
VU Research Portal

Computing Alternating Offers and Water Prices in Bilateral River Basin Management

Houba, H.E.D.

2006

document version
Early version, also known as pre-print

Link to publication in VU Research Portal

citation for published version (APA)
Houba, H. E. D. (2006). Computing Alternating Offers and Water Prices in Bilateral River Basin Management. (TI
Discussion Paper; No. 06-095). Tinbergen Instituut (TI).

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 22. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303615172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.vu.nl/en/publications/a9a9bb05-1b18-42d1-a957-33e06ae1c9b4


TI 2006-095/1 
Tinbergen Institute Discussion Paper 

 

Computing Alternating Offers and 
Water Prices in Bilateral River Basin 
Management 

 Harold Houba 

 

Vrije Universiteit Amsterdam, and Tinbergen Institute. 

 



  

Tinbergen Institute 
The Tinbergen Institute is the institute for 
economic research of the Erasmus Universiteit 
Rotterdam, Universiteit van Amsterdam, and Vrije 
Universiteit Amsterdam. 
 
Tinbergen Institute Amsterdam 
Roetersstraat 31 
1018 WB Amsterdam 
The Netherlands 
Tel.: +31(0)20 551 3500 
Fax: +31(0)20 551 3555 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
Fax: +31(0)10 408 9031 
 
 
 
Most TI discussion papers can be downloaded at 
http://www.tinbergen.nl. 
 



The 6th MEETING ON GAME THEORY AND PRACTICE
Zaragoza, Spain 10-12 July

Computing alternating o¤ers and water prices in bilateral river
basin management

Harold Houba
Department of Econometrics

Tinbergen Institute
Vrije Universiteit1

Abstract This contribution deals with the fundamental critique in Dinar et al. (1992,
Theory and Decision 32) on the use of Game theory in water management: People are
reluctant to monetary transfers unrelated to water prices and game theoretic solutions impose
a computational burden. For the bilateral alternating-o¤ers model, a single optimization
program signi�cantly reduces the computational burden. Furthermore, water prices and
property rights result from exploiting the Second Welfare Theorem. Both issues are discussed
and applied to a bilateral version of the theoretical river basin model in Ambec and Sprumont
(2002). Directions for future research are provided.

JEL (or AMS) references: C72, C78, D50, D58

Key Words: International River Management; Negotiation Theory; Game Theory; Com-
putations; Non-transferable utility; Property rights; Walrasian equilibrium prices; Applied
General Equilibrium model.

1Mailing address: De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands. Tel.: +31-20-598-6014;
Fax: +31-20-598-6020. E-mail: hhouba@feweb.vu.nl.



1 Introduction

The international community has come to recognize that fresh water is scarce, witness the

declarations at the Dublin Conference in 1992, the UN conference Johannesburg 2002 and

the past tri-annual World Water Forums starting in 1997 and its fourth meeting March

2006. It is generally felt that the problem is not so much physical scarcity, as ine¢ cient use

and resource management and vested interests, in particular in case of the World�s many

international rivers. In some regions, �ooding and pollution pose serious threats, whereas

in water stressed regions, lack of agreement on how to share river waters and underground

aquifers are a serious source of potentially violent con�ict.2

International water law, i.e. the Helsinki Rules of 1966 and the UN Convention on the

Law of the Non-Navigational Uses of International Watercourses of 1997, does not recognize

claims by upstream countries of owing the water caught on its territory (absolute territorial

sovereignty), con�scating headwaters by geopolitics or downstream nation�s claims of �histor-

ical rights�(unlimited territorial integrity), see e.g., Ambec and Sprumont (2002). Rather,

international law states that the nations involved should mutually agree on sharing the river

through negotiations, but it is left in the middle to what extend unilateral decisions can be

made in the absence of agreement. Such negotiations are often deadlocked, because almost

all governments in water stressed regions became aware of the water issues after having

experienced serious shortages of water and a simple reshu­ ing of water is perceived as a

�zero sum�game where giving up water is regarded as unacceptable. Unless politics either

deepen or broaden the water agenda, the situation is most likely to stay put or might even

deteriorate ending in con�ict.

Coalition formation, the division of gains within coalitions and unilateral decisions prior

to the negotiations, threats traditionally belong to the realm of game theory, which is also

recognized by global institutions involved in river management such as the World Bank, e.g.

2See e.g. UNESCO�s initiative "PC ! CP From Potential Con�ict to Cooperative Potential",
http://webworld.unesco.org/water/wwap/pccp/cd/pccp_publications.html
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Carraro et al. (2005a,b). These references also contain an extensive overview of the many

documented researches in economics and game theory addressing the water issue. However,

these surveys also recognize that there are only three applications of formal negotiation

theory in which negotiation procedures are explicitly modelled: Rausser and Simon (1992),

Thoyer et al. (2001) and Simon et al. (2001). In these three references, a �nite horizon

is taken as a proxy for the �xed-point problem characterizing the unique subgame perfect

equilibrium of their in�nite-horizon bargaining game, because numerically solving �xed-point

problems is computationally di¢ cult.

Although it is eminent that game theory o¤ers a methodology to address water issues,

the game theoretic profession did not seem to respond to the critique in Dinar et al. (1992):

stakeholders and policy makers are reluctant to game-theoretic transfers that are not related

to water prices and, second, game theoretic solutions impose a huge computational burden

upon the applied modeler. The computational burden in water issues arises because the

physical economic problem has to be transformed into the so-called �utility-space�, repre-

sented by the characteristic function form, before any of the game theoretic concepts can be

applied and, then, requires a translation back into the original physical formulation. Also

the computation of game theoretic concepts in utility space, especially �xed-point problems,

adds to the complexity. This criticism still stands today.3

The �rst critique goes beyond the lack of water prices. Since most existing international

treaties, such as the Jordan-Israeli Peace Accords of 1994, are formulated in terms of minimal

transboundary �ows, water quality and �nancial transfers, this hints at that the framing of

negotiation theory should be preferably close to physical variables and notions understood

by negotiation parties. Roemer (1988) was among the �rst to demonstrate how our under-

standing of two axiomatic bargaining solutions, including the one proposed in Nash (1950),

bene�ts from taking physical reality as the primitive.

Recent theoretical work by Houba (2005a,b) for the alternating-o¤ers model in Rubin-

3Personal communication with professor Dinar during Game Theory Practice 2006.
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stein (1982) provides a promising way to e¤ectively deal with the critique in Dinar et al.

(1992). The bilateral case seems restrictive, but extends to multilateral negotiations requir-

ing unanimity among all parties. The innovations are twofold.

