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Abstract We propose to combine interactive proof construction with proof automa-
tion for a fragment of first-order logic called Coherent Logic (CL). CL allows enough
existential quantification to make Skolemization unnecessary. Moreover, CL has a
constructive proof system based on forward reasoning, which is easy to automate
and where standardized proof objects can easily be obtained. We have implemented
in Prolog a CL prover which generates Coq proof scripts. We test our approach with
a case study: Hessenberg’s theorem, which states that in elementary projective plane
geometry Pappus’ axiom implies Desargues’ axiom. Our CL prover makes it possible
to automate large parts of the proof, in particular taking care of the large number of
degenerate cases.

Keywords Coherent logic · Automated theorem proving · Proof objects ·
Hessenberg’s theorem

1 Introduction

The main purposes of automated theorem proving are consolidation (a formal proof
increases our confidence in the theorem) and experimentation (testing whether some
formula is a theorem). For the purpose of consolidation it is particularly relevant to
have some standardized format for the proofs, preferably based on typed lambda
calculus (where proof checking is type checking is decidable, see for example [10]).
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Standardized proof objects allow independent verification of proofs by other systems,
as well as reuse of proofs. Further purposes of proofs are explanation (a proof
explains why the theorem is true, and a formal proof does so in great detail) and
algorithm extraction (depends on the logic in question). Of course the explanatory
virtues of formal proofs decrease with their size, but on a more abstract level even
large formal proofs can be useful in analyzing, for example, which axioms actually
have been used. In all these cases success is subject to (at least) machine limitations,
where the size of the search space is usually the biggest problem.

General-purpose automated theorem provers are not yet able to prove difficult
mathematical theorems, in any case not in first-order logic (more expressive log-
ics are even harder to automate). Moreover, proof objects are usually somewhat
neglected and are certainly not generated in a standardized format. The formal
verification of difficult theorems still requires human ingenuity, and this situation
is not likely to change any time soon.

In the combined effort of man and machine called interactive proof construction
one would like to have as much automation as possible. It turns out that boosting
automation in interactive proof construction is difficult. One reason is that the best
general-purpose provers first translate the problem, typically to conjunctive normal
form, and then work on the translated problem. The correctness of this procedure
relies on metatheorems that are quite complicated from the standpoint of proof
theory. Converting a proof of the translated problem into a proof of the original
problem is possible but difficult [4, 8], and the resulting proof objects are seldom
satisfactory (too large and indirect by the translation). Moreover, if the translated
problem isn’t easily solved, steering a prover that works on a different problem is
hard.

The biggest step in the translation usually is Skolemization, the elimination of
existential quantifiers in favor of Skolem functions. This involves an extension of
the signature and preserves validity only under some extra axioms, weak instances
of the axiom of choice called ‘Skolem axioms’. Extending the signature with a Skolem
function can turn a finite Herbrand universe with only constants into an infinite one.
Important properties of Skolem functions, such as symmetry or idempotency, can get
lost in translation.

We propose to combine interactive proof construction with proof automation for
a fragment of first-order logic (FOL) called coherent logic (CL). CL allows enough
existential quantification to make Skolemization unnecessary and has a natural proof
system based on forward reasoning. Moreover, this proof system can be automated
in such a way that standardized proof objects are easily obtained. In case the search
space is too large, forward reasoning is straightforward to steer. We test our approach
by formally proving Hessenberg’s theorem (1905), which states that in elementary
projective plane geometry Pappus’ axiom implies Desargues’ axiom. Besides being a
beautiful theorem, it has an interesting history in that the proof contained a gap for
almost 50 years. This makes it worthwhile to formalize the proof by Cronheim [7],
which was claimed to be (and indeed is) complete.

In the next section we introduce CL. In Section 3 we work toward a machine-
oriented axiomatization of projective plane geometry and point out some subtleties
with respect to the formulation. Section 4 exhibits an example of how the reasoning
mechanism works. The complete proof of Hessenberg’s theorem, assembled from
three large machine-generated subproofs, is described in Section 5. We compare
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our approach to related research in Section 6. We have added an Appendix about
a misformulation of Desargues’ axiom by Skolem, detected during our experiments,
demonstrating our machinery in full detail. All files concerning the formal verifica-
tion in Coq [21] using CL can be found on [3]. A preliminary version of this work was
presented at ADG’06, Pontevedra, Spain.

2 Coherent Logic

As far as we know, Skolem [18] was the first who used CL (avant la lettre) to solve
a decision problem in lattice theory and to prove the independence of Desargues’
axiom from the basic axioms of projective plane geometry. Modern CL arose in
algebraic geometry, see for example [12, Sect. D.1.1]. In this paper we define CL
as the fragment of FOL consisting of implicitly universally quantified implications of
the following form:

A1 ∧ · · · ∧ An ⇒ ∃�x1. C1 ∨ · · · ∨ ∃�xm. Cm, (1)

where the Ai are first-order atoms and the Cj are conjunctions of such atoms. We
use some obvious notational optimizations to improve readability: if n = 0, then we
leave out ⇒ altogether; if m = 0, then we write ⊥ (falsum) to denote the empty
disjunction; empty existential quantifications are left out. A coherent theory is a finite
set of formulas of the form (1). Closed atoms, that is, atoms without free variables,
are called facts.

Let T be a coherent theory. The set �T(X � F) of derivations in T of a fact F
from a set of facts X is inductively defined by the following two rules (explained
below).

X
F

F ∈ X
X A ⇒ D δ1 · · · δm

F
A ⊆ X

In words, the base case (left) applies when the goal F is in the set of facts X. The step
case applies when A ⇒ D is a closed instance of a formula in T whose antecedent
is satisfied by X, expressed by A ⊆ X. The number of subderivations δi is equal to
the length of the disjunction D. If D = ∃�x1. C1 ∨ · · · ∨ ∃�xm. Cm, every subderivation
δi should be in �T(X, Ci � F) (1 ≤ i ≤ m). Here X, Ci is the set of facts X extended
with the atoms in Ci, with the variables �xi replaced by fresh constants. If D is ⊥, there
are no subderivations.

As an example we give the derivation of r in the coherent theory with axioms
p ∨ ∃x.q(x), p ⇒ ⊥, q(x) ⇒ r.

∅ p ∨ ∃x.q(x)
{p} p ⇒ ⊥

r

{q(c)} q(c) ⇒ r
{q(c), r}

r
r

r

The rightmost inference is the only base case; all other inferences are step cases. Note
that the step using p ⇒ ⊥ has no subderivations but is not a base case.

There are two views on CL’s proof theory. One is to view the above rules as
a natural deduction-style system of inference, which leads via the Curry–Howard
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correspondence to a standard format for proofs. The step case is actually a com-
bination of instantiation (of the formulas in T), Modus ponens (combining X with
A ⇒ D), disjunction elimination (the subderivations for each disjunct in D), and
existential elimination (the fresh constants in Ci).

The other view is that of forward reasoning. This can also be observed in the
example above: we start with the empty set of facts; we split in two branches with
sets {p} and {q(c)}, respectively; and finally extend the latter to {q(c), r}. Observe
that the axioms are used as production rules (Skolem: Erzeugungsprinzipien) to
generate new facts from already known ones, distinguishing cases for each disjunct in
the consequent and introducing witnesses in the case of existential quantifiers. This
familiar view will be used for automating the reasoning in CL, logging the instances
of the axioms that have been applied, the cases that have been distinguished, and
the witnesses that have been introduced. When a proof has been found, a natural
deduction-style proof object (a typed lambda-term) can be reconstructed on the basis
of this logbook.

