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Electromagnetic source analysis yields estimates of the sources of the Electro- and/or MagnetoEn- 
cephaloGram (EEG/MEG) and thus generates a functional description of the human brain. The standard 
errors of the source estimates are influenced by the number and position of EEG/MEG sensors, by the 
number of time samples, and by the number of trials in which EEG/MEG is measured. Therefore, optimal 
design theory is applied to determine the required number and position of sensors, the required number 
of samples, and the required number of trials. To that end, the Fedorov exchange algorithm is extended to 
incorporate multi-response models. A simulation study and an empirical study on visual evoked potentials 
indicate that the proposed method is fast and reliable, and improves source precision considerably. 

Key words: spatiotemporal EEG/MEG source analysis, multiresponse nonlinear regression, optimal de- 
sign, Fedorov exchange 

Introduction 

Neuroscientific research has benefited greatly from the development of noninvasive func- 
tional imaging techniques like Positron Emission Tomography (e.g., Vardi, Shepp & Kaufman, 
1985), functional Magnetic Resonance Imaging (e.g., Lange & Zeger, 1997), and ElectroMag- 
netic Source Analysis (e.g., H~n~il~iinen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993). 
Source analysis is founded on the fact that active brain areas generate electromagnetic activ- 
ity, which can be measured with the Electro- and/or Magneto-EncephaloGram (EEG/MEG). A 
source analysis offers the opportunity to estimate the sources of this EEG/MEG, and thus to 
identify active brain areas. 

Electromagnetic source analysis is in general based on nonlinear regression analysis. The 
regression model defines the relation between the dependent variable (EEG/MEG), the indepen- 
dent variable (EEG/MEG sensor characteristics), and the parameters defining the sources. The 
standard errors of the source parameter estimates are affected by the number of trials in which 
EEG/MEG is measured, by the number of time samples, and by the number and position of 
EEG/MEG sensors. Therefore we apply optimal design theory (e.g., Atkinson & Donev, 1992) 
to determine the required number of trials, the required number of time samples, and the required 
number and position of sensors. 

There are several reasons why such a method is needed. First, source analysis is often per- 
formed on averages of many trials to decrease the noise level of the data, and thus the standard 
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error of the parameter estimates. However, the number of trials should not be too high, since this 
may introduce learning or habituation effects. Therefore, it is useful to determine the minimal 
number of required trials. Second, EEG/MEG is measured in continuous time, but online sam- 
pled in discrete samples. Only a limited time interval, expected to be related to the process of 
interest, is then analyzed. Increasing the number of samples, either by increasing the sampling 
density or by increasing the time interval, will in general yield more precise source estimates. 
However, a too high sampling density may generate data storage difficulties. In addition, a long 
time interval may require more sources to be estimated, and thus the estimates may even become 
less precise. For these reasons, it is useful to determine the required number of samples. Third, 
although there do exist devices with up to 250 sensors, in most research only a limited number of 
sensors is used. Either there is only a limited number of sensors available, which are then placed 
on areas expected to be most informative (e.g., Gunji, Kagigi, & Hoshiyama, 2000; Kenemans, 
Baas, Mangum, Lijfhjt, & Verbaten, 2000). Or many sensors are measured, but only a subset, 
expected to be most informative, is used for source analysis (e.g., Tiitinen, Sivonen, Alku, Vir- 
tanen, & N~ifitfinen, 1999). Therefore, it is useful to determine the minimal number of sensors 
required, and their optimal positions. 

There exist two approaches to determine the required number, and in some instances, po- 
sition of sensors. In the Monte Carlo approach the best sensor conhguration is chosen by com- 
paring simulation results on several conhgurations (Cufhn, 1985; Gaumond, Lin, & Geselowitz, 
1983; Hari, Joutsiniemi, & Sarvas, 1988; Huizenga & Molenaar, 1994; Ogura & Sekihara, 1993). 
This is very time consuming, and therefore not very useful in practice. The second approach 
yields an estimate of the maximally allowed distance between sensors to prevent aliasing of 
high spatial frequencies (Ahonen, Harn~il~iinen, Ilmoniemi, Kajola, Knuutila, Simola, & Vilk- 
man, 1993; Harnalainen et al., 1993; Kuc, 1996; Nunez, 1988; Spitzer, Cohen, Fabrikant, & 
Hallet, 1989; Vaidyanathan & Buckley, 1997). This is the method of choice if many sensors can 
be measured, but it is less useful if the number of sensors is limited. The present method sup- 
plements these traditional approaches. The method is analytic, and therefore fast. Moreover, it 
is specihcally suited for situations where only a limited number of sensors is measured and/or 
analyzed. 

The paper is organized as follows. First, we give a brief introduction to source analysis. 
Then we describe the optimal design technique, and we report a simulation study on its validity 
and merits. Finally, we report an empirical illustration in a study on visual evoked potentials. 

Electromagnetic Source Analysis: Physical Aspects 

The following conventions are used: scalars are italics, matrices are in bold uppercase, and 
vectors are columns and in boldface. The prime symbol (i.e., i) denotes transposition, a super- 
script of minus one (i.e., -1) denotes inversion, "11. I1" denotes vector norm, "vec(.)" denotes the 
vector operator, "1" I" denotes the determinant, and "®" denotes the Kronecker product. 

