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A compact and stable eddy covariance set-up                 

for methane measurements                                           

using off-axis integrated cavity output spectroscopy 

This chapter was published as Hendriks, D.M.D., Dolman, A.J., Van der Molen, M.K., 

Van Huissteden, J., 2008. A compact and stable eddy covariance set-up for methane 

measurements using off-axis integrated cavity output spectroscopy. Atmos. Chem. Phys. 

8, 431-443. 

 

Abstract 

A Fast Methane Analyzer (FMA) is assessed for its applicability in a closed path eddy 

covariance field set-up in a peat meadow. The FMA uses off-axis integrated cavity output 

spectroscopy combined with a highly specific narrow band laser for the detection of CH4 

and strongly reflective mirrors to obtain a laser path length of 2-20×10
3
 m. Statistical 

testing and a calibration experiment showed high precision (7.8×10
-3

 ppb) and accuracy (< 

0.30%) of the instrument, while no drift was observed. The instrument response time was 

determined to be 0.10 s. In the field set-up, the FMA is attached to a scroll pump and 

combined with a 3-axis ultrasonic anemometer and an open path infrared gas analyzer for 

measurements of carbon dioxide and water vapour. The power-spectra and co-spectra of 

the instruments were satisfactory for 10Hz sampling rates.  

Due to erroneous measurements, spikes and periods of low turbulence the data series 

consisted for 26% of gaps. Observed CH4 fluxes consisted mainly of emission, showed a 

diurnal cycle, but were rather variable over time. The average CH4 emission was 29.7 

nmol m
-2

 s
-1

, while the typical maximum CH4 emission was approximately 80.0 nmol m
-2

 

s
-1

 and the typical minimum flux was approximately 0.0 nmol m
-2

 s
-1

. The correspondence 

of the measurements with flux chamber measurements in the footprint was good and the 

observed CH4 emission rates were comparable with eddy covariance CH4 measurements 

in other peat areas. 

Additionally, three measurement techniques with lower sampling frequencies were 

simulated, which might give the possibility to measure CH4 fluxes without an external 

pump and save energy. Disjunct eddy covariance appeared to be the most reliable 

substitute for 10Hz eddy covariance, while relaxed eddy accumulation gave reliable 

estimates of the fluxes over periods in the order of days or weeks.  
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4.1 Introduction 

Methane is the third most important greenhouse gas globally, after water vapour and 

carbon dioxide. Its concentration has risen by 150% since the pre-industrial era (Foster et 

al., 2007) and currently 20% of the enhanced greenhouse effect is considered to be due to 

methane (Foster et al., 2007). Although methane is less abundant in the atmosphere 

compared to carbon dioxide, it is a relatively strong greenhouse gas: the Global Warming 

Potential of methane expressed as CO2-equivalents is approximately 25 (over 100 years) 

while that of carbon dioxide is by definition 1 (Foster et al., 2007). For water vapour and 

carbon dioxide, the eddy covariance technique has been used for several decennia 

(Aubinet et al., 2000) to measure the exchange of these gases with the earth surface. In 

eddy covariance, the vertical flux (Fs) of an atmospheric property (s) is directly 

determined by the covariance of that property and the vertical velocity, as shown in Eq. 

(4.1). This can be obtained by calculating the time averaged product (over the period t1 to 

t2) of the deviation (s’) of the atmospheric property (s), from 'sss += , and the deviation 

(w’) of the vertical wind velocity (w) from 'www += : 

∫
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(Aubinet et al., 2000). The eddy covariance technique requires an instrument with high 

precision, accuracy and system stability as well as high sampling rates and short 

instrument response time (τ). Unfortunately, the low abundance of methane in the 

atmosphere hampers adequate concentration measurements of this gas and the eddy 

covariance technique has therefore been rarely applied for the assessment of methane 

emissions (Kroon et al., 2007; Hargreaves et al., 2001; Kormann et al., 2001). The 

advantages of the eddy covariance technique compared to other techniques for measuring 

trace gases are nonetheless obvious: integrated continuous measurements over a large 

footprint area (10
2
 to 10

4
 m

2
) and longer periods without disturbance from small scale 

surface features. These properties enable assessments of spatial and temporal variability at 

the landscape scale.  

Since the 1980s, infrared absorption spectrometry using tunable diode lasers (TDLs) has 

been widely used for measurements of trace gases in the lab. A field technique for eddy 

covariance using a multipass absorption cell was introduced in 1995 (Zahniser et al. 

1995). Unfortunately, serious problems of drift and low sensitivity effects occurred. 

Additionally, the method had more practical drawbacks: the large nitrogen Dewar for 

temperature control that needs refill weekly, an extensive and sensitive optical module, 

and frequent calibration. Improvements were made with the Quantum Cascade Laser 

(QCL) spectrometer which was first introduced in 1994 (Faist et al., 1994). The method 

was more stable and accurate in eddy covariance set-up than the TDL spectrometry 

(Nelson et al., 2004; Kroon et al., 2007), but the practical drawbacks of the methane 

instruments (large nitrogen Dewar, optical module, and frequent calibration) were still 

present in the QCL spectrometer technique. Hitherto, the micrometeorological 
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measurement techniques for methane have thus implied very expensive, large and labour 

intensive field set-ups with logistic limitations to unattended field deployment. 