The proof theory is complete and reasoning in CL is constructive in the
sense of intuitionistic logic. Completeness proofs can be found in Bezem and
Coquand [1, 2]. We have implemented the CL proof procedure in Prolog, see
[3, CL.pl]. The implementation generates Coq proof scripts. This does not increase
the size of the trusted core of Coq. Elaborated examples of the reasoning mechanism
are given in Section 4 and in the Appendix.

3 Projective Plane Geometry

3.1 Axioms for Humans

In a projective plane there are points and lines, and there is one primitive relation
between these, the incidence relation. Let uppercase letters range over points and
lowercase letters over lines. If point P and line � are incident, notation P|�, we say
that ‘P lies on �’ and that ‘� passes through P’. A point lying on two lines � and m is
called their intersection, and is written (�m). Dually, a line passing through two points
P and Q is called their connecting line, and is written (PQ). A set of points is said
to be collinear if there exists a line incident with all points in the set. Dually, a set of
lines is said to be concurrent if there exists a point incident with all lines in the set.

We axiomatize the projective plane with the following three axioms.

Axiom 1 Any two points are incident with a line.

Dually, interchanging points and lines, we postulate:

Axiom 2 Any two lines are incident with a point.

The following self-dual axiom ensures that (PQ) and (�m) are uniquely determined
for distinct P, Q and �, m, respectively.

Axiom 3 Two distinct points cannot both be incident with two distinct lines.
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Fig. 1 Pappus’ axiom

There are some subtle differences with other, perhaps more familiar, formulations;
we discuss the correspondence with two of the axioms given in Coxeter [6, p. 13]:

Any two distinct points are incident with just one line.
Any two distinct lines are incident with just one point.

These axioms are a fine example of the efficient use of natural language in informal
classical mathematics. For the formalist and the constructivist they are horrendous.
The just one quantification is an existential quantification containing an implicit uni-
versal quantification. The qualifier distinct introduces a negative condition; the two
points should not be equal. The two statements ¬φ ⇒ ψ and φ ∨ ψ are equivalent
in classical logic, but constructively the latter is stronger than the former. Moreover,
for atomic φ and ψ , φ ∨ ψ is coherent and ¬φ ⇒ ψ is not.

It is not hard to see that the two above axioms are implied by Axioms 1–3. For the
reverse implication, we need the existence of two distinct points, which follows from
other axioms listed in Coxeter [6], as well as classical logic.

We now present Pappus’ axiom;1 see Fig. 1. Coxeter [6] states Pappus’ axiom
as follows:

If alternate vertices of a hexagon lie on two lines, the three pairs of opposite
sides meet in three collinear points.

Thus, given a hexagon PQ′ RP′ QR′, where the points P, Q, R are on one line and
points P′, Q′, R′ are on another line, the pairwise intersections

S ≡ ((PQ′)(QP′)) T ≡ ((RP′)(PR′)) U ≡ ((QR′)(RQ′))

lie on the so-called Pappus line, the dashed line in Fig. 1. It is convenient to give
a Pappus configuration by a 3 × 3 matrix (Pij). The intersection of (P1i P2 j) and
(P2i P1 j) is then P3k, for all different i, j, k. This can be visualized by striking out the
rows and columns in which P1i, P2 j occur. For example, the matrix corresponding to
the configuration in Fig. 1 reads

⎛
⎝

P Q R
P′ Q′ R′
U T S

⎞
⎠ .

1Pappus’ axiom is often referred to as Pappus’ theorem, because it is true in, for example, the
real projective plane and in all finite projective planes. Pappus’ axiom is, however, not true in all
projective planes.
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In order to exclude some degenerate cases in which the intersections S, T, U
are indeterminate and possibly not collinear, Pappus’ axiom requires some side-
conditions, of which several other formulations (often not explicitly stated) can be
found in the literature. We discuss some of these formulations and show how they
relate to our formulation.

A. In the formulation of Coxeter [6], we believe these side-conditions are present
in the use of the word ‘hexagon’. The hexagon is assumed to be nondegenerate,
that is, its sides are pairwise distinct.

B. A close reading of Cronheim [7] reveals the assumption of six distinct points,
three on one line and three on a distinct line.

C. Another variation is to require that none of P, Q, R is incident with the line that
joins P′, Q′, R′, and vice versa.

D. We choose yet another formulation, which ensures determinacy of the intersec-
tions S, T, U by requiring the lines that should determine these intersections to
be distinct.

It is easily seen that both A and B imply D. Concerning C, we formally verified the
logical equivalence of the version of Pappus’ axiom with side conditions C and the
one with side conditions D in the presence of Axioms 1–3 ([19, GEO167,168]).
The simple fact that C is expressed by a conjunction of length six, whereas D by
one of length three, lengthens the proof search so that we prefer the latter.

Axiom 4 (Pappus) For collinear P, Q, R and collinear P′, Q′, R′, the intersec-
tions ((QR′)(RQ′)), ((RP′)(PR′)), and ((PQ′)(QP′)) are collinear if they are
determinate’.

As first observed by Hessenberg [11], Axioms 1–4 imply Desargues’ axiom,2 stated
as follows:

Axiom 5 (Desargues) Two triangles perspective from a point are perspective from a
line (under suitable side conditions).

Two triangles A1 A2 A3 and B1 B2 B3 are said to be perspective from a point S if
the three lines joining corresponding vertices meet in S. Dually, two triangles are
said to be perspective from a line � if the three intersections of corresponding edges
are joined by �. S and � are called the perspectivity point and perspectivity line,
respectively. An example Desargues configuration is depicted in Fig. 2.

In the next subsection we present the ‘machine’ versions of Axioms 1–4.
This ‘mechanization’ involves the unfolding of defined notions such as ‘collinear’,
‘determinate’, and ‘perspective’, in terms of the primitive incidence relation. Also,
some formulas have to be replaced by (classical) equivalents in order to comply with
the CL-format as defined in Section 1.

2Also this axiom is often referred to as a theorem, because it is true in, for example, the real projective
plane. Unlike Pappus’ axiom, Desargues’ axiom is false in some finite projective planes.
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Fig. 2 Example of a Desargues configuration. In space, with the triangles A1 A2 A3 and B1 B2 B3 in
different planes, the perspectivity line is the intersection of these two planes. This gives an easy proof
for the two-dimensional case as well, essentially using the third dimension

3.2 Axioms for Machines

We formalize elementary projective plane geometry as a one-sorted theory. There
exists a standard reduction of many-sorted logic to one-sorted. For every sort s
one introduces a unary predicate s(x) whose purpose is to express that x is of
sort s. Quantifications with respect to sort s are then relativized. This means that
everywhere ∀sx. φ becomes ∀x. (s(x) ⇒ φ) and ∃sx. φ becomes ∃x. (s(x) ∧ φ). The
equality predicates for the various sorts are all replaced by one-sorted equality. Note
that relativization essentially preserves the coherent format. In this way any many-
sorted (coherent) formula φ can be translated into a one-sorted (coherent) formula
φ′. We then have the following well-known result.

|=m φ if and only if � |= φ′ (∗)

Here |=m expresses truth in all many-sorted models and � contains some axioms
related to the translation ′. It is standard to let � consist of axioms ∃x. s(x) for all sorts
s. These axioms are necessary because domains in FOL are nonempty, and they are
also sufficient for obtaining the equivalence (∗). It is less well-known that one may
actually add several other axioms to � and still get equivalence. Of course the idea is
not so much to complicate � unnecessarily as to take advantage of the extra axioms
in simplifying φ′. We elaborate on this in the next paragraphs.