EEG and MEG measure respectively the electric potential and the magnetic held generated 
by active brain areas. Given these measurements, and given a suitable model for these measure- 
ments, it is possible to estimate the characteristics of active brain areas, most importantly their 
location and amplitude. A suitable model of the measurements should (a) give an adequate de- 
scription of active brain areas, and (b) give an adequate description of the conductive properties 
of the head. In the following we describe these two aspects briefly. 

Active brain areas can be modeled by current dipoles. A current dipole consists of current 
flowing between poles that are separated an inhnitesimal small distance. Such a dipole can be 
characterized by its location ~- = [rl, r2, r3] I and moment ~ = [~1, ~2, ~3] I. The location vector 
consists of Euclidean x, y and z coordinates. Positive x points towards the inion (in the neck), 
positive y points towards the right ear, and positive z points upwards. The moment vector is de- 
scribed in a parallel system, but with zero point at source location. This parameterization will be 
called the Euclidean parametrization. An alternative description for the moment vector, which 
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will be called the spherical parametrization, consists of two angles that describe source orien- 
tation, and a parameter 7* that describes source amplitude. A third way to describe a dipole is 
the normalized Euclidean parametrization. Let the source location vector be r = q)r", where 

r~] ~ denote the 3 location direction cosines and where q) denotes source eccen- r" = [ r ~ ,  r 2 ,  

tricity. Let the source moment vector be ~ = ~ n ,  where ~n = [~f, ~ ,  ~ ] ,  denote the 3 ori- 
entation direction cosines and where ~ denotes source amplitude (e.g., Huizenga & Molenaar, 
1994). These parameters should satisfy the two nonlinear constraints r~ 2 + r~ 2 + r~ 2 = 1 and 

A current dipole generates an electric potential and a magnetic field, which are distorted by 
brain tissues. For example the low skull conductivity smears and attenuates the electric poten- 
tial, and, to a lesser extent, the magnetic field. Therefore it is necessary to model the conductive 
properties of the head. Head models range from the realistically shaped model which is com- 
putationally very demanding, to the homogenous sphere which is computationally simple. Most 
often a compromise is sought in the model with four concentric spheres. These spheres model the 
different conductivities of the brain, cerebrospinal fluid, skull and scalp. A three-sphere model 
in which the fluid is omitted is also quite common. 

In this paper we focus on EEG, that is, on measurements of the electric potential. The 
electric potential at sensor n is defined as Yn = Y* - Y*, where y* is activity at sensor n, and 
y* is reference activity. This reference activity can be measured on any scalp position, often it is 
measured near one of the ears. A reference y* = 0 will be called a zero reference. 

The nonlinear function describing the electric potential generated by one dipole in four 
concentric isotropic spheres was given by Cuffin and Cohen (1979) and Mosher, Spencer, Leahy, 
and Lewis (1993). The potential generated by multiple dipoles is simply the sum of potentials 
generated by separate dipoles. Let the radii of the inner to outer spheres be rl, r2, r3, r4, and 
let the matching conductivities be Cl, c2, c3, c4. The electric potential generated on a sensor x 
measured with respect to a reference sensor Xr is 

f (x ,  Xr, r, ~) = ~'d(x, r) - ~'d(xr, r) (1) 

with 

d(x, ~ ' )=  ~ W j 11 ~'11 J - l ( a  1 P )  COS O~ COS fl -}- a2 P)  COS O~ sin fl -}- a 3 j e j  COS 0~). 
j= l  \ r4 / 

The vectors al,  a2 and a3 are the basis for rotated coordinate axes that place the dipole on 
the z-axis, that is a~r = 0, a~r  = 0, a~r  = Ilrll. The angles o~ and fi are the longitude and 
latitude of the sensor in the rotated coordinate system. Pj is the j-ill order Legendre polynomial, 
and P) is the j- th order associated Legendre polynomial. Let rl = t i l t4;  r2 = r2/r4; r3 = r3/r4 

and Cl = Cl/C2; C2 = C2/C3; C3 = C3/C4 then 

1 (2j + 1)4@273) 2j+l 
- where Fj equals 

wj 4rcc4r 2 jF j  

r 1 J ( C l - 1 ) ( c 2 - 1 ) ( j + l ) + r  2 t C l J + j + l ) ( c 2 j + j + l )  

{(c3j + j + 1 ) +  (j  + 1 ) ( c 3 -  1)r3 2j+1} 

+ ( j + l ) r  2j+l 7~J+l(c l - -  1 ) ( c 2 j + c 2 + j ) + r  2 [ C l J + j + l ) ( c 2 -  1) 

.. -2j+l + ( 3j + + j,r3 } 

(2) 
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Electromagnetic Source Analysis: Statistical Aspects 

In this section we outline how source parameters can be estimated from EEG/MEG data. 
These data consist of measurements on T time samples, N sensors and M trials. The data of M 
trials are averaged to improve the signal to noise ratio. Two general approaches can be adopted 
to estimate the sources. In an instantaneous analysis, each sample is analyzed separately. In a 
spatiotemporal analysis, T samples are analyzed simultaneously under the assumption that some 
source parameters are fixed over samples. In the following we describe a spatiotemporal analysis, 
the instantaneous case can be obtained by setting T = 1. 

