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DISCUSSION PAPER

BREAKDOWN AND GROUPS1

BY P. LAURIE DAVIES AND URSULA GATHER

University of Duisburg–Essen and Technical University Eindhoven,
and University of Dortmund

The concept of breakdown point was introduced by Hampel [Ph.D. dis-
sertation (1968), Univ. California, Berkeley;Ann. Math. Statist.42 (1971)
1887–1896] and developed further by, among others, Huber [Robust Statis-
tics (1981). Wiley, New York] and Donoho and Huber [InA Festschrift for
Erich L. Lehmann(1983) 157–184. Wadsworth, Belmont, CA]. It has proved
most successful in the context of location, scale and regression problems. At-
tempts to extend the concept to other situations have not met with general
acceptance. In this paper we argue that this is connected to the fact that in the
location, scale and regression problems the translation and affine groups give
rise to a definition of equivariance for statistical functionals. Comparisons in
terms of breakdown points seem only useful when restricted to equivariant
functionals and even here the connection between breakdown and equivari-
ance is a tenuous one.

1. Introduction.

1.1. Contents. In Section 1 we give a short overview of the concepts of
breakdown and equivariance and a brief discussion of previous work. Section 2
contains notation and the standard definition of breakdown and in Section 3
we derive an upper bound for the breakdown points of equivariant statistical
functionals. Section 4 contains some old and new examples in light of the results
of Section 3. The attainability of the bound is discussed in Section 5 and finally
in Section 6 we argue that the connection between breakdown and equivariance is
fragile.

1.2. Breakdown points and equivariance.The notion of breakdown point was
introduced by Hampel (1968, 1971). Huber (1981) took a functional analytical
approach; a simplified version for finite samples was introduced by Donoho (1982)
and Donoho and Huber (1983). To be of practical use a definition of breakdown
should be simple, reflect behavior for finite samples and allow comparisons
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between relevant statistical functionals. With some proviso (see Section 6) these
goals have been achieved for location, scale and regression problems inR

k [see,
e.g., Hampel (1975), Rousseeuw (1984, 1985), Lopuhaä and Rousseeuw (1991),
Davies (1993), Stahel (1981), Donoho (1982), Tyler (1994) and Gather and Hilker
(1997)] and for related problems [see, e.g., Ellis and Morgenthaler (1992), Davies
and Gather (1993), Becker and Gather (1999), Hubert (1997), Terbeck and Davies
(1998), He and Fung (2000) and Müller and Uhlig (2001)]. This success has led
many authors to develop definitions applicable in other situations. We mention
nonlinear regression [Stromberg and Ruppert (1992)], time series [Martin and
Jong (1977), Papantoni-Kazakos (1984), Tatum and Hurvich (1993), Lucas (1997),
Mendes (2000), Ma and Genton (2000) and Genton (2003)], radial data [He and
Simpson (1992)], the binomial distribution [Ruckstuhl and Welsh (2001)] and
more general situations as in Sakata and White (1995), He and Simpson (1993)
and Genton and Lucas (2003). An essential component of the theory of high
breakdown location, scale and regression functionals is the idea of equivariance.
With the exception of He and Simpson (1993), none of the above generalizations of
breakdown point incorporates a concept of equivariance. It is as if the equivariance
part has been relegated to the small print and then forgotten [see ‘t Hooft (1997)
for the role of the small print in physics]. The main purpose of this paper is to
emphasize the role of a group structure, to give some new examples and to point
out the fragility of the connection.

2. A definition of breakdown point. We consider a measurable sample
space(X,B(X)) and the familyP of all nondegenerate probability measures
on this space. We assume that a pseudometricd is defined onP which satisfies

sup
P,Q∈P

d(P,Q) = 1(2.1)

and for allP , Q1, Q2 ∈ P andα, 0< α < 1,

d
(
αP + (1− α)Q1, αP + (1− α)Q2

) ≤ 1− α.(2.2)

We consider functionalsT which mapP into a parameter space� which is
equipped with a pseudometricD on� × � satisfying

sup
θ1,θ2

D(θ1, θ2) = ∞.(2.3)

The breakdown pointε∗(T ,P, d,D) of the functionalT at the distributionP with
respect to the pseudometricsd andD is defined by

ε∗(T ,P, d,D) = inf
{
ε > 0 : sup

d(P,Q)<ε

D
(
T (P ), T (Q)

) = ∞
}
.(2.4)

The finite-sample replacement breakdown point of a functionalT is defined as
follows. If xn = (x1, . . . , xn) is a sample of sizen, we denote its empirical
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distribution byPn = ∑n
i=1 δxi

/n. Letyn,k be a sample obtained fromxn by altering
at mostk of thexi and denote the empirical distribution ofyn,k by Qn,k . The finite-
sample breakdown point (fsbp) ofT at the samplexn (or Pn) is then defined by
[see Donoho and Huber (1983)]

fsbp(T ,xn,D) = 1

n
min

{
k ∈ {1, . . . , n} : sup

Qn,k

D
(
T (Pn), T (Qn,k)

) = ∞
}
.(2.5)

3. Groups and equivariance.

3.1. An upper bound for the breakdown point.Let G be a group of measurable
transformationsg of X onto itself with unit elementι. For anyP ∈ P and any
g ∈ G we defineP g by P g(B) = P(g−1(B)). The groupG induces a group
HG = {hg :g ∈ G} of transformationshg :� → � and a functionalT :P → �

is called equivariant with respect toG if

T (P g) = hg(T (P )) for all g ∈ G,P ∈ P .(3.1)

We set

G1 =
{
g ∈ G : lim

n→∞ inf
θ

D
(
θ,hgn(θ)

) = ∞
}
.(3.2)

The restriction ofg ∈ G to a setB ∈ B will be denoted byg|B . Given this we
define

�(P ) = sup{P(B) :B ∈ B, g|B = ι|B for someg ∈ G1}.(3.3)

The functional�(P ) appears explicitly in the expression for the highest possible
breakdown point. We give two examples. IfG is the translation group onRk , then
the defining set in (3.3) is empty so that�(P ) = 0. For affine transformations
Ax + b = x for x ∈ B and consequently�(P ) is the greatest measure of a lower-
dimensional hyperplane.

THEOREM 3.1. With the above notation and under the assumption that
G1 �= ∅ we have

ε∗(T ,P, d,D) ≤ (
1− �(P )

)
/2(3.4)

for all G-equivariant functionalsT , for all P ∈ P , for all pseudometricsd andD

satisfying(2.1)–(2.3).

PROOF. Let B0 andg ∈ G1 be such thatg|B0 = ι|B0. Consider the measures
defined by Q1(B) = P(B ∩ B0), Q2(B) = P(B) − Q1(B) and Qn(B) =
(Q2(B) + Q

gn

2 (B))/2 + Q1(B) for B ∈ B. As Q
g
1 = Q

g−1

1 = Q1 we have
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Q
g−n

n = (Q
g−n

2 + Q2)/2 + Q1 and on using (2.2) it follows thatd(Q
g−n

n ,P ) ≤
(1− P(B0))/2 andd(Qn,P ) ≤ (1− P(B0))/2. Clearly

D
(
T (Qg−n

n ), T (Qn)
) ≤ D

(
T (P ), T (Qg−n

n )
) + D

(
T (P ), T (Qn)

)
.

The definition ofG1 implies

lim
n→∞

(
D

(
T (P ), T (Qg−n

n )
) + D

(
T (P ), T (Qn)

)) = ∞
and we deduce that for anyε > (1− P(B0))/2

sup
d(P,Q)<ε

D
(
T (P ), T (Q)

) = ∞.

The claim of the theorem follows.�

THEOREM 3.2. With the above notation and under the assumptionG1 �= ∅

we have

fsbp(T ,xn,D) ≤
⌊
n − n�(Pn) + 1

2

⌋/
n.(3.5)

PROOF. The proof follows the lines of the proof of Theorem 3.1. For the
details we refer to Davies and Gather (2002).�

4. Examples.

4.1. Location functionals and the translation group.We take X to be
k-dimensional Euclidean spaceRk and G the translation group. The parameter
space� is R

k and the groupHG is again the translation group. The pseudo-
metric D on � is the Euclidean metric. Any pseudometricd which satisfies
(2.1) and (2.2) will suffice. This applies for all other examples so we no longer
specifyd. As mentioned just after (3.3), we have�(P ) = 0 for all P and Theo-
rem 3.1 now states thatε∗(T ,P, d,D) ≤ 1/2 for any translation equivariant func-
tional.

4.2. Scatter functionals and the affine group.X is k-dimensional Euclidean
spaceR

k and G is the affine group, the parameter space� is the space�k of
nonsingular symmetric(k × k)-matrices and the elementshg of HG are defined by

hg(σ ) = AσAt, σ ∈ �k,(4.1)

whereg(x) = Ax + b. The pseudometric on�k is given by

D(σ1, σ2) = ∣∣log
(
det(σ1σ

−1
2 )

)∣∣, σ1, σ2 ∈ �k(4.2)

and henceG1 = {g :g(x) = Ax + a,det(A) �= 1}. We have�(P ) = sup{P(B) :B
is a hyperplane of dimension≤ k − 1} and Theorem 3.1 is now Theorem 3.2 of
Davies (1993).
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4.3. Regression functionals and the translation group.X is now (k + 1)-
dimensional Euclidean spaceRk × R, where the firstk components define the
design points and the last component is the corresponding value ofy. The groupG
consists of all transformations

g
(
(xt , y)t

) = (xt , y + xta)t , (xt , y)t ∈ R
k × R,(4.3)

with a ∈ R
k. The space� is R

k and a functionalT :P → � is equivariant with
respect to the group ifT (P g) = T (P ) − a. The arguments go through as in
Section 4.2 and the result is Theorem 3.1 of Davies (1993).

4.4. Time series and realizable linear filters.We denote the space of doubly
infinite series of complex numbers byC

Z and define

X = Xδ =
{
x ∈ C

Z :
∞∑

j=0

|xn−j |(1+ δ)−j < ∞ for all n ∈ Z

}
(4.4)

for someδ > 0 and equipX with the usual Borelσ -algebra. Define the group̃G
by

G̃ =
{
g̃ : g̃ :
1+ε → C, analytic and bounded with inf

z∈
1+ε

|g̃(z)| > 0
}
,(4.5)

where
r denotes the open disc inC of radiusr andε > δ. Each such̃g ∈ G̃ has
a power series expansiong̃(z) = ∑∞

j=0 gjz
j and defines a linear filterg onX,

(g(x))n =
∞∑

j=0

xn−j gj , n ∈ Z.(4.6)

The linear filtersg form the groupG. The parameter space� is the space of finite
distribution functionsF on (−π,π]. ForF ∈ � andg ∈ G we definehg(F ) by

hg(F ) = Fg wheredFg(λ) = ∣∣g(
exp(iλ)

)∣∣2 dF(λ).(4.7)

Finally, the pseudometricD on� is defined by

D(F1,F2) =



∫ π

−π

∣∣∣∣log
(

dF1

dF2

)∣∣∣∣dλ, F1 � F2,

∞, otherwise,
(4.8)

whereF1 � F2 means that the two measures are absolutely continuous with respect
to each other. The conditions placed on the groupG imply that

inf
λ∈(−π,π ]

∣∣g(
exp(iλ)

)∣∣ > 0, dFg/dF = ∣∣g(
exp(iλ)

)∣∣2
and

D
(
F,hg(F )

) = 2
∫ π

−π

∣∣log
(
g
(
exp(iλ)

))∣∣dλ
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for anyF in � andg ∈ G. This implies

D
(
F,hgn(F )

) = 2n

∫ π

−π

∣∣log
(
g
(
exp(iλ)

))∣∣dλ

and hence

lim
n→∞n

∫ π

−π

∣∣log
(
g
(
exp(iλ)

))∣∣dλ = ∞
unless|g(exp(iλ))| = 1,−π < λ ≤ π . This, however, would implyg(z) = z and
so we see thatG1 �= ∅. Theorem 3.1 gives

ε∗(T ,P, d,D) ≤ (
1− �(P )

)
/2.

In the present situation the definition (3.3) of�(P ) reduces to

�(P ) = sup

{
P(B) :B =

{
x :xn =

∞∑
j=0

xn−j gj , n ∈ Z

}
, g ∈ G1

}
,(4.9)

which is effectively the maximum probability thatx is deterministic. IfP is
a stationary Gaussian measure with spectral distributionF whose absolutely
continuous part has densityfac, then the Szegö (1920) alternative is�(P ) = 0
or 1 according to whether∫ π

−π
log

(
fac(λ)

)
dλ > or = −∞.

4.5. The Michaelis–Menten model.The Michaelis–Menten model may be
parameterized as

y = ax

cx + 1/a
+ ε, a, c, x ∈ R+ = (0,∞)(4.10)

with θ = (a, c). X is R+ × R and the elementsg of G are defined by
g((x, y)) = (αx, y) with α > 0. The elementshg of the induced group are given
by hg(θ) = (a/

√
α, c/

√
α ). We take the metricD to be given by

D(θ1, θ2) = |a1 − a2| + |a−1
1 − a−1

2 | + |c1 − c2|.
As g((x, y)) = (x, y) only for g = ι we see thatG1 �= ∅ and that�(P ) = 0. This
implies a highest finite-sample breakdown point of
(n+1)/2�/n, which is clearly
attainable. Extensions to the real linear fractional group are possible.

4.6. Logistic regression I. Logistic regression is a binomial model with
covariates. For the binomial distribution itself it has been shown by Ruckstuhl and
Welsh (2001) that a breakdown point of 1 is attainable by functionals which are
equivariant with respect to the two-element groupG = {ι, g} whereg(x) = 1− x

andhg(p) = 1 − p. As pointed out by Peter Rousseeuw (comment at the ICORS
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2002 meeting in Vancouver), this is the natural group for the binomial distribution.
The logistic regression model is

P(Y = 1|x) = exp(θ0 + xt θ̃ )/
(
1+ exp(θ0 + xt θ̃)

)
,

(4.11)
θ = (θ0, θ̃

t )t ∈ R
k+1,

wherext = (x1, . . . , xk) are the covariates associated with the random variableY.

The sample space isX = {0,1} × R
k and the parameter space� is R

k+1. The
groupG is generated by the composition of transformations of the form

(y, xt )t → (1− y, xt )t ,(4.12)

(y, xt )t → (
y,A(x)t

)t
,(4.13)

whereA is a nonsingular affine transformationA(x) = Ax + a. The groupHG of
transformations of� induced byG is given by

hg(θ) = −θ, g as in (4.12),(4.14)

hg

(
(θo, θ̃

t )t
) = (

θ0 − at (At )−1θ̃ ,
(
(At )−1(θ̃)

)t )t
, g as in (4.13).(4.15)

The metricD on � is taken to be the Euclidean metric. All the conditions for
Theorem 3.1 are satisfied except thatG1 = ∅ and indeed the constant functional
T (P ) = 0 for all P is equivariant with breakdown point 1. If the constant
functional is not thought to be legitimate, an alternative one is the following. For
ε > 0 we defineT by

T (P ) = argmin
θ0,θ̃

∫ [(
y − exp(θ0 + xt θ̃)

1+ exp(θ0 + xt θ̃ )

)2

(4.16)

+ ε(θ0 + xt θ̃ )2
]
dP (x, y).