In order to simplify matters, we restrict attention to the case of plane geometry
with a sort for points and a sort for lines, and we drop the convention of using upper
case letters for points. Besides those two sorts the signature contains | expressing
incidence of a point with a line. The one-sorted signature would then consist of two
extra unary predicates point(x) and line(y) besides x|y expressing that ‘object’ x lies
on ‘object’ y. Here the intended meaning of ‘object’ is point for x and line for y, but
these meanings are not imposed by one-sorted | but by neighboring atoms point(x)

and line(y) coming from the relativized quantifiers.
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A more informative | is desirable. The axiom we would like to add to the standard
� is x|y ⇒ point(x) ∧ line(y). Why would such an extension be allowed? In order to
see this, we must enter the standard argument for the equivalence (∗), in particular
from right to left as strengthening � amounts to weakening the right-hand side. This
argument is based on transforming any many-sorted model into a one-sorted model
of � in the following way. Let the one-sorted domain be the union of the domains
of the many-sorted model. Interpret the unary predicates point(x) and line(y) as the
subsets of points and of lines, respectively, of this union. Interpret x|y by the set of
pairs of points and lines that are incident in the many-sorted model. The standard
argument now proceeds by proving by formula induction that any φ is true in the
many-sorted model if and only if φ is true in the corresponding one-sorted model
of �. This argument can still be used. The only extra observation we make is that
the one-sorted model also validates the axiom x|y ⇒ point(x) ∧ line(y) added above.
This completes the justification of the extension of �.

Thus we add x|y ⇒ point(x) ∧ line(y) to the standard axioms:

� = {∃x.point(x), ∃x. line(x), (x|y ⇒ point(x) ∧ line(y))}
What then are the benefits of this extension? In order to answer this question, we
observe that point(x) ∧ φ ∧ x|y can be simplified to φ ∧ x|y and line(y) ∧ φ ∧ x|y to
φ ∧ x|y. This allows us to economize 1, 1, 4 and 18(!) line- and point-atoms in the
respective axioms below.

Axiom 1′ point(x) ∧ point(y) ⇒ ∃u. (x|u ∧ y|u)

Axiom 2′ line(u) ∧ line(v) ⇒ ∃x. (x|u ∧ x|v)

Axiom 3′ x|u ∧ x|v ∧ y|u ∧ y|v ⇒ x = y ∨ u = v

Axiom 4′

x1 |u ∧ x2 |u ∧ x3 |u ∧ y1 |v ∧ y2 |v ∧ y3 |v
∧ x1 |�1 ∧ y2 |�1 ∧ p|�1 ∧ x2 |�2 ∧ y1 |�2 ∧ p|�2

∧ x1 |m1 ∧ y3 |m1 ∧ q|m1 ∧ x3 |m2 ∧ y1 |m2 ∧ q|m2

∧ x2 |n1 ∧ y3 |n1 ∧ r |n1 ∧ x3 |n2 ∧ y2 |n2 ∧ r |n2

⇒ �1 = �2 ∨ m1 = m2 ∨ n1 = n2 ∨ ∃w. (p|w ∧ q|w ∧ r |w)

Axiom 4′ can be related to Fig. 1 by taking x1 = P, x2 = Q, x3 = R,. . . , u = (PQ) =
(QR), and so forth.

Axioms 1′–4′ are in CL-format and correspond to Axioms 1–4 of the previous
section. Some remarks on logical equivalence are in order here. Note the positive
formulation of Axiom 3′ as compared to Axiom 3. In Axiom 4′, collinearity of
x1, x2, x3, that is, ∃u. (x1 |u ∧ x2 |u ∧ x3 |u), has been reformulated using the logical
equivalence of (∃u. φ(u)) ⇒ ψ and ∀u. (φ(u) ⇒ ψ) (u not free in ψ). Likewise for
the collinearity of y1, y2, y3. The condition enforcing the intersections p, q, r to be
determinate, that is, �1 �= �2, m1 �= m2 and n1 �= n2, has been moved to the conclusion
using the logical equivalence of (¬φ ∧ ψ) ⇒ ζ and ψ ⇒ (φ ∨ ζ ) (in classical logic).

The final step is the mechanization of Desargues’ axiom 5. As this axiom is to
be proved as a theorem, we may assume two triangles that are perspective from a
point, satisfying certain side conditions. We then have to prove that there exists a
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perspectivity line. The logical structure of this is extremely simple: a long list of facts
(= closed atoms) and negated facts. Finally, the formula to be proved is

∃�. (p1 |� ∧ p2 |� ∧ p3 |�).
This is completely unproblematic from the point of view of CL, but geometrically the
situation, in particular with respect to the side conditions, is so complicated that we
prefer to explain this in a separate subsection.

3.3 Desargues Configurations

Definition 1 A Desargues configuration D is a sequence of points S, A1, A2, A3, B1,
B2, B3, P1, P2, P3 such that A1, A2, A3 are distinct, B1, B2, B3 are distinct, S, Ai, Bi

are collinear for i = 1, 2, 3 and (A j Ak) and (B jBk) are distinct lines meeting in Pi,
for all rotations (i, j, k) of (1, 2, 3).

Observe the following permutation invariance: if we have a Desargues config-
uration as above, then also S, Ai, A j, Ak, Bi, B j, Bk, Pi, Pj, Pk is a Desargues
configuration, for any permutation (i, j, k) of (1, 2, 3) (but only rotations will be used).
For the purpose of convenient reference, we fix the names of these points, and we let
D(x, y, z) denote the configuration obtained from permuting (1, 2, 3) into (x, y, z).
In particular we have D = D(1, 2, 3).

Having an automated reasoning tool makes it attractive to experiment with
different sets of side conditions. Cronheim’s starting point for proving Desargues
is a configuration consisting of seven distinct points (non-collinear A1, A2, A3 and
non-collinear B1, B2, B3, and a point S) and three distinct lines (Ai Bi) which meet in
S, the perspectivity point. Note that we have allowed A1, A2, A3 and/or B1, B2, B3

to be collinear but require that corresponding ‘edges of the triangles’ be distinct.
Our set of conditions in Definition 1 is easily seen to follow from Cronheim’s.

Assume for example (A2 A3) = (B2 B3). Then the points A2 and B2 lie on both
(A2 B2) and (A2 A3) = (B2 B3). Hence by projective unicity (Axiom 3) the points A2

and B2 are equal or we have (A2 B2) = (A2 A3). Similarly, A3 and B3 are equal or
(A3 B3) = (A2 A3). In all cases we violate Cronheim’s conditions.

For instance, the configurations displayed in Fig. 3, satisfy our conditions but not
Cronheim’s. Nevertheless, there is a perspectivity line. It turned out that the weaker
conditions as formulated in Definition 1 were sufficient for the proof.