The objective of this study was to investigate the applicability and quality of the FMA, a 

new off-axis integrated cavity output spectroscopy (ICOS) technique using a highly 

specific narrowband laser, for its applicability for eddy covariance field measurements of 

methane. The relatively user-friendly and low cost set-up is tested for precision, accuracy 

and system stability as well as its’ performance in eddy covariance field set-up. The first 

data series are analysed and compared with data obtained by existing measurement 

techniques. To asses the applicability of the instrument at locations that lack external 

power supply, alternative measurements techniques of the set-up are simulated which 

could reduce the power requirements.  

4.2 Methods and materials 

4.2.1 Instrument design 

A measurement cell with highly reflective mirrors was combined with a highly specific 

narrowband laser system by O’Keefe et al. (1998), creating a path length of at least two 

km in the measurement cell. In this manner, small absorption rates cause much larger 

reduction of the total transmitted laser intensity. The ICOS technique could therefore be 

used for the detection of gases with ultra weak absorption, while making the extensive 

optical module and the nitrogen Dewar superfluous. The operation of the DLT-100 Fast 

Methane Analyzer (FMA) from Los Gatos Research Ltd. is based on this improved ICOS 

technique and uses a distributed feedback (DFB) diode laser with a wavelength of nearly 

1.65 µm. The DFB diode laser offers tunability, narrow line width and high output power 

in a compact and very rugged setup. It features a grating structure within the semi-

conductor, which narrows the wavelength spectrum and guarantees single-frequency 

emission. Off-axis ICOS implies that a laser beam directed into the measurement cell at a 

slight angle, after which it is reflected in the cell numerous times by highly reflective 

mirrors (reflectivity ~ 0.9999), thus creating a path length of 2-20×10
3
 m by making 1-

10×10
4
 passes in the cell (Bear et al., 2002; Fig. 4.1). The detector measures fractional 

absorption of light at the methane resonant wavelength, which is an absolute measurement 

of the methane concentration in the cell.  

The path length of the laser, and therefore the time period during which the laser is being 

reflected in the cell for each measurement, is dependent on the reflectivity of the mirrors 

in the measurement cell. This period over which the laser is being reflected in the 

measurement cell is called the mirror ringdown time (MRT) and is continuously 

monitored by the FMA. The MRT cannot be allowed to drop below 3.0 to 3.5 µs, since the 

laser path length then becomes too short to detect the changes in laser intensity properly. 

The mirrors in the measurement cell are sensitive to dirt accumulating in the measurement 

cell; a small contamination of the measurement cell causes rapid decrease of the MRT. 

Cleaning the mirrors is a relatively simple procedure that can be done in a dust-free 

environment. 
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The FMA measures in the concentration range from 10 to 25×10
3
 ppb and operates 

autonomously. Technically, measurements can be made at rates up to 20Hz and at ambient 

temperatures of 5 
o
C to 45 

o
C, while humidity should be below 95% to avoid 

condensation. The pressure in the measurement cell (Pcell), which can be adjusted by a 

valve switch on the instrument, should be kept near 210 hPa. To obtain sampling rates 

higher then 1Hz, an external pump is needed to maintain the required Pcell and τ.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The measurement cell has a volume of 0.55×10
-3

 m
3
 and a length of 0.20 m (Fig. 4.1). 

Data output is provided in analogue as well as digital format (RS232&TCP/IP) and the 

device can store data up to 10 gigabytes. Warm-up time is approximately one minute and 

measurements as well as performance can be observed on a colour TFT LCD flat panel 

display. The dimensions of the FMA are 0.25 m height, 0.97 m width and 0.36 m depth 

and it has a weight of 22 kg. Power requirements are 115/230 VAC, 50/60Hz and 180W 

and inlet/outlet fittings are of the Swagelok type (
3
/8”, 

1
/4”).  

4.2.2 Site description  

Besides testing in the laboratory, the FMA was tested in an eddy covariance set-up at the 

Horstermeer measurement site. This site is located in a eutrophic peat meadow area in the 

central part of the Netherlands and was described extensively by Hendriks et al. (2007). 

The area has a flat topography and vegetation consists of grasses, small shrubs and reeds. 

Before, CH4 fluxes in the area were measured with the flux chamber technique and 

variation between three land elements was observed: emissions from the saturated land 

 
   0.21 m

0.06 m

~0.50 m

0.20 m 

Figure 4.1: Schematic overview of the integrated cavity output analysis (ICOS) 

technique used in the FMA. (Source: Los Gatos Research Ltd.) “R” is the reflectivity 

of the mirrors and “T” and “P” are the sensors of Tcell and Pcell. 
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and water surfaces were high compared to the relatively dry land. The annual weighted 

CH4 emission at the site over 2005 and 2006 was estimated at 83.95 ± 54.81 nmol m
-2

 s
-1

 

(Hendriks at al., 2007). 

4.2.3 Assessment of instrument stability, precision and accuracy  

System stability is a major factor influencing high-sensitivity measurements. 

Theoretically, the signal from a perfectly stable system could be averaged infinitely. 