The additional term is a form of regularization which prevents explosion in the
case where the sets ofx ’s with y = 1 and withy = 0 are separated by a hyperplane.
The functionalT is equivariant. Consider a data set which is such that any set of
(k + 1)-vectors(1, xt

ji
)t , i = 1, . . . , k + 1, is linearly independent. On denoting the

empirical distribution of a replacement sample byP ∗
n we note thatT (P ∗

n ) remains
bounded for all replacement samples which contain at leastk + 1 of the original
sample’s values. The finite-sample breakdown point is therefore 1− k/n.

4.7. Logistic regression II. We consider the growth model

Y(t) = exp(a + bt)/
(
1+ exp(a + bt)

) + ε(t),(4.17)

which has an obvious equivariance structure. We defineψ(y) by

ψ(y) = max
{
0,min{1, y}}



984 P. L. DAVIES AND U. GATHER

and a functionalT by

T (P ) = argmin
a,b

∫ (
ψ(y) − exp(a + bt)/

(
1+ exp(a + bt)

))2
dP (y, t).

Given a data set(y(ti), ti), i = 1, . . . , n, we see thatT will only break down if
there exists at such thaty(ti) = 0 for all ti < t andy(ti) = 1 for all ti > t or vice
versa. From this it follows that in general the finite-sample breakdown point will
be 1− 1/n. This is much higher than the breakdown point of the LMS functional,
which is about 1/2 [see Stromberg and Ruppert (1992), Section 5].

5. Attaining the bound.

5.1. Location functionals. The translation equivariantL1-functional

T (P ) = argmin
µ

∫
(‖x − µ‖ − ‖x‖) dP (x)(5.1)

attains the bound of 1/2 of Section 4.1. It is not affine equivariant and attempts to
prove the bound of 1/2 for affine equivariant functionals inRk with k ≥ 2 have not
been successful [Niinimaa, Oja and Tableman (1990), Lopuhaä and Rousseeuw
(1991), Gordaliza (1991), Lopuhaä (1992) and Donoho and Gasko (1992)]. The
proof of Theorem 3.1 also fails for the affine group asG1 = ∅. That a bound of 1/2
does not hold globally is shown by the exampleX = R

2 with point mass 1/3 on the
pointsx1 = (0,1), x2 = (0,−1), x3 = (η

√
3,0). More generally, ink dimensions

there are samples for which 1/(k + 1) is the maximal breakdown point. In spite of
this, there are samples where a finite-sample breakdown point of 1/2 is attainable.
The construction is somewhat complicated and may be found in Davies and Gather
(2002).

5.2. Scatter functionals. The median absolute deviation (MAD) has a finite-
sample breakdown point of max(0,1/2 − �(Pn)), which is less than the upper
bound of Theorem 3.2. We propose a modification of the MAD which does attain
the upper bound. For a probability measureP we define the intervalI (P,λ) by
I (P,λ) = [med(P ) − λ,med(P ) + λ] and write

�(P,λ) = max{P({x}) :x ∈ I (P,λ)}.
The new scale functional MAD∗ is defined by

MAD∗(P ) = min
{
λ :P(I (P,λ)) ≥ (

1+ �(P,λ)
)
/2

}
,

which can easily be calculated. It achieves the upper bound of Theorem 3.2. The
breakdown point in terms of metrics depends on the metric used [see Huber (1981),
page 110]. For the Kuiper metric based on one interval the breakdown point is
(1− �(P ))/3 [see also Davies (1993)] while for the Kuiper metric based on three
intervals it is(1− �(P ))/2 [see Davies and Gather (2002)].
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6. Final remarks. As mentioned in the Introduction the definition of break-
down point should meet the following three goals: it should be simple, it should
reflect the behavior of statistical functionals for finite samples and it should allow
useful comparisons between statistical functionals. We examine these demands
more closely for the case of a location functional inR. The definition of breakdown
point (2.4) involves a limiting operation and this is an essential part of its simplic-
ity. If ∞ in (2.4) were replaced by some large number the simplicity would be
lost. The simplification resulting from the limiting operation will only be success-
ful if the resulting definition reflects the behavior for finite samples. The situation
is analogous to the limiting operation of differentiation which reflects the behavior
of the function for small but finite values. The breakdown points of 1/n for the
mean and 1/2 for the median do reflect their finite-sample behavior. As the me-
dian is translation equivariant and the highest breakdown point for such functionals
is 1/2, we seem to have achieved all three goals. If no restrictions were imposed on
the class of allowable functionals, then breakdown points of 1 become attainable.
We know of no situation not based on equivariance considerations where it can
be shown that the highest breakdown point for a class of reasonable functionals is
less than 1. A referee suggested the following example: estimateb in the model
E(y|x) = bx from 2m points atx = 0 and anotherm points atx = 1 where the
conditional distribution ofy given x is normal with mean zero and variance 1.
The problem is to construct a consistent estimator with a breakdown point of more
than 1/3. We construct one with breakdown point 1. We give a finite-sample ver-
sion. The data points are(x1, y1), . . . , (xn, yn) with empirical distributionPn. If
thexi are all equal we putT (Pn) = 0. Otherwise we set

T (Pn) = max
{−n,min{n,TLS(Pn)}},(6.1)

whereTLS is the least squares estimator through the origin. As|T (Pn)| is bounded
by n for any empirical distributionPn, it has finite-sample breakdown point 1.
On the other hand it is consistent. Equivariance considerations prohibit such
a construction. In certain situations location functionals which are not translation
equivariant may be preferred. If, for example, there is prior knowledge about
the range of possible values of the location, then this can be exploited to give
a breakdown point of 1. In all the situations we have considered where a breakdown
point of 1 is attainable, it has proved to be quite easy to produce a perfectly sensible
functional which attains or almost attains a breakdown point of 1. If this had been
the case for equivariant functionals, we suspect that not so much research would
have been devoted to the problem of high breakdown functionals. The breakdown
point of 1/2 for the median reflects its behavior at the following samples:

(1.5,1.8,1.3,1.5+ λ,1.8+ λ,1.3+ λ),(6.2)

(1.5,1.8,1.3,1.51+ λ,1.8+ λ,1.3+ λ).(6.3)

In both cases asλ tends to infinity the median breaks down in spite of the fact
that the proof of Theorem 3.2 only covers the behavior at sample (6.2). Indeed any
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translation equivariant functional will break down at sample (6.2) but it is easy to
define translation equivariant functionals which do not break down at sample (6.3).
Although a functional which does not break down at (6.3) may seem artificial, there
are quite plausible situations where a similar phenomenon occurs. The noise may
be simple white noise and the signal a very small subset of the data which lies
very close to a straight line. It may well be possible to find this subset in spite
of 99% of the data being noise and moreover, this may be accomplished in an
equivariant manner. The behavior of the median at sample (6.3) is not explained
by its translation equivariance and its breakdown point of 1/2. The median must
have some other, as yet unspecified, property beyond equivariance which makes
the breakdown point of 1/2 a good description of its behavior. Thus even in the
case of equivariance the success of the concept of breakdown point would seem
to be more fragile than is generally supposed. It is perhaps a case of invisible
small print.
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DISCUSSION

BY MARC G. GENTON1 AND ANDRÉ LUCAS

Texas A&M University and Vrije Universiteit

1. Introduction. In their interesting paper Davies and Gather draw our
attention to what they call the “small print” in definitions of breakdown. Working
from a formal group structure and a notion of equivariance, they show by a number
of examples that a definition of breakdown may be void if not accompanied by
a reasonable and precise group structure. This leads them to what we would label
their key remark in Section 6: “We know of no situation not based on equivariance
considerations where it can be shown that the highest breakdown point for a class
of reasonable functionals is less than 1.”

Though we agree with their general point that one has to take care not to come
up with void definitions, or put differently, to make the small print explicit, we want
to draw attention to the relation of their results to an alternative definition of
breakdown. In particular, we claim that a different perspective on the notion of
breakdown may resolve some of the small print issues.

The definition used by Davies and Gather in their equation (2.4) is a standard
one and has its roots in the domain of location and scale estimation. As we argued
in Genton and Lucas (2003), it is less useful in a setting with dependent data. For
example, in a simple autoregression (AR) of order 1,

Yt = θYt−1 + et , θ ∈ (−1,1), et ∼ N(0,1),(1)

the ordinary least squares (OLS) estimator forθ is driven to zero by replacing
one of theYt ’s by an arbitrarily large number. Note that the OLS estimator thus

1Supported in part by NSF Grant DMS-02-04297.
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tends to the center rather than the edge of the parameter space. Still, most people
would agree that the estimator has lost its usefulness if only one extreme outlier
is added. The reason is that the estimator no longer conveys useful information on
the uncontaminated data. It is this latter notion that we want to put to the fore.

2. Breakdown point for (in)dependent observations. First, we would like
to acknowledge that the breakdown definition as introduced in Genton and Lucas
(2003) is subject to criticism raised by Davies and Gather (personal communica-
tion). One can easily construct an example of an estimator with breakdown point
of 1 that would lose its information content on the uncontaminated process upon
the addition of only one outlier. This is mainly due to the lack of a limiting opera-
tion in our original definition. Therefore, for the sake of this comment we introduce
the following slightly adapted and simplified version of the definition in Genton
and Lucas (2003).

Let Y denote a vector containing the sample of observations, and letY denote
the set of allowable samples. For example, in the asymptotic caseY might be
a specific AR(1) process, whileY is the set of all stationary AR(1) processes. In
a finite sample,Y might be a specific vector inRn, while Y is equal toR

n. Let
Z

ζ
k be an additive outlier process consisting ofk outliers of magnitudeζ , such that

we observeY + Z
ζ
k rather thanY . To formalize the notion of information content

on the uncontaminated process, we introduce the concept of badness set, which in
this case we define as

R∗(Zζ
k ,Y) = {θ(Y + Z

ζ
k )|Y ∈ Y},(2)

whereθ(·) denotes the Fisher consistent estimator functional. Letµ denote an
appropriate measure for the badness set. In most cases the Lebesgue measure
suffices. Then we define the breakdown point of an estimator as

bdp= 1

n
min

{
k − 1

∣∣∣for all compactY′ ⊂ Y :

(3)

inf
Z

ζ
k

µ
(
R∗(Zζ

k ,Y′) ∩ R∗(0,Y′)
) = 0

}
.

An extension to the asymptotic case is straightforward. To see how the de-
finition works, consider the regression example in Section 6 of Davies and
Gather. We haveY = R

n×2 andR∗(0,Y) = [−n,n]. The estimator is given by
θ(Y ) = max(−n,min(n, θOLS(Y ))), with θOLS(Y ) the standard OLS estimator.
We setµ to the standard Lebesgue measure. By takingk = 1 and letting the size of
the outlier (ζ ) diverge, the intersection of the two badness sets in the definition be-
comes{n} or {−n}, which is a singleton with Lebesgue measure zero. Therefore,
the estimator has broken according to our new definition. This appears reasonable
as the estimator no longer conveys information about possibly uncontaminated
samples.
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3. Time series. The advantages of a different perspective on breakdown
become even more apparent in the time series setting. Again consider our
AR(1) example from (1). In the asymptotic case, define the i.i.d. additive outlier
processZζ

p,t with P[Zζ
p,t = ζ ] = P[Zζ

p,t = −ζ ] = p/2, andZ
ζ
p,t = 0 otherwise.

Figure 1 presents plots of the badness setR∗(Zζ
p,Y) associated with three

estimators ofθ as a function ofζ for p = 5%,25%,50%. HereY is the set of
all stationary AR(1) processes; see the comment in the discussion below. We setµ

to the standard Lebesgue measure.
The first estimator is the OLS estimator which in the above setting yields the

badness set (2) based on the explicit expression

θOLS(Y + Zζ
p) = θ

1+ p(1− θ2)ζ 2 .(4)

Letting the size of the outliers (ζ ) diverge, we see that unlessp = 0, the
estimatorθOLS tends to zero and the corresponding badness set becomes{0}; see
the first row of Figure 1. Therefore, the asymptotic breakdown point of the OLS
estimator for the AR(1) parameterθ is 0 in the setting described above.

The second estimator is the least median of squares (LMS) estimator ofθ . It
yields a badness set (2) based on the expressionθLMS(Y +Z

ζ
p) = argmiñθ∈[−1,1] c

FIG. 1. Plots of the badness setR∗(Z
ζ
p,Y) associated with three estimators ofθ in theAR(1) as

a function ofζ for p = 5%, 25%, 50%:OLS(top);LMS(middle);DR (bottom).
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under the constraint

1

2
= (1− p)2χ2

(
c

τ2 ;0
)

+ p(1− p)

[
χ2

(
c

τ2 ; 1

τ2ζ 2
)

+ χ2
(

c

τ2 ; θ̃2

τ2ζ 2
)]

(5)

+ p2

2

[
χ2

(
c

τ2 ; (1− θ̃ )2

τ2 ζ 2
)

+ χ2
(

c

τ2 ; (1+ θ̃ )2

τ2 ζ 2
)]

,

where τ2 = 1 + (θ − θ̃ )2/(1 − θ2) and χ2(x; δ2) denotes the cumulative
distribution function evaluated atx of a chi-square random variable with
noncentrality parameterδ2. The second row of Figure 1 indicates that the badness
set for p = 5% still takes a continuum of values, whereas it tends to the set
{−1,0,+1} for p = 25%. Forp = 50%, the badness set collapses to{0} as ζ

diverges. Therefore, letting the size of the outliers (ζ ) diverge, the asymptotic
breakdown point of the LMS estimator for the AR(1) parameterθ can be computed
from (5) to be 22.1% in the setting described above.

The third estimator is the deepest regression (DR) estimator ofθ defined by
mediant (Yt/Yt−1). Under the additive outlier process described above, we need to
consider the distribution of(Yt +Z

ζ
p,t )/(Yt−1 +Z

ζ
p,t−1). It yields a badness set (2)

based on the expressionθDR(Y + Z
ζ
p) given by the valuec satisfying

1

2
= (1− p)2G(c;0,0)

+ p(1− p)

2
[G(c; ζ,0) + G(c;0, ζ ) + G(c;−ζ,0) + G(c;0,−ζ )](6)

+ p2

4
[G(c; ζ, ζ ) + G(c; ζ,−ζ ) + G(c;−ζ, ζ ) + G(c;−ζ,−ζ )],

where G(x;a, b) is the cumulative distribution function evaluated atx of the
ratio of two correlated normal random variables with meansa andb, variances
1/(1 − θ2) and correlationθ [see Hinkley (1969)]. The third row of Figure 1
indicates that the badness set still takes a continuum of values forp = 5% and
p = 25%, whereas it collapses to{0} for p = 50% asζ diverges. Thus, the
asymptotic breakdown point of the DR estimator for the AR(1) parameterθ can
be computed from (6) to be 50% in the setting described above.

It is interesting to note that the breakdown points of the LMS and DR
estimators are markedly different for the AR(1) process above, whereas they
are the same (50%) in the setting of simple regression. This indicates that our
definition of breakdown allows us to distinguish between various robust estimators
in the time series setting.

