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A ski jumper tries to maintain an aerodynamic position in the in-run during 
changing environmental forces. The purpose of this study was to analyze the 
mechanical demands on a ski jumper taking the in-run in a static position. We 
simulated the in-run in ski jumping with a 4-segment forward dynamic model 
(foot, leg, thigh, and upper body). The curved path of the in-run was used as 
kinematic constraint, and drag, lift, and snow friction were incorporated. Drag 
and snow friction created a forward rotating moment that had to be counteracted 
by a plantar fl exion moment and caused the line of action of the normal force to 
pass anteriorly to the center of mass continuously. The normal force increased 
from 0.88G on the fi rst straight to 1.65G in the curve. The required knee joint 
moment increased more because of an altered center of pressure. During the 
transition from the straight to the curve there was a rapid forward shift of the 
center of pressure under the foot, refl ecting a short but high angular accelera-
tion. Because unrealistically high rates of change of moment are required, an 
athlete cannot do this without changing body confi guration which reduces the 
required rate of moment changes. 

Key Words: musculoskeletal system, muscular coordination, sport

Ski jumping is a sport that makes extreme demands on the athletes. Many 
studies have been conducted of the take-off and fl ight in ski jumping. A main 
issue has been, and still is, how to optimize the athlete’s movements for maximal 
performance. Most researchers agree that the push-off action, take-off, and early 
fl ight phase (transition from take-off to fl ight) are crucial (e.g., Virmavirta, Kikeväs, 
& Komi, 2001a; Virmavirta, Perttunen, & Komi, 2001b). However, the in-run, 
which consists of a curved path in between two straights, is also considered to be 
important because what the athlete does during the in-run determines the initial 
conditions for take-off.
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To date, little attention has been paid to the dynamics of the in-run. At fi rst 
glance the demands on the athlete seem relatively straightforward: maintain an 
aerodynamic squat position by withstanding the increasing (centripetal) ground 
forces during the curved part of the hill. However, when gliding through the curved 
part, the athlete not only experiences increasing ground forces but also undergoes 
(backward) rotation, i.e., acquires an angular momentum. This occurs under circum-
stances when the drag force and the force of friction between skis and hill create 
progressively increasing external moments. Because both forces have their center 
of application below the center of mass (Ettema & Bråten, 2004), they tend to cause 
forward angular acceleration of the athlete. There seem to be two extra demanding 
sections of the in-run, the curve entrance and the curve exit. In the curve entrance 
section, the change of path from straight to curve introduces a sudden demand for 
rotation. The curve exit section makes the opposite demand in that the rotation must 
suddenly be stopped. The curve exit is especially important as it is also (near) the 
point of onset of the push-off action. 

To gain more insight into ski jumping, various studies have been performed. 
However, because of the practical diffi culties with data collection, the experimental 
data available on the in-run (including take-off table) is incomplete. Information 
on various important variables such as frictional forces and point of application 
(center of pressure) of ground reaction forces is missing (Tveit & Pedersen, 1981; 
Virmavirta & Komi, 1989, 1993; see also Komi & Virmavirta, 2000). Moreover, 
in experimental studies one does not have full control over the jumper’s (re)actions 
and it is diffi cult to disentangle the effects of external forces on the one hand and the 
actions of the athlete (who tries to counteract the undesired effects of the external 
forces) on the other hand. We therefore analyzed the dynamics of the in-run using 
computer simulation with a model that had been applied successfully to vertical 
jumping, cycling, and speed skating (e.g., Bobbert, Houdijk, de Koning, & de 
Groot, 2002; Pandy, Zajac, Sim, & Levine, 1990; van Soest, Schwab, Bobbert, 
& van Ingen Schenau, 1993). The simulations are by no means meant to replace 
experimental studies but merely to provide a useful supplement in the search for 
key elements in ski jumping.