However, real systems are stable only for a limited time period. The length of time over 

which a laser signal can be averaged to achieve optimum sensitivity, and thus high 

precision, largely determines the quality of the spectrometer. The precision of 

concentration measurements should be at least a few parts per thousand of the ambient 

mixing ratio., which is approximately 4 ppb for a mixing ratio of approximately 1800 ppb 

(outside air) in the case of CH4  (Kroon et al., 2007). Both maximum system stability and 

precision can be determined using the Allan variance (Allan, 1966; Werle et al., 1993; 

Nelson et al., 2004; Kroon et al., 2007). The Allan variance (
2

Aσ ), as a function of 

integration time Τ, is the average of the sample variance of two adjacent averages of time 

series of data and is described by Eq. (4.2): 
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I 

n this equation A is an average of the CH4 concentration, k is the number of elements in 

subgroup x, s is the subgroup number, l is the sample-number in the subgroup, and m’ the 

number of independent measurements. It is assumed that data are collected over a constant 

data interval ∆t, therefore the integration time Τ = k∆t (Allan, 1966; Werle et al., 1993; 

Nelson et al., 2004). The Allan variance decreases when random noise dominates over 

drift effects. However, when noise caused by instrumental drift of the system starts to 

dominate, the Allan variance starts to increase, indicating a decrease of system stability 

and hence precision. CH4 concentration measurements over a ten minute period of relative 

constant CH4 concentrations with a mean value of 1905 ppb and a standard deviation of 

4.74 ppb with 10Hz sampling rate were used to determine the Allan variance. 

Subsequently, the Allan variance of this period was plotted over the integration time Τ 

(Fig. 4.2), showing a decreasing Allan variance over integration times larger than 2.4 s. 

No increase of the Allan variance was observed at larger integration times, indicating an 

absence of instrumental drift, and thus high system stability and precision, for integration 

times of a few seconds up to ten minutes. Additionally, an indication for the short term 

precision (σ) was obtained by the y-axis intercept at the minimum Allan variance (
2

Asσ = 

6.1×10
-3

 ppb
2
). Using Eq. (4.3):  
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2/1−
×= sAs fσσ          (4.3) 

 

in which Asσ  is the square root of the minimum Allan variance and fs is the sampling 

frequency of the system (10Hz), σ was determined as 7.8×10
-3

 ppb Hz
-1/2

. Precisions of 

0.3 ppb Hz
-1/2

 (Nelson et al., 2004) and 2.9 ppb Hz
-1/2

 (Kroon et al., 2007) were found in 

previous studies of QCL instruments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, a calibration experiment was carried out by administering standard gas mixtures 

with concentrations of 125 ppb and 2002 ppb CH4, both with an accuracy of 0.2 ppb, to 

the FMA at ten instances within a 10-day period. During the whole experiment the FMA 

was never turned off in order to imitate longer measurement periods as will be the case in 

the field set-up. The deviation from the standard gas values of CH4 (MD) was calculated 

for each measurement by Eq. (4.4):  
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Figure 4.2: Time series of CH4 concentration measurements with 10Hz sampling rate with a 

mean of 1905 ppb and a standard deviation of 4.74 ppb (a.) and the Allan variance plot for 

these data (b.). 
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MD = 
S

SM −            (4.4) 

 

where M is the measured CH4 concentration in ppb and S is the CH4 concentration of the 

standard gas in ppb. A two-point calibration factor (Fcal) was calculated for each set of 

measurements by Eq. (4.5): 

 

Fcal = 

LH

LH

MM

SS

−

−
         (4.5) 

 

where SH and SL are the high and low standard values of CH4 in ppb and MH and ML are 

the high and low measured values of CH4 in ppb. Although the measured concentration 

sometimes varied one or two ppb from the standard values over the experimental period 

for both gases, no actual drift was observed in the instrument (Table 4.1). Fcal was 1.000 

on average with fluctuations < 0.30%, indicating high accuracy of the FMA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Additionally, over a period of a week, CH4 concentration measurements at the 

Horstermeer site were compared with CH4 concentrations measured at 20 and 60 m height 

at a measurement site in Cabauw (51
o
58’N and 4

 o
 55’E)

 1
, approximately 30 km from the 

Horstermeer site. The CH4 concentrations at Cabauw were measured with a Carlo Erba  

                                                

1
 The CH4 concentration measurements in Cabauw are measured with a gas chromatograph by the Energy 

Centre of the Netherlands (ECN). 

time 

date time elapsed M L M H

(days) (ppb) (ppb)

02/04/2007 11:50:00 0.000 125 -0.10% 2005 0.20% 0.998

03/04/2007 09:00:00 0.882 127 1.50% 1999 -0.10% 1.003

03/04/2007 15:30:00 1.153 125 -0.10% 1999 -0.10% 1.002

04/04/2007 09:20:00 2.896 125 -0.10% 2000 -0.10% 1.001

04/04/2007 16:45:00 2.205 125 -0.10% 1999 -0.10% 1.002

05/04/2007 09:30:00 2.903 125 -0.10% 1999 -0.10% 1.002

05/04/2007 17:30:00 3.236 124 -0.90% 2001 0.00% 1.000

10/04/2007 09:45:00 7.913 125 -0.10% 2004 0.10% 0.999

11/04/2007 09:40:00 8.910 125 -0.10% 2002 0.00% 1.000

11/04/2007 16:30:00 9.194 125 -0.10% 2002 0.00% 1.000

12/04/2007 09:15:00 9.892 125 -0.10% 2004 0.10% 0.999

measurement

MD L MD H

Calibration experiment FMA

low CH4 gas (125 ppb) high CH4 gas (2002 ppb)
F cal

Table 4.1: Results of the 10-day calibration experiment with two standard gases of 125 and 

2002 ppb respectively. Time elapsed since start of experiment, CH4 concentrations measured 

by FMA (ML and MH), MD values and Fcal values are shown. 
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gas chromatograph system and have a precision of 2 ppb. The CH4 concentration at the 

Horstermeer site was 15 ppb higher on average, which might be the result of the relatively 

high CH4 emissions from the peat meadow area in which the measurements were taken. 