4. Discussion. The definition in (3) appears less dependent on a group
structure than the definition used by Davies and Gather. Of course, also the
definition in (3) has its limitations. For example, the definition cannot be used if
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one wants to assess the breakdown of an estimator at a specific sample, that is,
if Y is a singleton. The main drawback of conditioning on the sample is that
one has to be very explicit about the region toward which the estimator breaks
down, for example, to the edge of the parameter space. This may not be trivial
for dependent data, as was shown in the AR(1) example for LMS. Moreover,
conditioning the breakdown behavior on a specific sample may relate more to
properties of the sample rather than of the estimator. The breakdown notion
in (3) based on information revelation about the possible uncontaminated samples
resolves this issue. That notion, however, can most easily be operationalized if
there is a continuum of possible samples, which suffices for most cases studied in
the literature.

A second possible limitation of (3) is that the user has to be explicit about the
setY of possible samples (or processes)Y . For example, if we consider stationary
AR(1) processes in the asymptotic setting, the (asymptotic) breakdown point of
the OLS estimator is 0. If, however, we consider AR(1) processes characterized
by θ ∈ [−1,1], the breakdown point is 1: the OLS estimator retains information
about the distinction between stationary processes and processes withθ arbitrarily
close to 1. In that sense the estimator does not break down, while it has broken
down if one only wants to distinguish between alternative stationary processes;
see Figure 1.

Finally, the definition in (3) is not very explicit about the measureµ.
As mentioned, the Lebesgue measure suffices in most cases of practical interest.
Despite the fact that empirical data have finite precision, one can work under the
assumption thatY lies in a continuum to derive the breakdown properties of the
estimator. The properties derived are usually also relevant for a setting with finite
precision data. We do not exclude, however, that examples can be constructed
where the Lebesgue measure is inappropriate. For example, the parameter space
may be discrete and finite. In such cases, alternative measuresµ must be used.
Additionally, the restriction that the measure of the intersection of badness sets is
zero may have to be replaced by something more complicated, like an infimum of
inf

Z
ζ
k

µ(R∗(Zζ
k ,Y′) ∩ R∗(0,Y′)) overk.

The ideas and cautionary remarks in the paper of Davies and Gather are
important and relevant. Effectively, they promote that breakdown is only a useful
notion for “sensible” estimators and argue that equivariance is the crucial notion
here. We argued that they mainly build on a restricted notion of breakdown. The
focus of future research should be put on developing alternative definitions of
breakdown that are less susceptible to the criticisms raised by Davies and Gather.
The definition in (3) is such an attempt and tries to formalize the phenomena
illustrated in Figure 1. In finite samples it is still susceptible to counterexamples,
for example,θ(Y ) = max(−n,min(n, θOLS(Y ))) + 2(frac(Y1) − 1)/n, where
frac(x) denotes the fractional part ofx, for Davies and Gather’s example in
Section 6, but the examples become increasingly contrived. Moreover, in the
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asymptotic setting the small print issue appears to become even smaller, especially
if we limit ourselves to estimators that are consistent and satisfy some form of
continuity in the observations. Further developments along these lines appear
promising.
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DISCUSSION

BY FRANK HAMPEL

ETH Zürich

1. Introductory remarks. It is a great pleasure for me to be invited to
comment upon the nice and elegant and in parts thought-provoking paper by
Davies and Gather. The authors also asked me specifically to comment upon the
historical roots of the breakdown point (BP), and my thoughts about it. I shall try
to do so, stressing in particular aspects and work that are not published.

2. Some thoughts with the definition of the breakdown point. In my thesis
[Hampel (1968)] I developed what was later also called the “infinitesimal approach
to robustness,” based on one-step Taylor expansions of statistics viewed as
functionals (the “influence curves” or “influence functions”), a technology which
for ordinary functions has long been indispensable in engineering and the physical
sciences, and also for much theoretical work. However, it was always clear to
me that this technology needed to be supplemented by an indication up to what
distance (from the model distribution around which the expansion takes place) the
linear expansions would be numerically, or at least semiquantitatively, useful. The
simplest idea that came to my mind (simplicity being a virtue, also in view of
Ockham’s razor) was the distance of the nearest pole of the functional (if it was
unbounded); see the graphs in Hampel, Ronchetti, Rousseeuw and Stahel [(1986),
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pages 42, 48, 177]. Thus, right after defining the “bias function” (without using
this term) as the (more complicated) bridge between model and pole, I introduced
the “break-down point” on page 27 (Chapter C.4) of my thesis and, in a slight
variant (by not requiring qualitative robustness anymore and therefore treating
it as a purely global concept), as “breakdown point” on page 1894 in Hampel
(1971). I was, of course, clearly inspired by Hodges (1967), whose intuition went
in a similar direction, and by his “tolerance of extreme values”; however, his
concept is not only much more limited, it is formally not even a special case of
the breakdown point. [And contrary to a claim someone spread later, the term
“breakdown point” does not occur anywhere in Hodges (1967).]

My definition of the BP is asymptotic, because I believe that suitable, elegant
and properly interpreted asymptotics is much more informative and more generally
applicable than specific or even clumsy finite-sample definitions. However, I also
believe that asymptotic results need interpretations (and often numerical checks) in
finite-sample frameworks, and lack of this may even be the biggest gap separating
mathematical statistics from good applications of statistics [cf. Hampel (1998)].

Since I consider the finite-sample interpretations of an asymptotic definition
(even different ones under different circumstances) an integral part of the properly
interpreted definition, I never felt the need to introduce a general explicit definition
of a finite-sample breakdown point. In fact, different needs require different
definitions. In my eyes, the BP should be a flexible tool adapted to the requirement
of specific problems (see also below).

Informal finite-sample BPs have been used in Andrews et al. (1972), and, for
example, in many of my papers, starting with Hampel (1973). Often, the lower
(or else upper) gross-error finite-sample BP is sufficient. But Grize (1978) showed
the need for the “total-variation BP” in a specific situation concerning correlations.
A standard reference is Donoho and Huber (1983). But in the background remains
the fact that the BP is originally defined with the Prohorov distance. Very often
we can forget this somewhat awkward distance and simplify; but whenever it is
needed, we have to be ready to dig it out again.

The use of the Prohorov distance needs some explanation, also in view of
the paper under discussion. Many good mathematical statisticians strive for the
greatest generality, without regarding the practical implications. In some way,
this is legitimate (and even required by the mathematical side of statistics). But
I rather try to find the specific concepts most suitable for the problem at hand.
Thus, as I explained elsewhere [e.g., in Hampel (1968)], I find it necessary to use
the weak (formerly weak*) topology for general robustness problems, which is
metrized by the Prohorov (former spelling Prokhorov) distance, which in turn has
a nice interpretation in terms of the model deviations occurring in real life. [For
more technical details, see Huber (1981).] This does not preclude the possibility of
simplifying in specific situations. For example, Huber’s (1964) gross-error model
is theoretically too narrow in scope, but it captures the most important deviations
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from the idealized model, and the solutions found are also useful and good in the
more general situation [cf. Hampel (1992)].

Note that there is nothing about equivariance in my definition. If it is available,
it simplifies life often tremendously and allows a nice mathematical theory
with beautiful theorems; but I do not consider it an intrinsically necessary part
of a general statistical theory (cf. also Fisher’s view on his general theory of
estimation).

It may be considered ironic in view of the present discussion paper that
in my definition of the BP (with the compact proper subset of the parameter
space), I explicitly thought of correlation statistics as examples, where there is no
equivariance at all. As the authors correctly observe, such BPs have not become
popular at all (so far), giving some credit to their stress on group structures.
Compare also below.

3. Some further developments. The above idea of combining linear extrap-
olation with the BP was very successful in the cases tried [cf. Hampel et al. (1986),
Subsection 1.3e, in particular Table 1 on page 50, which reproduces Huber’s (1964)
Table I—and thus his minimax results—very accurately; and Hampel (1983),
page 214, which reproduces some of the Monte Carlo results in Andrews et al.
(1972)]. As a rule of thumb, under mild conditions the linear extrapolations seem
to be very accurate up to BP/4, and still numerically quite usable even somewhat
beyond BP/2.

Another for me quite surprising success was the explanation of the (partly
unsuspectedly bad) empirical behavior of various rejection rules just by means
of the BP [see Hampel (1985)].

For regression I introduced the conditional BP given the design in Hampel
[(1975), page 379] (implicitly and condensed because of the page limit imposed).
It is more intricate, but also more informative (once the design is fixed or the data
are in) than the unconditional BP [which was mostly used later on, except, e.g.,
in Hampel et al. (1986), page 328, unfortunately without stressing the difference
between the two BPs].

Some definitions of variants of the BP, adapted to specific ANOVA-type
problems, have been given by Hampel (1987), by Mili, Phaniraj and Rousseeuw
(1990) and by Ruckstuhl (1995); see also Stahel, Ruckstuhl, Senn and Dressler
(1994).

The BP seemed to be trivial, with BP= 50% easily possible in the mod-
els considered, until Maronna (1976) essentially showed the upper bound to
be = 1/dimension for “nice” equivariant estimators in multivariate and multiple
regression situations. Much effort has since been put into keeping the equivariance
and reaching BP= 50% with “pathological” estimators [the first prototype having
been the “shordth” or “minimum median deviation” method in Hampel (1975),
page 380, later popularized under the name “least median of squares”]. But from
a practical point of view, I find it more reasonable to give up exact equivariance.
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Gross errors are often partly in single coordinates and are not equivariant, even if
the ideal model is.

For general nonlinear models, equivariance may not be attainable at all, but it
may make perfect sense to look at the (“a posteriori”) BP at and in a neighborhood
of the fitted model. Compare also the highly condensed first sentence of 3.3 on
page 380 in Hampel (1975), valid also under nonequivariance (and suggesting nice
quantitative theorems under equivariance).

4. The thesis by Grize. In his unpublished Diplomarbeit, Yves-Laurent Grize
(1978) made a thorough and deep investigation of the breakdown properties
and influence functions of correlation measures, notably of the Kendall (K),
Spearman (S) and quadrant (Q) rank correlations. He noted that the BP ac-
tually depends on the model F, and that also the specification of the “dis-
tance” may make a difference. For some F’s, BP(K)= BP(S)= 1, while for
others BP(K)= (3/2)BP(S)< 1, and in again another situation BP(K)= 0.29,
BP(Q)= 0.25 and BP(S)= 0.21. Grize showed that for correlations, the gross-
error BP is often not suitable, and he used the better-fitting total-variation BP in-
stead. He briefly also discussed the possibility of the (much more complicated)
Prohorov-distance BP, and of ranks (by gross mistakes) outside the range from 1
to n. It appears that often Kendall’s rank correlation is considerably more robust
than Spearman’s (and that there are some meaningful numbers and results to be
taken out for statistical practice), but a lot depends on the precise specification of
the situation.

My first reaction was disappointment. The results were just not as simple and
beautiful as we then were used to in robust statistics. But the thesis is a valuable
piece of work, and I regret very much that by some unfortunate circumstances it
never found its way into the printed literature. Perhaps the time was not yet ripe
for it. It seems that in recent years, some fragments of it are being rediscovered
[cf. Bin Abdullah (1990) and Dehon and Croux (2003)], partly with seemingly
contradictory results (“BP small” vs. “BP= 1”), which may be due to insufficient
care for the fine details (which really matter here). As the recent interest in the
(formerly “too complicated”) “bias function” (cf. above) shows, it may well be
that in the near future “complicated” BPs without a natural equivariance structure
will become more popular.

5. The small print. It seems to me that in the regression-through-0 example
of the discussion paper, there is the same play with asymptotics (concerning
both BP and consistency) going on which Fisher [(1956); cf. also Hampel
(1998)] complained about when he defended his definition of consistency against
Neyman’s. In the case of the two location samples, I guess that the unnamed
estimator not breaking down under the specific model and alternatives of (6.3)
has a BP of 0.005—if the Prohorov distance is taken into account, which in such
situations cannot be neglected. Thus, it really seems to be a case of small print that
has been forgotten.
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BY XUMING HE
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The notion of breakdown point has influenced the robust statistics literature for
over three decades. Professors Davies and Gather make a convincing argument that
the common understanding of a high breakdown point is intimately connected to a
group structure in the sample space. I would like to applaud the authors for a fine
piece of work to formalize the connection. Inspired by their work, I would like to
offer my opinions on the nature and the future of the breakdown point.

A high breakdown point is usually considered to be a virtue of a statistical pro-
cedure, because such a procedure is less affected by least favorable configurations
of data contamination. Thus arises a natural question of how high the breakdown
point can be in a given problem. For location equivariant functionals, 1/2 is a tight
upper bound on the breakdown point. In more structured problems and in more
general settings, the defintion of a breakdown is less straightforward. Stromberg
and Ruppert (1992) considered nonlinear regression. He and Simpson (1992) pro-
vided a definition of breakdown for general parameter spaces which might be com-
pact. Instead of citing more work on breakdown in specific settings, I would em-
phasize that it is the simplicity and intuition that has made the breakdown point
a popular measure of global robustness. Intuitively speaking, the breakdown point
is the smallest fraction of data contamination that could make an estimator or test
statistic totally uninformative or unusable.

The point I would like to make is that it is better to remember the spirit, not the
letter, of any definition of the breakdown point. To illustrate this point, let us use
the following definition of a finite-sample breakdown point.

Given a sampleXn of sizen, the breakdown point ofTn(Xn) is

ε∗
n = min

{
m/n : sup

X∗
n,m

d
(
Tn(X

∗
n,m), Tn(Xn)

) = ∞
}
,
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where X∗
n,m is obtained by replacingm out of n points in Xn by arbitrary

values, andd(a, b) ∈ (0,∞) is some distance measure betweena and b. Let
us assume here thatd(a, b) can take arbitrarily large values. IfT is a location
estimator, one often takesd(a, b) = |a − b|. If T is a scale estimator, one may
taked(a, b) = | log(a/b)|. For most location, scale and regression estimators, the
breakdown points do not depend very much on the initial sampleXn, but this is
not always the case. Because the breakdown point is defined at each sample, we
can easily modify any estimatorTn so that it will not break down at all according
to this definition. For example, we can takeT ∗

n (Xn) = max{−n,min{n,Tn(Xn)}}
for a location estimator, and it will never be unbounded at any contamination.

Such a construction, however, violates the spirit of a high breakdown estimator,
albeit it is mathematically legitimate. For a location estimator this problem can be
eliminated by imposing location equivariance. In a general setting it is not clear
what can be done. I use this example to stress that we should not try to exploit the
mathematics of a statistical concept without a clear sense of purpose.

When someone claims to have found an estimator with breakdown point equal
to 1, my first reaction tends to be that it might not be an appropriate use of
the notion. Understanding and imposing a group equivariance structure on the
estimator certainly helps, but it cannot eliminate inappropriate use of breakdown.
In some problems (e.g., logistic regression) the group structure that can be
identified might be very limited.

The notion of breakdown for a test statistic does not always carry the same
implications as for an estimator. Davies and Gather discuss in their treatment of
logistic regression whether the parameter value of 0 should be considered as a
breakdown. I agree with the authors that the value of 0 plays no special role for
an estimator. To study the breakdown of a statistical test, the value 0 often plays a
special role. I refer to He, Simpson and Portnoy (1990) for more detail, but simply
point out the obvious that one cannot judge the appropriateness of a breakdown
definition without further specifics.

Take, for example, the classification tree. It is reasonable to say that a procedure
breaks down if the classification rule becomes no better than a random guess.
However, it is not obvious at all how to construct a tree with the highest possible
breakdown point. Other notions of breakdown are also possible here.