First, the �xed-point problem characterizing the equilibrium proposals in the alternating-

o¤ers model is formulated directly in terms of physical variables and can be solved by com-

puting the optimum of a single maximization problem for which excellent software is avail-

able.4 Of course, every �xed point problem f(x) = x can be reformulated as minimization of

(f (x)� x)2 and this square is minimized at every �xed point x of the function f . However,

even for relatively small problems such procedure is known to be numerically cumbersome

and might not produce any solution at all. The innovation in Houba (2005a,b) is a dif-

ferent reformulation that does allow for a robust numerical implementation. Furthermore,

this method is computationally superior to methods relying on truncating the horizon. The

objective of the single program is the same asymmetric Nash product as �rst reported in

Binmore et al. (1986) for instantaneously fast negotiations and this insight therefore extends

to time-consuming or sluggish negotiations. The bargaining weights provide a theoretical

measure for bargaining power in sluggish negotiations.

Second, this single program generates the player-dependent Pareto-e¢ cient proposals.

Therefore, the Second Welfare Theorem applies: Every Pareto e¢ cient allocation can be

regarded as a Walrasian equilibrium with Walrasian market prices and suitable �nancial

transfers. This provides a sound underpinning of the game theoretic solution in terms of

water prices. Moreover, for every equilibrium proposals, these Walrasian prices coincide

with the shadow prices in the optimal solution of the single program and these prices are

automatically generated by the optimization software. The suitable �nancial transfers are

equal to the di¤erence in monetary value of the disagreement situation and the situation

arising from agreement, both evaluated against the market prices. These transfers can

be interpreted as transfers of property rights. This interpretation is well understood in

4For example, GAMS is popular in applied economics, see www.gams.com.
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General Equilibrium models, but novel to game theory. Applied General Equilibrium (AGE)

modelling is popular in applied economics and formulated in physical variables that are

close to the policy makers� concerns and understanding. The AGE framework is �exible

to accommodate sectors or regions in and across economies as well as extensions involving

uncertainty and dynamics, see e.g., Ginsburgh and Keyzer (2002). Therefore, this framework

is of relevance in modelling water related problems, as will be demonstrated for the bilateral

version of the river basin management model proposed in Ambec and Sprumont (2002).

Finally, this reinterpretation of Pareto e¢ ciency assumes non-transferable utility in dealing

with the negotiation problem instead of the more restrictive transferable utility

This paper discusses the relevance of the results obtained for exchange economies in

Houba (2005a,b) in dealing with the fundamental critique in Dinar et al. (1992). First,

the results for exchange economies are surveyed in Section 2. Then, production is added

in the subsequent section. The Second Welfare Theorem, Walrasian equilibrium prices and

transfers of property rights are discussed in Section 4. The bilateral version of the river basin

model in Ambec and Sprumont (2002) in Section 5 serves as an illustration of the type of

insights available for river basin management. Directions for future research are delegated

to the �nal section.

2 Alternating O¤ers and the Single Program

The well-known alternating-o¤ers model in Rubinstein (1982) is formulated in terms of the

division of a single dollar or single issue. It is a standard result that, under certain as-

sumptions, this model admits a unique SPE in stationary strategies in which the responding

player is kept indi¤erent between accepting the equilibrium proposal and the equilibrium

continuation after rejection. Furthermore, the assumption of a single issue can be easily

replaced by simultaneous negotiations on multiple issues, for example consumption bundles

in an exchange economy.

The alternating-o¤ers model also allows for an interpretation of negotiations over an
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in�nite stream of single dollars with discounting under stationary contracts, as pioneered by

Fernandez and Glazer (1991) and Haller and Holden (1990) for wage bargaining. Recently,

Houba and Wen (2006) point out that the Pareto frontier under an in�nite stream of dollars

and heterogeneous time preferences is supported by nonstationary contracts in which the

impatient player obtains zero in the long run. Such contracts seem too unrealistic and

the economic modeler has to impose restrictions upon the feasible divisions of such streams.

Stationary contracts represent just one of many choices and such contracts impose a constant

division over time that are by default Pareto ine¢ cient.

For river basin management, the interpretation in terms of an everlasting stream of sur-

pluses is appropriate, because rivers typically are renewable resources that are exploited by

its users over time. Reservoirs such as lakes, dams, cisterns or aquifers are of relevance

in river basin management and these require the introduction of stock variables that link

subsequent economies. However, we postpone such variables until Remark 2 in Section 5.

Even with stock variables, stationary contracts seem appropriate because many international

agreements specify minimal annual river �ows or cost sharing of annual operation and main-

tenance costs of operating installed infrastructure. Nonstationary contracts are dealt with

in Remark 1 in Section 3.

To establish minimal notation, we consider an extension of the alternating-o¤ers model

in Rubinstein (1982) in which each of two agents discounts his per-period utility from a

sequence of consumption bundles in an in�nite stream of exchange economies (without stock

variables). The exchange economy consists of two agents, called countries, are indexed

i = 1; 2. The economy has n � 2 commodities, monotonic and concave utility functions

ui : Rn+ ! R, i = 1; 2, a vector of initial endowments !i 2 Rn+ for country i and total

endowments ! = !1 + !2 > 0.5 A feasible allocation is denoted as z = (z1; z2), z1; z2 2 Rn+,

such that z1 + z2 � !. We assume that z = (!1; !2) is Pareto ine¢ cient meaning that

5We could allow for !1+!2 � ! that would describe cases where cumulative property rights over several
underdeveloped resources are less than is physically feasible. For example, the Israeli-Jordan Peace Treaty
of 1994 further develops the excess seasonal �ows of the Yarmuck River.
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the bargaining problem below is essential. Exchange economies form a special class of AGE

models, see e.g., Ginsburgh and Keyzer (2002).

We regard exchange economies as multi-issue negotiation problems. Initial endowments

or property rights are typically ill-de�ned in river basin management. In Section 5, we

address the origin of these initial endowments in such situations and, until then, we assume

these are given. The feasibility constraint is better known as the aggregate commodity balance

and, whenever embedded in the single program, its shadow prices will play an important

role in the application of the Second Welfare Theorem discussed in Section 4. In river basin

management, it includes the so-called water balances that are determined by the hydrological

experts, see e.g., Albersen et al. (2003).

Time is discrete and indexed by t 2 N. The feasible allocation in period t is denoted as

zt = (z1;t; z2;t). The subject of the negotiations is a feasible allocation z = (z1; z2) that should

be understood as an everlasting, binding and stationary contract, i.e., f(z1;� ; z2;t)g1�=0 with

zi;� = zi for both i and period � = 0 being the �rst period that the contract is implemented.