Fig. 3 Three degenerate Desargues configurations. Left: One of the vertices (A1) is the point of
perspectivity (S); lines (A2 A3) and (B2 B3) = (P3 P2) meet in P1 at infinity. Middle: A degenerate
triangle A1 A2 A3, where (A2 A3) and (B2 B3) meet in P1 at infinity. Right: Another degenerate case,
where (A1 A2) and (B2 B3) are equal
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It is very well possible that the proof can be carried out under even weaker
conditions. We have not analyzed this any further. As a historical note we mention
that leaving out the condition that A1, A2, A3 are distinct and B1, B2, B3 are distinct,
such as done in Skolem [18, p. 129], leads to an axiom that implies that any three
points are collinear. This actually provides an interesting example that is given in full
detail in the Appendix.

Axiom 5 can now be reformulated as follows.

Axiom 6 (Desargues) For any Desargues configuration D such as in Definition 1,
there exists a perspectivity line joining P1, P2 and P3.

Hessenberg’s theorem for humans states that Axioms 1–4 imply Axiom 6. For
machines it reads as follows.3

Theorem 1 (Hessenberg) In the theory consisting of Axioms 1′–4′, � and equality
axioms (reflexivity, symmetry, transitivity, and congruence with respect to the incidence
relation), we have

A1 |�1 ∧ B1 |�1 ∧ S|�1 ∧ A2 |�2 ∧ B2 |�2 ∧ S|�2 ∧ A3 |�3 ∧ B3 |�3 ∧ S|�3

∧ A2 |a1 ∧ A3 |a1 ∧ P1 |a1 ∧ A3 |a2 ∧ A1 |a2 ∧ P2 |a2

∧ A1 |a3 ∧ A2 |a3 ∧ P3 |a3 ∧ B2 |b 1 ∧ B3 |b 1 ∧ P1 |b 1

∧ B3 |b 2 ∧ B1 |b 2 ∧ P2 |b 2 ∧ B1 |b 3 ∧ B2 |b 3 ∧ P3 |b 3

⇒ A1 = A2 ∨ A2 = A3 ∨ A3 = A1 ∨ B1 = B2 ∨ B2 = B3 ∨ B3 = B1

∨ a1 = b 1 ∨ a2 = b 2 ∨ a3 = b 3 ∨ ∃�. (P1 |� ∧ P2 |� ∧ P3 |�).

4 The Reasoning Mechanism

This section describes how the reasoning mechanism of CL works. Abstractly, this
is by forward ground reasoning with case distinction to deal with disjunctions and
introduction of new constants to deal with existential quantification.

As an example we prove that any projective plane with at least four points has at
least three collinear points. Informally, the proof proceeds as follows. Consider the
intersection Q of the line joining two points with the line joining two other points. If
Q is different from the initial four points, then both lines have at least three points.
Otherwise, if Q is equal to one of the initial four points, say, the first, then the line
through the third and the fourth point has at least three points on it.

For a formal proof in CL, consider the theory consisting of Axioms 1′, 2′, � and
equality axioms. Assume constants pi and facts axiomatizing them as four different
points: point(pi) and pi �= pj (1 ≤ i < j ≤ 4), which together form the (initial)
reasoning state. The goal is to prove

∃u x y z. (x|u ∧ y|u ∧ z|u ∧ x �= y ∧ y �= z ∧ x �= z).

For this goal to be a CL formula, x �= y must be an atomic formula and cannot
be taken as shorthand for x = y ⇒ ⊥. This means that we have to define �= as the

3Here, in order to maintain the correspondence with Fig. 2, we do not adhere to our convention of
using lowercase letters for points.
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complement of =, which is done by extending the theory with the following two CL
axioms (a so-called definitional extension).

x = y ∨ x �= y x = y ∧ x �= y ⇒ ⊥
In the rest of this section we reason in the extended theory.

Given a reasoning state, a reasoning step consists in, first, picking a closed instance
A ⇒ D of an axiom which is invalid in the state. This means that the antecedent A
is true in the state, but the consequent D is not. More precisely, this means that all
facts in A occur in the state, but for no disjunct ∃�x. Cj of D there exist witnesses �w
such that Cj[�x:= �w] is true in the state.

What happens then depends on the form of the conclusion D.

– If D is a disjunction of length zero, that is, D = ⊥, then we are done, and any
conclusion is valid.

– If D is a disjunction of length one without existential quantifiers, then D is a
conjunction of facts, and we simply add these facts to the state and continue.

– If D is a disjunction of length one with existential quantifiers, D = ∃�x C1, we
introduce new constants �w as witnesses and instantiate C1 with these constants,
C1[�x:= �w], add the facts to the state and continue. The state is understood to be
extended also by the new constants, which from now on may be used in closed
instances of axioms.

Before we continue with the case of a disjunction of length greater than one,
let us illustrate the mechanism described so far by elaborating the example. In
the initial state above we have the facts point(p1) and point(p2). The instance
point(p1) ∧ point(p2) ⇒ ∃u. (p1 |u ∧ p2 |u) of Axiom 1′ is invalid since there is no line
in the initial state joining p1 and p2. Applying this axiom ‘remedies’ this situation: we
add a constant �12 and facts p1 |�12 and p2 |�12 to the state. Note that the name ‘�12’ is
irrelevant as long as it is new. Applying the same axiom, but now instantiated with p3

and p4, leads to the further extension of the state with a constant �34 and facts p3 |�34

and p4 |�34. The instances p1 |�12 ⇒ point(p1) ∧ line(�12) and p3 |�34 ⇒ point(p3) ∧
line(�34) of the axiom x|y ⇒ point(x) ∧ line(y) from � are invalid, so we add the facts
line(�12) and line(�34) to the state (facts point(p1) and point(p3) are already present).
Next, we consider the instance line(�12) ∧ line(�34) ⇒ ∃x. (x|�12 ∧ x|�34) of Axiom 2′.
This instance is invalid: in the current state there exists no intersection of �12 and
�34. Therefore we introduce a constant q and add the facts q|�12 and q|�34 to the state.
In a similar way as above the fact point(q) is added. Summing up, the reasoning state
now extends the initial state with constants �12, �34, q and facts line(�12), line(�34),
p1 |�12, p2 |�12, p3 |�34, p4 |�34, point(q), q|�12, q|�34.

We continue the description of the reasoning mechanism.

– If D is a disjunction of length greater than one, then the reasoning mechanism
distinguishes as many cases as there are disjuncts in the disjunction. These cases
are treated as disjunctions of length one as described above. In all these cases the
goal has to be proved.

Let us continue the example with a disjunction of length two. In the state
we reached above the instance q = p1 ∨ q �= p1 is invalid. The proof can now be
completed by the following case distinction.
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q = p1 We add this fact to the state and infer p1 |�34 from q|�34. Now that we have
the facts p1 |�34, p3 |�34, p4 |�34, p1 �= p3, p3 �= p4, p1 �= p4, the goal holds
by taking �34, p1, p3, p4 for u, x, y, z, respectively.

q �= p1 We add this fact to the state and apply the invalid instance q = p2 ∨ q �= p2,
which gives rise to two subcases:

q = p2 This subcase is dealt with analogously to the case q = p1.
q �= p2 We add this fact to the state and have facts q �= p1, p1 �= p2,

q �= p2, q|�12, p1 |�12, p2 |�12 so that again the goal holds.