I hope that the breakdown point will remain as a simple and intuitive concept.
Maybe it falls into the same category as “outlier,” where some degree of vagueness
would win over more users. When every statistician starts to talk about his or her
own notion of a breakdown point, I think that we have made it.

Having made my main point, I would like to use this opportunity to offer my
thoughts on some of the controversial issues surrounding the breakdown point.

1. Is the breakdown point a conservative measure of robustness? Yes, it is by
definition. But as long as we know what it is doing, it is not bad to be conservative.
2. Are there good reasons to aim for the highest possible breakdown point? Usually
not. I am not voicing objections to research on the highest possible breakdown
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point procedures; such research can offer insights. In choosing a good statistical
procedure, we have to balance breakdown with other measures of quality. 3. Some
say that high breakdown estimators are usually locally unstable. There is some
truth to this, but again, one has to strike a balance between breakdown and local
stability. This statement would be as true or untrue as “efficient estimators usually
have low breakdown points.” 4. High breakdown point estimators are usually too
hard to compute. It is easy to propose a difficult-to-compute high breakdown
estimator, but advances in methodological research and in computing power are
already making more and more high breakdown procedures practical. Obviously
I like the fact that SAS procedures based on high breakdown method are being
added.

Finally, what role will the notion of breakdown point play in the future? I am not
good at predicting the future, but I hope that it will be in every statistician’s mind
in evaluating the quality of a statistical procedure. It is in our best interest to keep
it as simple and intuitive as possible so that it will be understood and appreciated
by every statistician (plus more). In addition to research papers such as this one
under discussion, I hope to see educational papers, too, that will be accessible by
a broader audience. If I use the NSF jargon, I hope to see both scientific merit and
broader impacts. I think that we will get there if we all try.
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1. Breakdown, equivariance and invariance. The authors are to be congrat-
ulated for their excellent paper, which nicely clarifies the role of equivariance in



DISCUSSION 1001

finding upper bounds for the breakdown points of functionals. The breakdown
point approach, with upper bounds showing how far one can go, has achieved great
success in the univariate and multivariate location, scale, scatter and regression es-
timation problems. The authors justifiably argue that this is due to the fact that
the acceptable, well-behaved estimates in these contexts have natural equivariance
properties. In constructing reasonable estimates and test statistics, one therefore
considers statistics satisfying certain conditions (invariance, equivariance, unbi-
asedness, consistency, etc.). If there are no restrictions, the upper bound is one as
the breakdown point (using the common definition) of a “stupid” constant func-
tional, for example, is one.

The paper is clearly written with several illustrative examples. The constructive
proof of the main Theorem 3.1 illustrates how one can concretely break down an
equivariant estimate:

1. Pick a transformationg corresponding to the set with the supremum probability
mass in (3.3).

2. Apply the transformationg or g−1 repeatedly to contaminate a (random) half
of the data outside the set with the supremum probability mass.

In the one-sample location problem with sample sizen = 2k, for example, the
translation equivariance of a location estimateT (x1, . . . , xn) means that

T (x1 + c, . . . , xk + c, xk+1, . . . , xn) − T (x1, . . . , xk, xk+1 − c, . . . , xn − c) = c

and, consequently, the estimate can be broken either by repeatedly shifting the first
half of the data by+c or by repeatedly shifting the second half of the data by−c.

The theory thus yields upper bounds for the breakdown points of the affine
equivariant univariate location and scale functionals but does not say anything
aboutaffine invariantskewness and kurtosis statistics, for example. Clearly the
invariant classical skewness statistic

b1 = ((1/n)
∑

(xi − x̄)3)2

((1/n)
∑

(xi − x̄)2)3

does not break down with one outlying observation, although affine equivariant
second and third central moments both do. For a single outlier going to infinity,
the central moments move “beyond all bounds” butb1 converges to a constant
(n − 2)2/(n − 1). As this limit is not data dependent at all, the contaminated
statisticb1 does not convey any information on the original data points. Is this
a breakdown? Another strange example is the estimation problem for the
parameters of the linear predictorθ0 + θ ′x in the generalized linear model. Again,
for n = 2k, an equivariant estimate ofθ satisfies

θ̂

((
c · x1
y1

)
, . . . ,

(
c · xk

yk

)
,

(
xk+1
yk+1

)
, . . . ,

(
xn

yn

))

= 1

c
θ̂

((
x1
y1

)
, . . . ,

(
xk

yk

)
,

(
(1/c) · xk+1

yk+1

)
, . . . ,

(
(1/c) · xn

yn

))
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and the estimate can be moved beyond all boundsor to zero by repeatedly
multiplying half of the data byc or by 1/c. The estimate then seems to become
uninformative. Is something wrong with the definitions of the breakdown and the
breakdown point? What do we really mean when we say that a breakdown occurs?

2. When does the breakdown occur? Since the early notions by Hampel
(1971), the concept of breakdown point has been widely discussed and further
developed by several contributors. For considering and comparing different
approaches we adopt the following notation. LetX = (x1, . . . , xn) be an original
“true” sample of sizen lying in the sample spaceX. The statistic (“estimate”)
considered is denoted byT (X) with possible values inT = {T (X) :X ∈ X} ⊂ R

p.
We say that a pointt is interior toT if it belongs toT and there is a neighborhood
of t which contains only points ofT . A point t ∈ R

p is exterior toT if it does
not belong toT , and if there exists a neighborhood oft which contains no points
of T . Finally, t is called a boundary point ofT if t is neither interior nor exterior
to T . OftenT = R

p and then there are no boundary points.
We next construct a contaminated sample. LetS = (s1, . . . , sn) be a vector of

zeros and ones indicating the contamination, andY = (y1, . . . , yn), also in X,
a sample of “outliers.” The contaminated sample then consists of the observations
(1 − si)xi + siyi , i = 1, . . . , n. The number of outlying or alien observations is
accordinglys = ∑

si . The contaminated value of the estimate is then

T (X,Y,S) = T
(
(1− s1)x1 + s1y1, . . . , (1− sn)xn + snyn

)
.

The breakdown of the estimate is most often defined as follows.

DEFINITION 1. T breaks down atX with s outliers if there exist a
sequence(Ym) in X andS with

∑
si = s such that‖T (X,Ym,S)‖ → ∞.

The breakdown point then gives the smallest fraction of outliers (s/n) that
suffices to “drive the estimate beyond all bounds.” According to this definition,
a constant estimate (T (X) = t0) can never be broken down. Note also that the
scale estimate and scatter matrix estimate are usually thought to break down also
if they converge to a boundary point ofT (scale estimate converges to zero and
the smallest eigenvalue of the scatter matrix estimate converges to zero). In the
paper this is taken care of with a suitably chosen pseudometric; see, for example,
Section 4.2. Another possibility is to give a new definition:

DEFINITION 2. T breaks down atX with s outliers if there exist a
sequence(Ym) in X andS with

∑
si = s such that either (i)‖T (X,Ym,S)‖ → ∞

or (ii) T (X,Ym,S) → t0 wheret0 is a boundary point ofT .

If the constant functionalT (X) = t0 does not depend onX, T = {t0} andt0 is
also a boundary point. ThereforeT breaks down for allS. Note that the boundary
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point t0 in the definition may depend onX, however. In the simple regression
example suggested by the referee and analyzed in Section 6, the statisticT (Pn)

has values inT = [−n,n] and it breaks down (in the sense of Definition 2) if∑
si = 1.
Genton and Lucas (2003) take a different viewpoint and argue that a crucial

property of an estimatorT (X,Y,S) is that it takes different values for different
values ofX ∈ X and that the breakdown occurs if this property is lost. In this
spirit one can say that:

DEFINITION 3. T breaks down withs outliers if there exist a sequence(Ym)

in X andS with
∑

si = s such that either (i)‖T (X,Ym,S)‖ → ∞, for all X ∈ X,
or (ii) T (X,Ym,S) → t0 ∈ R

p, for all X ∈ X.

In this definition, it is remarkable that the interior or boundary pointt0 is not
allowed to depend onX at all. This definition solves the problem with the classical
skewness statistic;b1 can be made to break down with a single extreme outlier.
I wonder whether the techniques and results in the paper by Davies and Gather
could be expanded to cover this definition also. Genton and Lucas (2003) seem in
fact to be still more permissive and say thatT (X,Y,S) breaks down if

T ∩
{
lim
m

T (X,Ym,S) :X ∈ X

}

collapses to a finite set; an empty set and a singleton{t0} are then special cases.
Given a continuum of values ofX, one expects a continuum of possible values of
the estimate. In the linear predictor estimation problem this definition implies that
the breakdown point of an equivariant estimate ofθ is at most one half.

All the approaches described above work with the worst possible scenario repre-
sented by a strategically chosen sequence of the sets of outlying observations(Ym).
In practice, the observed contaminated value of the estimateT (X,Y,S) is in T ,
however, and not a boundary point, and one can ask whether the estimate still
conveys useful information about the true data cloud or not. Then, instead of spec-
ulating about the sequences(Ym), one may consider the set of possible values
of T (X,Y,S) for all choices ofY ∈ X. With (at most)s outliers, the set of possi-
ble values ofT (X,Y,S) is

Ts(X) :=
{
T (X,Y,S) :Y ∈ X,

∑
si = s

}
.

Then clearly

{T (X)} = T0(X) ⊂ T1(X) ⊂ T2(X) ⊂ · · · ⊂ T

and the value of the estimate is totally determined bys outliers if Ts(X) = T .
More generally, we can define that:



1004 BREAKDOWN AND GROUPS

DEFINITION 4. T breaks down withs outliers if the setTs(X) does not
depend onX.

Note that if T is affine equivariant/invariant, then alsoTs(X) is affine
equivariant/invariant. Assume next that the observed value ofT (X,Y,S) is t . If
we knew the maximum number of outliers in the data set, says, but S andY are
unknown, the observed eventTs(X) � t may still be informative. In the univariate
location case withn = 2k − 1 andX = R

n, Ts(X) = R for the sample mean if
s > 0. But forX = [0,∞)n, for example, the breakdown point of the mean is one
asTs−1(X) � t ⇐⇒ x(1) ≤ n · t . For the sample median, the event

Ts(X) � t ⇐⇒ x(k−s) ≤ t ≤ x(k+s), s = 0, . . . , k,

is clearly data dependent and therefore carries information about the data cloud.
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1. General comments. The interesting paper of Davies and Gather (hence-
forth [DG]) pulls together results on upper bounds on the breakdown value of
translation equivariant location estimators [Donoho (1982)], regression estimators
[Rousseeuw (1984)] and affine equivariant scatter estimators [Davies (1987)] into
a single framework of group equivariance. I can only agree with them on the im-
portant role of the latter notion in obtaining nontrivial bounds. [By the way, I prefer
the term breakdownvaluemyself because it is not a point, and the term “value”
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captures both its dimension (one) and its orientation (we aim for higher, not lower
values).]

The theory in [DG] is formulated for estimators that are uniquely defined, but
it seems to work just as well in the general case. ThenT (P ) is a set, and we can
follow the implicit convention of saying that it breaks down when any member
of T (P ) does. We only need to redefineD(T (P ),T (Q)) in (2.4) as a supremum
over all pairs of members ofT (P ) andT (Q).

The new applications of the theory are fascinating, for example, to the
Michaelis–Menten model (with a nontrivial bound) and logistic regression
(without one). I am less convinced by the fragility argument illustrated by the
difference between the contaminated samples (6.2) and (6.3). It is true that this
proof of the upper bound only covers (6.2), but in some sense that is enough since
breakdown is a worst-case concept and the bound is not specific for the median but
for all translation estimators. But anyway, the behavior of the median at (6.3) can
be derived from that at (6.2) by a variety of other properties that it possesses. For
instance, its monotonicity property alone suffices. Or we can use the property that
when you move the observations over distances of at mostδ, the median changes
by at mostδ. This holds for anyδ > 0, and is a Lipschitz property for the metric
on samples defined as

d
(
(x1, . . . , xn), (y1, . . . , yn)

) = min
π∈Sn

max
i

∣∣xi − yπ(i)

∣∣,(1)

whereSn is the set of all permutations on{1, . . . , n}. Note that (1) is equal to
maxi |xi : n −yi : n| [see Rousseeuw and Leroy (1987), pages 127–128]. People who
compute maxbias curves always use the properties of the actual estimator. Perhaps
we should not expect much more elegant results for contaminated samples that
break down the estimator than for those that yield a finite bias.

2. The maximal breakdown value of affine equivariant location estimators.
From here on I will focus on the open problem in Section 5.2 of [DG]. It has
been known since Donoho (1982) that the finite-sample breakdown value (fsbv)
of translation equivariant estimators of location is at most
(n + 1)/2�/n and that
this bound is sharp. The bound obviously holds also for affine equivariant location
estimators, but it may not be sharp for them. In one dimension (k = 1) it is, but
for k ≥ 2 this has been an open problem for over 20 years. During that time many
affine location estimators were constructed with an fsbv of
(n − k + 1)/2�/n,
such as the MVE and MCD of Rousseeuw (1984), locationS-estimators [Davies
(1987), Rousseeuw and Leroy (1987)] and a modification of the Stahel–Donoho
estimator [Tyler (1994), Gather and Hilker (1997)]. Since
(n − k + 1)/2�/n is
known to be the sharp upper bound for affine equivariant scatter estimators [Davies
(1987)], it has seemed plausible that it could also be the upper bound for affine
location. Over the years there have been several attempts to attain the upper
bound
(n + 1)/2�/n, but as far as I know none has succeeded. [The result in Zuo
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(2004) does not count because it uses a weaker version of the fsbv which requires
that all the contaminating points coincide.]

Let us consider any data setX = {x1, . . . , xn} ⊂ Rk (from here on alwaysk ≥ 2
andn > k) which is in general position (GP). By GP we mean that no more than
k data points lie on any affine hyperplane. This holds a.s. when sampling from
an absolutely continuous distribution. The convex hull conv(X) is then a polytope
with faces that contain exactlyk data points. [InR3 the faces are two-dimensional,
and in general they are(k − 1)-dimensional.] Note that conv(X) can be stretched
arbitrarily by replacing even a single point ofX by an outlier. Since we are
studying very robust estimatorsT , it is natural to require thatT should not lie
on the boundary of conv(X) or outside of conv(X). A slightly more general
formulation of this requirement is the following condition:

(Ch) Let X = {x1, . . . , xn} ⊂ Rk be in general position, withn > k ≥ 2. Let
u be a direction such that the inner productsyi = u′xi satisfy y1 = · · · =
yh < yh+1 ≤ · · · ≤ yn (after renumbering) for the specified numberh, with
1 ≤ h ≤ k. Then there exists anα > 0 (which depends only onk and the
y1, . . . , yn) such thatu′T (X) ≥ yh + α.

The typical case is to takeh = k. For any face of conv(X) we can take the
orthogonal directionu pointing to the inside of conv(X), so Condition (Ck) says
that T cannot lie on or arbitrarily close to the boundary of conv(X) or outside
of it. [Note that conv(X) is the intersection of halfspaces containingX and having
a face of conv(X) on their boundary.] Forh < k the condition becomes somewhat
weaker; for example, Condition (C1) only says thatT cannot come arbitrarily close
to a vertex of conv(X) or lie outside of conv(X).

