commute:

(kω)l

(−)T

��

MG×(−) �� (kω)n
MF̃ ×(−) �� (kω)n

MH×(−) �� (kω)m

(kl)ω

G×(−)
�� (kn)ω

F̃×(−)
��

(−)T

��

(kn)ω

H×(−)
��

(−)T

��

(km)ω

(−)T

��

The proposition follows from this diagram and Theorem 8. As in Proposition 5,
all matrices have values in Rat(kω). �

Example 10. (This is Example 6, continued.) Let k = IR and consider the linear
system (I, O)-system (IR2, Φ〈H,F,G〉) with H : IR2 → IR, F : IR2 → IR2 and
G : IR2 → IR2 given by

H =
(
1 1

)
F =

(
1 1
0 0

)
G =

(
1 2
1 1

)

The final behaviour 〈f(a, b)〉 : (IRω)2 → IRω of a state (a, b) ∈ IR2 is given, for
all pairs of input streams (σ1, σ2) ∈ (IRω)2, by

〈f(a, b)〉(σ) =
(

MH × MF̃ ×
(

a
b

) )
+

(
MH × MF̃ × MG × X ×

(
σ1
σ2

) )

=
(
1 1

) ( 1
1−X

X
1−X

0 1

) (
a
b

)
+

(
1 1

) ( 1
1−X

X
1−X

0 1

) (
1 2
1 1

) (
X × σ1
X × σ2

)

=
a + (2X × σ1)

1 − X
+

b + (3X × σ2)
1 − X

�
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6 Minimization and Equivalence

Because O- and (I, O)-systems are coalgebras, the general definition of coalge-
braic equivalence applies. Here we spell out these definitions together with the
observation that the corresponding minimization of a system is given by the (im-
age under) the final behaviour mapping. For linear (I, O)-systems, we shall see
that minimization and equivalence are particularly simple, as they are entirely
determined by their underlying O-systems.

Equivalence of (not necessarily linear) O-systems is defined as follows. A re-
lation R ⊆ S × T is called an O-bisimulation between O-systems (S, 〈oS , nS〉)
and (T, 〈oT , nT 〉) if for all s ∈ S and t ∈ T :

〈s, t〉 ∈ R ⇒
{

oS(s) = oT (t) and
〈nS(s), nT (t)〉 ∈ R

We say that s and t are O-equivalent and write s ∼O t if there exists an O-
bisimulation R with 〈s, t〉 ∈ R. The final behaviour f : S → Oω of an O-system
(S, 〈o, n〉) identifies precisely all O-equivalent states: s1 ∼O s2 iff f(s1) = f(s2),
for all s1, s2 ∈ S. (For the elementary proof, see [Rut03].) As a consequence, the
minimization of an O-system with respect to O-equivalence is given by the image
of S under f , which is a subsystem f(S) ⊆ Oω because f is a homomorphism.
It follows that if the system is linear, then the greatest O-equivalence on S is
given by the kernel ker(f).

For (I, O)-systems there exists a corresponding notion of (I, O)-equivalence
and, again, the final behaviour identifies precisely all (I, O)-equivalent states:
see [Rut06] for details. For linear (I, O)-systems, things are much simpler since
their behaviour is determined by their underlying O-system.

Proposition 11. The minimization of a linear (I, O)-system (V, Φ〈H,F,G〉) is
isomorphic to the minimization of its underlying O-system (V, 〈H, F 〉).