In every period t 2 N prior to agreement, each country consumes zi;t = !i. This means that

country i�s disagreement utility is given by di = ui (!
i), i = 1; 2. Country i�s utility from

T � 0 periods of disagreement followed by agreement on z = (z1; z2) is given by�
1� �Ti

�
di + �

T
i ui

�
zi
�
;

where �i 2 (0; 1) is country i�s discount factor. Furthermore, each constraint is binding.

At t odd, country 1 proposes the feasible allocation and, then, country 2 accepts or

rejects. Accept ends the negotiations. If rejected, then each country i consumes !i before

the negotiations move to the next (even) round. At t even, the countries�roles are reversed.

The equilibrium concept is subgame perfectness (SPE).

It is a well-known result that the alternating o¤ers model admits a unique SPE in station-

ary strategies (SSPE), see for a survey e.g., Muthoo (1999) and Houba and Bolt (2002). Sta-

tionary strategies prescribe country-dependent feasible allocations denoted as x = (x1; x2),

respectively, y = (y1; y2) for country 1 and 2. In such SSPE, accept y is a best response for
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country 1 if and only if u1 (y1) � (1� �1) d1+�1u1 (x1). Similarly, accept x is a best response

for country 2 if and only if u2 (x2) � (1� �2) d2+ �2u2 (y2). Taking these equilibrium condi-

tions and the feasibility constraints into account, we have that any pair of SSPE allocations

(x; y) simultaneously solves the following pair of convex programs as a �xed point:

x = argmax
z
u1
�
z1
�
; (1)

s.t. z1 + z2 � !; u2
�
z2
�
� (1� �2) d2 + �2u2

�
y2
�
;

y = argmax
z
u2
�
z2
�
; (2)

s.t. z1 + z2 � !; u1
�
z1
�
� (1� �1) d1 + �1u1

�
x1
�
;

where y2, respectively, x1 are exogenous in (1) and (2). Both x and y are Pareto e¢ cient.

Of greater signi�cance is the equivalence between any �xed point (x; y) of (1)-(2) and the

solution to a single convex program, as �rst established in Houba (2005b). The equivalence

is based upon the observation that any pair of SSPE allocations, the proposed allocations

x and y have the same asymmetric Nash product associated with the bargaining weight

� = ln �2= (ln �1 + ln �2)
�1 for country 1. To see this, note that

�
u1
�
x1
�
� d1

�� �
u2
�
x2
�
� d2

�1��
= ��1

�
u1
�
x1
�
� d1

�� �
u2
�
y2
�
� d2

�1��
;

and, because �ln �21 = e(ln �1)�ln �2 = �ln �12 ,

�
u1
�
y1
�
� d1

�� �
u2
�
y2
�
� d2

�1��
= ��1

�
u1
�
x1
�
� d1

�� �
u2
�
y2
�
� d2

�1��
:

This asymmetric Nash product is the objective function in the single program. The con-

straints in the single program are obtained by combining the constraints in (1) and (2).

However, a minor modi�cation is needed, because the endogeniety of both y2 and x1 in each

second inequality constraint in (1) and (2) would violate the convexity of the program. The

convexity can be restored by introducing the additional variables si, i = 1; 2, replacing the

utility functions u1 (x1) and u2 (y2) in these constraints and the Nash product at the costs

of adding the additional constraints s2 � u2 (y2) and s1 � u1 (x1). Then, the single convex
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program is given by

max
s�d;x;y

(s1 � d1)� (s2 � d2)1�� ; (3)

s.t.
s1 � u1 (x1)
s2 � u2 (y2)

(1� �1) d1 + �1s1 � u1 (y1) ;
(1� �2) d2 + �2s2 � u2 (x2) ;

x1 + x2 � !; (px)
y1 + y2 � !; (py)

where px and py denote vectors of shadow prices. The following result states the equivalence

of the �xed point (1) and (2) with program (3), which is the main result in Houba (2005b).

Proposition 1 (s�1; s
�
2; x

�; y�) is a solution of (3) if and only if (x; y) = (x�; y�) is a pair of

SSPE allocations to (1)-(2).

Remark 1 Reinterpretation of the n commodities in (3) can represent nonstationary con-

tracts. Suppose the k-th component represents consumption of, say, water or money at period

k. Then, the contract distinguishes consumption of a single commodity in n di¤erent peri-

ods. A normalized and constant stream of this single commodity would correspond to !k = 1.

Discounted utility over these n periods can be captured by introducing some per-period utility

function ûi : R+ ! R and rede�ning the utility function ui (zi) as
Pn

k=1 �
k
i ûi (z

i
k). This would

also allow for restrictions on the contract space through additional constraints. For example,

stationarity imposes zik = z
i
1 for all k, or limiting the growth of country i�s consumption over

time to a maximum of � � 100 percent imposes zik+1 � (1 + �)zik for all k. Many of such

restrictions preserve the convexity of the program.

In the optimum, all constraints are binding. Therefore, s�1 = u1 (x
�1) and s�2 = u2 (y

�2)

imply that the additional variables represent the SSPE utility levels for country i in the

role of the proposer. Since the program is convex, the Maximum Theorem implies that

the shadow prices px and py are nonnegative. Program (3) lends itself for implementation in

many of the optimization packages available today, such as e.g., GAMS. Since this program is
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convex, these packages o¤er robust computational algorithms designed to e¢ ciently compute

an accurate numerical approximation of the unique optimum. This almost exact numerical

solution is superior to approximation of the �xed point of (1)-(2) through a T -period �nite

horizon truncation that involves solving a sequence of T single programs of n variables and n

linear constraints being either (1) or (2). Rausser and Simon (1992), Thoyer et al. (2001) and

Simon et al. (2001) assume a random proposer at the �nal bargaining round that eliminates

the deadline e¤ect and speeds up the convergence.

The single program states the formula for the Nash bargaining solution for all parameter

values �1 and �2 in a modi�ed exchange economy of "double" size. It also generalizes the

well-known result in Binmore et al. (1986) for instantaneous negotiations to time-consuming

sluggish negotiations. Instantaneous negotiations correspond to taking the limit of vanishing

time between bargaining rounds. Formally, let � > 0 denote the time between any two sub-

sequent bargaining rounds and consider discount factors equal to ��1 and �
�
2 . Vanishing time

means taking the limit � goes to 0, i.e., lim�!0 �
�
1 = lim�!0 �

�
2 = 1. Then, instantaneous

negotiations correspond to the asymmetric Nash bargaining solution and feature x = y.