Condition (Ck) is intuitive for a robust estimator. For instance, Condition (Ck)
holds for all estimators that can be written as a weighted mean(

∑
i wixi)/(

∑
i wi)

where 0≤ wi ≤ 1 and at leastk + 1 of the wi equal 1 [it suffices to put
α = (yk+1 − yk)/n]. This encompasses, for example, trimmed means and the
minimum covariance determinant estimator (MCD). Moreover, a robust estimator
would typically be expected to have a reasonably large Tukey depth, for example,

depth(T ,X) ≥ k + 1(2)

(at least for large enoughn, when there are many depth contours). Condition (2)
implies Condition (Ck) and is another way of saying thatT should not be in the
outskirts of the data cloud.

THEOREM 1. Consider a data setX = {x1, . . . , xn} ⊂ Rk in general position
with n > k. Let T be an affine equivariant location estimator satisfying Condi-
tion (Ch) with 1 ≤ h ≤ k. Thenfsbv(T ,X) ≤ 
(n − h + 1)/2�/n.

PROOF. Put θ̂ := T (X) ∈ Rk . SinceX is in GP, conv(X ∪ {θ̂}) has at least
one face not containinĝθ . Take anh-subsetS of the k data points on this
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face. Then there exists an affine hyperplaneL which containsS such that both
θ̂ and X \ S lie strictly on the same side ofL. Assume w.l.o.g. that 0∈ L.
Denote the unit normal vector toL in the direction ofX \ S as e1 and take an
orthonormal basis{e2, . . . , ek} of L. After renumbering, thexi1 := e′

1xi satisfy
0= x1,1 = · · · = xh,1 < xh+1,1 ≤ · · · ≤ xn,1, henceθ̂1 ≥ α > 0 by Condition (Ch).

Let us assume thatT cannot be broken down by replacing anym-subsetB of X,
wherem = 
(n − h + 1)/2�, by an arbitrarym-setB ′ yielding the contaminated
data setX′ := (X \ B) ∪ B ′. This means that there exists a finite radiusM such
that for any contaminated data setX′ of this type it holds thatT (X′) ∈ B(θ̂,M) :=
{x ∈ Rk; ‖x − θ̂‖ ≤ M}.

We will now construct a linear transformation which leavesS invariant and
movesX \ S as well asθ̂ . For this we consider the “shear transform”gγ given by
the nonsingular matrix 

 1 0 0
γ 1 0
0 0 Ik−2


(3)

relative to the basis{e1, . . . , ek}, for γ ∈ R. We note thatgγ (ej ) = ej for all j �= 1,
hencegγ (xi) = xi for i = 1, . . . , h, but at the same timegγ (e1) = e1 + γ e2.
Denoting θ̂ = (θ̂1, . . . , θ̂k)

T , we find gγ (θ̂) = (θ̂1, θ̂2 + γ θ̂1, θ̂3, . . . , θ̂k)
T with

θ̂1 > 0, hence‖gγ (θ̂) − θ̂‖ = |γ |θ̂1 goes to infinity for increasingγ . Analogously,
the image of any data pointxi with i = h + 1, . . . , n is of the formgγ (xi) =
xi + γ xi1e2, so allgγ (xi) move in the direction ofe2 and(gγ (xi))1 = xi1. Each
point travels a distance‖gγ (xi) − xi‖ = |γ ||xi1| ≥ |γ ||xh+1,1|.

Let us partitionX \ S into two setsA andB with |B| = m = 
(n − h + 1)/2�
and |A| = n − h − |B|. (If n − h is even, we find|A| = |B|, whereas for odd
n − h we have|A| = |B| − 1.) We will replaceB by Bγ := gγ (B) yielding
the contaminated data setX′

γ := S ∪ A ∪ Bγ . Note thatX′
γ is in GP for all but

a finite number ofγ values. Put
 = {γ ;X′
γ is in GP}. For allγ ∈ 
 it holds that

T (X′
γ ) ∈ H := {z ∈ Rk; z1 ≥ α} by Condition (Ch).

For anyγ the image ofB(θ̂,M) throughgγ is an ellipsoid with centergγ (θ).
For a large enoughγ ∈ 
 it holds thatB(θ̂,M)∩gγ (B(θ̂,M))∩H = ∅. We know
that T (X′

γ ) ∈ B(θ̂,M) by assumption. On the other hand, we can also write

X′
γ = gγ (S ∪ A−γ ∪ B), which impliesT (X′

γ ) ∈ gγ (B(θ̂,M)). SinceT (X′
γ ) ∈ H

it follows that T (X′
γ ) ∈ B(θ̂,M) ∩ gγ (B(θ̂,M)) ∩ H = ∅. This contradiction

proves the desired upper bound on fsbv.�

In the typical case whereh = k, Theorem 1 yields the upper bound
(n−k+1)/

2�/n which has been attained. This says that any affine location estimatorT

with a higher fsbv must be somewhat strange in the sense of not satisfying
Condition (Ck), so T can be arbitrarily close to the boundary of conv(X) or
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even lie outside it. AnyT which were to attain the translation equivariant bound

(n + 1)/2�/n cannot even satisfy Condition (C1), so at times it must be arbitrarily
close to a vertex of conv(X) or lie outside it. It is counterintuitive that an estimator
with maximal fsbv would have such a low Tukey depth (at most 1).

So far the only published result with higher fsbv than
(n − k + 1)/2�/n is
the projection median (PM) of Zuo (2003), which attains
(n − k + 2)/2�/n by
using a univariate scale estimator MADk−1 in its definition. By Theorem 1, this
estimator cannot satisfy Condition (Ck). Here is a bivariate counterexample (which
can be extended toRk). Start with the data pointsz1 = (0, δ) andz2 = (0,−δ) for
someδ > 0. Add m points (xi, yi) with xi equispaced between 10 and 20 and
yi = xi + δui where the noiseui is such that these points are in GP. Add another
m points with the samexi but with −yi . Then then = 2m + 2 points ofZ are in
GP for all but finitely manyδ. Whenδ → 0, the outlyingness Out(0,0) tends to
the outlyingness of 0 relative to{0,0, x1, x1, . . . , xm, xm}; hence for any 0< δ < 1
we have Out(0,0) < M for someM < ∞. We will prove that for anyε > 0 there
is a δ0 > 0 such thatδ < δ0 implies‖PM(Z)‖ < ε. By projecting in the direction
orthogonal toy = −x we see that MAD1 tends to 0, so for small enoughδ all
points (not necessarily data points) inR2 lying farther thanε/

√
2 away from the

line y = −x have Out> M . The same holds for points farther thanε/
√

2 from
y = x. Therefore PM→ (0,0); henceα in Condition (Ck) is zero.

Note that Theorem 1 fits in the framework of [DG] withG the affine group
on Rk . The main difference is that here we first fix a setB (our h-subset) and
then a subgroup ofG which keepsB invariant, whereas condition (3.3) in [DG]
is over many possibleB. Afterward we putg := g1 [i.e., (3) withγ = 1], yielding
�(Pn) = h/n. The remainder of the proof of Theorem 3.1 in [DG] can then be
retraced by noting that for any integerm it holds thatgm = gm (the shear transform
with γ = m). We basically set asideh points and then apply our usual reasoning
to the remainingn − h points.

Also note that Condition (Ch) and Theorem 1 can be extended to situations
without general position. As long asT satisfies Condition (Ch) without the GP
condition (this is a stronger assumption), andX does haveh points whose inner
products with someu satisfyy1 = · · · = yh < yh+1 ≤ · · · ≤ yn, the upper bound
fsbv(T ,X) ≤ 
(n − h + 1)/2�/n holds. In this situation it is even allowed that
h > k (which could not happen under GP).

Acknowledgment. I would like to thank Yijun Zuo for stimulating discus-
sions.
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DISCUSSION

BY DAVID E. TYLER

Rutgers, The State University of New Jersey

The breakdown point has played an important role within robust statistics over
the past 25–30 years. A large part of its appeal is that it is easy to explain and
easy to understand. It is often interpreted as “the proportion of bad data a statistic
can tolerate before becoming arbitrary or meaningless.” In this paper Professors
Davies and Gather give us a much needed critical look at this seemingly simple
concept, and are to be commended for doing so.

Except for some pathological examples, such as a constant functional, one
typically presumes that the breakdown point of a statistic or functional cannot
be greater than 1/2. A heuristic justification for this presumption follows from
the simple argument “if over half the data is bad, then one cannot distinquish
between the good data and the bad data.” The authors nicely show that when one
more carefully examines this “common sense” argument, then it only appears to
be meaningful within a setting with an appropriate group structure. They further
challenge the reader to give meaning to this expression outside of such a setting.

One may be able to modify the definition of the breakdown point in some
creative way in order to meet the authors’ challenge. For example, one could
define the breakdown of a statistic to mean it can be made to go to the boundary
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of all possible values of the statistics. Such a modification would then imply that
a constant statistic has breakdown point 0, which is in intuitive agreement with
the notion that a constant statistic conveys no information about the data. Such
a modification also nullifies the counterexample given by the authors in Section 6.

The intent of this discussion, though, is not to attempt to defend the notion of
breakdown outside of the group setting, which may only be possible on a case-
by-case basis. Rather, being in general agreement with the arguments made by the
authors, the focus of this discussion is to further examine the breakdown point
concept within the group setting via two fundamental examples.

1. Robust principal component vectors. One approach to robust principal
components is to perform a principal component decomposition on a robust
covariance matrix rather than on the sample covariance matrix. The asymptotic
distribution and influence function of the principal component roots and vectors
follow readily from those of the robust covariance matrix; see, for example, Croux
and Haesbroeck (2000). However, the breakdown point of the robust covariance
matrix has no information regarding the principal component vectors, since the
breakdown of a covariance matrix only implies that either the largest root can
become arbitrarily large or the smallest root can become arbitrarily small.

To illustrate this point, let{x1, . . . ,xn} represent a sample in�d and let
Sn = Q�Q′ represent the spectral value decomposition of the sample covariance
matrixSn. DefineVn = Q�∗Q′, where�∗ = diagonal{λ2

1, . . . , λ
2
d} with λj being

a high breakdown point scale statistic for the univariate sample{q′
j x1, . . . ,q′

j xn}
and whereQ = [q1, . . . ,qd ]. That is, we simply replace the eigenvalues of
the sample covariance matrix, which correspond to the variances of the sample
principal component variables, with robust variances for the sample principal
component variables. The resulting statisticVn has a high breakdown point,
namely the breakdown point of the univariate scale statistic used in its definition,
whereas the breakdown point ofSn is zero. Both statistics, though, yield the same
principal component vectors. So, using a high breakdown point estimate of the
covariance matrix for principal components analysis is in itself meaningless, unless
one can show some relationship between it and the breakdown of the principal
component vectors.

The principal component vector associated with the largest root of the sample
covariance matrix can be made arbitrarily close to any given vector by perturbing
just one data point. One implicitly assumes this does not occur if a robust
covariance matrix is used in place of the sample covariance matrix. Except
for contrived examples like the one constructed in the previous paragraph, the
proportion of contamination needed to make the largest principal component
vector “arbitrary” is likely to be dependent on the separation between the largest
root and the other roots of the robust covariance matrix of the uncontaminated
data or distribution, as is the case with the influence function. Thus, the best
possible bound on the breakdown point is likely dependent on the structure of the
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uncontaminated data or distribution. As far as this discussant is aware, there are no
known results which allow one to quantify this somewhat obvious conjecture, and
so it is of interest to see how the results of this paper might apply.

Some meaningful notion of breakdown for a principal component vector is first
needed. For the sake of this discussion, consider any robust version of the largest
principal component vector, whether or not it is defined via a robust covariance
matrix. One usually regards this as an orthogonally equivariant mapping from
the data or distribution into the parameter space� = Sd−1 = {θ ∈ �d |θ ′θ = 1},
with the parametersθ and−θ being viewed as equivalent. Alternatively,� can
be taken to be the set of all one-dimensional subspaces. A natural metric
on � is the absolute value of the angle between any two elements, that is,
D(θ1, θ2) = arccos(|θ ′

1θ2|), as is used, for example, in Van Aelst and Willems
(2004). This metric, however, does not satisfy condition (2.3) of the paper since
the largest possible angle isπ . Since� is compact and with no interior points,
it is not possible to define a pseudometric on� which does satisfy (2.3). An
intuitive definition of breakdown, though, can be obtained by simply replacing∞
with π in definition (2.4). Breakdown is then naturally interpreted as the proportion
of contamination needed for the largest principal component vector to become
orthogonal to that obtained from the uncontaminated data.

Since condition (2.3) cannot be made to hold, the results of the paper do not
apply here. If one attempts to extend the results of the paper by also replacing∞
with π in the definition of G1 given by (3.3), then the set G1 is null. Even
if G1 were not null, the crucial step in the proof of Theorem 3.1 is highly
dependent on having an unbounded metric. So, it remains an open question as
to what types of limits for breakdown are possible for this problem. Using the
group equivariance property alone is probably not sufficient for answering this
question since the principal component vector associated with any particular
root has the same group equivariant property. Some further constraints on what
is meant to be a largest principal component vector may be needed to obtain
a meaningful bound on the breakdown point. This unsettled question is not specific
to principal component vectors, but also applies to any parameter space for which
no unbounded metric exists. Such parameter spaces arise naturally, for example,
in the areas of directional data analysis and shape theory.

Perhaps some anomaly always arises not only outside of the group setting, but
outside of the group setting with unbounded metrics. For principal components,
a technicality arises in that it is possible for some data sets or distributions that
the largest principal component vector can be any vector within some subspace
of dimensionq > 1, that is, as someq-dimensional subspace. For example, any
reasonable definition of the largest principal component vector should be any
vector at the standard multivariate normal distribution. The complete parameter
space then corresponds to the set of all subspaces of�d rather than simply the
set of all one-dimensional subspaces. The largest principal component “vector”
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can still be restricted to equivariant functionals under the group of orthogonal
transformations, and the metricD can be extended to this larger parameter space.
For example, for bivariate distributions only�2 is added to the parameter space
and D can be extended by definingD(�2,�2) = 0 and D(�2, θ) = π . This
implies that breakdown occurs when a “well-defined” vector becomes “undefined,”
that is, becomes�2, or vice versa, which is in intuitive agreement with what
one thinks of as breakdown. In this setting, though, there exists an orthogonally
equivariant functional with breakdown point 1, namely the constant functional
T (P ) = �2, although it is not consistent.

2. Redescending M-estimates of location. In Section 6 of their paper, the
authors note that the meaning of the breakdown point may even be suspect in the
well-studied simple univariate location problem. This motivates them to state that
“even in the case of equivariance the success of the concept of breakdown point
would seem to be more fragile than it is generally supposed.” The intent of the
discussion here is to elaborate on their remarks by examining in more detail the
behavior of theM-estimates of location.