The question of whether an athlete is able to take the in-run in a stable confi gu-
ration (at least reasonably well) is already answered in the positive by the reality of 
practice. The question of what this requires from the athlete, however, is still open. 
The aim of the present study was to analyze the mechanical demands posed on an 
athlete, both in terms of external forces that occur and in terms of joint moments 
that need to be generated when performing this task. For this purpose we considered 
a rigid dummy sliding down the hill and calculated the joint moments required for 
the task. For generalization purposes we created simulations under different hill 
characteristics and different magnitudes of drag and surface friction.

Methods

We simulated the events of a rigid dummy going down the hill and through the 
in-run (rigid-dummy model). In this model the joint angles were forcefully kept 
constant and the corresponding joint moment histories were calculated; these joint 
moment histories would have to be generated by an athlete if he or she were to 
maintain the static position throughout the in-run. 

A forward dynamic model of a ski jumper was obtained by adapting a 
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model previously described for vertical jumping (van Soest et al., 1993). The 
model contained four rigid segments foot+boot+ski, leg, thigh, and upper body 
(trunk, head+helmet, and upper extremities kept to the side of the trunk). Segment 
parameters were obtained for an average ski jumper (mass 60 kg, height 1.75 m). 
The ratios of masses, lengths, and moments of inertia of the segments were found by 
adjusting data from van Soest et al. (1993) for masses of skis, boots, and helmet. The 
foot was modeled slightly longer than the anatomical length to include the effects of 
wearing boots and skis. However, the heel was not fi xed to the ski, so that plantar 
fl exion was possible and ground reaction forces could not pass anteriorly to the 
boot+binding support area. The squat position adopted in the in-run was obtained 
by analysis of various laboratory simulation jumps and was comparable with data 
from the literature (Komi & Virmavirta, 2000). The initial joint angles were: ankle 
50°, knee 77°, and hip 32° (see Figure 1). The model consisted of equations of 
motion for each segment and equations defi ning the constraints of the hill, which 
were integrated over time using the ode45 integrator in Matlab (Mathworks).

The external constraints that were implemented were based on the Granåsen 
K120 Hill, Trondheim, Norway (Figure 1): a straight of 95-m angle of 146° with 
horizontal, a curvature with radius of 105 m, and a 6.65-m take-off table with a 
169° angle. Additional comparisons were made with the K90 Hill (fi rst straight 82 
m, 146°; curve radius 90 m; take-off table 6.25 m, 168.5°). Equation 1 describes 

Figure 1 — Over-
view of in-run (solid 
line) and hill (dotted 
line) used in the 
simulation study 
(Granåsen K120, 
Trondheim). Boxed 
area is enlarged in 
the middle diagram. 
The jumper is again 
enlarged in the 
bottom diagram, 
where the dot indi-
cates CoM.
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the constraints of the curvature with regard to x and x and x y, the horizontal and vertical 
acceleration of the toe, and ϕ1, the angular acceleration of the foot segment. 
The derivation of the equations and derivatives of s (hill slope) are given in the 
Appendix.

   Fx   Fx   F  – tanx – tanx (arctan(s) + arctan(cfcfc )f)f ) FyFyF  = 0    (1a)

   y – sx = ——    y – sx = ——    y – sx x2      (1b)

   ϕ1 – —– —– x = x = x { —– (—–)2
 +  —– —–}x2   (1c)

where —– = s, and ϕ1 = arctan(s)

For the straights, with infi nite radius and constant slope, Equations 1b and 1c are 
simplifi ed to:
      y – sx = 0   y – sx = 0   y – sx    (2a)

    ϕ1 = 0    (2b)

The transition from straight to curve is the transition from Equation 2a–b to 1b–c. 
Effects of air resistance were modeled per segment and comprised two com-

ponents, drag and lift (e.g., Virmavirta et al., 2001a). Lift force was estimated as 
being 10% of drag force. Drag force was dependent on the surface area perpendicular 
to movement direction, and therefore depended on the orientation of the individual 
segments. Surface area was approximated by length and width of each segment. 
For the upper body segment, depth was also estimated. When the upper body 
was directed perfectly parallel to the movement direction, the shoulders and head 
(helmet) created a surface into the airstream. Drag was calculated according to 

