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Abstract

Purpose : Cooling muscles might produce a temporary re-
duction of spasticity. This study investigated muscle co-
ordination in spasticity under the in¯ uence of cooling.
Methods : A repetitive movement (RM-) test of the ankle was
used, while measuring the angle and surface-electromyography
(EMG) of the m. tibialis anterior and m. triceps surae.
Ensemble averaging provided quanti® ed measures of muscle
activation. Sixteen patients with spasticity in their lower
extremity due to stroke or spinal cord injury participated in the
study. Physical examination and the RM-test was done before
and after cooling the m. triceps surae for 20 minutes by cold-
packs.
Results : The results show that Achilles hyperre¯ exia and clonus
were abolished in all, and all but one patient, respectively. The
EMG of the m. triceps surae, acting as a prime mover, was
increased (p ¯ 0.028). However, this improved muscle co-
ordination resulted in just a slightly increased active range of
motion (less than 2 degrees at p ¯ 0.049).
Conclusion : Apparently, the increase in excitability of the alpha
motoneuron pool in voluntary movements of patients with
spasticity is not followed by an improvement in the ability to
move.

Introduction

The eŒect of cooling muscles to temporarily decrease

hypertonia in spasticity is a well known phenomenon."± $

As such, it is advocated as a component of therapeutic

interventions and mainly applied because of its facili-

tating eŒect. However, it does not hold for all patients as

sometimes after cooling the muscle no decrease in

hypertonia is observed.$ This diŒerence in reaction is

sometimes referred to as cryo-positive and cryo-nega-

tive.%,& Originally, this so-called cryo-test was thought to

* Author for correspondence ; e-mail : j.harlaar!azvu.nl

identify increased fusimotor drive as the speci® c patho-

genesis of spasticity. However, although the patho-

physiological mechanisms underlying spasticity are very

complex and still not fully understood, the concept of

increased fusimotor drive in spasticity is now obsolete.’± *

The excitability of spinal motor neurons is in¯ uenced

by various descending pathways that either work directly

or in¯ uence the inhibition or facilitation of the inter-

neurons within spinal re¯ ex pathways.’,*,"! A decrease in

presynaptic inhibition that facilitates the segmental re¯ ex

arc might also contribute to spasticity."!± "# Insofar as

these mechanisms contribute to spasticity, their eŒect is

proportional to the amount of aŒerent input from

muscle spindles. Therefore, reducing the sensitivity of the

muscle spindles to stretch by cooling"$,"% is likely to be

the mechanism which is responsible for reducing hyper-

re¯ exia in spasticity."&

Up to now the eŒect of cooling in spasticity has been

described mainly in terms of altered T-, H- and M-

re¯ exes. Unfortunately, these results cannot be

generalized to impairments in co-ordination of

movements under voluntary control. In some subjects

with spasticity, involuntary stretch re¯ exes in antagonist

(i.e. lengthening) muscles are inhibited by voluntary

eŒort of the agonist,"’ ± "( whilst in others the restraining

co-contraction is increased."’,") Furthermore, decreased

spindle-sensitivity might also aŒect the output of a

voluntary shortening muscle. Altogether, the eŒect of the

suppression of spindle activity through cooling in active

motions is not straightforward. As voluntary movements

are closely related to functional activities, a better

understanding of the eŒects of cooling on voluntary

movements may give insight into the mechanisms of

spasticity that contribute to functional disability in a

patient.

Disability and Rehabilitation ISSN 0963± 8288 print}ISSN 1464± 5165 online # 2001 Taylor & Francis Ltd
http :}}www.tandf.co.uk}journals
DOI: 10.1080}09638280010008898

D
is

ab
il 

R
eh

ab
il 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
ah

ea
lth

ca
re

.c
om

 b
y 

V
ri

je
 U

ni
ve

rs
ite

it 
A

m
st

er
da

m
 o

n 
03

/2
7/

11
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



J. Harlaar et al.

Voluntary control implies the involvement of supra-

spinal processes, so a standardization of supraspinal

drive is necessary in order to study the eŒect of cooling

on active motion in spasticity. McLellan and Sahrmann

used a simple cyclic motor task to reveal the phase-

patterns of contraction and co-contractions in spasticity

for the knee and elbow, respectively."(± "* The aim of the

present study was to quantify the muscle activation

patterns in a repetitive movement test and, subsequently,

to evaluate the diŒerent reactions of muscle co-or-

dination on cooling of the m. triceps surae in spasticity.

Methods and materials

s u b j e c t s

Patients who were clinically classi® ed as having

hypertonic musculature of the lower extremity combined

with a spastic equinovarus of the ankle were selected.

However, if the patient could not perform voluntary

movement of either knee or ankle, the subject was

excluded from participation in the study. Other reasons

for exclusion were: suspected pathologies of the per-

ipheral nerve, sympathectomy, allergic reactions to

cooling, or the syndrome of M. Raynaud (excessive

vasoconstriction as a reaction to the exposure to cold).

The study was approved by the Medical Ethics

Committee of the University Hospital and informed

consent was obtained from all participants. Sixteen

patients (10 male, 6 female) participated in the study, 10

of whom had hemiplegia as a result of stroke. In 6

patients the impaired function was due to dysfunction of

the spinal cord (congenital paraparesis, spinal cord

injury or MS).

p r o c e d u r e

Before treatment, a complete physical examination

and the repetitive movement test were carried out.

Subsequently, the m. triceps surae was cooled by a 20

minute application of cold-packs, while the patient was

resting in a comfortable chair.#! The cold-packs were

cooled to a temperature of ® 12 ° C. Skin temperature (at

a central location of the muscle belly) was measured by

a thermocouple before and immediately after the

application. All tests were repeated after the treatment.