For a univariate sampleXn = {x1, . . . , xn}, anM-estimate of locationT (Xn)

can be defined as a solution to theM-estimating equation
n∑

i=1

ψ

(
xi − t

c

)
= 0,(1)

for some functionψ and tuning constantc > 0. A well-known result is that for
monotonic, bounded and oddψ-functions, the breakdown point ofT is 1/2. For
redescendingψ-functions, the breakdown point of the correspondingM-estimate
is more complicated. Since redescendingψ-functions tend to result in multiple
solutions to theM-estimating equations, it is more convenient to use the alternative
definition of anM-estimate of location given by

T (Xn) = argmin
t

n∑
i=1

ρ

(
xi − t

c

)
,(2)

for someρ-function. If ρ is differentiable, then the solution to (2) also satisfies (1)
with ψ = ρ′. If the functionρ(r) is even, nondecreasing in|r| and bounded, then
whenρ is also differentiable the correspondingψ function is odd and redescends
to zero, that is,ψ(r) → 0 as |r| → ∞. Huber (1984) shows the finite-sample
contamination breakdown point of such redescendingM-estimates of location to
be

ε∗(T ;Xn) = 1− A(Xn; c)/n

2− A(Xn; c)/n
,(3)

where

A(Xn; c) = min
t

n∑
i=1

ρ

(
xi − t

c

)
,(4)
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and without loss of generality limr→∞ ρ(r) = 1. As the tuning constantc → ∞,
the resultingM-estimate looks more like the sample mean (providedρ is
differentiable in a neighborhood of zero). Curiously, though, as the tuning constant
c : 0→ ∞ one can note that the breakdown pointε∗(T ;Xn) : 0→ 1/2.

A convenient way to gain insight into this formula for the breakdown point (3)
is by using the relationship between redescendingM-estimates of location and
kernel density estimators. The objective function for anM-estimate of univariate
location with fixed scale and a kernel density estimate with a given window width,
which can be expressed, respectively, as

1

n

n∑
i=1

ρ

(
xi − µ

c

)
and f̂ (x) = 1

nc

n∑
i=1

κ

(
x − xi

c

)
,(5)

have a one-to-one relationship whenκ ∝ 1− ρ. This relationship has been noted,
for example, by Chu, Glad, Godtliebsen and Marron (1998). TheM-estimate of
location for a given tuning constantc then corresponds to the mode of the kernel
density estimate with window widthc. The mode of a kernel density estimate
based on the Gaussian kernelκ(r) = e−r2/2/

√
2π , for example, corresponds to

an M-estimate of location based onρ(r) = 1 − e−r2/2, which is referred to as
Welsch’sM-estimate in Splus and MATLAB. Likewise, the mode of a kernel
density estimate based on the Epanechnikov kernel corresponds to the skipped-
mean.

As an illustrative example, consider the graphs in Figure 1. The data set in
the graphs is a simulated data set comprised of 80% standard normal data and
20% normal data with mean 5 and standard deviation 0.1. The three graphs
show the kernel density estimates for this data using a Gaussian kernel and the
corresponding objective function for theM-estimate of location, for increasing
values of the tuning constantc. In the first graph, the principal mode of the
density is centered about the 20% of tightly compacted points. The second graph
corresponds to using a larger value ofc, and the principal mode is located near the
mean of the main 80% of the data. The last graph corresponds to using a relatively
large value ofc.

In the first graph, the principal mode would go off to infinity if the more compact
20% of the data were pushed off to infinity, and hence breakdown occurs. Although
this M-estimate can be made arbitrary under 20% contamination, it is arguable
whether the solution is meaningless. On the other hand, in the third graph, although
the principal mode is essentially the sample mean, it will not break down even if
the 20% were replaced by 45% and allowed to go to infinity since eventually it will
fall outside the window width and not impact the central mode. This phenomenon
also occurs if theM-estimate is made scale equivariant by introducing a robust
scale such as the M.A.D.; see Chen and Tyler (2004).
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FIG. 1. An illustration of the relationship between redescending M-estimates and kernel density
estimates.
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Within the class of redescendingM-estimates of location, it is arguable whether
the breakdown point is more a descriptive property rather than an optimality
property. A higher breakdown point redescendingM-estimate is not necessarily
a more desirable estimate. Note also that the nature of breakdown for a redescender
differs from that of a monotonicM-estimate. The redescender can only break
down if a relatively compact cluster of points goes to infinity. If the spread of the
“bad” data is greater than that of the “good” data, then a redescendingM-estimate
cannot be broken down even if the “bad” data is in the majority, whereas such
contamination would break down a monotonicM-estimate.

The above discussion helps illustrate how the simple heuristic interpretation
of the breakdown point as “the proportion of bad data a statistical method can
tolerate” can be misleading. It has led to some confusion in areas such as computer
vision/image understanding. A relatively compact subset of the data may not be
considered “bad data” for some applications but rather the data of interest. Instead,
a bad data point or “outlier” may be considered a point unlike other data points,
and these are the type of bad data points that one may wish to be protected against.
At the 2002 ICORS conference in Vancouver, for example, the computer scientist
Raymond Ng cleverly noted that a computer scientist’s concept of a bad data
point can be paraphrased by using the popular Sesame Street phrase “one of these
things is not like the others, one of these things does not belong.” If one adopts
this notion, then the redescendingM-estimates of location do not break down
even under 99% contamination, whereas the monotonicM-estimates still have
breakdown point 1/2.
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REJOINDER

BY P. LAURIE DAVIES AND URSULA GATHER

University of Duisburg–Essen and Technical University Eindhoven,
and University of Dortmund

We thank all the discussants for their contributions and in particular we wish
to thank Hampel. The concept of breakdown point goes back to his Ph.D. thesis
[Hampel (1968)] and he was the first to exhibit a high breakdown equivariant
regression estimate now known as the least median of squares [Hampel (1975)],
a fact which is sometimes forgotten. These two sources are the starting point of the
present discussion. In his contribution Hampel gives us insight into the thoughts
which led to his definition of breakdown point, intended as it was to complement
the infinitesimal behavior of a functional as described by the influence function.
Hampel emphasizes that equivariance considerations were not part of his definition
and he had in mind correlation statistics “where there is no equivariance at all.”
He considers correlation in some detail and, as we disagree with him on this very
topic, we give a detailed analysis of correlation statistics in our rejoinder. We hope
that this will help clarify the issues involved.

1. On breakdown. The first signification of the word “breakdown” given in
the Oxford Dictionary starts with the following subsignification:

“1. a. The act of breaking and falling down: a ruinous downfall, a collapse.”

2. Breakdown to points and variations. Genton and Lucas and Oja argue
for the usefulness of the breakdown concept in situations not covered by the
results of our paper. They claim that at least in an intuitive sense breakdown
occurs if the value of a functional is driven to the boundary or to an interior
point which is independent of the uncontaminated sample. A formal definition
of breakdown point is given which is intended to cover such possibilities. A first
version is to be found in Genton and Lucas (2003) and is referred to by Oja.
It defines the breakdown point as the smallest amount of contamination which can
cause the statistic to assume only a finite number of values independently of the
uncontaminated observations. On the basis of this definition the arithmetic mean
is claimed to have a finite-sample breakdown point of 1/n. The argument is as
follows: if the first observation of the sample is contaminated,(ξ1, y2, . . . , yn), and
we letξ1 tend to infinity, then the sample mean tends to infinity, that is, to a single
value which is independent ofy2, . . . , yn. However, for any finite value ofξ1 the
arithmetic mean takes on a continuum of values on varying the uncontaminated
part of the sample. The only way of reducing the arithmetic mean to a single
value is to introduce the symbol∞ as a possible value for the contamination.
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The symbol∞ is thus elevated to a real entity for data. The new definition avoids
this but our reaction is similar: any definition of breakdown based on the concept
of Lebesgue measure zero must be at fault. According to the new definition the
functional

T (Pn) = max
{−n,min{n,TLS(Pn)}}

has a breakdown point of 1/n. We perturb it and put

T ∗(Pn) = T (Pn) + 1

n

∫
sin(x) dPn(x).

The set of values taken on byT ∗(Pn) as we vary the uncontaminated part of
the sample has Lebesgue measure at least 2/n2 as long as not all the sample is
contaminated, and the breakdown point is therefore 1. As the perturbation tends
with 1/n to zero,T ∗ remains consistent and asymptotically normal at the model.
Oja mentions the classical skewness statistic

b1 = ((1/n)
∑

(xi − x̄)3)2

((1/n)
∑

(xi − x̄)2)3 ,

but this can be treated in the same manner by putting

b∗
1 = b1 + sin(nb1),

which is still invariant but does not converge.
A second criticism we made of the definition of Genton and Lucas (2003) is

that any realizable functional immediately breaks down for the simple reason that
it can only take on a finite number of values; all data and statistics are of finite
precision. Genton and Lucas mention this in their contribution as a weakness of
the new definition and so it is. No reasonable definition of breakdown can rely on
the myth of a continuum of possible values for a statistic or the associated myth of
infinite precision. When applying mathematics to applied problems it is important
that the discrete problem can be well approximated by the continuous one. Genton
and Lucas’ use of infinite precision and a continuum of values and sets of Lebesgue
measure zero is not of this sort. Their continuous formulations do not approximate
the discrete world of statistics.

We point out further that the definitions of Genton and Lucas, and also of Oja
(Definition 4), represent a complete break with the meaning of breakdown as it
is used in statistics. Transferred to the statistical context the “ruinous downfall”
of Section 1 is expressed in terms of distances and arbitrarily large bias. None
of this is present in a concept of breakdown in terms of the number or Lebesgue
measure of the set of all possible limits of contaminated samples. No mention is
made of bias, that is, how far the value of the statistic can move from its value at the
uncontaminated sample for a given amount of contamination. Yet it is this which
has motivated robust statistics from the influence function via bias to breakdown
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point. In a sense the proposal put forward by Genton and Lucas is the very opposite
of this. Rather than moving arbitrarily far, the statistic has broken down if it does
not move at all. It is said that it then cannot convey any information in the sample.
Even this is not always the case. Consider the statistical functionalT75 which takes
on the fixed value of 75 for all data sets. This has a breakdown point of 0 according
to the Genton–Lucas definition. German insurance companies are required to use
life expectancies specified by law. In the case of a male they could, for example,
be forced to use the functionalT75 to estimate life expectancy in years. The effect
can be felt but it is not a ruinous downfall. It would be a ruinous downfall for the
German insurance companies if they had to use a value of 65 and the reason is that
65 differs from the experienced lengths of life much more than does the fixed value
of 75. Here as in the usual definition of breakdown it is the discrepancy which is
important.

3. Perturbations. The criticism we gave of Genton and Lucas’s definitions
of breakdown has wider implications. We regard robust statistics as a perturbation
theory for statistics. In particular, robust statistics must concern itself with
perturbations of models and data sets and, in consequence, it must be able to deal
with finite precision. The perturbations involved should be realistic ones and this
will in general exclude perturbations described by the gross error neighborhood,
which is simply too small. Unfortunately, the idea of stability under perturbations
is sometimes lost, especially in theoretical work. Suppose a theorem on the
existence and uniqueness of a functional requires assumptions about the existence
and differentiability of a density function. These assumptions should then not
be referred to as “under weak assumptions” but rather as “under very restrictive
assumptions which violate the spirit of robustness.” Densities disappear under
perturbations, likelihood disappears under perturbations as does the property of
being a Lebesgue set of measure zero, efficiency is pathologically discontinuous,
and so on. Perturbations and their consequences should be taken seriously by all
who work in the area of robust statistics.

4. Affine equivariant location functionals. The example of location func-
tionals makes use of only the translation group although it seems natural to require
affine equivariance. The problem is that for the affine group we haveG1 = ∅ since
if we iterateA(θ) = A(θ) + b this will in general not tend to infinity so Theo-
rem 3.1 is not applicable. The highest breakdown point for translation equivariant
functionals is 1/2 but there are affine equivariant location functionals which are
based on scatter functionals and which have a breakdown point of at least that
of the scatter functional, namely(1 − �(P ))/2. The gap has not been closed but
Rousseeuw gives a sufficient condition for the bound(1 − �(P ))/2 to hold. His
argument makes use of the convex hull which can be seen as a form of scatter func-
tional albeit with a low breakdown point. In Davies and Gather (2002) we showed
that the bound 1/2 is attainable at least at some empirical measures so that the gap
remains.
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5. Metrics on P . We agree with Hampel’s comments on the gross error
neighborhood but we do not like either of the alternatives he suggests. First,
total variation is not much better than the gross error neighborhood; a dis-
tribution Q lies in the ε total variation neighborhood ofP if and only if
Q − P = ε(H1 − P) − ε(H2 − P) for some distributionsH1 andH2 [see Rieder
(2000), page 7]. Second, the Prohorov metric defined by

dpr(P,Q) = inf{ε > 0 :P(A) ≤ Q(Aε) + ε},(1)

where

Aε = {x :d(x,A) < ε},(2)

conflates the lastε of (1) where it operates as a dimensionless probability with
the ε of (2) where it represents a rounding error. We refer to Davies (1993) for
a discussion of this point. Other simpler metrics are also capable of dealing with
rounding errors. The Kolmogorov metric is defined by

dko(P,Q) = sup{|P(I) − Q(I)| : I = (−∞, x], x ∈ R}.(3)

Let Pn be the empirical distribution of some data andP ∗
n be the empirical

distribution of the same data after rounding. If the roundingδ is less than
the minimum gap between the unrounded observations, thendko(Pn,P

∗
n ) = 1/n

assuming at least one observation to have been altered. It is sometimes argued that
dko is too weak in the data analytical sense for comparing distributions. There are
stronger versions which go under the name of Kuiper metrics. The Kuiper metric
of orderk is defined by

dku,k(P ,Q) = sup

{
k∑

j=1

|P(Ij )−Q(Ij )| : I1, . . . , Ik disjoint finite intervals

}
.(4)

Kuiper metrics of orderk = 19 are used in Davies and Kovac (2004) in the context
of providing approximate densities for data. The Kolmogorov and Kuiper metrics
are restricted toR, but in higher dimensions metrics on Vapnik–Cervonenkis
classes of sets retain many of their properties [see Pollard (1984)]. We refer
to Davies (1993) for their use in the regression setting. The conflation of
measurement error and probability in (1) can be avoided as follows. We define

dpk(P,Q) = inf{ε > 0 :P(I) ≤ Q(Iε) + ε, for all intervalsI },(5)

whereI ε denotes the interval with the same center asI but with length|I |exp(ε).
All occurrences ofε in (5) are now dimensionless. The idea is not new. We refer
to Davies (1992, 1993).

Hampel’s second argument for the Prohorov metric is that it metricizes weak
convergence but we fail to see the relevance of this. The Kolmogorov metric (3)
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does not metricize weak convergence but nevertheless does have advantages over
the Prohorov metric for proving central limit theorems. In particular we have

dko(Pn,P ) = OP

(
1/

√
n

)
(6)

uniformly in P. If T is a functional with a bounded influence functionI (x, T ,P ),
then under appropriate regularity conditions

T (Pn) − T (P ) =
∫

I (x, T ,P )d
(
Pn(x) − P(x)

) + oP

(
dko(Pn,P )

)
,(7)

which in the light of (6) gives us a central limit theorem for
√

n(T (Pn) − T (P )).
The same reasoning fails for the Prohorov metric because (6) does not hold [see
Kersting (1978)].

6. Metrics on �. We turn to the metricD on� which quantifies the “ruinous
downfall.” For location inR the choiceD(θ1, θ2) = |θ1 − θ2| seems natural but the
choice| log(θ1/θ2)| for scale is not quite as obvious. It does, however, have a strong
justification in that numbers often have to be standardized by division by scale.
If so, a scale of zero is a “ruinous downfall.” In higher dimensions breakdown
in scale includes the data being concentrated on a lower-dimensional hyperplane,
making it impossible to identify the influence of individual covariables. Again
the word breakdown would seem appropriate. In an earlier version of our paper
we considered the possibility of measuring differences in the parameterθ by
differences in the corresponding distributionsPθ as inD(θ1, θ2) = d(Pθ1,Pθ2) for
an appropriate metricd on the space of distributions, but this needs to be given
more thought.