Spatiotemporal analysis is based on the multi (T) response nonlinear regression model 
Y = F(X, 0) + E, where Y, F and E are N by T matrices with measurements, model and 
noise respectively. F(X, 0) is the model, for example equation (1), X is the matrix with sensor 
coordinates, and 0 is the vector with source parameters. It is assumed that source location and 
orientation are fixed in time, whereas their amplitude may vary. Since source amplitude appears 
linearly (see (1)), F can be written as HRs. H is the N by D "lead field" matrix with signals 
generated by D sources with unit amplitude. R~ is the D by T matrix with time varying ampli- 
tude of D sources. In the spherical parametrization 0 thus contains P = (3 + 2 + T ) D  source 
parameters: for each source 3 parameters to define location, 2 parameters to define orientation, 
and T parameters to define time varying source amplitude. 

In general it is assumed that noise is homoscedastic and uncorrelated. The parameters 0 are 
then estimated by minimizing the ordinary least squares (OLS) function s (0) = [vec(F (X, 0)) - 
vec(Y)]'[vec(F(X, 0))-vec(Y)].  Let s (0) denote its minimum, then the estimated noise variance 
is 82 = s ( O ) / ( N T  - P) .  The covariance matrix of the estimated parameters 0 is (see Huizenga 
& Molenaar, 1994) 

= a2[G'G] -1. (3) 

is the N T  by P matrix with first order partial derivatives of vec(F(X, 0)) with respect to the 
P parameters. Equation (3) is a matrix with P nonzero positive eigenvalues. 

Tests on the source parameters can be constructed in the following way. Let the vector r(0) 
contain Q (non)linear hypotheses on 0 and let the Q by P matrix R(0) contain first order partial 
derivatives of Q hypotheses with respect to P parameters. Then the test statistic for r(0) - q = 0 
is (Seber & Wild, 1989, p. 198, 228, 703) 

Jr(0) - q] ' [R(0)CR(0) ']  -1jr(0) - q] ~ QF~;NT_P,  (4) 

where F denotes the 1 - ce quantile of the F distribution with Q and N T -  P degrees of freedom. 
In case of the normalized Euclidean parametrization, the parameter vector 0 c contains 

pc = (4 + 3 + T ) D  parameters, which should satisfy the aforementioned 2D constraints. The 
covariance matrix of these constrained parameter estimates is derived in the following way. Let 
1~ denote the 2D vector with constraints. The first order partial derivatives of 1~ with respect to 
the pc  parameters are collected in the 2D by pc matrix I(. Let A = I~/q~ c + I( 'I(,  where I~ c 
is the N T  by pc matrix with first order partial derivatives of the model with respect to the pc 
parameters. The covariance matrix of the constrained parameter estimates then is (Browne & du 
Toit, 1992; Huizenga & Molenaar, 1994; Schott, 1997, p. 248) 

(5) 

82 is now estimated by s (OC) / (NT  - pc  + 2D). CC has pc _ 2D positive eigenvalues, and 2D 
eigenvalues equal to zero. Tests on these constrained source parameters can easily be derived by 
generalizing (4) to the constrained case. 
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Increasing Accuracy 

The covariance matrix (3) depends on the noise variance o -2, and thus on the number of 
trials M. Moreover, it depends on the derivatives G, and thus on the number of samples T, and 
on the number and position of sensors X. Our objective is to determine the number of trials, 
the number of samples, and the number and position of sensors required for a covariance matrix 
with the desired properties. Since the covariance matrix depends on the actual values of the 
source parameters, the method should be based on an explicit source hypothesis. This hypothesis 
can be derived from anatomical knowledge, from animal studies, or from Positron Emission 
Tomography or functional Magnetic Resonance Imaging studies. It can also be derived from 
previously reported EEG/MEG source studies, or from a pilot study, as will be illustrated later. 

The sensor configuration generating an optimal covariance matrix is determined by mini- 
mizing the generalized variance of the parameters, as indexed by the product of the eigenvalues 
of C or the determinant ICI (Atkinson & Donev, 1992). Equivalently, IGIGI can be maximized 
since o -2 is independent of sensors and samples under the assumption of homoscedastic and un- 
correlated noise. This so called D-optimality criterion was used for example by Hochwald and 
Nehorai (1997) to determine the optimal orientation of MEG sensors. 

After an optimal sensor configuration is calculated, it should be determined whether this 
sensor configuration yields the required accuracy. This can be assessed by computing confidence 
regions given the source hypothesis and given an initial guess of the noise variance (Huizenga & 
Molenaar, 1994). Therefore these confidence regions will be called a priori confidence regions. 
Alternatively, if an optimal configuration is computed for several sources, then (4) can be used 

I 
I i 

hypothesis  

1 
required 
accuracy 

yes 

i 
optimal [, 
configurat ion F 

l 
f - ~ h  ? ~ I obtained 
matc .~j~ accuracy ~ " ~  increase 

trials 

\ 
increase 
sampling 

increase 
sensors 

t 
I exper iment  

FIGURE 1. 
Flowchart to determine the optimal measurement conditions. 
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to test whether these sources differ significantly given the source hypothesis and given an initial 
guess of the noise variance. Therefore these tests will be called a priori tests. 