5 The Complete Proof by Cronheim

Cronheim’s proof [7] of Hessenberg’s theorem is three pages long and has a re-
markable level of detail. As can be guessed from the length of the machine proof
(thousands of steps), there are nevertheless quite a few details left out, something
which greatly improves the readability. However, in some cases, leaving out ‘details’
leads to incomplete or wrong proofs. This is what happened in Hessenberg’s original
argument. In some rare cases this may even lead to erroneous theorems.

In a formalization these details must all be taken care of, which is time consuming
and tedious. It is here that we think that tools like the one used in this paper have
something to offer. The CL prover turned out to be able to deal with all the details
left out by Cronheim. Moreover, we were able to leave out many of the details
that Cronheim deemed worth a few lines, mainly the justifications of application of
Pappus’ axiom.

Thus the proof scripts are considerably shorter than the original text. The ratio
between the proof script describing (or rather generating) the formal proof and the
original text in informal mathematics is usually called the De Bruijn factor (after
N.G. de Bruijn, see [14]). In the early days of formalization the De Bruijn factor
was around ten. Nowadays, it is around four. Here it is in total around one, and
considerably smaller for some parts of the proof.

We give a high-level exhibition of the machine proof that we have constructed in
the proof assistant Coq with the help of the CL prover. The proof closely follows
Cronheim’s proof. Minor modifications will be justified on the fly.

Cronheim distinguishes two cases: the general case, which is caught by
Hessenberg’s original argument, and a special case which was overlooked for
50 years. The case distinction can be phrased as either φ or ¬φ, where φ abbre-
viates. “There exists a permutation (i, j, k) of (1, 2, 3) such that ¬Ai |(B jBk) and
¬Bk |(Ai A j)”. We reformulate ¬φ into CL by ψ .

for all rotations (i, j, k) of (1, 2, 3), Ai |(B jBk) or Bk |(Ai A j) (ψ)

The switch from ‘permutation’ to ‘rotation’ will be justified in Subsection 5.2.
Observe that ψ amounts to 23 cases. In Subsection 5.2, still following Cronheim,

we show that these can be reduced to 2 cases (Lemma 2): one triangle circumscribes
the other, a notion defined as follows.

Definition 2 Triangle B1 B2 B3 circumscribes triangle A1 A2 A3 if for all rotations
(i, j, k) of (1, 2, 3) we have Ai |(B jBk).
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Figure 7 displays an example configuration where B1 B2 B3 circumscribes
A1 A2 A3. The existence of a perspectivity line in this special setting is proved in
Subsection 5.3 (Lemma 3). First, in Subsection 5.1, we treat the case of ¬ψ as
proved by Hessenberg’s original argument (Lemma 1). Finally, in Subsection 5.4 we
assemble these results to prove the main theorem (Theorem 1).

For the CL tool to construct the formal proof of Lemmas 1–3, only the essential
steps had to be specified, namely the construction of the intersection of two given
lines, the construction of a line through two given points and of a new line through
three given points using Pappus’ axiom. In the latter case it was never necessary
to specify the two lines with each three points and the three pairs of lines whose
respective intersections are collinear by the new line to be constructed. Neither was
it necessary to give the details of the proof that the application of Pappus’ axiom was
justified. All files can be found on [3].

5.1 Hessenberg’s Incomplete Argument

In this section we reproduce the argument which Hessenberg took for a complete
proof. In fact this argument proves only the existence of a perspectivity line under
some additional, nontrivial assumptions.

Lemma 1 Let D be a Desargues configuration. Then there exists a perspectivity line
joining P1, P2, P3, or A1 |(B2 B3), or B3 |(A1 A2).

Proof Consider Fig. 2 on page 67, and define four further points.

Q ≡ ((A1 A2)(B3 B2)) E ≡ ((A1 A3)(SQ))

X ≡ ((A1 B3)(SA2)) F ≡ ((B1 B3)(SQ))

Then, the points Pi are shown to be collinear by three applications of Axiom 4, as
shown in Figs. 4, 5, and 6.

Fig. 4 Proof of Lemma 1: first application of Axiom 4
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Fig. 5 Proof of Lemma 1:
second application of Axiom 4

The proof of this lemma can be generated automatically by using the following
Prolog list as a proof script:

[meet(a1a2,b2b3,Q),join(a1,b3,A1B3),meet(s2,A1B3,X),join(s,Q,
SQ),meet(a3a1,SQ,E),meet(b3b1,SQ,F),pappus(p1,E,X),pappus(p3,
F,X),pappus(p1,p2,p3)]

In Prolog, identifiers starting with a capital are variables. The constant a1 represents
the point A1 in the Desargues configuration, a1a2 the line joining A1 and A2, and
so on.

The terms in the above list control the application of their axioms. For example,
meet(L,M,P) controls the application of the following Prolog clause representing4

Axiom 2′:

meet(L,M,P)axiom meet(L,M):(l(L),l(M)=>dom(P),i(P,L),i(P,M)).

If the clause applies, P becomes bound to a new constant, representing the inter-
section of the lines L and M. The new constant is added to the domain by the
presence of the atom dom(P) in the conclusion of the rule. Atoms like dom(P), with
P not occurring in the antecedent of the rule, represent existential quantification.
Thus, for example, meet(a1a2,b2b3,Q) means the following: if l(a1a2) and
l(b2b3), then the intersection of the lines a1a2 and b2b3 is represented by a new
constant to which variable Q is bound. Furthermore, the term meet(L,M) keeps
track of which instance has been used, in order to be able to generate the proof.
Terms join(P,Q,L) have an explanation dual to that of meet(L,M,P). Terms
pappus(P,Q,R) mean: prove that P,Q,R are collinear by an application of the
Pappus’ axiom. This axiom contains 14 other variables that are left unspecified, so
that finding the right instance is nontrivial.

Thanks to the nine ‘stepping stones’ in the proof script above, which closely
follows the proof by Cronheim, the formal proof is found in 901 applications of

4More information on the Prolog representation of axioms can be found in the Appendix.
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Fig. 6 Proof of Lemma 1: third application of Axiom 4

axioms, 365 of which actually are used in the proof. All files concerning this lemma
can be found on [3, cro_case1.*].

The gap in Hessenberg’s original proof was that Q = F = B3 if B3 |(A1 A2) and
Q = E = A1 if A1 |(B2 B3). Then in particular the third application of Pappus’ axiom
(see Fig. 6), cannot be justified. Therefore the disjuncts A1 |(B2 B3) and B3 |(A1 A2)

have been added to the conclusion of Lemma 1.

Corollary 1 Let D be a Desargues configuration. Then there exists a perspectivity
line joining P1, P2, P3 or, for any permutation (i, j, k) of (1, 2, 3), Ai |(B jBk) or
Bk |(Ai A j).

5.2 Reducing 8 Gaps to 2

There is some redundancy in [7, p. 219 (2)] that we wish to avoid in our formalization.
Let us first reformulate the premiss of [7, (2)] “There does not exist a permutation
(i, j, k) of the numbers (1, 2, 3) such that non(Ai, B j, Bk) and non(Bk, Ai, A j) simul-
taneously”5 in a more positive way: for all permutations (i, j, k) one has Ai |(B jBk)

or Bk |(Ai A j). The conclusion of [7, (2)], “Either (Ax, By, Bz) for all permutations
(x, y, z) or (Bx, Ay, Az) for all permutations (x, y, z)”, may be paraphrased as
follows: One triangle circumscribes the other. This case is treated in Subsection 5.3.