Nonetheless, the increasing trend of CH4 concentration at the Horstermeer site was similar 

to the trend at the Cabauw site. Generally, slow variation in concentrations is caused by 

the difference between continental and marine background concentration, the continental 

concentration being approximately 50 ppb higher (Eisma et al., 1994). During the 

measurement period, prevailing winds were from the east (continental). This accounted for 

the slow rise in CH4 concentrations at both measurement locations.  

The influence of changing temperature and pressure conditions in the measurement cell on 

CH4 concentration measurements was assessed in the laboratory. During a time series of 

continuous measurements, a step change in Pcell was induced, while the temperature in the 

measurement cell (Tcell) increased steadily. An effect of the increase of Tcell on CH4 

concentration was observed neither from the time series, nor from the correlation plots 

(Fig. 4.3). A decrease in the CH4 concentration data was observed 990 sec after the sharp 

decrease in Pcel. However, this feature did not result in a clear correlation between CH4 
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Figure 4.3: Results of the laboratory experiment on the effect of Tcell and Pcell on CH4 concentration 

measurements. a.: time series of CH4 concentration measurements; b.: time series of Tcell 

measurements; c.: time series of Pcell measurements; d.: scatter plot of CH4 concentration against Tcell 

with correlation coefficient (R
2
); e.: scatter plot of CH4 concentration against Pcell with R

2
. 
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concentration and Pcell. Also, this type of Pcell changes did not occur under normal 

circumstances when Pcell had a stable value near 210 hPa.   

4.2.4 Incorporation of FMA in eddy covariance system 

After testing in the laboratory, the FMA was installed in a closed-path eddy covariance 

field set-up (Fig. 4.4). In order to obtain 10Hz measurements, a dry vacuum scroll pump 

(XDS35i, BOC Edwards, Crawly, UK) was used with a maximum pumping speed of 

9.72×10
-3

 m
3
 s

-1
. However, at the required pressure of 210 hPa the actual pumping speed 

was 5.50×10
-3

 m
3
 s

-1
. The scroll pump has relatively high power requirements: 100/200V 

to 120/230V, 50/60Hz and 600W. It was placed at the end of the set-up, connected to the 

FMA by a wire-reinforced tube with an internal diameter of 1.9×10
-3

 m, sucking air 

through the system. The FMA was placed in a heated, water resistant box, while the scroll 

pump was placed in an aerated box that prevented it from getting wet and from 

overheating. In addition to the internal filter with a pore size of 2 µm (Swagelok part no. 

SS-4FW4-2), a filter with a pore size of 60 µm was placed at the inlet in order to prevent 

dust, aerosols, insects and droplets from entering the tubing. The inlet was shielded from 

the rain by a stainless steel cap. To prevent any water that accidentally passed the first 

filter from moving down toward the analyzer the air was first led up through a stainless 

steel tube (diameter of 6.4×10
-3

 m) that bends sharply  at 0.5 m after which the air moves 
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3 bended tubing of stainless steel

4 teflon tubing (diameter=64 mm)

5 water locked case

6 tube with warming strip

7 Fast Methane Analyser

8 heating elements

9 sturdy pipe to pump

10 semi closed case

11 scroll pomp

12 air exhaust with silencer

13 3-axis ultra sonic anemometer

14 Licor7500 (CO2 and H2O analyser)

15 data collection in Gill software

16 handheld computer

17 power supply (regional electricity network)
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Figure 4.4: Schematic overview of the combined field set-up of the closed path eddy 

covariance system for CH4 using the FMA and the open path eddy covariance system 

for CO2 and water vapour. 
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down toward the analyzer through a Teflon tube (diameter of 6.4×10
-3

 m). After the air 

has passed through the FMA measurement cell it flows through the scroll pump and was 

exhausted through a silencer. The gas-inlet filter was positioned 0.2 m away from the LI-

7500 open path infrared gas analyzer (LI-COR Lincoln, NE, USA) and a Windmaster Pro 

3-axis ultrasonic anemometer (GILL Instruments Limited, Hampshire, UK) directed into 

the prevailing wind. Both instruments were installed at 4.3 m above the surface at the 

Horstermeer measurement site (Hendriks et al., 2007). Data were logged digitally on a 

handheld computer at a rate of 10 Hz (Van der Molen et al., 2006).  

4.2.5 Assessment of FMA in measuring CH4 fluxes   

In general a sampling rate of 10Hz, with a Nyquist frequency of 5Hz, is used for eddy 

covariance techniques (Aubinet et al., 2000; Kroon et al. 2007). Therefore an instrumental 

time response of 10Hz or greater is required in order to correlate with the wind 

measurements made with the 3-axis ultrasonic anemometer. The measurement rate of an 

instrument is determined by both electronic signal processing and by the τ of the 

measurement cell (Nelson et al., 2004). Electronic signal processing is dependent on the 

spectral complexity of the measurement technique as well as the technical design of the 

ICOS technique. In the case of the FMA, this was defined by the designers (Los Gatos 

Research Ltd.) as 20Hz. The limiting factor of the maximum sampling rate is often τ, 

which could be determined by the volume of the measurement cell (0.55×10
-3

 m
3
) divided 

by the actual pumping speed (5.50×10
-3

 m
3
 s

-1
) giving a flow response of 0.10 s. 