If the optimal sensor configuration does not yield required accuracy, then there are several 
options to increase accuracy (Figure 1). First, the noise variance can be decreased by increasing 
the number of trials. Let C~s 2 be the variance of a trial, then C~k 2 = as2/k  and al 2 = as2/ l  denote 
the variance of the mean of k and I trials respectively. If a known C~k 2 is tOO high, and should 
be replaced by a lower noise variance cq 2, then the required number of trials I is derived from 
I = kak2/al 2. Second, precision can be increased by increasing the number of sensors. This 
necessitates repeated cycles of adding a set of sensors and renewed optimization of the sensor 
configuration (Figure 1). Third, precision can also be improved by increasing the number of 
samples. In this case it is also required to perform repeated cycles of adding a set of samples, 
and renewed optimization of the sensor configuration (Figure 1). Since, as will be shown later, 
the optimal sensor configuration is dependent on the number of samples. 

Optimization of the D-Optimality Criterion 

We describe two routines to attain D-optimality. The continuous optimizer allows for sen- 
sors around the entire scalp. The discrete optimizer chooses among predetermined positions, 
for example in an electrocap. In each case we first describe optimization of the unconstrained 
covariance matrix C, and then proceed with the constrained matrix C c. 

If sensors are allowed on the entire scalp, then the problem is continuous. In this case the 
generalized variance I Cl can be minimized by standard nonlinear optimization routines. We use 
the quasi-Newton algorithm with finite difference gradients. If the constrained parametrization 
is used, then the generalized variance in pc _ 2D subspace should be minimized, as indexed by 
the product of the pc _ 2D nonzero eigenvalues of C c (see Pukelsheim, 1993). 

If sensors are restricted to predetermined positions, then the design problem is discrete. It 
consists of choosing a fixed number of N sensors out of L candidate sensors to maximize ]GIG]. 
A naive approach is to compute IGIGI for L ! / N ! ( L  - N)!  configurations, and then select the 
optimal configuration. However, even a limited task of selecting N = 30 out of L = 60 sensors, 
leads to huge computational difficulties: calculation and comparison of approximately 1016 con- 
figurations. Therefore a more efficient technique is required, for example the exchange algorithm 
developed by Fedorov (see Atkinson & Donev, 1992; St. John & Draper, 1975). The standard ex- 
change algorithm is only suited for a single response, that is instantaneous, analysis. Therefore 
we describe a generalization which is also applicable to the multiresponse spatiotemporal case. 

In the exchange algorithm a sensor from a starting configuration is exchanged for a candi- 
date sensor if this exchanging improves I G~GI to a maximal extent. This process is repeated until 
no further increase in the determinant can be attained. If a sensor i is added to a configuration, 
and a sensor j is removed, then G~G becomes [G~G - UijVIj], with P by 2T matrices: 

Uij = [--g/l, --gi2 . . . . .  --giT, gjl,  g j2 . . . . .  gjT] 

Vij  = [gil, gi2 . . . . .  giT, gjl,  gj2 . . . . .  gjT], (6) 

where git is the P vector with first order partial derivatives of the model at sensor i and sample 
t. Sensors i and j should be chosen such that the increase in determinant is maximal. If G~G is 
nonsingular then III IGIG - UijI-1VIij] = IGzGI II - VIij[GIG]-Iuij  1, where I is the 2T by 2T 
unity matrix (Schott, 1997, p. 250). Therefore, the following criterion can be maximized: 

IG'G - UijVlj I IG'GI II - V'ij [ G ' G ] - I u u  I 
= = 1I - V'ij [GIG]-Iui j  1. (7) 

IG'GI IG'GI 

In the first iteration Equation (7) is evaluated for N ( L  - N)  exchanges and the best exchange is 
chosen. Then [G~G] -1 is updated with the chosen exchange. This exchanging and updating pro- 
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cedure is iterated until no further increment in the determinant can be found. In the instantaneous 
case, T = 1, and (7) reduces to 

1 +gi [G~ ~G]-lgi - g}  [GIG]-lgj -~ii [G~G]-lgig} [G~G]-lgj +g} [G~G]-lgigl [G~G]-lgj . (8) 

Which is the standard single response Fedorov exchange criterion (e.g., Cook & Nachtsheim, 
1980). 

In the constrained case, the discrete optimizer proceeds in an equivalent way. However, 
since GICG c is singular, it is replaced by the nonsingular matrix A from (5); refer to Browne 
& Du Toit, 1992; or Silvey, 1970, p. 63. In the simulation section it is shown that this yields 
acceptable results. 

Instantaneous Versus Spatiotemporal Optimality 

Suppose IG~GI can be written as a sum or product of two functions, where one function is 
independent of sensor positions, and the other function is independent of T and W. In this case 
an instantaneous optimal configuration is also optimal for spatiotemporal data and vice versa. 
It then suffices to optimize the single response instantaneous criterion. However, this is not the 
case, as is shown below. 