There are six permutations of the numbers (1, 2, 3). The even permutations
correspond to rotations, the odd ones combine rotation with mirroring. In the
premiss of [7, (2)] an odd permutation boils down to rotating and interchanging the
two triangles. For example, the rotation (3, 1, 2) yields the disjunction A3 |(B1 B2) ∨
B2 |(A3 A1). If we interchange the two triangles, we get B3 |(A1 A2) ∨ A2 |(B3 B1),
which by commutativity corresponds with (2, 1, 3), indeed an odd permutation. Since
the conclusion of [7, (2)] is invariant under interchanging the two triangles, it can

5Cronheim’s notation (P, Q, R) corresponds to P|(QR) and ‘non’ stands for negation.
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Fig. 7 B1 B2 B3 circumscribes
A1 A2 A3

already be expected that one needs only permutations of one particular sign. This is
indeed the case, and we prefer to restrict the premiss to the even permutations, that
is, to the rotations. Under the premisses of Desargues’ axiom, which are invariant
under interchanging the two triangles, the system can automatically prove Lemma 2.
As observed by Cronheim, this lemma is independent of Pappus’ axiom.

Lemma 2 If, for all rotations (i, j, k) of (1, 2, 3), either Ai |(B jBk) or Bk |(Ai A j), then
there exists a perspectivity line, or triangle A1 A2 A3 circumscribes triangle B1 B2 B3,
that is, Ai |(B jBk) for all rotations (i, j, k) of (1, 2, 3), or vice versa.

This lemma can be proved fully automatically (also by some other theorem
provers). It requires 1531 applications of axioms, 847 of which are used in the proof.
Adding the disjunct ‘there exists a perspectivity line’ to the conclusion of the lemma
above made it possible to prove Hessenberg’s theorem with weaker side conditions
than Cronheim’s. All files concerning this lemma can be found on [3, cro_8_2.*].

Fig. 8 Proof of Lemma 3: first
application of Axiom 4
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Fig. 9 Proof of Lemma 3:
second application of Axiom 4

5.3 The Special Case: One Triangle Circumscribes the Other

An example of a configuration where a triangle B1 B2 B3 circumscribes a triangle
A1 A2 A3 is depicted in Fig. 7. With S the point of perspectivity, this Desargues
configuration is also known under the name of Cevian triangles.

Lemma 3 For any Desargues configuration D where triangle B1 B2 B3 circumscribes
triangle A1 A2 A3, there exists a perspectivity line joining the Pi = ((A j Ak)(B jBk)).

Proof Consider Fig. 7, and define the following points.

Q1 ≡ ((B3 P3)(SA1)) Q2 ≡ ((B3 P3)(SA2))

Then, collinearity of the Pi follows from three applications of Pappus (Axiom 4), as
shown in Figs. 8, 9, and 10, respectively.

This lemma was proved automatically by the following proof script.

[join(b3,p3,B3P3),meet(B3P3,s1,Q1),meet(B3P3,s2,Q2),
pappus(p2,Q1,b2),pappus(p1,Q2,b1),pappus(p1,p2,p3)]

Fig. 10 Proof of Lemma 3:
third application of Axiom 4
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These six ‘stepping stones’ make it possible to find the formal proof in 1808 applica-
tions of axioms, 749 of which actually are used in the proof. All files concerning this
lemma can be found on [3, cro_case2.*].

5.4 Assembling the Parts

We exhibit the proof of Hessenberg’s theorem (Theorem 1) that we have formalized
in the Coq proof assistant. The main Coq file [3, ht.v], written by hand, imports the
modules [3, cro_*.v] that have been generated automatically by the CL prover.
These files correspond to Lemmas 1–3, respectively. The proof of the theorem
consists of three applications of Lemma 1, one of Lemma 2 and two of Lemma 3.
In the main file, first the signature of points, lines, and incidence is declared, and
the axioms of sorted incidence are listed. For equality we use Coq’s built-in equality
which is defined as the smallest reflexive relation, equivalent to Leibniz’ equality.
This equality is an equivalence relation, and congruence with respect to the incidence
relation is easily proved. Then Axioms 1′–4′ are listed.

To start the proof of the theorem, we consider an arbitrary Desargues config-
uration D (see Definition 1). Now, the goal, say γ , is to prove the existence of a
perspectivity line joining the points Pi.

γ ≡ ∃�. (P1 |� ∧ P2 |� ∧ P3 |�)
Applying Lemma 1 to a configuration D(x, y, z), we get that either γ , and then we
are done, or Ax |(By Bz) ∨ Bz |(Ax Ay). Thus, by application of Lemma 1 to each of
the rotations of (1, 2, 3), we have asserted three disjunctions:

A1 |(B2 B3) ∨ B3 |(A1 A2),
A2 |(B3 B1) ∨ B1 |(A2 A3),
A3 |(B1 B2) ∨ B2 |(A3 A1).

Given these disjunctions, we are ready to apply Lemma 2, by which we get two
symmetrical cases, either B1 B2 B3 circumscribes A1 A2 A3, or vice versa. Both cases
are solved by application of Lemma 3; for the second case the roles of A and B in
Lemma 3 have to be interchanged.

6 Related Work and Future Research

Most theorem provers participating in the CADE ATP System Competition (CASC,
see [20]) can prove Lemma 2, which is problem GEO169 in the TPTP database [19].
But no CASC system on TPTP is currently able to prove Lemma 1 (GEO166) or
Lemma 3 (GEO165). Hessenberg’s theorem (GEO164) is certainly out of reach for
any of these systems. It can be expected that those systems can prove Lemmas 1 and 3
when given some hints as we did in CL. One problem with these fully automatic
systems is that they are not designed for interactive use. More importantly, they do
not generate portable, reusable proof objects in a standardized form.

Although well implemented, most systems in CASC Skolemize the input. For
example, the Skolemized form of Axiom 1′ would be

point(x) ∧ point(y) ⇒ x| f (x, y) ∧ y| f (x, y).
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Here f is a Skolem function. However, f (x, y) and f (y, x) both represent the line
through points x and y (even if there exists such a line already). The same is true
for intersection, which leads to major inefficiencies that are avoided in CL. As yet
it is not clear how important these inefficiencies are in fully automated theorem
proving. There is only one system participating in CASC, Geo by de Nivelle and
Meng [9], which is fully based on CL. Geo2006i ended in the sixth place of 11 systems
competing in the category FOF (and got the prize for the best newcomer). Geo2007j
did less well. Although we consider these results as promising, we envision that CL
will be most useful for interactive theorem proving.

The translation of FOL to CL is not nearly as well developed as the translation
of FOL to, for example, conjunctive normal form. The latter translation is treated in
two chapters of [17], covering almost 100 pages. There exist two known translations
of FOL to CL, one from Bezem and Coquand [2, Sec. 7] and one from de Nivelle
and Meng [9]. They have not be compared in detail. Skolemization is avoided by
both, and both are linear. As a consequence, the distance between the original FOL
formula and its CL translation is much smaller than in the case of conjunctive normal
form. In the case of Bezem and Coquand [2] this can be made precise in the following
way: every FOL theory has a conservative extension that is equivalent to a CL theory,
a result that goes back to Skolem [18]. It is important to note that this is a result in
classical logic. Although reasoning in CL is constructive, translating, for example,
¬φ ⇒ ψ to φ ∨ ψ , is not. CL does not differ from resolution logic [17, Ch. 2] in this
respect. The optimal translation of FOL to CL is clearly an important topic of future
research.