Therefore, these can be implemented by less variables and constraints and solved as

max
z

�
u1
�
z1
�
� d1

�� �
u2
�
z2
�
� d2

�1��
; s.t. z1 + z2 � !: (4)

So, the additional computational costs, in terms of additional variables and constraints, of

solving (3) for sluggish negotiations instead of (4) for instantaneous negotiations amounts to

n+ 2 variables and n+ 4 constraints, of which n are linear.

The bargaining problem in utility representation

Houba (2005a) establishes similar results for convex bargaining problems in the utility

representation. This has relevant theoretical value, because every bilateral negotiation prob-

lem that can be transformed into such convex bargaining problem can also be solved with

a single convex program. Furthermore, it also provides valuable insights for non-convex

bargaining problems.
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Formally, a bargaining problem in utility representation is denoted as the pair (S; d) with

S 2 R2 the nonempty, compact set of feasible utility pairs and d 2 S the disagreement point.

The curve si = fi (sj), i; j = 1; 2, i 6= j, describes the Pareto frontier of S.

Any pair (s�1; s
�
2) of SSPE utilities simultaneously solves the following pair of programs

as a �xed point:

s�1 = argmax
s�d

s1, s.t. s1 � f1 (s2) ; s2 � (1� �2) d2 + �2s�2; (5)

s�2 = argmax
s�d

s2, s.t. s2 � f2 (s1) ; s1 � (1� �1) d1 + �1s�1: (6)

Each program implies that the proposing country maximizes his own utility among the set of

feasible and acceptable utility pairs. In each optimum, both constraints are binding. Houba

(2005a) establishes the following result for convex bargaining problems (S; d):

Proposition 2 Let S be a convex set. Then, (s�1; s
�
2) is the unique pair of SSPE utilities of

(5-(6) if and only if

(s�1; s
�
2) = argmax

s�d
(s1 � d1)� (s2 � d2)1�� ; (7)

s.t. s1 � f1 ((1� �2) d2 + �2s2) ;

s2 � f2 ((1� �1) d1 + �1s1) :

This proposition partly extends to the class of bargaining problems in utility representa-

tion that are strongly comprehensive or �non-convex�as in Herrero (1989). Then, Program

(7) always yields a pair of SSPE allocations, because in the optimum both constraints are

binding. However, the reverse may not hold as Herrero (1989) shows: Uniqueness of the pair

of SSPE utilities (s�1; s
�
2) may break down and multiple non-stationary SPE strategies may

exist as well. The Nash product associated to di¤erent pairs of SSPE utility pairs (s�1; s
�
2) are

also di¤erent and may be less than the maximal attainable Nash product. For instantaneous

negotiations, the (limit) pair of SSPE utilities (s�1; s
�
2) in program (7) coincides with the max-

imal Nash product as axiomatized in Kaneko (1980). The limit set of all SSPE utilities of

(5)-(6) is axiomatized in Herrero (1989). What is needed for uniqueness in (non-stationary)

SPE strategies is the stronger uniqueness in �xed points of (5)-(6).
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3 Production

The results for exchange economies might seem of limited interest for applied economics.

The aim of this and later sections is to show the merits in applications. In this section, we

address how to incorporate production.

Extending the exchange economy to allow for production activities is conceptually straight-

forward, see e.g. Varian (1984). Production plans require inputs from the economy in order

to produce outputs. These are represented in a single vector q 2 Rn with positive and neg-

ative elements, where positive (negative) elements represent outputs (inputs). Production

technologies are often represented by the so-called production set Q � Rn that represents all

technologically feasible input-output combinations. Often, production sets are represented

by transformation functions. In our case, transformation functions more naturally �t the

optimization framework. The function F : Rn ! R is a transformation function representing

Q if q 2 Q if and only if F (q) � 0. E¢ cient production corresponds to the =-sign. The

possibility of inaction and no free lunch translate into F (0) = 0. The technology is convex

if the function F is quasi-convex. Otherwise, the technology is called nonconvex.

Since we later discuss bilateral river basin management in which the economy of each

riparian country involves water related production, we assume that water related production

is carried out by many small producers that are mainly active in one country. For explanatory

reasons, we aggregate all producers in one country by assuming one production set for each

country.6 So, each country exclusively controls some production technology and country i�s

production plan is a vector qi 2 Qi. The subject of the negotiations becomes a feasible

allocation z = (z1; z2; q1; q2) meaning that

z1; z2 2 Rn+; q1 2 Q1; q2 2 Q2 and z1 + z2 � ! + q1 + q2;

where negative components of either q1 or q2 lower the amount of that particular good

available for consumption. The aggregate commodity balance implies that the demand for
6If not, we would have the index set Ji of producers in country i and qj 2 Qj for every j 2 Ji. In the

text, we assume Ji = fig.
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each good is at most equal to its supply. In that respect, it would be natural to also

include the demand for inputs on the left-hand side, but it is standard to have one vector

per producer representing the possibly negative net output on the right-hand side of this

balance. As mentioned, we describe country i�s production set Qi by the transformation

function Fi meaning qi 2 Qi if and only if Fi (qi) � 0.

In case of convex production technologies, we immediately have that the bargaining

problem in utility representation is also convex, see e.g., Roemer (1988), and, hence, the

equivalence stated in Proposition 2 immediately applies. Also in terms of the economic

environment, the equivalence between the �xed point problem and program (3) remains in

tact, where the single program remains convex. Including (convex) production per country

requires the following modi�cations to the alternating-o¤ers model, where we add an addi-

tional superscript x and y to the production plans to distinguish between country 1�s and

2�s proposal. The modi�cations to program (1) imply rewriting the commodity balance and

adding both transformation functions such that the modi�ed program includes the following

constraints:

x1 + x2 � ! + qx;1 + qx;2; F1
�
qx;1
�
� 0 and F2

�
qx;2
�
� 0:

Similar, the modi�ed program (2) includes the following constraints:

y1 + y2 � ! + qy;1 + qy;2; F1
�
qy;1
�
� 0 and F2

�
qy;2
�
� 0:

Of course, these modi�cations must also be made to obtain the modi�ed program (3), which

we omit.

Nonconvex production technologies can be implemented in the same manner. However,

such technologies cause a breakdown of the convexity of the modi�ed program (3), because

such technologies are known to give rise to nonconvex bargaining problem in utility rep-

resentation. As argued for the utility representation in Section 2, the theoretical results

only partly extend. Its counterpart for program (3) with nonconvex production reads: The

maximum of the modi�ed single program (3) corresponds to one of possibly multiple SSPE
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strategies. The SSPE speci�ed by this program is special in that it has the largest Nash

product.