Tyler has pointed out that if the parameter space is compact, then the metric is
bounded so that condition (3.1) of our paper cannot possibly be satisfied. This is
true, but just as metrics onP are chosen for the problem, so we can choose metrics
on � according to the problem. If breakdown is defined in terms of convergence
to some parameter values such as those on the boundary, then we can choose
an appropriate metric as follows. We start by considering the problem of scale
in R. The proof works by showing that ifε > (1 − �(P ))/2, then there exists
an affine transformationA(x) = ax + b with |a| �= 1 and, for anyn, distributions
Q1n andQ2n satisfying

d(P,Q1n) < ε, d(P,Q2n) < ε, T (Q1n) = |a|nT (Q2n).

From this it follows that either

lim inf
n→∞

(
min

(
T (Q1n), T (Q2n)

)) = 0 or lim sup
n→∞

(
max

(
T (Q1n), T (Q2n)

)) = ∞.

Using this fact we can define the breakdown point by

ε∗(T ,P, d, {0,∞}) = inf{ε > 0 : inf[T (Q) :d(Q,P ) < ε] = 0
(8)

or sup[T (Q) :d(Q,P ) < ε] = ∞}.
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This definition makes no reference to a metric but two points on the boundary of
the parameter space, 0 and∞, play a special role. The metric we use in this case
is D(θ1, θ2) = | log(θ1/θ2)| and, not surprisingly, the points 0 and∞ also play
a special role here. The result is thatε∗(T ,P, d, {0,∞}) = ε∗(T ,P, d,D). We see
that breakdown as defined by (8) can be reformulated in terms of an appropriately
chosen metric on the parameter space�. This remains true even if� is compact.
Suppose� is equipped with a metricD∗, bounded or not, and that some parameter
valueθ0 is regarded as breakdown, for example, 0 in the scale context or 1 in the
correlation context. We define the metricD on� by

Dθ0(θ1, θ2) =
∣∣∣∣ 1

D∗(θ1, θ0)
− 1

D∗(θ2, θ0)

∣∣∣∣.(9)

It follows that if we keepθ1 constant, thenDθ0(θ1, θ2) tends to infinity if and only
if θ2 tends toθ0. If we define in analogy to (8)

ε∗(T ,P, d, {θ0}) = inf
{
ε > 0 : inf

[
D∗(

θ0, T (Q)
)
:d(Q,P ) < ε

] = 0
}
,(10)

then clearlyε∗(T ,P, d, {θ0}) = ε∗(T ,P, d,Dθ0). If there is a set of parameter
values�0 which are regarded as breakdown, for example, the boundary points,
we define

D�0(θ1, θ2) = sup
{
Dθ0(θ1, θ2) : θ0 ∈ �0

}
(11)

and again we have a metric which can be used to define breakdown. We define

ε∗(T ,P, d,�0)
(12)

= inf
{
ε > 0 : inf

{
inf

[
D∗(

θ0, T (Q)
)
:d(Q,P ) < ε

]
: θ0 ∈ �0

} = 0
}

and it follows thatε∗(T ,P, d,�0) = ε∗(T ,P, d,D�0) and also

ε∗(T ,P, d,�0) = inf
{
ε∗(T ,P, d, {θ0}) : θ0 ∈ �0

}
.(13)

Grize (1978), as we shall see below, defines breakdown as the minimum
contamination such that all points in�0 are reachable and not just some such
point. This can be accommodated by defining

ε∗∗(T ,P, d,�0)
(14)

= inf
{
ε > 0 : inf

{
θ ∈ �0 : sup

[
Dθ0

(
T (P ), T (Q)

)
:d(P,Q) < ε

] = ∞}}
.

In contrast to (13) this definition results in

ε∗∗(T ,P, d,�0) = sup
{
ε∗(T ,P, d, {θ0}) : θ0 ∈ �0

}
.(15)

There are no doubt other variations. The conclusion is that if breakdown is defined
as convergence to some set of exceptional parameter values, then this can be
described by a metric as required in our theorem. It still leaves open the question as
to whether such a definition of breakdown is sensible but this can only be answered
on a case-to-case basis.
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7. Breakdown point? Rousseeuw in his contribution argues for the use of
breakdown “value” rather than “point.” We do not quite understand his reasoning
and while usage is never absolute, we do not see any advantage in replacing
“point” by “value.” Hampel mentions the analysis of variance as one situation
where the term breakdown point may not be appropriate. In the simple two-way
table breakdown occurs if the majority of observations in any one row or column
are badly contaminated, but this is too pessimistic and gives an artificially low
breakdown point. In Terbeck and Davies (1998) the breakdown or interaction
patternsfor the two-way table are characterized and it is shown how these are
related to theL1-solution and to Tukey’s median polish. Other articles concerned
with patterns are Ellis and Morgenthaler (1992) forL1 regression and Kuhnt
(2000) for contingency tables.

8. Affine equivariance. We agree with Hampel that affine equivariance is not
always a requirement and in two or more dimensions it is more difficult to justify
than in one. We made comments to this effect in our paper. Nevertheless it is not
always the case that outliers are apparent in the single coordinates and to find these
some sort of equivariance would seem to be required. An example of a simple data
set for which it is not sufficient just to look at the coordinates is given on page 57
of Rousseeuw and Leroy (1987). Programs based on high breakdown methods
are now readily available and in our opinion should be used in a routine manner
[Becker and Gather (1999, 2001), Rocke (1996) and Rousseeuw and van Driessen
(1999)]. The costs are negligible and the returns can be substantial.

9. Correlation. This brings us to the perhaps most important part of the
discussion. Hampel argues strongly that correlation provides an example of
a useful concept of breakdown which does not have an equivariance structure.
We argue that he is wrong on both counts: the concept is not useful and it does
have an equivariance structure, albeit a simple one. We give a detailed reply which
touches on many of the points discussed so far. Grize (1978) gives two definitions
of breakdown for a rank correlation functionalTrc. The first reads [see (14), (15)]

ε∗∗(Trc,P , d, {−1,1}) = inf
{
ε > 0 : sup{Trc(Q) :d(P,Q) < ε} = 1,

(16)
inf{Trc(Q) :d(P,Q) < ε} = −1

}
and the second reads

ε∗∗(|Trc|,P , d, {0,1}) = inf
{
ε > 0 : sup{|Trc(Q)| :d(P,Q) < ε} = 1,

(17)
inf{|Trc(Q)| :d(P,Q) < ε} = 0

}
for some appropriate metricd. For the total variation metric Grize calculates the
breakdown points of Kendall’s and Spearman’s rank correlation for some particu-
lar distributions. We carry out a small experiment for Spearman’s functionalTsc.
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FIG. 1. Samples differing from the initial sample(upper left)by 3 points (upper right), 9points
(lower left) and 14 points(lower right) with the rank-correlation changing from−0.332 to 0.278,
0.878and1, respectively.

The top left panel of Figure 1 shows 20 data points withTsc(Pn) = −0.332.
Initially there are various sets of six points for whichyi = h(xi) with h a
nondecreasing function. We choose one and then move one of the remaining points
at a time until finally after 14 moves all the points satisfyyi = h(xi) with h non-
decreasing. For the final sample the rank correlation is 1 and we have, according
to (16), breakdown. The top right panel of Figure 1 shows the sample after three
moves, the bottom left after nine moves. The final sample is shown in the bottom
right panel. At no stage do we experience a breakdown. Each sample differs only
slightly from the previous one and the values of the rank correlation are perfectly
reasonable for the sample they refer to. In Hampel’s terminology there is no pole.
In a similar vein, Figure 2 shows a distribution considered by Grize for which he
calculates the breakdown point 0.1 of Spearman’s rank correlation in the sense
of (17). The top left panel shows the initial distribution and the top right panel the
same data after a monotone transformation. A breakdown to zero is shown in the
bottom left panel and to 1 in the bottom right panel. In our opinion the bottom right
panel is the only one where one would not a priori question any observation and
yet this is classified as breakdown. We now play a similar game in one dimension
and consider a simple standard normal sample of size 20. We consider the median
and as breakdown corresponds to an arbitrarily large value of the median we start
with 100. The game is now to alter the initial sample point by point until after ten
moves the value of the median is at least 100. The moves are almost prescribed.
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FIG. 2. The upper left panel shows a distribution considered by Grize(1978).The upper right panel
shows the same data after a monotone transformation. The bottom left panel shows the breakdown
[in the sense of(17)] of Spearman’s rank correlation to zero. The bottom right panel shows the
breakdown of Spearman’s rank correlation to1.

We choose any observation from the original sample and move it about 200 units
to the right. After ten moves the median assumes a value of about 100. There is
no other strategy. Even the first move alters the sample in a manner which dis-
tinguishes it immediately from the initial sample. Furthermore, when we progress
from the ninth to the tenth move the median suddenly jumps from a value of about
zero to one of about 100. We think this situation can be described by the word
“breakdown.” Moreover, it holds for any translation equivariant functional if one
replaces the points carefully as in (6.2) and not as in (6.3). Any such functional
must break down by the tenth move at the latest.

We now consider the usual linear correlation functionalTlc. For the initial data
set of Figure 1 its value is−0.258. If we take any observation and move it to
the point(γ, γ ) and letγ tend to infinity, thenTlc tends to 1. In this situation
it seems reasonable to use the word breakdown but perhaps discontinuity would
be a better description. We analyze the problem more closely. Linear correlation
can be placed into the context of our paper by introducing the following group
structure. We defineGlc to be the group of transformationsg :R2 → R

2 with

g(x, y) = (a1x + b1, a2y + b2)(18)

with a1a2 �= 0. An equivariant functionalT is one which satisfies

T (P g) = sgn(a1a2)T (P ).(19)
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Clearly the usual linear correlation functionalTlc is equivariant w.r.t. this group.
The metric on the space of distributions is taken to be the strip metric

dST (P,Q) = sup{|P(C) − Q(C)| :C ∈ ST },(20)

whereST denotes the set of stripsC

C = {(x, y) :−δ ≤ ax + by + c ≤ δ;a, b, c ∈ R, δ ∈ R+}.(21)

We note that this metric is also “correct” as it is invariant under the groupGlc:

dST (P,Q) = dST (P g,Qg), g ∈ Glc.(22)

There is also a version of this metric which corresponds to (5) [see Davies (1993)].
To fit into the structure in our paper we also require a metricD on the parameter
space� = [−1,1]. The precise metric is not important because of the simple
nature of the equivariance given in (19). To be concrete we put in (9)

D∗(θ1, θ2) := | tan(θ1π/2) − tan(θ2π/2)|,
which is consistent with the desire to have breakdown at±1.

From (19) we see that the conditionG1 �= ∅ is not satisfied and Theorem 3.1
does not provide a nontrivial upper bound. Indeed, there is an equivariant
correlation functional with breakdown point 1, namelyT o

lc ≡ 0, but to forestall
protests we give another. For an empirical distributionPn we define

T ∗
lc(Pn) = 1

N

∑
I,|I |≥3

Tlc(I ),(23)

whereI is a subset of the data containing|I | observations,N = 2n − n − n(n −
1)/2 andTlc(I ) is, by an abuse of notation,Tlc evaluated at the empirical measure
based on the set of observations inI . The functionalT ∗

lc is equivariant and also
Fisher consistent. To calculate the breakdown point we consider an empirical
measurePn deriving from a sample of sizen from a continuous distribution
on R

2 and another empirical measureQn. We assume that the supports of each
are contained in some compact setK . The reason for these assumptions is to
reduce complications due to the fact that the linear correlation coefficient as
usually defined requires the existence of moments. We consider a sequence ofQn

with limn→∞ T ∗
lc(Qn) = 1. From (23) it follows that the support ofQn must be

contained in a strip

Cn = {(x, y) :−δn ≤ anx + bny + cn ≤ δn}
with limn→∞ δn = 0. As Pn(Cn) ≤ 2/n for sufficiently large n we have
dST (Pn,Qn) ≥ 1− 2/n and hence

ε∗∗(T ∗
lc,Pn, dST , {−1,1}) ≥ 1− 2/n(24)
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for this class of probability measures. We generalize this result in a manner which
emulates the setting of our paper. AsG1 is empty we reformulate the definition of
the functional�(P ) of (3.3) in our paper as follows. We set

�(P ) = sup{P(B) :T (Q) not definable forQ with supp(Q) ⊂ B}.(25)

For example, in the case of scale inR the relevant setsB are singletons and
a measure concentrated on a singleton must have scale either zero or∞ to be
equivariant, both of which are excluded. If, following Grize, a linear correlation
of ±1 is defined to be breakdown, the corresponding sets are lines and this leads
to

�+(P ) = sup
{
P(C) :C = {(x, y) :ax + by + c = 0}, ab ≤ 0

}
,(26)

�−(P ) = sup
{
P(C) :C = {(x, y) :ax + by + c = 0}, ab ≥ 0

}
,(27)

and it follows that

ε∗∗(T ∗
lc,P , dT U, {−1,1}) = 1− min{�+(P ),�−(P )}.(28)

The reasoning can be extended to rank correlation and this gives a more elegant
theory as there are no problems with moments. The appropriate group isGrc which
consists of all transformationsg :R2 → R

2 of the form

g((x, y)) = (
ζ(x), η(y)

)
, ζ, η,R → R,(29)

where each ofζ and η is either strictly increasing or strictly decreasing.
A correlation functionalTrc is equivariant with respect to this group if

Trc(P
g) = sgn(ζ ◦ η)Trc(P ),(30)

where sgn(ζ ) = ±1 depending on whetherζ is strictly increasing or decreasing.
The natural metric is the tube metric

dT U(P,Q) = sup{|P(C) − Q(C)| :C ∈ T U},(31)

whereT U denotes the set of monotonic tubesC

C = {(x, y) :−δ ≤ h(x) + y ≤ δ,h :R → R strictly monotonic,δ ∈ R+}.(32)

The metric is “correct” in that it is invariant with respect to the groupGrc:

dT U(P,Q) = dT U(P g,Qg), g ∈ Grc.(33)

As we now require correlations of±1 only for data points which are strictly
increasing or decreasing, we define analogously to (26) and (27),

�+(P ) = sup
{
P(C) :C = {(x, y) :y = h(x)}, h strictly increasing

}
,(34)

�−(P ) = sup
{
P(C) :C = {(x, y) :y = h(x)}, h strictly decreasing

}
.(35)

From this it follows for Spearman’s rank correlation functionalTsc that

ε∗∗(Tsc,P , dT U, {−1,1}) = 1− min{�+(P ),�−(P )}.(36)
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In fact (36) holds for any functional for whichTrc(P ) = 1 or −1 if and only
if �+(P ) = 1 or �−(P ) = 1, respectively, and consequently it also holds
for Kendall’s τ . The appearance of min in (28) and (36) is due to Grize’s
definition (16) of breakdown which refers to both boundary points. Usable
estimates of�+(Pn) are available for empirical measuresPn deriving from
nonatomic i.i.d. random variables in each component; that is, the components
are also independent. Let the sample be(Xi, Yi), i = 1, . . . , n, and consider the
points (Xi1, Yi1), . . . , (Xik, Yik) with the Xij , j = 1, . . . , k, in increasing order.
The points lie on some curvey = h(x) for a strictly increasingh if and only if
theYij , j = 1, . . . , k, are also in increasing order. The probability of this is 1/k!.
There are

(n
k

)
different samples of sizek and we see that the probability that at least

k points lie on some curvey = h(x) is at most

1

k!
(

n

k

)
≤ nk

(k!)2 .