Another challenge for CL is the integration in interactive theorem provers. In
the current situation, exporting the (would-be) tautology, including the translation
to CL-format, is done by hand. The CL prover generates a self-contained Coq proof
script, which, in turn, is used by the Coq system to build a proof object. The generated
file can be compiled and easily included in further Coq developments. It is desirable
to have back-ends for other proof assistants, such as Isabelle [15], as well. It is also
desirable to automate the exportation of formulas, or even whole proof states, and
their conversion to CL-format.

Proof assistants such as Coq and Isabelle do already have tactics for automated
reasoning. One can distinguish between general-purpose and special-purpose ones.
General-purpose tactics are, for example, tauto, first-order, and zenon [5]
in Coq and blast [16] in Isabelle. A strong point of these tactics is their smooth
integration in the proof assistant. Some tactics have even higher-order reasoning
capabilities, typically based on higher-order matching. It seems that blast performs
best, followed by zenon. Both blast and zenon are based on the tableau method
[17, Ch. 3]. There exists no systematic comparison of the performance of the
various approaches in different proof assistants. A competition like CASC but then
for systems generating standardized proof objects would make such a comparison
possible.

Special-purpose tactics, such as for Presburger arithmetic or for equational rea-
soning in rings, can be quite powerful in their domain, but are not generic.

In Kusak and Leończuk [13] the formal verification of Hessenberg’s theorem has
been carried out by hand in Mizar, resulting in a proof of 15 pages. Mizar is based
on FOL and has a structured taxonomy of theories. Although Mizar code is fully
formal, it can be read like informal mathematics, but the intuitions are difficult to
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grasp by the level of detail. In Kusak and Leończuk [13] there is no reference to an
existing proof in the literature, but our impression is that the proof is different from
Cronheim’s. The proof has been verified automatically by Mizar, but no attempt has
been made to generate parts of it. The Mizar proof format is not standardized and
has not been ported to other systems.

7 Conclusion

We have argued in favor of the use of CL for the automation of interactive proof
construction. We have illustrated our approach with a case study on Hessenberg’s
theorem. The choice of this case was deliberate: elementary projective geometry can
be expressed completely within CL. This is not the case for all of FOL. However,
the translation of full FOL to CL is much easier than to conjunctive normal form,
as it does not involve Skolemization. This places CL somewhere in the middle be-
tween resolution logic (using conjunctive normal forms) and tableau methods (using
general formulas). Resolution logic is the fastest known technique for automated
reasoning in FOL, outperforming tableau methods by a wide margin. We expect the
reasoning power of CL to lie somewhere between the power of resolution and that
of tableau methods. The advantage CL has over resolution is the smaller distance
between automated and interactive theorem proving, so that their integration will be
easier. How to integrate and which interface to use to steer the CL prover will be
subject to further research.

Appendix: Desargues’ Axiom by Skolem

In Fig. 11 we have reproduced the example from Skolem [18, p. 29] in which
Skolem illustrates the proof theoretic techniques developed earlier in his paper by
showing that Desargues’ axiom is independent of the basic axioms of projective plane

Fig. 11 Fragment from
Skolem [18, p. 29]

Beispiel: Es sei zu untersuchen, ob der Desarguesche
Satz von den homologen Dreiecken aus den aufgestell-
ten Verknüpfungsaxiomen folge oder nicht. Dieser Satz
ist ja ein deskriptiver. Er sagt in der kombinatorischen
Sprache folgendes: Wenn die Paare

(A1b 1)(A1c1)(B1a1)(B1c1)(C1a1)(C1b 1)
(A2b 2)(A2c2)(B2a2)(B2c2)(C2a2)(C2b 2)

(A1d)(A2d)(Pd)(B1e)(B2e)(Pe)(C1 f )(C2 f )(Pf )
(Da1)(Da2)(Dp)(Eb 1)(Eb 2)(Ep)(Fc1)(Fc2)

vorkommen, dann soll auch mindenstens eines der
Paare

(Fp)(a1a2)(b 1b 2)(c1c2)

vorhanden sein.
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geometry. First Skolem formulates Desargues’ axiom as a coherent formula. Instead
of using an existential quantifier to express the collinearity of D, E and F he states
that any line p joining D and E contains F. Since there is always such a line p,
these two formulations are equivalent. More interesting are Skolem’s side conditions,
which appear positively in his disjunctive conclusion (Fp)(a1a2)(b 1b 2)(c1c2). These
side conditions have the same function as the side conditions in Pappus’ axiom,
namely, to cover the cases in which intersections would become indeterminate.
It turns out that Skolem’s side conditions are too weak and that therefore his
formulation of Desargues’ axiom is too strong. It allows us in fact to prove that any
three points are collinear, thus trivializing the projective plane. As this proof is small,
it provides a good example to demonstrate our machinery in full detail. By the way,
Skolem’s proof-theoretic argument applies equally well to a correct formulation of
Desargues’ axiom, for example, with a disjunctive conclusion

(Fp)(a1a2)(b 1b 2)(c1c2)(A1 B1)(B1C1)(A1C1)(A2 B2)(B2C2)(A2C2)

We stress that we chose this example as an historical anecdote that serves our
explanatory purposes well and that we do not in any way intend to question the
value of Skolem’s contribution.

The automated reasoning tool [3, CL.pl] has been implemented in the pro-
gramming language Prolog. In the input, file below, most of the clauses have the
form <tag> axiom <term> : (<formula>). We explain each of the con-
stituents:

<tag>, if different from ‘_’, controls the use of the axiom. This is used only for
one axiom, tagged abc(P,Q). In combination with the enabled and the next
predicates in the last two clauses of the input, this limits the construction of new
lines to lines through different points a, b, c.
<term> gives a name to the axiom including all universally quantified variables.
This is used to keep track of which instances of which axioms have been used.
<formula> states the coherent formula in question. Here Prolog syntax is used;
that is, variables start with a capital, ‘,’ stands for conjunction, ‘=>’ for implication,
‘;’ for disjunction. Finally, dom on the right of ‘=>’ in the axioms for projective
lines and points stands for existential quantification. If the axiom line(P,Q) is
used, variable L is substituted by a fresh object (name), which is subsequently
added to the domain. Dually for point(L,M).

With this explanation, we trust that the comments after the symbol ‘%’ sufficiently
explain the file [3, sd.in] listed below.

name(’DbyS’). % Desargues’ axiom by Skolem
:- dynamic p/1,l/1,i/2,e/2. % predicates p for point, l for line

% i for incidence, e for equality

dom(a). dom(b). dom(c). % constants a,b,c in the domain

_ axiom points : (true => p(a),p(b),p(c)). % a,b,c are points

% goal is proved if a,b,c are collinear
_ axiom goal_proved(L) : (i(a,L),i(b,L),i(c,L) => goal).

_ axiom sortp(P,L) : (i(P,L) => p(P)). % inc. pairs have points left
_ axiom sortl(P,L) : (i(P,L) => l(L)). % and lines right
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% equality axioms
_ axiom p_ref(X) : (p(X) => e(X,X)). % refl. for points
_ axiom l_ref(X) : (l(X) => e(X,X)). % refl. for lines
_ axiom sym(X,Y) : (e(X,Y) => e(Y,X)). % symmetry
_ axiom tra(X,Y,Z) : (e(X,Y),e(Y,Z) => e(X,Z)). % transitivity

% congruence axioms
% equal points lie on the same lines
_ axiom conp(P,Q,L) : (e(P,Q),i(Q,L) => i(P,L)).
% equal lines have the same points
_ axiom conl(P,L,M) : (i(P,L),e(L,M) => i(P,M)).