Proof: By the proof of Theorem 8, the final behaviour f : V → Γ satisfies
f(v) = g(H × F̃ × v), for all v ∈ V . Here the function g : Oω → Γ is given,
according to Lemma 7, by g(α)(σ) = α + (H × F̃ × G × X × σ), for α ∈ Oω and
σ ∈ Iω. Taking σ = 0, we see that g is injective. Thus the image of (V, Φ〈H,F,G〉)
under the final behaviour map f is isomorphic to its image under H × F̃ . The
underlying O-system of this image is the minimization of (V, 〈H, F 〉). �

Example 12. Recall the (I, O)-system (IR2, Φ〈H,F,G〉) from Example 10. Com-
puting its image W under H × F̃ yields

W =
(

H × F̃
)

(IR2) = { a + b

1 − X
| (a, b) ∈ IR2} ⊆ IRω

Output and dynamics on W are induced by 〈h, t〉 : IRω → (IR × IRω). The input
map on W is given by (the corestriction of) ψ = H × F̃ × G : IR2 → IRω and
satisfies
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H × F̃ × G =
(
1 1

) ( 1
1−X

X
1−X

0 1

) (
1 2
1 1

)

=
( 2

1−X
3

1−X

)

Choosing 1/1 − X as a basis for W , we find that the resulting minimization is
isomorphic to IR, with output and dynamics both given by 1 : IR → IR, and with
input (2 3) : IR2 → IR. �

7 Realisation

We discuss the realisation of linear and non-linear systems, first with only output
and then with input and output.

A state s ∈ S in a (not necessarily linear) O-system (S, 〈o, n〉) realises a
stream σ ∈ Oω if the final behaviour of s satisfies f(s) = σ. If O is a set (and
not necessarily a vector space), a minimal realisation for a stream σ ∈ Oω is
obtained by taking as state space the set

Sσ = {σ(0), σ(1), σ(2), . . .} (22)

with σ(0) = σ and σ(n+1) = t(σ(n)) = (σ(n))′. As output function and dynamics,
one simply takes the restrictions of h : Oω → O and t : Oω → Oω to Sσ. The set
inclusion Sσ ⊆ Oω is a homomorphism of O-systems. By finality of (Oω , 〈h, t〉),
this homomorphism is unique. It follows that f(σ) = σ and hence that (Sσ, 〈h, t〉)
with initial state σ is a minimal realisation of σ.

If O is a vector space then Oω is also a vector space and we will be interested in
realisations that themselves are vector spaces again. Thus a minimal realisation
for a stream σ ∈ Oω will consist of the smallest subspace of Oω that contains
σ and is closed under the linear transformation t : Oω → Oω . This (so-called
t-cyclic) vector space Zσ ⊆ Oω is the subspace of Oω that is spanned by the set
Sσ of vectors in (22).

Of special interest are those σ ∈ Oω such that, for some n ≥ 1, all of σ = σ(0)

through σ(n−1) are linearly independent and

σ(n) +
(

cn−1 × σ(n−1)
)

+ · · · +
(

c1 × σ(1)
)

+
(

c0 × σ(0)
)

= 0

for some coefficients c0, . . . , cn−1 in the base field k of O and Oω . Then Zσ is a
vector space of dimension n. The linear transformation F : Zσ → Zσ induced
by t : Oω → Oω is given, with respect to the (ordered) basis σ(0), . . . , σ(n−1), by
the n × n matrix

MF =

⎛

⎜⎜⎜⎜⎜⎝

0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...

...
. . .

...
...

0 0 · · · 1 −cn−1

⎞

⎟⎟⎟⎟⎟⎠

(This matrix is in fact (a variation of) the companion matrix of the so-called
t-order polynomial of σ; cf. [BM77, Thm.15, p.339].) The linear transformation
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H : Zσ → O induced by h : Oω → O is given, again with respect to the basis
σ(0), . . . , σ(n−1), by the matrix (of size dim(O) × n)

MH =
(
σ(0)(0) σ(1)(0) σ(2)(0) · · · σ(n−1)(0)

)

Thus we have obtained a linear O-system (Zσ, 〈H, F 〉) of dimension n. As before,
the inclusion Zσ ⊆ Oω is a homomorphism. Thus f(τ) = τ , for all τ ∈ Zσ and
(Zσ, 〈H, F 〉) with σ as initial state is a minimal realisation of σ.