The modi�ed program (3) with production can also be implemented in optimization soft-

ware by modifying all commodity balances and adding twice (i.e., once for each proposal) all

variables and constraints concerning production. Under convex production technologies, the

software returns the unique optimum. However, for nonconvex programs it is fundamentally

unclear whether a local or global optimum is found, even though most packages o¤er robust

algorithms. Nevertheless, although this is a fundamental problem of any numeric optimiza-

tion, it will be clear that the numerical solution returned, whether it is the global or a local

optimum, has properties that are consistent with SSPE behavior.

4 Market Prices and Property Rights

This paper is motivated by the fundamental critique in Dinar et al. (1992), who report on

the di¢ culties arising from applying cooperative game theory to several small-scale water

issues. They state: "Clearly, the potential for additional income due to cooperation is higher

when side payments are possible. However, the soundness of such transfers with no a prior

reference to the price per unit of water may be questioned, especially considering the general

resentment of farmers to adopt side payments as a policy." Since side payments or transfers

are advocated by (cooperative) Game Theory as the universal remedy towards cooperation,

the game theoretic society should treat this critique very seriously.

In this section, we discuss the merits of the Second Welfare Theorem in General Equi-

librium modelling in dealing with this fundamental issue. Since (cooperative) game theory

developed autonomously from microeconomics, it does not refer to nor does it exploit the

implications of the Second Welfare Theorem. For that reason, we discuss these implications

in detail before turning our attention to bilateral river basin management in the next section.

The Second Welfare Theorem for economies with production states: Any Pareto e¢ cient

allocation is attainable as a price quasi-equilibrium or Walrasian equilibrium with transfers,
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see e.g., Varian (1984), Mas-Colell et al. (1995) and Ginsburgh and Keyzer (2002). Mas-

Colell et al. (1995) show that this theorem holds under convex and locally nonsatiated

preferences and convex production technologies. The transfers can be achieved through

many appropriate physical reallocations of the initial endowments or through �nancial lump-

sum transfers evaluated against the Walrasian equilibrium prices. In terms of a Walrasian

economy, these transfers take place before price-taking behavior by all agents and such

behavior ensures that the law of supply and demand will lead to the Walrasian equilibrium

prices supporting the Pareto e¢ cient allocation under consideration. The Walrasian prices

can also be obtained as the shadow prices of a welfare program. The single program (3) can

be seen as a welfare program associated with the Nash social welfare function as axiomatized

in Kaneko (1982). The implication to water management is clear: Pareto e¢ cient allocations

can be reinterpreted in terms of lump-sum �nancial transfers and supporting water prices.

In further discussing these issues, we consider country 1�s SSPE proposal (x?1; x?2; q?x;1; q?x;2)

and assume that it is part of the optimum of the modi�ed Program (3) with the vector of

shadow prices p?x. The allocation (x?1; x?2; q?x;1; q?x;2) is feasible and, being a SSPE pro-

posal, is Pareto e¢ cient, see Houba (2005b). The shadow prices p?x can be regarded as

the Walrasian equilibrium prices and these prices clear all the markets: aggregate demand

x?1+x?2 equals aggregate (net) supply !+ q?x;1+ q?x;2. Valued against p?x, country i�s allo-

cated consumption x?i is worth p?x �x?i and can be regarded as country i�s expenditure on all

goods. This expenditure is �nanced from this country�s market income obtained from selling

against p?x its endowments !i and producing qi 2 Qi. This income is worth p?x �!i+p?x �q?i.

In general, a country�s allocated (or allowed) expenditure and its market income will not

be equal and this means that either a country is allowed to expend more than it earns, or

less. This di¤erence can be interpreted as country i�s implicitly received lump-sum subsidy,

or tax levied on this country. Formally, in country 1�s SSPE proposal, country i receives the

net lump-sum transfer T �i = p
?x � x?i � p?x � !i � p?x � q?i, which is a subsidy if positive and

a tax if negative. Pre-tax market income is equal to p?x � !i + p?x � q?i and after-tax market
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income is m?i = p?x � !i + p?x � q?i� Ti = p?x � x?i. Note that in the optimum of the modi�ed

program (3) there is a balanced budget for the �ctitious tax authority. This follows directly

from the aggregate commodity balance that appears as px � (x1 + x2 � qx;1 � qx;2 � !) in the

Lagrangian of the optimization problem and this term is equal to 0 in the optimum.

In the Walrasian equilibrium all trade is voluntary and the markets respect property

rights in the sense that, valued against the Walrasian equilibrium prices, each consumer�s

expenditure is equal to his market income. Formally, T ?i = 0 in a Walrasian equilibrium.

In any SSPE agreement, each country�s expenditure and post-tax income satis�es the same

property, but from moving from pre-tax to post-tax market income a change in property

rights occurs valued T ?i that is most likely di¤erent from zero. In the context of negotiations,

the countries are rational and any agreement is reached on a voluntary basis. So, any such

voluntary agreed upon contract implies agreement upon a redistribution of property rights.

As mentioned, the Pareto e¢ cient allocation (x?1; x?2; q?x;1; q?x;2) can be thought of as

arising from aWalrasian economy in which all parties act as price takers. Country i behaving

as a price-taking consumer facing market prices p?x and having after-tax incomem?i = p?x�x?i

solves

x?i = argmax
xi�0

ui
�
xi
�
; s.t. p?x � xi � m?i;

where we take uniqueness of the maximizer for granted. So, country i acting as a price-

taking consumer voluntarily purchases x?i such that rui (x?i) = p?x, where rui denotes the

gradient of ui in case of di¤erentiability. Monotonicity of the utility function guarantees

p?x � xi = m?i. This latter condition should also be ful�lled in the �rst-order conditions of

the modi�ed program (3). As mentioned, for convex programs the shadow prices px (and py)

are nonnegative. This result generalizes to economies with non-convex production, because

then the monotonicity of the utility functions guarantees the non-negativity of p?x and p?y

through p?x = rui (x?i) � 0 and p?y = rui (y?i) � 0.