Additionally, τ was determined by applying a step change in concentrations at 20Hz 

sampling rate (Fig. 4.5) (Moore, 1986; Zahniser et al., 1995; Nelson et al., 2004). Each 

data point was the average mixing ratio of multiple step change events at a certain t (time 

elapsed since step change in concentration). The τ was defined by the exponential fit to the 

decay of the CH4 mixing ratio and was calculated τ = 0.11 s by Eq. (4.6): 

[CH4]t = [CH4]t=0 e
 (-t/ τ)

         (4.6) 
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Figure 4.5: Averaged and 

normalised time series of CH4 

concentration data showing 

the instrument response with 

20Hz sampling rate changing 

from ambient air to a gas 

sample with a high CH4 

concentration for tube lengths 

of 0.25 m and 1.0 m. 
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Figure 4.6: Averaged and binned 

results of the spectral analyses of the 

FMA eddy covariance set-up for two 

moderately turbulent days (six half 

hour periods per day). a.: Observed 

and theoretical power-spectrum w; 

b.: Observed and theoretical power-

spectrum of [CH4]; c.: Observed and 

theoretical co-spectrum of w’[CH4]’. 
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where [CH4]t is the CH4 concentration at instance t. In this, sensitivity to tube length could 

be observed (Fig. 4.5). The data in the graph are normalized by the transformation 

dCobs/dCincr, where dCobs is the increase of [CH4] between the starting time and time t and 

dCincr is difference between the final [CH4] and [CH4] at the starting time. Since the effect 

of tube damping was corrected separately, and τ only refers to the response of the 

instrument itself, the actual τ was determined as 0.10 s. 

The suitability of the FMA eddy covariance set-up was further evaluated by examining the 

power spectra of w and [CH4] and co-spectrum of the covariance w’[CH4]’ (Stull et al., 

1988; Kaimal and Finnigan, 1994). For this purpose twelve half hours of data from two 

days with moderately unstable conditions were analysed. The results of the spectral 

analysis were averaged and binned and the logarithmic spectral and co-spectral densities 

were plotted against frequency (Fig. 4.6). Additionally, the theoretical spectra defined by 

Kaimal et al. (1972) and Højstrup (1981) were plotted in the graphs (Smeets et al., 1998). 

The power spectrum of w very closely followed the whole theoretical spectrum, while 

both the [CH4] power spectrum and the w’[CH4]’ co-spectrum showed slight deviations 

from the theoretical spectrum. Most important is that the inertial subranges of both the 

power spectra and the co-spectrum were in general agreement with the theoretical curve. 

The [CH4] power spectrum showed a slight tendency to extend upward in the low 

frequency range. This was also observed in the [CO2] power spectrum from the LI-7500 

analyzer at the site (Hendriks et al., 2007), indicating that the upward tendency in the low 

range was not instrument related, but was rather an effect of environmental factors. 

Kaimal et al. (1976) found high densities of low frequencies in the temperature power 

spectrum in response to a diurnal cycle. Since a diurnal cycle was observed for both [CO2] 

and [CH4] at the Horstermeer site, this might have been the cause of the upward tendency 

observed in the power spectra. However, the overestimation of low frequencies will 

automatically cause an underestimation of the high frequencies, since the total area under 

the power spectrum is a fixed surface (Kaimal et al., 1972; Højstrup, 1981). Considering 

the w’[CH4]’ co-spectrum, the observed peak near n=10
-1

 Hz generally matched the peak 

of the theoretical spectrum and was in agreement with spectral analysis of CH4 flux 

measurements by Verma et al. (1992),  Kormann et al. (2001) and Werle and Kormann 

(2001). The spectral performance of the eddy covariance set-up for temperature and CO2 

fluxes were discussed previously in a paper by Hendriks et al. (2007) and were in 

agreement with the spectral analyses of the CH4 flux measurements. 

Additionally, in previous research by Hendriks et al. (2007) the energy balance consisting 

of the eddy covariance measurements of latent heat and sensible heat, the micro-

meteorological measurements of incoming and reflected radiation components and the 

ground heat flux showed a closure of 82%. This indicated that the data from the eddy 

covariance set-up were acceptable (Lloyd et al., 1997). 

The travel time of the air in the closed path set-up from the inlet filter to the FMA, caused 

a time lag with respect to the in situ measured wind data. For 20 half hour periods, the 

covariance w’[CH4]’ of w’ at instance t = 0.0 s and [CH4]’ at t = 0.0 s was determined, as 

well as the covariance of w’ at t = 0.0 s and [CH4]’ at the t = 0.1 s, t = 0.2 s, t = 0.3 s, …, t 

= 2.0 s. For all half hour periods the highest value of w’[CH4]’ occurred with [CH4]’ at t = 
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0.6 s. For the calculation of the actual covariance the time lag of the CH4 measurements 

compared to the wind measurements was therefore taken as 0.6 s. 