The partial derivative matrix G is partitioned in a TN by 5D matrix related to the 5D 
fixed location and orientation parameters, and in a TN by TD matrix related to the TD varying 
amplitude parameters. G equals 

G = [(xI t' ® IN)Z; (IT ® H)], (9) 

where IN and IT are unit matrices of size N by N and T by T respectively. Z is the ND by 5D 
matrix 

0H1 0 0 ! - 
i 0H2 0 (10) Z =  0 "'. " 

0 0 OHD 

Where each N by 5 matrix OHd contains the partial derivatives of the lead field of source d with 
respect to its 5 location and orientation parameters. GIG then equals 

FZI(XI * ® IN)(XI # ® IN)Z Zt(XI * ® IN)(IT ® H)] (11) 
G~G = k (IT @ H~)(xI tl @ IN)Z (IT @ H~H) " 

Let [IN -- H ( H ' H ) - I H  '] = B, then (Schott, 1997, p. 250, 256) 

I G'GI = In'HI T I Z ' ( ~ '  ® n)zI .  (12) 

The source amplitudes can be isolated from the second term if WW' is diagonal, then: 

IG'GI = Inlnl T C ~ _ _ 1 ( ~ d ) 5 )  (d=I~I11 an~Band  I) (13) 

where Rid contains the T amplitudes of source d. The second term in (13) is independent of 
sensors, and the third term is independent of the number of samples and independent of the 
source amplitudes. However, the first term still is a function of both the sensors and the number of 
samples. Therefore, instantaneous and spatiotemporal optimal configurations are not equivalent. 
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Simulations 

The purpose of the simulations is to (a) get an indication of the improvements obtained by 
using continuously or discretely optimized configurations, (b) investigate the constrained crite- 
rion, (c) investigate the use of a source hypothesis derived from a pilot, and (d) investigate the 
benefits of an optimal configuration in case of multiple sources. These issues can be addressed in 
simulations with the instantaneous model. Differences between instantaneous and spatiotemporal 
D-optimality are investigated in the final simulation section. 

Optimal sensor configurations are derived by either the continuous or discrete optimizer. 
The optimizers are restarted 5 times with different starting values to prevent local minima. The 
data are simulated on a standard configuration with 41 sensors uniformly distributed around the 
scalp; and on an optimal set of 41 sensors. The data are simulated with respect to a hypothetical 
zero reference. Since the simulations are very time consuming, they only concern one or two 
sources in the computationally simple homogenous sphere with a radius r = 10.00 cm. Nor- 
mally distributed homoscedastic and uncorrelated noise with zero mean is added to the signals, 
therefore sources are estimated by OLS. The source parameters in the normalized Euclidean 
parametrization are estimated by the augmented Lagrangian algorithm, which takes the con- 
straints on these parameters into account (e.g., Gill, Murray, & Wright, 1981). 

In order to get an indication of precision, the simulations are performed in 400 replicates. 
Several measures are reported. The a priori estimated standard errors are the standard errors given 
an a priori hypothesis on the source parameters and the noise variance. The simulation standard 
deviations are the standard deviations of the parameter estimates across the 400 replicates. The 
reported standard errors and standard deviations are multiplied by r, the radius of the sphere. 
The a priori improvement denotes the ratio of the a priori estimated standard errors on optimized 
and standard configurations, averaged over parameters. The simulation improvement denotes the 
ratio of the simulation standard deviations on optimized and standard configurations, averaged 
over parameters. Finally, the average Euclidean distance between true and estimated vectors is 
reported, it equals 

r 400 
location error: 400 ~.= ((@J~lj --qg'C~) 2 -}- (@J~2j --(/9"eft) 2 -}- (@J~3j --(/9"C~) 2) 1/2 

moment error: 400 ((~}j~]j _ ~ ] ) 2  + (~j~ffj __ X/r~ff)2 +(~j~#j__X/r~)2) 1/2 ' 
j=l  

where ~ j ,  ~2nj . . . .  denote the estimates in 400 simulation replicates, and r~, r~ . . . .  denote the 
true parameters. 

One Source, Instantaneous Criterion 

n - . 5 6 ,  n .20,  We calculated optimal configurations for a single source defined by v I = v 2 = 
= .80, ~ = .56, ~ = - .20,  ~ = .80, ~0 = .75, ~ = .40. The noise variance was set to a 7; 3 

realistic value, yielding a signal to noise ratio of 7.10dB on the standard configuration. 
First, we optimized precision given a true source hypothesis, and by continuously minimiz- 

ing the product of the nonzero eigenvalues of C c in (5). In Figure 2 it can be seen that the optimal 
configuration favors the region with the highest spatial gradient around the polarity reversal. The 
optimal configuration yielded a considerable improvement: the location and moment errors, the 
a priori estimated standard errors, and the simulation standard deviations decreased to a large 
extent (Figure 3, Table 1, compare first and second row). Figure 3 shows in addition that the a 
priori estimated standard errors predicted the simulation standard deviations very well. The latter 
result is important since it is an essential prerequisite for the proposed methodology. 
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FIGURE 2. 
The isocontours of the potential field (in arbitrary units) on standard and optimal configurations. The latter was derived 
by continuously optimizing C c given the true one source hypothesis. The coordinates axe given in the unit sphere. 
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FIGURE 3. 
A priori estimated standard errors multiplied by the radius of the sphere (r* a.e.s.e.) and simulation standard deviations 
multiplied by the radius of the sphere (r*s.s.d.) for standard and optimal configurations. The latter was derived by 
continuously optimizing C c given the true one source hypothesis. 