Similar to the Robinson Crusoe economy, country i is also producer i. Country i behaving
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as a price-taking producer facing market prices p?x solves

q?x;i = argmax
qx;i

p?x � qx;i; s.t. Fi
�
qx;i
�
� 0;

where we once more take uniqueness for granted.7 Similar as before, country i as a price-

taking producer voluntarily chooses the production plan q?i such that rFi (qx;i) = p?x, which

should also be ful�lled by the �rst-order conditions of the modi�ed program (3). Under

convex production, �rm i always makes a nonnegative pro�t that accrues to consumer i�s

pre-tax market income. However, nonnegative pro�ts are not automatically ensured under

non-convexities. Then, we need to modify the pro�t maximization problem taking into

account a lump-sum producer�s subsidy S?i = �p?x � q?x;i � 0 received by producer i to

favour the producer�s decision towards q?x;i instead of inaction at qx;i = 0. Of course, proper

accounting requires that producers�s subsidies and consumers� subsidies are counted just

once. The producer subsidy S?i ensures that consumer i receives a net pro�t of 0 from

operating the production plant, but this consumer pays for S?i through T
?
i , which requires a

minor adjustment of the national accounts.

To summarize, since each SSPE proposal is Pareto e¢ cient it can be supported by Wal-

rasian equilibrium prices as an immediate consequence of the Second Welfare Theorem. The

associated Walrasian equilibrium prices are the shadow prices of the single program (3) and

these resolve the lack of (water) prices. Although shadow prices are implicitly present in

transforming the physical economy into the (often transferable) utility representation in game

theoretic applications, their presence seems to be ignored. Also the richer interpretation of

agreements in terms of reallocation of property rights remains behind a veil when taking the

utility representation as the primitive of the analysis. In negotiations, parties bene�t from

voluntarily agreeing upon a redistribution of property rights, even in the absence of such

rights as will be clear from the next section.

The Walrasian equilibrium prices suggest the possibility to decentralize all consumer

7Under constant returns to scale, the Walrasian equilibrium prices are such that the �rms make zero
pro�t and then a set of maximizers exists.
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and producer decisions through markets and suitable taxation. In river basin management,

introducing water markets is often advocated as a solution to inadequate water management.

Of course, whether it is advisable to do so should depend upon whether or not these agents

have market power to manipulate market prices, which is a separate matter and outside the

realm of the Walrasian model.

5 Bilateral Joint River Basin Management

The previous sections established that the single program can be implemented in economies

with production and that each SSPE proposal can be interpreted as a Walrasian equilibrium

with equilibrium prices. In this section, we illustrate the potentials of this framework to

bilateral river basin management in a two-country version of the model proposed in Ambec

and Sprumont (2002).

Consider a river that runs through two countries, where country 1 lies upstream of country

2 and all water users within the same country are aggregated as a single consumer. A more

detailed model would allow for explicit production and water users that di¤er in their spatial

location, representing di¤erent regions or cities, and di¤er in their use, such as agriculture,

industrial and domestic. The territory of country i, i = 1; 2, captures ei > 0 of water

that is available for use. The subject of the negotiations concerns the allocation of water

and an explicit �nancial transfer. Therefore, each country derives utility from consuming

water and from holding money. Country i�s utility from consuming zi of water and the

possibly negative transfer ti is given by ui (zi; ti) = bi (zi) + ti, where bi is monotonically

increasing, homogenous (bi (0) = 0), di¤erentiable and strictly concave. The function bi can

also be regarded as an implicitly described production technology that can be separated as

described in Section 4 at the cost of an additional variable and constraint. Following Ambec

and Sprumont (2002), money is transferred utility meaning that the two-country economy

does not have initial holdings of money. Total endowments are ! = (e1; e2; 0).

In terms of economic goods, the model distinguishes between good 1 representing water
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that is physically located in country 1, good 2 representing water located in country 2 and

good 3 representing money. In Walrasian economies, each consumer expresses a demand

for each of the available goods, but in case of rivers country 1 cannot consume good 2 and

country 2 cannot consume good 1. To minimize on subscripts and superscripts, we continue

denoting country i�s consumption of good i simply as zi.

Since water disposed of by country 1 �ows downhill and transforms good 1 into good 2

we should see the river as a giant production process governed by physical processes. In the

model under consideration, the river accumulates e2 on country 2�s territory and, therefore,

the river production of downhill water between "locations" 1 and 2 takes place on country

1�s territory. So, it is country 1 that produces good 2 with good 1 as input. Although some

countries spend a signi�cant proportion of the gross national income on pumping water

uphill, such as Israel and the Kingdom of Jordan, we refrain from pumping as in Ambec and

Sprumont (2002). We only note that pumping should be treated as a production process.

In the present setup, country 2 cannot produce good 1.

With respect to production of good 2, country 1 produces q2 from input q1 and, under

costless transformation, we have q1 + q2 � 0 and q1 � 0, which implies a convex production

technology. The aggregate commodity balance is given by

z1 � e1 + q1 (p1)
z2 � e2 + q2 (p2)
t1 + t2 � 0; (p3)

(8)

where p1, p2 and p3 refer to the shadow prices for the three goods. Consumption of z1 � e1

by country 1 and e¢ ciency in production implies q2 = �q1 = e1�z1 � 0. Substitution yields

the mathematically equivalent feasibility constraints in Ambec and Sprumont (2002):

z1 � e1; (p1)
z2 � e2 + e1 � z1; (p2)
t1 + t2 � 0; (p3)

(9)

In terms of the latter balance, the subject of the negotiations is a feasible allocation (z1; z2; t1; t2).

The allocation should be extended to also include q1 and q2 if river "production" is explicitly

incorporated, which is would be the convenient approach in applications where the hydro-
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Figure 1: The bargaining frontier, the disagreement point (b (e1) ; b2 (e2)) and the set of
individual rational payo¤s (IR). The aspiration levels (b (e1) ; b2 (e1 + e2)) are infeasible.

logical part of the model is provided by hydrologists.8

The disagreement point

An essential ingredient of any bargaining problem is the disagreement point. For water

issues, there is some modelling freedom in the choice of such point. An obvious choice is a

disagreement point based upon property rights according to international law. An alternative

choice for the disagreement point would be to assumes that this point is based upon the

countries�unilateral decisions concerning water issues. We discuss both alternatives.