4.2.6 Data processing 

The EUROFLUX methodology (Aubinet et al., 2000) was applied to the eddy covariance 

data to calculate the CH4 fluxes from the closed path system and the CO2 fluxes from the 

open path system (Hendriks et al., 2007) on a thirty minute basis. Since system 

instrumental drift was not observed, an overestimation of the fluxes as a result of this 

averaging period was not expected.  The damping effect of the τ on the CH4 signal was 

corrected for in the flux calculation procedure as well as for the time lag of 0.6 s between 

closed path CH4 and open path wind, temperature and CO2 measurements (Moore et al., 

1986). The tube length of the set-up was over 1000 times the inner diameter of the tube 

and therefore the air temperature in the measurement cell could be considered stable. As a 

result, the Webb correction for density fluctuations arising from variations in temperature 

that was applied to the open path CO2 measurements, was not required for the closed path 

measurements of CH4 (Leuning and Moncrieff, 1990). The Webb correction for density 

fluctuations arising from variations in water vapour (measured with the LI-7500) was 

applied according to Leuning and Moncrieff (1990). Frequency loss corrections for 

closed-path systems were applied according to the theory of Leuning and King (1992). 

Since 3-axis ultrasonic anemometers were found to under measure wind speed at large 

angles, the method of Nakai et al. (2006) was used to apply the angle of attack dependent 

calibration (Gash and Dolman, 2003, Van der Molen et al., 2004).   

4.2.7 Simulation of alternative flux measurement approaches   

In eddy covariance, the sampling rate determines the number of samples that are taken out 

of an infinitely large number of samples. The higher the sampling rate, the higher the 

statistical reliability, which results in higher accuracy of the observed means and 

covariances (Van der Molen, 2002). In order to obtain reliable estimates of fluxes, a 

sampling rate of at least 10Hz is generally used for eddy covariance techniques. However, 

measurements performed at lower rates than 10Hz can generate reliable results too (Rinne 

et al., 2000 and 2001; Graus et al., 2006; Businger and Oncley, 1990). 1Hz eddy 

covariance, disjunct eddy covariance, 1Hz eddy covariance and relaxed eddy 

accumulation (REA) are possible alternatives for the preferred 10Hz eddy covariance. 

These measurement techniques could make the external pump of the FMA eddy 

covariance set-up superfluous and thus save over half of the energy required for the eddy 

covariance set-up. This might be necessary for operation in remote places where an 

external power source is not available. Here, the raw CH4, CO2 and water vapour 10Hz 

field data were manipulated to simulate 1Hz eddy covariance, disjunct eddy covariance 

and REA. 

With 1Hz eddy covariance, Fs is determined in the same manner as 10Hz eddy covariance 

(Eq. (4.2)), but at a lower frequency. The method was tested by averaging each 10 

consecutive data points of CH4 concentration as well as wind velocity for the 10Hz data 

set, thereby simulating a slower sampling rate (1Hz) with a longer τ (1.0 s instead of 0.10 

s).  
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Disjunct eddy covariance uses a subset of the whole 10 Hz time series to determine the 

flux of an atmospheric property Fs according to Eq. (4.7):  
 

∑
=

×>==<

N

i
iis sw

N
swF

1

''
1

''         (4.7) 

 

where N is the subset of the data (Rinne et al., 2000 and 2001). Here, the disjunct eddy 

covariance method was tested by sampling the first data point of every 10 data points from 

the 10Hz data set, thereby creating a time interval of 0.9 s between the sampling moments, 

while the τ remained 0.10 s. To build a field set-up for disjunct 1Hz eddy covariance a 

‘snap sampling’ instrument would have to be mounted in front of the inlet of the system to 

obtain samples that are sampled with a frequency of 1Hz, while maintaining the sampling 

duration as short as possible (‘snap’). This method would give the FMA an analysis time 

of 1.0 s instead of 0.10 s.  

REA is a conditional sampling method in which air samples are drawn into two separate 

reservoirs depending on the direction of w. The criterion of valve switching is based on 

values of the standard deviation of w ( wσ ), which is measured by the 3-axis ultrasonic 

anemometer at 10Hz. The valve is activated according to the threshold 

condition ww σ6.00 = . In the case of 00 www ≤≤−  (deadband values), neither “up” 

nor “down” samples are taken, but samples are discarded from the sampling system 

(Graus et al., 2006). Here, we simulated REA by dividing all eddy covariance data points 

of one half hour measurement period into three data matrices based on the direction of the 

w (upward, downward and deadband values). Next, the measured concentrations are 

summed and the turbulent flux of the scalar s (Fs) was determined according to Eq. (4.8):  

 

sbF ws ∆××≈ σ          (4.8) 

 

(Businger and Oncley, 1990). The b-value is the correction for the deadband and s∆  the 

difference between the concentrations in the accumulation reservoirs (Bowling et al., 

1999).  

4.3 Results 

4.3.1 First data series 

From the eddy covariance data series 11% consisted of gaps due to failure of the eddy 

covariance set-up caused by rain events and instrumental errors. Additionally, 3% of the 

data series consisted of spikes (CH4 flux > 100.0 nmol m
-2

 s
-1

 and CH4 flux < -10.0 nmol 

m
-2

 s
-1

) and were removed from the data set. During nighttime periods with low friction 

velocity (u*) the turbulence of the atmosphere can become too low for the performance of 

eddy covariance measurements (Wohlfahrt et al., 2005; Dolman et al., 2004). In order to 

determine the critical u* value for CH4 eddy covariance measurements at this specific site, 

the CH4 flux data and u* data from periods with incoming shortwave radiation (SWin) < 



An eddy covariance set-up for methane measurements 

 83 

20W m
-2

 were selected (Dolman et al., 2004).  The nightly CH4 fluxes showed a 

significant decrease for periods with u* < 0.09 m s
-1

 (Fig. 4.7). This result is similar to the 

critical u* value of 0.10 m s
-1

 found for CO2 fluxes at the same site (Hendriks et al., 2007). 