   Fd Fd F = cd x 0.5 x ρ x A x v2

where A is the surface area perpendicular to the direction of velocity v, ρ is air 
density, and cd is drag coeffi cient, the latter being set either at 0.93 or at 0.31 (see d is drag coeffi cient, the latter being set either at 0.93 or at 0.31 (see d
below; Ettema & Bråten, 2004; Lien & Sætran, 2003; Virmavirta et al., 2001a). 
Each drag force was assumed to apply at the center of mass of each individual 
segment, thus not creating any external moment, and preventing the equations of 
motion from becoming unnecessarily complex. Total drag force was calculated by 
summing the four segmental drag forces; obviously, total drag force did not neces-
sarily apply at the center of mass (CoM) of the entire body. Friction between ski 
and hill was calculated according to

      Ff    Ff    F = cf  = cf  = c x FNx FNx F ,

with cf cf c being the coeffi cient of friction and FNFNF  being the normal force. Both drag and N being the normal force. Both drag and N
friction forces may contribute to the rotation of the entire body (see Figure 1). In 
the fi rst instance we used relatively high values for cd  (0.93) and cfcfc  (0.08) to create f (0.08) to create f
a relative large effect of resistance on rotation so that the principle was elucidated 
(high resistance simulation: HRS). A comparison was made with the lower values 
for cfor cfor d  (0.31) and cfcfc  (0.03) (low resistance simulation, LRS) afterward so that pos-f (0.03) (low resistance simulation, LRS) afterward so that pos-f
sible impact of these external factors could be evaluated. The values for cd and d and d cfcfc
are considered to be the two extremes of a realistic range.
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Results

To make the rigid-dummy model reproduce take-off speeds obtained in practice 
(approx. 24.2 ms–1, 87 kmh–1), we released the model from a particular distance 
away from the curve entrance. With the settings for air resistance and friction used 
in this study, the model had to depart at 70-m distance from the curve entrance, i.e., 
25 m below the top of the hill. A general impression of the dynamics is given in 
Figure 2. The main fi gure shows the normal forces. The dots just below the in-run 
indicate time (∆t = 0.1 s each dot). Note that the total time for the in-run (7.64 s) is 
relatively long compared to practice (5–6 s), which is mainly due to the relatively 
high resistance of drag and friction. Drag increases with the square of speed. The total 
air resistance creates a forward moment as the center of air resistance is somewhat

Figure 2 — Simulation of the in-run. Critical points of the in-run are indicated (circles). 
In the main diagram, each dot under the in-run indicates 0.1 s in time; the normal force 
is indicated at different times. Insets A and B show stick diagrams of the model at the 
critical moments (shifts of CoP) during the transitions into and out of the curve. The 
jumper continuously maintains body position by adjustment of joint torques. CoM is 
indicated by a dot; also indicated are normal force, drag per segment and total drag 
(thick line just below CoM), and snow friction. 
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Figure 3 — Time traces of dynamic variables during the in-run. (A) Moments around 
the CoM of normal force, drag, and snow friction. For the low resistance conditions 
only the moment of FNFNF  (not drag and friction) is shown. (B) Total external moment, N (not drag and friction) is shown. (B) Total external moment, N
i.e., sum of normal, drag, and snow friction moment. (C) Total angular momentum 
(AM) of the model. (D) Moment arm of normal force at CoM, the product of which is 
shown in Diagram A. (E) Normal force.
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below the CoM. The line of action of the normal force (i.e., normal component of 
ground reaction force, not friction) continuously passes anteriorly to the CoM (i.e., 
the center of pressure, CoP, is located in front of the CoM) and is counteracting 
the moment created by drag. 