By maximizing overk we obtain

�+(Pn) = O
(
1/

√
n

)
and it follows from (36)

ε∗∗(Tsc,Pn, dT U, {−1,1}) ≥ 1− O
(
1/

√
n

)
.(37)

The fact that (36) also holds for Kendall’sτ apparently contradicts Hampel’s
comments, but this is not so because it is definition (17) of breakdown to
which Hampel’s comments apply. To proceed we consider the problem of
maximizing �+(P ) subject toTrc(P ) = 0. For Tsc the answer is�+(P ) =
3
√

1/2, which is attained at a distribution for which the rank ofxi is i and
the rank ofyi is k + i, 1 ≤ i ≤ n − k, and n − i + 1, k + 1 ≤ i ≤ n, with
k = n 3

√
1/2. The corresponding result for Kendall’sτ replaces 3

√
1/2 by

√
1/2.

If now Q is any distribution with�+(Q) = 1, it follows that the breakdown
point [in the sense of (17)] atQ is 1 − 3

√
1/2 = 0.2063 for Spearman’s

rank correlation and 1− √
1/2 = 0.2929 for Kendall’s τ . If we now move

only half the mass of 1− 3
√

1/2, it is clear that we can obtain distributions
Q1 andQ2 at which Spearman’s and Kendall’s rank correlations have breakdown
points of (1− 3

√
1/2)/2 and(1 − √

1/2)/2, respectively, and that these are the
smallest possible breakdown points. We have not understood Hampel’s claim
BP(K) = 3

2BP(S) as, as far as we can see, these refer to different distributions, one
with �+(Q1) = 0.85 and one with�+(Q2) = 0.9, but this is only a minor point.
The tube metricdT U is stronger than the strip metricdST but considerably weaker
than the total variation metricdtv used by Grize. In particular it allows for wobbling
of the observations. We also note that neither metric suffers from the deficiency
of the Prohorov metric of mixing dimensionless probabilities with measurement
units. The classST of strips has polynomial discrimination but not the classT U
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as there are arbitrarily large finite subsets ofR
2 which can be shattered byT U

[see Pollard (1984)].
Finally, we point out the differences to Theorem 3.1. If we take the usual

definition of breakdown as a worst-case situation rather than Grize’s definition
which is a sort of best worst-case definition, then the breakdown point of Kendall’s
or Spearman’s rank correlation is

ε∗(T ∗
lc,P , dT U, {−1,1}) = 1− �(P ),(38)

where

�(P ) = max{�+(P ),�−(P )}.
In the general situation we argue as follows. LetP0 denote the set of distributions
at whichT breaks down, which means that their support is contained in some ex-
ceptional subset of the sample space as in (25). Suppose 0< �(P ) < 1 and choose
an exceptional subsetB0 of the sample space withP(B0) = α, 0< α < �(P ). If
we defineQ0(·) = P(· ∩ B0)/P (B0) andQ1(·) = P(· ∩ (X \ B0))/(1 − P(B0)),
thenQ0 andQ1 are probability measures withP = αQ0 + (1− α)Q1. If the met-
ric onP satisfies (2.2) of our paper, we see thatd(P,Q0) ≤ 1−α and this implies

ε∗(T ,P, d,D) ≤ 1− �(P ).(39)

This differs from the claim of Theorem 3.1 by the factor of 1/2 and it is precisely
the group structure which produces this factor. Because of equivariance things start
going wrong before one reaches an arbitrarily small neighborhood of some point
in P0. As Tyler mentions in his contribution, heuristic justifications for the factor
of 1/2, such as not being able to distinguish between good and bad data, are too
vague. One of the challenges of this paper is to obtain the factor of 1/2 or even
some other factor without an equivariance structure.

10. Principal component vectors. Tyler argues that it may be possible
to define a reasonable concept of breakdown for principal component vectors,
although he recognizes that there are problems involved. The idea is that
breakdown occurs if contamination results in the first principal component vector
being orthogonal to the first principal component vector without contamination.
This example cannot be reformulated in terms of metrics as described in Section 6,
as there is no special set of parameter values�0. Furthermore, it is not possible to
adjust the proof of Theorem 3.1 to include this case. However, we shall now argue
that it does not make sense to talk about the breakdown of the principal component
vectors without reference to the corresponding eigenvalues.

Consider a two-dimensional data set for which the eigenvalues are the same.
The set of first principal component vectors is now the set of all points on the unit
circle with θ and−θ being identified. The smallest alteration of any observation
will cause the space to collapse to a single direction, sayθ1 = (1,0), with the
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second principal component vectorθ2 = (0,1) being orthogonal to it. It is clear
that there exists an arbitrarily small perturbation of the original data set such
that θ1 = (0,1) and θ2 = (1,0). In other words, there exist data sets for which
arbitrarily small perturbations cause breakdown in the first principal component
vector. The perturbations can be so small as to be nondetectable and any computer
of finite precision or some nonoptimal numerical recipe may result in the wrong
answer and be the “cause” of the breakdown. It seems to us that this situation is
one which is not describable by the word “breakdown.” We cannot think of any
useful statistical procedure which can be made to break down by the smallest of
perturbations of the data set. In practice, of course, use is not just made of the first
principal component vector but of all those principal component vectors for which
the eigenvalues are in some sense large. One data analytical strategy is to look at
the two-dimensional plots on the first two principal component vectors, and here it
is irrelevant if they are the wrong way round. The principal component vectors are
defined as those directions where the variability of the data, however measured,
is particularly large. The word “breakdown” can be more appropriately applied
to a situation in which the large variability is the result of outliers and causes
a direction of small variability to become one of large variability. It seems to us to
be clear that the size of the eigenvalues will have to be taken into account. Principal
component vectors do not therefore constitute a counterexample to our meta claim
of no nontrivial theory of breakdown without groups. In spite of this Tyler has
alerted us to the possibility of breakdown being defined in terms of a relationship
between two parameter values rather than closeness to some specific parameter
values. We cannot exclude the possibility of there being some perfectly reasonable
concept of breakdown of this nature.

11. Fisher consistency. Hampel does not like the example of regression
through the origin and neither do we. It was included as an answer to a referee
as to whether it was possible to construct a Fisher consistent functional with
a breakdown point of at least 1/3. Fisher consistency seems to be the obvious
candidate to replace group equivariance as a desirable property of a functional.
We do not give a theorem as there are difficulties in defining what is meant by
a reasonable parametric family, but a parametric family{Pθ , θ ∈ �} typically
forms a very sparse subset of the set of all models. This is indicated by
Figure 3 where the line represents the family of models in the space of all
probability measures and the circles indicate an infinitesimal neighborhood. Fisher
consistency describes the behavior of the functional only in the infinitesimal
neighborhood. We are left free to define the functional elsewhere and this is what
we exploit in our example. Equivariance considerations prevent this form of local
definition. The orbits connect points which are far apart in the space of probability
models and this prevents constructions such as the one we give.
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FIG. 3. A thin parametric model and an infinitesimal neighborhood within which Fisher
consistency becomes relevant.

12. The samples (6.2) and (6.3). Hampel, Rousseeuw and Tyler all comment
on the samples (6.2) and (6.3). Rousseeuw correctly remarks that one can often
calculate the breakdown point of a functional directly and that such direct proofs do
not rely on a repetition. Hampel says, also correctly, that the unnamed functional
(there are many) must have a low breakdown and suggests that perhaps some
small print is missing. What is missing is some large print explaining exactly what
we intended with these two examples. Tyler saw clearly what was intended and
has made some very interesting comments on (6.2) and (6.3). He also explicitly
mentions the connection with the area of computer vision which was one of
our motivations as we indicate below. He points out that such apparently well-
understood functionals such as appropriately tuned redescendingM-functionals
can exhibit the same behavior. We confess to not having been aware of this and
we would have chosen another example had we known. As Tyler says, under
appropriate conditions redescending affine equivariantM-functionals do not break
down even under 99% contamination. This is exactly the phenomenon to which we
intended to bring attention.

The proof of Theorem 3.1 relies in part on exactly reproducing a portion of
the data elsewhere. If there is no exact repetition as in (6.3), there will be many
equivariant functionals which do not break down. One choice for sample (6.3) is

(
Tl(xn), Ts(xn)

) = argmin
µ,σ

{ 3∑
j=1

r(i)(µ,σ )2

}
,(40)
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where

ri(µ,σ )2 = min
1≤j≤n

(
xj − µ

σ
− zi

)2

andz1 = 1.5, z2 = 1.8 andz3 = 1.3. In this connection we mention Oja’s example
of linear regression at the end of his Section 1. We fail to follow his argument
as to why the estimate becomes uninformative. As it stands, the argument seems
to make no use of the assumptionn = 2k, in which case we can putk = 1 and
the conclusion would seem to be that every regression equivariant functional has
a breakdown point of 1/n. If n = 2k is implicitly meant, then breakdown occurs
only if we cannot distinguish between the two samples. If we can distinguish
between the two samples, for his example ifx1 = x2 = · · · = xk = 0, then what
is claimed as breakdown is nothing but equivariance (see Section 2 above).

At first glance the functional (40) may seem very artificial but this is not so. It is
constructed to find a particular pattern in the sample, namely affine transformations
of 1.5, 1.8 and 1.3. Figure 4 shows the smile of the Cheshire cat and the problem
is to locate it in a sea of noise into which it gradually disappears. This is only
possible as the noise does not reproduce the signal. For real examples from the
area of computer vision we refer to Wang and Suter (2004). In analytical terms
one can define a modified breakdown point by

ε∗(T ,P, d,H) = inf{ε > 0 : sup|T (P ) − T (Q)|, d(P,Q) < ε,Q ∈ H},(41)

where H specifies what you want to protect yourself against. IfH does not

FIG. 4. The smile of the Cheshire cat gradually disappearing as it is corrupted by noise.
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allow a repetition of the signal elsewhere, then affine equivariant functionals can
attain breakdown points higher than 1/2. Moreover, the usual high breakdown
functionals are typically of no help in this situation [see Wang and Suter (2004)].

13. Nonparametric statistics. In this paper we have shown that the concept
of breakdown point has been generally accepted only in situations where there is
a group structure sufficiently rich to allow the calculation of a nontrivial upper
bound for the breakdown point. In his contribution Hampel speculates that this
could be the reason why the breakdown point for correlation coefficients has not
yet been widely accepted. In spite of this and as pointed out by an Associate
Editor, we have not proved a theorem to the effect that a breakdown point is
only sensible when a rich group structure exists. It is difficult to imagine what
such a theorem would look like. Nevertheless the paper, the contributions of the
discussants and our reply do seem to indicate that it will not be easy to come to an
acceptable definition of breakdown with a nontrivial upper bound without a group
structure. There is perhaps another reason why some definitions of breakdown
have been successful. They are defined for so-called nonparametric functionals
in the sense of Bickel and Lehmann (1975a, b). One can always calculate the
median of a distribution inR and this is not associated with a restrictive stochastic
model. We wish to emphasize this as we have the impression that it is sometimes
assumed that functionals are only to be applied to data which is generated by
some stochastic model but with contamination. Genton and Lucas entitle a section
“Breakdown point for (in)dependent observations,” which suggests at least to us
that they distinguish between samples which are generated by independent random
variables and those which are not. The title of Genton and Lucas (2003) also tends
in this direction. They write “Y is the set of all allowable samples” and later “Y is
the set of all stationary AR(1) processes.” We think the intention is clear. The data
are generated by a stationary AR(1) process and then contaminated by the outliers.
On the other hand, the only possible mathematical interpretation of “the set of
all stationary AR(1) processes” is the support of the model. As the support of
an AR(1) process with Gaussian innovations isR

n, this means simply all samples,
Y = R

n. Thus what at first glance seems plausible turns out to be untenable. This
is the reason why the restrictions we place on data are analytical ones and not
distributional ones. The median can be successfully applied to data which are very
obviously dependent [see, e.g., Davies, Fried and Gather (2004)], but consider
the data in Figure 5. For these data it makes no sense to artificially restrictρ to the
interval[−1,1]. Rather one would point out that the data can be well approximated
by an AR(1) model withρ = −1.25 but not by a stationary AR(1) model. This
simple message is lost if we are forced to specify a value in[−1,1]. If breakdown
is going to be meaningful in such a situation we suspect that it should be applied
to a statistical procedure and not to the behavior of a single functional.
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FIG. 5. A sample of size14generated byXt+1 = −1.25Xt +0.2Z(t) with Z(t) standard Gaussian
white noise.

14. Breakdown without groups and alternatives. We have argued above
that the only generally accepted definitions of breakdown are in situations where
there is a sufficiently rich group and equivariance structure. If a need is felt to
extend it to other situations, we state what we think are the minimal requirements.
First, the definition should be capable of being made precise. He argues that
breakdown is the smallest fraction of contamination which makes a test statistic
“uninformative or unusable.” Later he argues that breakdown should have the same
degree of vagueness as he claims to be the case with outliers. He continues that
“when every statistician starts to talk about his or her own notion of a breakdown
point, I think we have made it.” We think there are dangers in such an attitude.
Ostensive definitions of breakdown with statisticians pointing in all directions are
unlikely to contribute to a general acceptance of the word. Intuition is important,
but just as is the case with outliers [see Davies and Gather (1993)] much is to be
gained by undertaking the attempt to give a precise definition and to investigate
its consequences. This not only deepens the understanding, it also sharpens the
intuition. Semantics is important and we think that any generalizations of the
concept of breakdown should be such as to be recognizably referring to some
common element, in particular the presence of some natural pole. Second, it is
not sufficient to give a definition of breakdown and show that it gives the correct
answer in some particular cases. A definition of breakdown should be subjected
to some form of analysis, including its stability under perturbations. The onus is
on those who propose definitions of breakdown to do this. Third, the definition
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should be simple and intuitively appealing. Here we agree completely with He.
If it requires more than sixty seconds to understand a definition, it is probably
bad. Fourth, when calculating breakdown points use should be made of metrics
which can accommodate rounding errors. Gross error neighborhoods and the total
variation metric are too restrictive. Fifth, the definition should not be too restrictive
and only apply to one single functional. It should apply to a whole family of
functionals which offer different possibilities of quantifying the feature of interest,
location, scale, correlation or nonparametric function. Sixth, there should be a class
of reasonable functionals for which it makes sense to compare breakdown points.
If such a definition of breakdown is not possible, there are alternatives. One is
simply to compare different functionals by their continuity or bias properties, again
if possible in weak metrics. For this to make sense it is not necessary that an
explosion occurs. It may be that this proves more useful than trying to extend
the idea of breakdown to situations for which it is not suitable.

15. Conclusion. We thank all discussants for their contributions and hope
that the disagreements that are apparent have been clarified by our rejoinder.
In our paper we have not proved that breakdown without equivariance is not
a sensible concept. On the other hand, in all situations we are aware of in which
there is no or little equivariance (made precise by our main theorem), then either
(i) breakdown points of 1 are attainable or (ii) the word breakdown is inappropriate
(the movement from the top right to the bottom right panel of Figure 2) or
(iii) the very definition of breakdown point is inadequate. An example without
these weaknesses would be interesting.
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