CH4 flux data measured during periods with u* < 0.09 m s
-1

 occurred at 12% of the data 

series and where removed too. The total amount of data gaps accounted for 26% of the 

whole data series.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH4 fluxes ánd CO2 fluxes (net ecosystem exchange (NEE)) were plotted for a two week 

period in June 2006 at the Horstermeer site (Fig. 4.8). Although the CH4 fluxes are rather 

variable over time, a diurnal cycle can be observed with low emission during the night and 

high emission during the day. CO2 fluxes have a similar, but opposite, diurnal cycle. The 

observed CH4 fluxes consisted mainly of emission and had an average of 29.7 nmol m
-2

 s
-

1
, while the typical maximum CH4 emission was approximately 80.0 nmol m

-2
 s

-1
. The 

typical minimum flux was approximately 0.0 nmol m
-2

 s
-1

 and at three occasions a small 

uptake was observed.  

4.3.2 Intercomparison with flux chamber data 

For two days during the CH4 eddy covariance measurement period at the Horstermeer site, 

flux chamber measurements were made in the footprint of the eddy covariance tower with 

a Photoacoustic Field Gas-Monitor (type 1312, Innova AirTech Instruments, Ballerup, 

Denmark) connected with tubes to closed, dark chambers (Hendriks et al., 2007). Flux 

chamber data were collected at the three land elements occurring in the footprint of the 

eddy covariance tower: relatively dry peat land, saturated peat land and ditch water 

surfaces. The fluxes from the various land elements are averaged with respect to their rela 

tive surface area (70%, 20% and 10% respectively; Hendriks et al., 2007). On June 10 the 
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Figure 4.7: Results of 

the analyses of the 

effect of low turbulence 

on nightly CH4 fluxes, 

showing a drop in flux 

magnitude below of u* 

of 0.09 m s
-1

. Data are 

binned over u* classes 

of 0.02 m s
-1

 and error 

bars show the standard 

deviation per class. 
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flux chamber measurements showed an average CH4 flux of 114.5 ± 9.6 nmol m
-2

 s
-1

, 

while the eddy covariance measurements showed an average CH4 flux of 83.2 nmol m
-2

 s
-1

 

over the same period (Fig. 4.9). On October 3 the average CH4 flux from the chamber 

measurements was 53.6 ± 11.2 nmol m
-2

 s
-1

, while that from eddy covariance was 61.6 

nmol m
-2

 s
-1

.  

4.3.3 Simulation of alternative flux measurement approaches   

The simulated 1Hz and disjunct eddy covariance data as well as the simulated REA data 

were compared with the original 10Hz eddy covariance data as half hourly averages over a 

15 day period (Table 4.2). It can be observed that the various methods show similar but 

not identical results and that all alternative methods showed variations from the 10Hz 

eddy covariance data (Fig. 4.10). The 1Hz eddy covariance method showed on average a 

slight overestimation of the half hourly fluxes for CH4 measurements (2%) and the 

standard deviation of the time series was somewhat higher than that of the 10Hz eddy 

covariance. Average CO2 and water vapour fluxes determined with 1Hz eddy covariance  

showed however a large underestimation compared to the 10Hz eddy covariance measure- 
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Figure 4.8: CH4 flux data series over a two week period in the summer of 2006 (a.) and CO2 

flux (NEE) data series over the same period (b.). 
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ements. The disjunct eddy covariance method showed on average a slight underestimation 

of the half hourly fluxes for CH4 as well as for CO2 and water vapour measurements (-2% 

and -3%), while the standard deviation was somewhat higher than that of the 10Hz eddy 

covariance.  

The b-value used in REA for correction of the deadband area was determined by Pattey et 

al. (1993) as 0.56. For the measurement set-up investigated here, a b-value of 0.20 showed 

results most similar to the normal 10Hz eddy covariance measurements for CH4 

measurements as well as for CO2 and water vapour measurements. The results of the REA 

method showed on average a small underestimation of the half hourly fluxes for CH4 as 

well as for CO2 and water vapour measurements (-4% and -2%). The standard deviation 

however, was significantly higher than that of the 10Hz eddy covariance, pointing at 

relatively large deviations from the 10Hz measurements at a half hourly basis.  
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Figure 4.9: Hourly CH4 

flux data at July 10 and 

October 3 (both 2006) 

plotted in combination 

with flux chamber data 

from various land 

elements in the footprint 

of the eddy covariance 

tower collected at the 

same day. The square 

marks show the weighed 

average of the flux 

chamber measurements. 
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CH4 flux (nmol m
-2

 s
-2

) 26.74 27.35 26.29 25.76

CO2 flux (µmol m
-2

 s
-2

) -6.53 -5.84 -6.31 -6.41

H2O flux (mmol m
-2

 s
-2

) 3.13 2.79 3.05 3.01

CH4 flux (%) 0% 2% -2% -4%

CO2 flux (%) 0% -11% -3% -2%

H2O flux (%) 0% -11% -3% -4%

CH4 flux (nmol m
-2

 s
-2

) 11.65 12.23 12.7 14.34

CO2 flux (µmol m
-2

 s
-2

) 9.95 9.13 9.86 11.22

H2O flux (mmol m
-2

 s
-2

) 2.82 2.59 2.8 2.77

average gas flux

average deviation    

from normal 10Hz 

eddy covariance

standard deviation

10Hz EC 1Hz EC
Disjunct           

1Hz EC

REA            

(d=0.6;b=0.2)