Figure 3 shows several time traces of the in-run. At the curve entrance the 
model is kinematically forced to follow the curve, and the corresponding accelera-
tion of CoM is refl ected in a dramatic increase in normal force from 515 N to 970 
N (0.88 G to 1.65 G) at the end of the curve (Figure 3E). Furthermore, the model 
is forced to initiate rotation, which is refl ected in the backward moment (Figure 
3B). The angular acceleration of the system as a whole is refl ected in a brief and 
sudden shift of the CoP to the front (tip) of the foot (Figure 3D). Directly after the 
transition, the increased normal force passes closer to the CoM than during the 
fi rst straight of the in-run (Figures 2A and 3D). This is the result of the interacting 
effects of increased FNFNF , the increased friction force, and the requirement of follow-
ing the curvature of the in-run. The friction between in-run and skis increases at 
the entrance of the curve as the normal force increases dramatically. At the exit of 
the curve, more or less the opposite occurs. A sudden reduction of the normal force 
coincides with a rapid backward displacement of the CoP underneath the foot, so 
that it ends up passing through or just behind the CoM. 

The situation is slightly different for the condition with less friction and 
drag (Figure 3, dotted curves). Because of lower resistance in the LRS, the model 
keeps increasing its speed to the end of the in-run, reaching 24.3 ms–1. Departing 
at 47 m (compared to 70 m in high-resistance simulation, HRS, to obtain similar 
speed) before the curve, the total in-run time amounted to 5.85 s (7.64 s in HRS) 
and maximum drag was equal to 46.5 N (175 N in HRS). Overall, the simulation 
results seem to match empirical data from our wind tunnel experiments (Ettema 
& Bråten, 2004) and practice reasonably well. The normal force is comparable in 
both runs, but with reduced drag and friction it keeps increasing through the curve, 
and so does angular momentum. The moment of FNFNF  is considerably reduced—the N is considerably reduced—the N
moment arm is smaller—and compensates less torque by drag and friction. The 
total moment (Figure 3B) remains positive (backward) throughout the curve but 
further follows a similar pattern as in the high-resistance simulation.

To study how the characteristics of the in-run affect the dynamics, we com-
pared the K120 with the K90 for low friction conditions (Figure 3, dotted vs. dashed 
traces). The departure position in the K90 was chosen such that the peak velocity 
was about 1.11 ms–1 (4 kmh–1) less than in the K120, as such a difference usually 
occurs in practice. The simulation results show that the angular momentum in the 
K90 hill exceeds that in the K120 by 10%, but normal forces differ only by 2% and 
the moment and moment arm of FNFNF  differ even less. N differ even less. N

The net joint moments that occur in the model during the transitions into and 
out of the curve are shown in Figure 4 for the K120 in-run under heavy resistance 
conditions. In the curve, increased joint moments were found that correspond with 
increased FNFNF and the small shift of CoP under the foot. It appeared that at curve 
entrance, considerable moment transients occurred over 10 ms in all three modeled 
joints. The maximal changes were approximately 100 Nm (ankle). The duration of 
the entire transient period, from the time that the front of the support base entered 
the curve to the time that the back of the base did so, was about 40 ms. All joint 
moments after the entrance of the curve were higher than during the straight. During 
the exit, rapid transients occurred in the ankle and hip (Figures 4D and 4F).
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Discussion 

The purpose of this study was to analyze the mechanical demands posed on an 
athlete when passing through the in-run of ski jumping in a static body position. 
We did this by simulating a rigid dummy, resembling the anthropometry of a ski-
jumper, gliding down a K120 in-run and a K90 run under different conditions for 
snow friction and drag.

During the fi rst straight, a slow increase of the backward moment of FNFNF
occurs as a reaction on the increasing forward moment of air resistance, while 
the magnitude of FNFNF  remains almost constant (a small reduction occurs because N remains almost constant (a small reduction occurs because N
of the lift effect by air resistance). In real ski jumping, assuming the athlete wants 
to maintain a perfect static position, this can be achieved by subtle modifi cations 
in muscle activity generating small changes in hip, knee, and ankle moments. In 
combination with the external force at hand, these changes lead to an anterior shift 
of the CoP.