TABLE 1. 
Standard and optimal configurations for one source 

Locat ion M o m e n t  A priori S imula t ion  

Conf igura t ion error error i m p r o v e m e n t  i m p r o v e m e n t  

standard 0.44 0.52 1.00 1.00 
continuous, true, C c 0.16 0.33 0.41 0.42 
continuous, true, A 0.17 0.34 0.45 0.45 
discrete, true, A 0.33 0.41 0.74 0.74 
continuous, pilot, C c 0.16 0.30 0.42 0.43 

Note: The optimal configurations are differentiated by: (a) continuous or discrete optimization; (b) true or pilot hypothe- 
sis; and (c) optimization of the product of nonzero eigenvalues of C c or the determinant of A. 
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Second, we investigated given a true source hypothesis, whether continuously maximizing 
IAI is comparable to continuously minimizing the product of the nonzero eigenvalues of  C c (see 
(5)). The results in Table 1 (compare second and third row) indicate that this is the case. This is 
a favorable result that supports optimization of  IAI in case of  a discrete configuration. 

Third, we derived a discrete optimal configuration given a true source hypothesis. The dis- 
crete optimizer maximized IAI by choosing 41 sensors out of  a candidate set of 105 sensors, 
which consisted of  the aforementioned 41 standard sensors plus 64 additional sensors. In Table 1 
(fourth row) it can be seen that the discrete optimizer improves precision, although self evidently 
less than the continuous optimizer. 

Fourth, we investigated whether the method is also valid if it is based on a source hypoth- 
esis derived from a pilot. We selected, from the distribution of  400 estimates on the standard 
configuration, an estimate that was located at a maximal  distance (0.72 cm) from the true source. 
Subsequently, we continuously optimized the sensor configuration for this estimated source. We 
then performed simulations for this optimal configuration and the original true source. In Table 1 
(fifth row) it is shown that all results are comparable to the configuration computed from a true 
source hypothesis. This indicates that although a pilot may be sub optimal, it may guide the 
choice of  a sensor configuration for an optimal experiment. 

In sum, an optimal sensor configuration offers a notable accuracy improvement. This opti- 
mal sensor configuration can either be computed by continuously minimizing the nonzero eigen- 
values of  C c or by continuously maximizing IAI. Discrete maximizat ion of  IAI also increases 
accuracy. Finally, these optimal configurations can be based on a source hypothesis derived from 
a pilot. 

Two Sources, Instantaneous Criterion 

If  a sensor configuration does not provide enough information to separate sources, then 
the source estimates are very unreliable (Huizenga, 1995, chap. 3). Therefore it is essential to 
determine a priori whether the configuration contains enough information to separate the sources, 
and to optimize the configuration if  this is not the case. 

We applied this method to two sources separated 3.00 cm, and mirroring each other in 
n .20; n and ~ differ between the two sources, the parameters are: r 1 = the midline. Only r 2 

n = . 2 0 , - . 2 0 ;  r 3n = .96; ~ = .20; ~ = .20, - . 2 0 ;  ~ = .96; ~0 = .75 and ~ = .40. Noise r 2 
variance was chosen to get a realistic signal to noise ratio of  7.10dB on the standard configuration. 
The data were modeled by two or one source(s). If  the sensor configuration does not provide 

n will be nonsignificant. enough information to separate the sources, then the a priori test on r 2 
Moreover, the Lack of Fit  test (Huizenga & Molenaar, 1994) then will indicate that there is no 
lack of  fit for the single source model. 

n indicated that the source locations did not differ significantly on the The a priori test on r 2 
standard configuration ( F  = .95, df  = 1, 29, p = .95). This a priori test was indicative of  the 
simulation results: location and moment  errors of  the two sources were very large (Table 2, first 

TABLE 2. 
Standard and optimal configuration for two sources 

Configuration D % LoF Location error Moment error 

Standard 2 3% 3.76/3.41 5.52/5.38 
1 14% 1.70 4.25 

Optimal 2 3% .86/.93 3.99/4.00 
1 95 % 2.11 8.97 

Note: "D" is the number of estimated sources, and "% LoF" is the percentage of simulation 
replicates with a Lack of Fit. If one source is estimated, then the location and moment errors 
refer to the error between the estimated and the nearest true source. 
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row), and a single source did fit the data, only in 14% of the replicates there was a lack of  fit 
(Table 2, second row). 

Results improved on the optimal configuration. First, the a priori test was significant (F  = 
28.62, df  = 1, 29, p < .001). Second, the location and moment errors of  the two sources 
decreased (Table 2, third row). Third, a single source did not fit the data: in 95% of the replicates 
there was a lack of fit (Table 2, fourth row). For these reasons, the optimal sensor configuration 
seems to yield enough information to separate the two sources. 

Two Sources: Instantaneous vs. Spatiotemporal D-Optimality 

An instantaneous optimal design is suboptimal for spatiotemporal data. In order to investi- 
gate the degree of suboptimality, the discrete optimizer chose 41 out of  105 sensors, according 
to the following two criteria: (i) optimal for an entire time window, or (ii) optimal for the first 
sample only. Subsequently, the a priori estimated standard errors for the parameters in the spa- 
tiotemporal model were computed given the standard, instantaneous optimal, and spatiotemporal 
optimal configurations. 