Example 13. Let O = IR and consider the stream σ = 1/(1 − X)2 ∈ Oω . Com-
puting the successive stream derivatives of σ = σ(0), using Lemma 1, gives

σ(1) =
2 − X

(1 − X)2
σ(2) =

3 − 2X

(1 − X)2
= −σ(0) + (2 × σ(1))

Thus σ(0) and σ(1) form a basis for Zσ. Because σ(0)(0) = 1 and σ(1)(0) = 2, we
have

MH =
(
1 2

)
MF =

(
0 −1
1 2

)

Now σ is realised by (Zσ, 〈H, F 〉), with σ as the initial state. Clearly, IR2 ∼=
Zσ. Note that the isomorphism can also be obtained by computing the final
behaviour f : IR2 → IRω of the O-system (IR2, 〈H, F 〉), using Proposition 5.
This gives, for all (a, b) ∈ IR2,

f(a, b) = MH × MF̃ × (a, b)

=
(
1 2

)
×

(
1−2X

(1−X)2
−X

(1−X)2
X

(1−X)2
1

(1−X)2

)
×

(
a
b

)

which satisfies, as expected, f(1, 0) = σ and f(0, 1) = σ(1). �

Example 14. Let O = IR2 and consider the pair (τ, σ) ∈ (IRω)2 ∼= (IR2)ω , with
τ = 1/(1 − 2X) and σ = 1/(1 − X)2. Computing (pairs of) stream derivatives

(τ, σ)(1) =
(

2
1 − 2X

,
2 − X

(1 − X)2

)
(τ, σ)(2) =

(
22

1 − 2X
,

3 − 2X

(1 − X)2

)

(τ, σ)(3) =
(

23

1 − 2X
,

4 − 3X

(1 − X)2

)
= 2 × (τ, σ)(0) − 5 × (τ, σ)(1) + 4 × (τ, σ)(2)

we see that Z(τ,σ) has dimension 3 with H : Z(τ,σ) → IR2 and F : Z(τ,σ) → Z(τ,σ)
given by

MH =
(

1 2 4
1 2 3

)
MF =

⎛

⎝
0 0 2
1 0 −5
0 1 4

⎞

⎠

�
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Proposition 15. Let k be a field and let O = km. A vector of streams σ ∈
(kω)m ∼= (km)ω is realisable by a linear km-system of finite dimension iff σ ∈
(Rat(kω))m.

Proof : From left to right, this is Proposition 5. For the converse, it is sufficient
to observe that the examples above generalise to arbitrary vectors of rational
streams. This is immediate from the fact that for a rational stream σ = ρ/τ , the
dimension of Zσ in the construction above is bounded by the maximum of the
degrees of ρ and τ . �

Next we turn to systems with input and output . Let I and O be sets. A state s
in a (not necessarily linear) (I, O)-system (S, φ) realises a causal stream func-
tion g : Iω → Oω if the final behaviour of s satisfies f(s) = g. For a given g,
a (minimal) realisation is obtained by taking the smallest subsystem S of the fi-
nal (I, O)-system (Γ, γ) containing g. The system S can be constructed by adding
to the singleton set {g} all successive stream function derivatives gi, (gi)j , etc. (for
i, j, . . . ∈ I), and taking the restriction of γ to S. The inclusion S ⊆ Γ is a homo-
morphism of (I, O)-systems and by finality we have f(g) = g. In [Rut06, HCR06],
this approach is systematically applied to the realisation (synthesis) of various
(non-linear) causal functions on bitstreams (with I = O = {0, 1}).

For infinite I and O, this construction will in general not be finitely com-
putable. However, if both I and O are finite dimensional vector spaces then
the realisation of linear causal stream functions can simply be reduced to the
realisation problem of streams, which we have already solved above.

Proposition 16. Let k be a field and let I = kl and O = km. Let g : (kω)l →
(kω)m be given by g(τ) = M ×X × τ , for an m× l matrix M ∈ (kω)m×l. Then g
is realisable by a linear (I, O)-system of finite dimension iff M ∈ (Rat(kω))m×l.