At the entrance of the curve, a quick increase in external moment occurs at 
the initiation of rotation (following the path of the hill demands a rapid increase of 

Figure 4 — Joint moments during and just after the entrance and exit of the curve 
for the K120 in-run under heavy resistance. The time points of entrance and exit are 
indicated by dotted vertical lines.
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angular momentum) after which the moment remains higher than in the straight. 
The increase in external moment in the curve is refl ected in an increase of FNFNF  rather N rather N
than a shift of the CoP (i.e., change in moment arm; Figures 3A and 3D). The 
order of events is as follows: To follow a curvature of the in-run, the CoM needs 
to be accelerated; its velocity changes direction, which is refl ected in the strongly 
increased FNFNF . This increase causes an enhanced snow friction force and thus an 
enhanced forward-moment-by-snow friction. The combination of this increased 
moment, the required angular momentum to follow the curve, and moment by drag 
determines the moment by FNFNF  and thus the N and thus the N FNFNF  moment arm. The exact size of the N moment arm. The exact size of the N
moment of FNFNF  and therefore the location of CoP relative to CoM depends on the N and therefore the location of CoP relative to CoM depends on the N
circumstances (e.g., drag and friction). Note that the increase of FNFNF  by itself is a N by itself is a N
refl ection of the curvilinear movement of the toes and therewith the CoM following 
the radius, and is not the cause of the body’s angular acceleration with respect to 
the fi xed coordinate system. 

In reality, any fl exibility of the skis would likely attenuate the high transient 
peaks in the traces of the moment of FNFNF . Even if an athlete were able to keep his 
or her body rigid, the fl exible skis would make the changeover from the straight to 
curvature less abrupt. Given the average speed and length of the skis, the change-
over would occur within 70 ms, about twice the duration of the peaks in the current 
simulations. This means that in reality the maximal attenuation of the transient peak 
would be about twofold, coinciding with a twofold increase of the duration, since 
the change in angular momentum does not depend on the fl exibility of the skis. The 
exact attenuation depends on ski properties.

While the general principles of these events are similar for all conditions 
examined in this study, details depend on a combination of factors. Two important 
factors are drag and friction. With the center of drag being below the CoM, both 
drag and surface friction create a forward moment. Thus an increase of friction and 
drag tends to move the CoP in an anterior direction to the front of the foot. 

The striking similarity in CoP position underneath the foot in the K90 and 
K120 (Figure 3) may be coincidental as it is only valid for the velocities obtained 
in this study. Still, these velocities were chosen similar to velocities achieved in 
reality. In any case the similar CoP positions indicate that an athlete would generate 
similar muscle moments in these conditions, supporting the fi ndings of Virmavirta 
et al. (2001b) on push-off coordination. They found hardly any effect of hill size 
on muscle activation patterns. The fundamental issue here is the combination of 
centripetal force and change in angular momentum that is generated to go through 
the curve in static position. Both depend, albeit in different ways, on the athlete’s 
velocity and on the radius of the curve of the hill.

The analysis thus far provides insight into the demands posed upon the athlete, 
not into how the athlete handles these demands. In the rigid-dummy model, (changes 
in) external forces, point of application (i.e., CoP), and moments occur purely as a 
reaction on the external constraints. In real ski jumping these changes are brought 
about by acting, presumably in an anticipatory manner, on the demands posed by 
the in-run characteristics. The changes in joint moments that occur reactively in the 
rigid dummy require from the athlete appropriate changes in muscle forces to be 
brought about by changes in muscle activation. During the straight, the normal force 
is less than gravity (0.88 G) because the athlete moves on a slope. Thus, less muscle 
moment is required to maintain the body position compared to moving level. 

Toward the end of the curve, the normal force increases by a factor of 1.8 
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to about 1.65 G, the exact value depending on slope, speed, and radius. This is 
refl ected by similar increases in joint moments (Figure 4). However, the knee 
moment increases by a larger factor, 1.96, as the CoP moves backward creating a 
larger moment arm for FNFNF  at the knee. Still, even though they are substantial, the N at the knee. Still, even though they are substantial, the N
required joint moments lie well within the capabilities of an athlete (e.g., Aagaard, 
Simonsen, Andersen, Magnusson, & Dyhre-Poulsen, 2002; Bobbert & van Ingen 
Schenau, 1990; Ricard, Ugrinowitsch, Parcell, et al., 2005). However, the rate at 
which the moments need to change, particularly at the entrance and exit of the curve, 
may well be beyond an athlete’s capability, even considering the effect of fl exible 
skis. For example, Aagaard et al. (2002) examined the rate of force development in 
young males after a 14-week progressive heavy-resistance training program. They 
found a maximal rate of moment development of 2,000 Nms–1 during a maximal 
voluntary unilateral isometric knee extension. Ignoring possible bilateral defi cit, 
this equals 80 Nm in 20 ms for a two-legged exercise. This is less than the fi nd-
ings from the rigid-dummy model, about 80 Nm within 10 ms in knee extension 
(Figure 4B). 