The optimal configurations were computed for two simultaneously active sources with pa- 
n = . 1 0 ;  n = . 7 0 , - . 7 0 ; r  3n = . 7 1 ; ~ f  = . 1 0 ; ~  = . 1 0 ; ~  = . 9 9 ; ~ 0 = . 7 5 .  Three rameters r 1 r 2 

cases were investigated. In the first case, ~tlnltl was diagonal and the time window consisted of 
10 samples (source I amplitude was always .4; source II amplitude was .4 in the first 5 samples 
and - . 4  in the second 5 samples). In the second case, ~ I  was also diagonal, but there were 20 
samples (source I amplitude was always .4; source II amplitude was .4 in the first 10 samples, 
and - . 4  in the second 10 samples). In the third case, ~tlnlt~ was not diagonal and the time window 
consisted of  10 samples (source I amplitude was always .4; source II amplitude was .4, .4, .4, .4, 
.4, .4, .4, .4, .0, - .46) .  

In all cases the instantaneous optimal configuration was suboptimal for spatiotemporal data: 
the amplitude parameters were less precise, whereas the location and orientation parameters 
were more precise (Figure 4). Note however that the differences were very small. Similar small 
differences between spatiotemporal and instantaneous optimal configurations were found for a 
variety of  sources and a variety of  amplitude functions. 
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I i i i I m i i I I ~ I I I - -  - -  ~ 

! 

instantaneous 
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FIGURE 4. 

spatiotemporal 
optimal 

A priori improvement for the spatiotemporal model given an instantaneous or spatiotemporal optimal configuration. The 
improvement is given separately for fixed location and orientation parameters; and time varying amplitude parameters. 
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Empirical Illustration 

In this section we give an empirical illustration of an optimal configuration derived from a 
pilot experiment. A pilot can be carried out on one subject with a standard sensor configuration. 
The estimated sources of this pilot then may generate the source hypothesis for the optimal 
configuration to be used with the entire subject sample. However, this setup is not convenient 
for our present methodological purposes. For a lowering of estimated standard errors can also be 
introduced by a lack of replicability between pilot and optimal experiments. More specifically, 
the noise variance may decrease, or the sources may differ. Therefore we conceived a setup in 
which the pilot and optimal experiment are measured at once, ensuring replicability between the 
two runs. 

Data were recorded from 64 sensors covering the entire head. First we analyzed a sub- 
set, namely 32 sensors approximately equally spaced and covering the entire head. Based on the 
source estimate of this standard subset, we calculated an optimal 32 subset. This subset was com- 
puted under the assumption that the noise was homoscedastic and uncorrelated, since we had no 
a priori hypothesis concerning the noise structure. We then estimated the sources on the optimal 
subset. Finally, we estimated the sources of the entire set of 64 sensors. The latter analysis served 
as a gold standard generating the most adequate estimates. If the proposed methodology is valid, 
then the standard errors should decrease on the optimal compared to the standard subset. In addi- 
tion the parameter and standard error estimates derived from 64 sensors should be approximated 
better by the optimal subset than by the standard subset. 

MeNod 

The subject was one right-handed male, 23 years of age, with normal vision. Stimuli were 
presented equiprobably and randomly to the lower left or lower right quadrant of the visual field, 
at a radial eccentricity of 4 °, with an inter-stimulus interval varying between 550 and 750 ms. 
Stimuli were vertical, white bars, flashed for 50 ms on a dark background. The height of the bars 
was either 2.4 ° in 86% of the trials, or 3.2 ° in 14% of the trials. The task was to respond manually 
to the longer, infrequent bars in either the right or left quadrant, while fixating the center of the 
screen. Here we focus on 4 samples of the P1 component (120.0 - 127.5 ms) evoked by attended 
non-target stimuli (shorter bars) in the lower right quadrant. The data were filtered and trials 
contaminated by eye artifacts were removed, leaving 213 trials for analysis. EEG was recorded 
from 64 Ag/AgC1 sensors mounted in an elastic cap, referenced to the left mastoid. A sphere 
was fitted through the sensors, the estimated sphere radius was r = 9.48 cm. The sensors were 
radially projected on this sphere, the resulting sensor positions are depicted in Figure 5. 

In an instantaneous analysis, the source was modeled as one dipole in three isotropic con- 
centric spheres with radii of 87%, 92% and 100% of r = 9.48 cm. and conductivities of 1.0, 
.0125 and 1.0. In the second panel of Figure 5 it can be seen that noise, that is the trial variation 
around the mean, was heteroscedastic and correlated. This was confirmed by appropriate statisti- 
cal tests (Huizenga & Molenaar, 1995). Therefore the source parameters and their standard errors 
were estimated by generalized least squares (GLS) (Huizenga & Molenaar, 1996). 