Proof: From left to right, this is Proposition 9. For the converse, we first consider
the case that l = 1. So assume that M ∈ (Rat(kω))m. By Proposition 15, there
exists a finite dimensional system (V, 〈H, F 〉) and v ∈ V realising M ; that is,
f(v) = MH × MF̃ × v = M . If we define G : k → V by the matrix MG = v then
(V, Φ〈H,F,G〉) with 0 ∈ V as initial state realises g since, for all τ ∈ kω,

f(0)(τ) = MH × MF̃ × MG × X × τ [Proposition 9]
= MH × MF̃ × v × X × τ

= M × X × τ

= g(τ)

For l > 1 we write M as a direct sum (product) M = M1 ⊕ · · · ⊕ Ml, with
Mi ∈ (Rat(kω))m, for i = 1, . . . , l. Then we construct realisations for each of
gi = Mi × X . Their direct sum is a realisation for g. �
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Appendix: A Comparison with Algebraic System Theory

In the wide area of (linear) system theory, our coalgebraic treatment of linear
systems is probably closest related to what sometimes is called algebraic system
theory. Below we give a brief overview of the approach of Kalman, who was
one of the early contributors, and compare it to the present model. Classical
references are [Kal63, KFA69], but see also [Kai80, Fuh96, Ben06]. Here we rely
on the more categorical account of Kalman’s model described in [AM74, AM75].

Let

I(ω) = {σ ∈ Iω | σ = (i0, i1, . . . , ik, 0, 0, 0, . . .) for some k ≥ 0, ij ∈ I }

and consider the following diagram of vector spaces and linear maps:

I

e

��

G

����
��

��
��

��
� O

I(ω)

X×(−)

��

r ������ V

F

��

o ������

H

����������
Oω

t

��

h

��

I(ω)
r

������ V o
������ Oω

(with e(i) = (i, 0, 0, 0, . . .).) The diagram can be viewed as a theorem stating that
every choice of linear transformations G and F induces a unique reachability map
r such that the left half of the diagram commutes, and similarly, every choice
of F and H induces a unique observability map o fitting in the right half of the
diagram. In this manner, every linear system (V, H, F, G) induces a unique map
(called the transfer function) o ◦ r : I(ω) → Oω . It satisfies (in our notation)

o ◦ r(σ) = H × F̃ × r(σ) (23)

where the state r(σ) reached on input σ = (i0, i1, . . . , ik, 0, 0, . . .) ∈ I(ω) is given
by

r(σ) =
(

F̃ × G × σ
)

(k)

= G(i0) + F ◦ G(i1) + F 2 ◦ G(i2) + · · · + F k ◦ G(ik)

(Note that the operational interpretation is that ik is the first input and i0 is the
last.) Comparing (23) with the final behaviour of V given in Theorem 8, we note
the following differences: (i) The final behaviour allows arbitrary input streams,
not only almost-everywhere-zero ones. (ii) The ordering of the inputs coincides
with the input order. (iii) In (23), the behaviour of V is described in two steps:
first r computes the state that is reached on finite input, then the (infinite)
output stream is computed; in contrast, Theorem 8 describes the behaviour of
an arbitrary initial state for all (infinite) streams of inputs.
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Further differences between the two approaches can be noted regarding the
way realisation is handled. In Kalman’s approach, a realisation of a linear map
g as in Proposition 16 is obtained by constructing its so-called (infinite) Hankel
matrix Hg, viewing Hg as a linear transformation from I(ω) to Oω , and the
observation that if Hg has finite rank then this linear transformation factors
through a finite dimensional vector space V as in the diagram above. In contrast,
Proposition 16 reduces realisation of linear maps to the realisation of streams,
and the latter are simply given by the corresponding (t-cyclic) subspaces of Oω .
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