The rate of force development levels for plantar fl exion reported by Ricard 
et al. (2005) for female sprinters (600 Nms–1) suggest that the requirements at the 
ankle are far beyond what is feasible. The perturbation of the curve entrance likely 
causes quick stretches in the musculature of an athlete, facilitating the required rapid 
force enhancement by mechanical and neural means. We performed preliminary 
simulations with a model incorporating skeletal-muscle tendon systems according 
to van Soest et al. (1993), in which muscle activation was kept constant. The results 
indicated that although the mechanical response of the muscle-tendon systems indeed 
helps generate the rapid moment increases, it is not suffi cient to maintain position 
over a period beyond 200 ms: the model not only collapsed under the increased 
normal force but also generated too little angular momentum to follow the curve. 
Still, practice shows us that an athlete can perform this task with little diffi culty, 
albeit not necessarily in a fully static position. 

The remaining question, therefore, is what an athlete actually does with 
regard to muscle coordination in anticipation of the demands posed by the in-run 
dynamics. Obviously it is not easy to formulate optimization criteria, as the only 
apparent candidate, that of maintaining a perfectly still aerodynamic performance, is 
not likely realistic. Anecdotal evidence obtained from discussions with trainers and 
athletes suggests that an athlete attempts to maintain a “dynamic balance,” which 
may be interpreted as a combination of minimizing movements and minimizing 
changes of CoP under the foot. This last factor is deemed crucial for a good push-
off action. It is clear that experimental data, specifi cally measurements of ground 
reaction forces, are required to elucidate this issue further. 

The exit of the curve is of special interest as it coincides with the start of the 
actual push-off action. Without attempting to discuss the muscle coordination pat-
tern required for a successful take-off, the following can be said. At the end of the 
curve the jumper has a nearly constant but high positive angular momentum (i.e., 
backward). This momentum needs to be removed, and for a good take-off probably 
needs to change into a slightly negative value (forward) at the end of take-off. The 
most striking fi nding during this transition is the rapid shift of the line of action of 
the normal force from just in front of CoM to far behind (toward the heel). This rapid 
transition occurs because of the kinematic forcing (stopping backward rotation). An 
athlete does not need to make the same performance as he or she has already started 
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push-off, or is about to. But once again, the moment transients for a rigid dummy 
are illustrative for the highly specifi c conditions and requirements that are imposed 
in ski jumping, in this case at about the time the push-off is initiated. 

It should be noted here that if an athlete is to lose the backward momentum, 
it is not enough to merely be exiting the curve as in the case for a rigid dummy. 
The athlete needs to alter muscle forces to stop the rotation of all body segments. 
More insight into the impact of these requirements on the push-off action can be 
obtained by implementing muscle-tendon units in the current model and perform-
ing optimization exercises of the push-off action. Comparisons with simulations of 
different dryland-training exercises may prove useful for training praxis.
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—————————  Appendix  —————————

The description in x and y coordinates of the hill and its derivatives are given in 
Equations A1–A4 for the curvature (circle with radius r). The x and y offsets are 
omitted in Equation A1 for simplicity.

For the straights, these equations regress to

where si = tan(ϕi), i = fi rst straight, takeoff table. The general chain rule for second 
derivatives:  

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)
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is transformed to Equation 1b:

Equation A10 is found by substituting Equation A2 into 1b.

The description for ϕ1 in Equation 1c is found as follows:

Equation A11 can be rewritten as

(1b)

(A10)

(A11)

(1c)
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