 

Table 4.2: Summary of results of 1Hz eddy covariance, disjunct eddy covariance and REA 

compared to 10Hz eddy covariance for CH4, CO2 and water vapour (H2O) flux 

measurements. Average gas flux over the 15 day period, average deviation from the 10Hz 

eddy covariance data and standard deviations of half hourly data are shown. 
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Figure 4.10: Time series of CH4 fluxes for a one day period: half hourly averages of 10Hz 

eddy covariance and simulated 1Hz eddy covariance, disjunct eddy covariance, and REA. 
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4.4 Conclusions and discussion 

The FMA, which uses the new off-axis ICOS technique, was found to perform 

satisfactorily in laboratory experiments and in the eddy covariance field set-up. Compared 

to other techniques, the absence of a large nitrogen Dewar for cooling that would need 

weekly refill, the compact, narrow band and stable laser, the relative user friendliness and 

low costs are considerable advantages. The FMA eddy covariance set-up was found to 

perform independently in an unattended field situation. However, care should be taken 

when placing the instrument with a scroll pump in the field. The FMA should be kept dry 

and in ambient temperatures between 5
o
C and 45

o
C, while the scroll pump should be kept 

dry and cool. Contamination of the measurement cell should be prevented, since the 

mirrors inside the measurement cell are sensitive and only a small contamination might 

cause a rapid decrease in reflectivity of the mirrors and performance of the instrument.  

The analysis of the Allan variance indicated a high precision and system stability of the 

FMA. Additionally, the calibration experiment showed sufficiently high accuracy (< 0.30 

%). As long as ambient temperatures do not exceed the range of 5 to 45 
o
C and pressure in 

the measurement cell is near 210 hPa, the CH4 measurements are not affected by changes 

in Tcell and Pcell. Since no instrumental drift was observed in the Allan variance analyses, in 

the calibration experiment or in the comparison with CH4 concentration data at a field site 

nearby, it was concluded that frequent calibration of the FMA was not necessary.  

The observed τ was 0.10 s, implying a maximum sampling rate of 10Hz which is 

sufficient for eddy covariance measurements. The closed path FMA eddy covariance 

system performed well, as shown by the power- and co-spectra which corresponded well 

to the theoretical spectral curves. Additionally, the energy balance showed satisfactory 

closure. CH4 fluxes appeared to be underestimated during periods with low turbulence and 

a u* correction was applied for CH4 flux data during periods with u* < 0.09 m s
-1

. Due to 

erroneous measurements, spikes and periods of low turbulence the data series consisted 

for 26% of gaps.  

Observed CH4 fluxes consisted mainly of emission, showed a diurnal cycle, but were 

rather variable over time. The average CH4 emission was 29.7 nmol m
-2

 s
-1

, while the 

typical maximum CH4 emission was approximately 80.0 nmol m
-2

 s
-1

 and the typical 

minimum flux was approximately 0.0 nmol m
-2

 s
-1

. These CH4 fluxes were in agreement 

with QCL flux measurements at a managed peat meadow site in the Netherlands 

(Reeuwijk), where emissions were 40 ± 31 nmol m
-2

 s
-1

 on average (Kroon et al., 2007) 

and average annual CH4 emission of 30 nmol m
-2

 s
-1

 from peat lands in Germany and the 

Netherlands (Drösler et al., 2007). From the comparison of the eddy covariance 

measurements with flux chamber measurements, it was observed that the fluxes from the 

two techniques showed a discrepancy of approximately 20%. However, considering the 

fact that the flux chamber measurements are point measurements at the soil surface while 

the eddy covariance has a footprint of hundreds of square meters, some degree of variation 

may be expected.  

Additionally, raw CH4, CO2 and water vapour 10Hz field data were manipulated to 

simulate 1Hz eddy covariance, disjunct eddy covariance and REA. It was concluded that, 
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when using a scroll pump is not possible for technical or practical reasons; disjunct eddy 

covariance was the most reliable substitute for 10Hz eddy covariance. This method 

showed the highest degree of resemblance with the 10Hz eddy covariance for all three 

gases. The simulated 1Hz eddy covariance of CO2 and water vapour fluxes, showed 

relatively large deviations from the 10Hz eddy covariance data, indicating a reduced 

reliability of the method and no possibility to test the validity of the method at sites 

without the eddy covariance set-up for CH4. Simulation of REA did show similar results 

for all three gases; however, the standard deviation of the time series was significantly 

higher than that of the 10Hz eddy covariance, pointing at relatively large deviations from 

the 10Hz measurements at the half hourly basis. REA was therefore evaluated to generate 

reliable estimates of fluxes over periods in the order of days or weeks. Importantly, the b-

value for CH4 flux measurements was the same as that for the CO2 and water vapour flux 

measurements. This indicates that it will be possible to determine the b-value for CH4 

measurements with REA at new and remote locations using an eddy covariance set-up 

with low power requirements for CO2 or water vapour. Finally, it should be taken into 

account that the ‘snap sampling’ instrument for disjunct eddy covariance and the valve 

switching system for REA will introduce additional artefacts, which also require certain 

amounts of power (Rinne et al., 2000; Kuhn et al., 2005; Graus et al., 2006). 
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