Suppose in modeling water issues we opt for a disagreement point based upon interna-

tional law. As Ambec and Sprumont (2002) argue, international law is ambiguous and they

discuss two con�icting doctrines. One of these doctrines is absolute territorial sovereignty

and it assigns ei as the property rights for country i and the river�s production technology

to country 1. This would imply !1 = (e1; 0; 0), !2 = (0; e2; 0) and the disagreement point

d = (b1 (e1) ; b2 (e2)). This point is always feasible, because

b1 (e1) + b2 (e2) � max
z12[0;e1]

b1 (z1) + b2 (e1 + e2 � z1) : (10)

In order to have an essential bargaining problem, the inequality has to be strict. Another

8In terms of Section 4, we have z1 = (z1; 0; t1), q1 = (q1; q2; 0) 2 Q1 =
�
q1 jq1 � 0; q2 � �q1j

	
, z2 =

(0; z2; t2) and q2 2 Q2 = f0g.
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doctrine is unlimited territorial integrity that assigns incompatible property rights to the

countries, namely e1 to country 1 and e1 + e2 to country 2. Also, the river�s production

technology accrues to country 2. This would translate into !1 = (e1; 0; 0), !2 = (0; e1 + e2; 0)

and the disagreement point d = (b1 (e1) ; b2 (e1 + e2)). This point is not feasible, because

b1 (e1) + b2 (e1 + e2) > max
z12[0;e1]

b1 (z1) + b2 (e1 + e2 � z1) : (11)

This disagreement point is physically unattainable and, as suggested by Ambec and Spru-

mont (2002), can only be interpreted as the countries�aspiration levels. In case both countries

are committed to these "virtual" aspiration levels, then the negotiations remain deadlocked

and disagreement is the only outcome, see e.g. Crawford (1982) and Muthoo (1992). Figure

1 illustrates both doctrines.

As an alternative modelling approach that seems closer to reality, we may assume that

each country takes unilateral decisions concerning water issues in the absence of bilateral river

basin management. In terms of noncooperative bargaining theory, the disagreement point is

endogenous. Several theoretical models are available, see e.g. Bolt and Houba (1998), Busch

and Wen (1995) and Houba (1997).9 These bargaining models also assume the model under

consideration as the disagreement game in which both countries take unilateral decisions.

Under SSPE behavior and the impossibility of commitment to disagreement actions prior

to the negotiations, the disagreement point coincides with a Nash equilibrium, which is

(zi; ti) = (ei; 0), i = 1; 2, in our case. This Nash equilibrium coincides with absolute territorial

sovereignty. Although international law suggests that countries should mutually agree on

Pareto improvements through negotiations, this law seems to lack a doctrine how to treat

unilateral decisions in absence of agreement.

The Second Welfare Theorem and water pricing

The purpose of discussing this particular model is to arrive at water prices, money trans-

9Busch and Wen (1995) and Houba (1997) assume �1 = �2. As pointed out in Houba and Wen (2006a,c),
the current bargaining literature on endogenous disagreement points under �1 6= �2 contains serious technical
di¢ culties.
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fers and transfers of property rights through taxation. The interesting case assumes the non-

trivial case in which the disagreement point corresponds to absolute territorial sovereignty:

d = (b1 (e1) ; b2 (e2)). Application of the modi�ed program (3) yields the single convex pro-

gram

max
s�d;(x1;x2;qx1 ;qx2 ;tx1 ;tx2);(y1;y2;q

y
1 ;q

y
2 ;t

y
1 ;t

y
2)
(s1 � d1)� (s2 � d2)1�� ;

s.t.
s1 � b1 (x1) + tx1 (�1)
s2 � b2 (y2) + ty2 (�2)

(1� �1) d1 + �1s1 � b1 (y1) + ty1; (�1)
(1� �2) d2 + �2s2 � b2 (x2) + tx2 ; (�2)

x1 � e1 + qx1 ; (px1)
x2 � e2 + qx2 ; (px2)

tx1 + t
x
2 � 0; (px3)
y1 � e1 + qy1 ; (py1)
y2 � e2 + qy2 ; (py2)

ty1 + t
y
2 � 0; (py3)

qx1 + q
x
2 � 0; (
x)

qy1 + q
y
2 � 0; (
y)

where all Greek symbols between brackets denote shadow prices. As in Section 4, we only

discuss country 1�s SSPE proposal (x1; x2; qx1 ; q
x
2 ; t

x
1 ; t

x
2). The part of the �rst-order conditions

involving the partial derivatives of these six variables (maintaining the stated order) are given

by

�1b
0
1 (x1)� px1 = 0;

�2b
0
2 (x2)� px2 = 0;

px1 � 
x = 0;

px2 � 
x = 0

�1 � px3 = 0;

�2 � px3 = 0:

Solving these equations yields

px1 = p
x
2 = p

x
3b
0
1 (x1) = p

x
3b
0
2 (x2) > 0; (12)
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because utility is strictly increasing in money and, therefore, px3 > 0. Due to speci�cities of

the model, we obtain the special case of a uniform water price for each location. From (12)

we observe that only relative prices matter and we may take money as the numeraire by

dividing all shadow prices by px3 , where we denote the normalized (uniform) water price as

pxw = p
x
1=p

x
3 . Assuming that the bargaining problem is essential, i.e., Pareto improvements

exist as depicted in Figure 1, the total gains from bilateral river basin management are

maximized if the upstream country is willing to trade some of its water for money. Since

also all shadow prices are positive, we must have that all constraints are binding, including

e¢ cient river production. So, qx1 = x1� e1 < 0 and qx2 = �qx1 > 0 implies x2 = e1+ e2�x1 >

e2. Furthermore, b01 (x1) = b02 (x2) in (12) implies that the joint surplus b1 (x1) + b2 (x2) is

maximized in this SSPE proposal and, hence, x1 coincides with the unique maximizer of the

right-hand side of (11), as could be expected. Finally, tx1 + t
x
2 = 0 and q

x
1 + q

x
2 = 0 imply that

aggregate spending equals aggregate income pxw (x1 + x2) = p
x
w (e1 + e2). Similar properties

hold for country 2�s SSPE proposal and, in particular, yi = xi for both i = 1; 2.

According to the Second Welfare Theorem, country i�s pre-tax income pxwei and its ex-

penditure or after-tax income is equal to mx
i � pxwxi+ txi . Acting as a price-taking consumer,

country i spends its income on water consumption and monetary liquidity by solving:

(xi; t
x
i ) 2 argmax

zi;ti
ui (zi; ti) ; s.t. pxwzi + ti � mx

i ; (13)

which yields @ui(xi;ti)
@xi

= b0i (xi) = pxw and
@ui(xi;ti)

@ti
= 1. Note that b0i (xi) is also country

i�s marginal rate of substitution between water and money and it is equal to the relative

price pxw=1. The monotonic preferences imply the budget constraint is binding. Country

1 receives the amount of money tx1 = �tx2 > 0 for its delivery of e1 � x1 to country 2.