% projective geometry (Axioms 1’-3’)
abc(P,Q) axiom line(P,Q) : (p(P),p(Q) => dom(L),i(P,L),i(Q,L)).
_ axiom point(L,M) : (l(L),l(M) => dom(P),i(P,L),i(P,M)).
_ axiom uniq(P,Q,L,M) : (i(P,L),i(P,M),i(Q,L),i(Q,M) => e(P,Q);e(L,M)).

% Desargues’ axiom as formulated by Skolem
% capital letters L prefix Skolem’s names for lines in order to comply
% with Prolog’s convention on variables
_ axiom wrong(A1,B1,C1,A2,B2,C2,La1,Lb1,Lc1,La2,Lb2,Lc2,

P,Ld,Le,Lf,D,E,F,Lp):
(

i(A1,Lb1),i(A1,Lc1),i(B1,La1),i(B1,Lc1),i(C1,La1),i(C1,Lb1), % A1B1C1
i(A2,Lb2),i(A2,Lc2),i(B2,La2),i(B2,Lc2),i(C2,La2),i(C2,Lb2), % A2B2C2
i(A1,Ld),i(A2,Ld),i(P,Ld), % \
i(B1,Le),i(B2,Le),i(P,Le), % - P is the point of perspectivity
i(C1,Lf),i(C2,Lf),i(P,Lf), % /
% line Lp is the candidate perspectivity line through D and E
i(D,La1),i(D,La2),i(D,Lp),i(E,Lb1),i(E,Lb2),i(E,Lp),i(F,Lc1),i(F,Lc2)
=>
% on which F should lie as well, or two corresping edges coincide
i(F,Lp);e(La1,La2);e(Lb1,Lb2);e(Lc1,Lc2)

).

enabled(abc(P,Q),[]) :- member(P,[a,b,c]),member(Q,[a,b,c]),P \= Q.
next(abc(P,Q),[],[]).

Next we list the output file [3, sd.out],6 which is self-explaining to a large degree. The
only difficult point is the application of Skolem’s formulation of Desargues’ axiom,
which we will explain at the end.

By axiom points using true we have:
p(a) /\ p(b) /\ p(c)

By axiom p_ref(a) using p(a) we have:
e(a,a)

By axiom p_ref(b) using p(b) we have:
e(b,b)

By axiom p_ref(c) using p(c) we have:
e(c,c)

By axiom line(a,b) using p(a) /\ p(b) we have:
i(a,w0) /\ i(b,w0)

By axiom sortl(a,w0) using i(a,w0) we have:
l(w0)

By axiom l_ref(w0) using l(w0) we have:
e(w0,w0)

6Not to be confused with the Coq file [3, sd.v] the CL prover also generates.
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By axiom line(a,c) using p(a) /\ p(c) we have:
i(a,w1) /\ i(c,w1)

By axiom sortl(a,w1) using i(a,w1) we have:
l(w1)

By axiom l_ref(w1) using l(w1) we have:
e(w1,w1)

By axiom line(b,c) using p(b) /\ p(c) we have:
i(b,w2) /\ i(c,w2)

By axiom sortl(b,w2) using i(b,w2) we have:
l(w2)

By axiom l_ref(w2) using l(w2) we have:
e(w2,w2)

By axiom wrong(a,a,a,c,c,a,w0,w0,w0,w1,w1,w2,a,w1,w1,w0,a,a,b,w1)
using
i(a,w0) /\ i(a,w0) /\ i(a,w0) /\ i(a,w0) /\ i(a,w0) /\ i(a,w0) /\
i(c,w1) /\ i(c,w2) /\ i(c,w1) /\ i(c,w2) /\ i(a,w1) /\ i(a,w1) /\
i(a,w1) /\ i(c,w1) /\ i(a,w1) /\ i(a,w1) /\ i(c,w1) /\ i(a,w1) /\
i(a,w0) /\ i(a,w0) /\ i(a,w0) /\ i(a,w0) /\ i(a,w1) /\ i(a,w1) /\
i(a,w0) /\ i(a,w1) /\ i(a,w1) /\ i(b,w0) /\ i(b,w2)

we have:
i(b,w1) \/ e(w0,w1) \/ e(w0,w1) \/ e(w0,w2)

stack pushed, stack: i(b,w1) \/ e(w0,w1) \/ e(w0,w1) \/ e(w0,w2) :: nil

stack top tailed: i(b,w1)
By axiom goal_proved(w1) using i(a,w1) /\ i(b,w1) /\ i(c,w1) we have:
goal

valid, stack: e(w0,w1) \/ e(w0,w1) \/ e(w0,w2) :: nil

stack top tailed: e(w0,w1)
By axiom sym(w0,w1) using e(w0,w1) we have:

e(w1,w0)
By axiom conl(b,w0,w1) using i(b,w0) /\ e(w0,w1) we have:

i(b,w1)
By axiom goal_proved(w1) using i(a,w1) /\ i(b,w1) /\ i(c,w1) we have:

goal

valid, stack: e(w0,w1) \/ e(w0,w2) :: nil

stack top tailed: e(w0,w1)
By axiom sym(w0,w1) using e(w0,w1) we have:

e(w1,w0)
By axiom conl(b,w0,w1) using i(b,w0) /\ e(w0,w1) we have:

i(b,w1)
By axiom goal_proved(w1) using i(a,w1) /\ i(b,w1) /\ i(c,w1) we have:

goal

valid, stack: e(w0,w2) :: nil

stack popped: e(w0,w2)
By axiom sym(w0,w2) using e(w0,w2) we have:

e(w2,w0)
By axiom conl(a,w0,w2) using i(a,w0) /\ e(w0,w2) we have:

i(a,w2)
By axiom goal_proved(w2) using i(a,w2) /\ i(b,w2) /\ i(c,w2) we have:

goal
valid, stack: nil

Yes
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By matching the wrong-terms in input and output:

wrong(A1,B1,C1,A2,B2,C2,La1,Lb1,Lc1,La2,Lb2,Lc2,P, Ld, Le, Lf,D,E,F,Lp)

wrong( a, a, a, c, c, a, w0, w0, w0, w1, w1, w2,a, w1, w1, w0,a,a,b,w1)

we find that Desargues’ axiom in Skolem’s formulation is applied by the machine
in the following completely degenerated case. The first triangle is the point a, the
second triangle consists of the points c, a, and a is the point of perspectivity.
The edges of the first triangle all coincide with the line w0 joining a, b. The
edges of the second triangle are w1 = a2, b 2 joining a = C2, c = A2 = B2, as
well as w2 = c2 joining b, c = A2 = B2. With this particular choice of edges,
corresponding edges meet in a, a, b, respectively. Any line through a connects
D=a and E=a, in particular w1. The conclusion that F=b lies on w1 leads to the
collinearity of a, b, c, and so does each of the other disjuncts in the conclusion:
i(b,w1)\/e(w0,w1)\/e(w0,w1)\/e(w0,w2).
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