Empirical Results 

In Figure 5 we have depicted sensor configurations, noise characteristics, parameter esti- 
mates and estimated standard errors. Since the samples were homogeneous with respect to all of 
these indices, the results refer to averages over samples. The average noise variance was equal on 
the standard and optimal subset. This excludes the possibility that the estimated standard errors 
decrease due to a lowering of the noise variance. All estimated standard errors were low on the 
optimal compared to the standard subset, although the standard error of ~ was higher. This may 
be due to the fact that the precision of all parameters is optimized, which may be at the cost of 
parameters that are already precise, like ~ .  Finally, the parameter estimates of the optimal sub- 
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FmURE 5. 
In the upper panel the empirical sensor configurations. "O": the entire set of 64 sensors; "o": the standard 32-subset; "/" 
the optimal 32-subset. The arrow points towards the reference, which was equal for all configurations. The plot is given 
in the spherical coordinates latitude (-180 ° - 180 °) and longitude (0 ° - 130°), the two circles refer to a longitude of 
90 ° and 130 °. The second panel contains noise characteristics: v - ,  va, v+ denote minimal, average and maximal noise 
variance; c- ,  ca, c+ denote minimal, average, and maximal noise correlation. The third panel contains the parameter 
estimates multiplied by the radius of the sphere (r *paxameter estimates). The fourth panel contains the estimated standard 
errors multiplied by the radius of the sphere (r*e.s.e.). 

set approximated the parameter  est imates of  the entire set of  64 sensors. Moreover,  the standard 
errors of  the opt imal  subset  approximated the standard errors of  the entire set. 

In sum, the opt imal  subset  yields more  precise estimates than the standard subset: the stan- 
dard errors are smaller, and the parameter  and  standard error est imates of  the opt imal  subset  
approximated those of  the entire set. 

Discuss ion 

The method  summar ized  in Figure  1 has several advantages.  First, it is analyt ic  and therefore 
fast. For  example,  if  the single response discrete opt imizer  is used, then it takes only  a few 
seconds to choose 32 sensors out  of  a set of  64 sensors. Computa t ional  demands  will  increase 
for more  realistic head models,  but  the demands  can be kept  low by  comput ing  model  derivatives 
in advance for all possible sensors. A second advantage is that the method improves accuracy 
considerably.  The improvement  depends on the source configurat ion under  study, so it is difficult 
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to indicate to what extent the estimates will generally ameliorate. But to give an indication, 
in the simulations the standard errors halved if sensors were positioned optimally. Moreover, 
it became possible to separate two simultaneously active sources, which was impossible on a 
standard configuration. A third advantage is that experimental demands are optimized at minimal 
costs. Positioning sensors optimally does not cost anything. Moreover, the required number of 
sensors, samples and trials can be calculated explicitly, thereby preventing experiments with 
unnecessarily high demands. A fourth advantage is that the method may indicate a priori that 
experimental requirements are not attainable. This offers the possibility to prevent experiments 
with insufficient power. 

It was shown that instantaneous and spatiotemporal optimal configurations are not equiv- 
alent. Therefore, the multiresponse Fedorov exchange should be used for spatiotemporal data. 
The differences are small however, and therefore the standard single response exchange may be 
used if computational time is really an issue. 

The proposed methods are based on the a priori covariance matrix of the parameter es- 
timates. Therefore this matrix should be accurate, necessitating three requirements. First, it is 
necessary that the regression model is approximately linear around the parameter estimates. If 
this is not the case, then optimal configurations based on likelihood approaches may be more 
appropriate (Seber & Wild, 1989). A second prerequisite is that the noise is homoscedastic and 
uncorrelated, both in space and in time. This requirement can be avoided by incorporating a valid 
a priori hypothesis on the noise covariance matrix (Huizenga, De Munck, Waldorp, & Grasman, 
in press; Waldorp, Huizenga, Dolan, & Molenaar, 2001). A third requirement is a good source hy- 
pothesis. The method seems to be quite robust against moderate errors in the source hypothesis, 
since a hypothesis derived from a pilot yielded a nearly optimal sensor configuration. However, 
the method will fail if the hypothesis can not be formulated reliably. In that case it is advised 
to measure the maximum number of samples, trials and sensors, and to distribute the sensors 
uniformly. 

The results of the empirical study indicate that a pilot may guide the choice of experimental 
requirements. Two reservations should be made however. First, the pilot and the optimal con- 
figuration were measured simultaneously on one subject. In actual applications, a pilot will be 
conducted first. Therefore, low replicability may lower the gain of the proposed methodology. 
Second, we based our optimal configuration on the assumption that noise was homoscedastic and 
uncorrelated. This assumption is however in general not satisfied. Therefore, even better results 
can be found by incorporating a reliable a priori noise model (Huizenga et al., in press; Waldorp 
et al., 2001). 

It is worthwhile to mention two extensions. First, sometimes a small rigid MEG sensor 
array is used (e.g., Gunji, Kagigi & Hoshiyama, 2000). The optimal placement of this array can 
be determined by extending the present method to incorporate rigid constraints on the sensor 
positions. The second extension concerns simultaneous EEG and MEG analysis. It has been 
shown that adding a few EEG sensors to a MEG configuration is very beneficial (Huizenga, van 
Zuijen, Heslenfeld, & Molenaar, 2001). The present method can be extended to determine the 
optimal positioning of these EEG sensors, given a fixed MEG configuration. 
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