This implies a unit price of water of (e1 � x1) =t1 that is unrelated to do prices related to

marginal costs and bene�ts. Note that it does not matter whether ti represents money or

some consumption good from which the countries obtain utility. Since the SSPE proposal is

individually rational, we obtain that txi � bi (ei) � bi (xi) > 0 for both i = 1; 2. Summation

of these inequalities shows a nonempty range of t1 that are feasible, because tx1 + t
x
2 = 0 and
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b1 (e1) + b2 (e2)� b1 (x1)� b2 (x2) is negative.

Next, consider producer 1 with its constant-returns-of-scale river production technology.

Producer 1�s pro�t under price-taking is equal to 0, because he buys input q1 = x1 � e1 < 0

against price pxw and sells exactly this amount at exactly the same price to country 2. We

refer to Albersen et al. (2003) for an example of non-trivial �nancial accounts based upon

shadow pricing associated with non-convex physical processes.

Although money is usually regarded as a special economic good, it is just one of the goods

in the economy, also according to the Second Welfare Theorem. This theorem provides an

interpretation of the allocation (x1; x2; qx1 ; q
x
2 ; t

x
1 ; t

x
2) in terms of market trade (or marginal

cost/bene�t pricing) against the price vector (pxw; p
x
w; 1) and a redistribution of property

rights equal to T ?i = p
x
wxi + 1 � txi � pxwei, being the di¤erence between expenditure and pre-

tax income. Whether T ?i is positive or negative is an empirical matter. This redistributive

e¤ect consists of the combined value of net trade in water pxw (xi � ei) and the net trade

in money 1 � (txi � 0) that is opposite in sign. The negotiation outcome has two e¤ects: a

redistributive element and Pareto improving trade that is incorporated in the pre-tax market

income. Even though the initial rights in river basin management might be ill-de�ned, both

countries agree on a redistribution of wealth representing implicitly de�ned property rights

by establishing "new" property rights associated with (x1; x2; qx1 ; q
x
2 ; t

x
1 ; t

x
2). Although the

shadow prices can be thought of to represent Walrasian equilibrium prices as if established

water markets are governed by the law of supply and demand, this interpretation assumes

the countries refrain from exercising market power.

In general, the Second Welfare Theorem deals with non-transferable utility instead of

transferable utility or money, as e.g., in Ambec and Sprumont (2002). For the bilateral case,

the transferable utility value of cooperation, denoted as v (1; 2), is equal to the right-hand side

of (10). The Pareto frontier is described by fi ((1� �j) dj + �jsj) = v (1; 2)�(1� �j) dj��jsj.
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Then, direct application of program (2) yields

max
s1;s2

(s1 � d1)� (s2 � d2)1�� ;

s.t.

s1 � v (1; 2)� (1� �2) d2 � �2s2;
s2 � v (1; 2)� (1� �1) d1 � �1s1:

In this program, any reference to prices and marginal bene�ts has vanished from the model

description. In this simple case, this crucial information can be retrieved from (10), but

for less transparent applications a holistic approach in physical variables as in e.g. Roemer

(1988) yields more information to policy makers.

Finally, Ambec and Sprumont (2002) suggest that rational countries should realize that

their joint maximal aspiration level is bounded by the maximum on the right-hand side of

(10) or (11) and propose the downstream incremental distribution that assigns the following

utility levels to the two countries s1 = d1 and s2 = v (1; 2)� d1 > d2. This solution coincides

with the SSPE outcome (in utilities) in the alternating o¤er model with disagreement point

associated to absolute territorial sovereignty and a bargaining weight � = 0 to country 1,

or in terms of the primitives either �1 = 0 or �2 = 1. The alternating-o¤ers perspective

indicates that it is very unlikely that this axiomatic solution will prevail. Furthermore, even

at � = 0 the Second Welfare Theorem applies.

We conclude this section with a remark on stock variables.

Remark 2 Optimal river basin management includes the optimal release and recharge of

lakes and dams as reservoirs of water. Reservoirs would introduce stock variables to the

model. A reservoir can also be seen as a production process that produces "future" water

from "current" water and it can be represented as before by some production set Q. As an

illustration, reinterpret z1, respectively, z2 as water at present and in the future, say the wet

and dry season. Then, the reservoir produces future water q2 from present water q1 as input

and, under absence of evaporation, we have q1 + q2 � 0 and q1 � 0 as before. Then q1 is the

end stock of period 1 and q2 the initial stock at period 2.
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6 Concluding Remark

This contribution deals with the two points of fundamental critique in Dinar et al. (1992)

that alienate game theory from the language and concerns of policy makers: Easy to im-

plement solutions that are based upon common notions of water pricing; and insight in the

gains and losses for every stakeholder from policy reforms toward e¢ cient river basin man-

agement. For bilateral negotiations modeled as alternating-o¤ers, as pioneered in Rubinstein

(1982), a powerful computational innovation in a physical representation of real-world issues

is available that simultaneously allows for an interpretation of water prices as Walrasian

equilibrium prices, which is a direct consequence of the Second Welfare Theorem. Unfortu-

nately, the utility representation in Game Theory washes away any notion of water prices

from the physical model, as illustrated in Section 5. The physical model can be regarded

as the popular AGE framework that allows for further di¤erentiation of water users, water

related production and consumption goods by time (within the hydrological cycle), by space

and uncertainty about extreme whether conditions (droughts and �oodings), although the

latter would assume the existence of contingent contracts and a discrete number of events.

Identifying water prices as Walrasian equilibrium prices should not be mistaken as naively

suggesting to decentralize decisions through water markets. For that to be the best policy

recommendation, it should be made clear �rst that all participants on these markets do not

posses signi�cant market power. For river basin management, also the role of governments

is crucial even in case these do not trade themselves on the water market, because upstream

countries might initiate development of plans for, say, expanding the area under irrigation

a¤ecting future downstream �ows.

Although this paper identi�es a promising route for further developing tools for water

policy research, the bilateral case is just a �rst step. Future research should �rst of all be

directed to deal with coalition formation among countries or among di¤erent stakeholder

within and across countries. Also the issue of regulating water markets when some the

parties have market power is a relevant issue. As in all areas of economic policy, lobbying is
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a matter of related interest. The bilateral model in Houba (2005a) captures such negotiations

in which the (exogenously given) probability of success in lobbying means a higher probability

to propose during the negotiations. This model reduces to the standard alternating-o¤ers

model after a transformation of the probabilities of becoming the proposer into modi�ed

discount factors and, therefore, the approach advocated in this contribution also applies.
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