The whole procedure lasted for approximately one hour.

c l i n i c a l e x a m i n a t i o n

The patient was positioned in a chair with knees and

hips at approximately 90° of ¯ exion, and their feet

Table 1 Clinical examination scoring scales

Re¯ ex Clonus

0 No re¯ ex 0 No clonus

1 Light re¯ ex 1 Hard to elicit

2 Normal 2 Present; ! 3

repetitions

3 Exaggerated 3 Present; ! 10

repetitions

4 Strongly

exaggerated

4 Present; & 10

repetitions

5 Spontaneous

hanging down. Achilles tendon and knee tendon re¯ exes

were tested on the aŒected side and scored on a 5 point

scale. Ankle clonus was rated on a 6 point scale (table 1).

Standing and walking was assessed in a qualitative way.

t h e r e p e t i t i v e m o v e m e n t t e s t

The patient was seated in a specially constructed high

and stable chair, and was instructed to perform a

repetitive maximal dorsal ¯ exion of the foot at the

aŒected side. The movement was self-paced (at a

comfortable rhythm) and was performed during 30

seconds. This test was called the ± dorsal ± repetitive

movement test (RM-test). Subsequently, the patient was

asked to perform the RM-test in a plantar direction.

The recording of the RM-test involved the instrumen-

tation shown in ® gure 1. The movement was recorded by

means of an electro-goniometer, with two plastic arms

® xed to the lateral side of the ankle, the ® xed part just

above the malleoli and the moving part lateral to the ® fth

metatarsale. These arms could mutually rotate by a

precision turn-potentiometer (linearity : 1% full scale).

This variable resistor provides an electrical signal,

proportional with the angle of rotation. The axis of

rotation was aligned to the distal part of the lateral

malleolus. After ® xation, but before recording, the oŒset

of the goniometer was calibrated at 0 ° plantar ¯ exion.

Also during the test surface EMG was recorded of m.

tibialis anterior and m. triceps surae. The location of the

bipolar leadoŒwas at the centre of the muscle belly, the

orientation of the line connecting the pair of electrodes

being perpendicular to the transverse plane. The location

was carefully marked, so that the exact electrode position

could be reproduced after cooling. The circular elec-

trodes measured 6 mm in diameter with a centre-to-

centre distance of 20 mm, the reference electrode being

15 mm away from the two others. These three electrodes

were integrated in the housing of a small pre-ampli ® er

(Medelec AE15), a con® guration which assured a noise
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Repetitive movement test

Figure 1 Instrumentation for the measurement of the repetitive movement test ADC: Analog-to-Digital Converter ; SR-EMG: Smoothed Recti® ed
EMG.

and artefact free EMG-signal. This signal was high-pass

® ltered (20 Hz 6dB}oct), ampli® ed (Medelec AA6T) and

displayed on an oscilloscope. Before the actual recording

the gain of the ampli® er was set to the maximal value at

which there was no clipping of the signal. The EMG

signal was also recorded on an ink-writing X-t recorder,

together with the goniometer signal (® gure 1). In

addition, the EMG was processed into the SR-EMG

(Smoothed Recti® ed EMG) using a two-phase recti® er

and a ® rst-order low-pass ® lter (s ¯ 200 ms, i.e. 0.8 Hz)

(Medelec I7) (® gure 2a).

The SR-EMG signals and the goniometer signal were

recorded in a computer system, by means of an A}D

converter (8 bits, 60 Hz) and stored on a ¯ oppy disk for

oŒ-line analysis. (Apple II computer & Digilog

ADC16; the software was written in MS-FORTRAN

under the CP}M operating system).

In order to obtain a comprehensive view of the

activation patterns of both agonist and antagonist

muscles, ensemble averaging of the cyclic movement was

performed (® gure 2b). This was achieved in three steps.

Firstly, segmentation of the cyclic signal into N segments,

N being the number of repetitions during the test.

Subsequently, all segments were time-normalized by

linear interpolation using a time base of 0± 100% cycle

time. Finally, the ensemble-averaged signals (and the

standard deviation per % -cycle-time) were calculated,

printed and saved for further parameterization. This

procedure was followed to obtain a more reliable

estimate of muscle activation levels eliminating the cycle-

to-cycle variation of muscle activation.#"

p a r a m e t e r s

The following parameters were derived for perform-

ance of the movement (from the average goniometer

signal):

Frequency: average frequency of the (self-paced)

repetitive movement [}min.]

Score : total amount of movement during 30

seconds [° ]
Rom: average range of motion per cycle [ ° ]

The following parameters were derived from the muscle

activity level (from the average SR-EMG signal):

Max: maximum of average SR-EMG when the

muscle is acting as an agonist [lV]

Min : minimum amount of average SR-EMG

[lV], (i.e. bias activity)

Mod: modulation of the signal: ( m a x ® m i n )}
m a x [% ]

Both parameters were derived before (A) and after (B)

cooling. In order to normalise for inter-individual

diŒerences, an additional parameter was de® ned:

Rel : m a x }(( m a x a  m a x b )}2) [% ].
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Figure 2a On-line signal processing.
Figure 2b OŒ-line signal processing.

Each parameter was obtained for the m. tibialis anterior

(TA) and the m. triceps surae (TS).

s t a t i s t i c s

All test parameters were compared before and after

cooling. Statistical tests were carried out to control for

the two-tailed level of signi® cance, set at p ¯ 0.05. A

Student’s t-test for paired observations was applied for

the performance and muscle activation parameters. The

results of the clinical examination were evaluated with

the Mann-Whitney test, for paired observations. Calcu-

lations were performed in SPSS.

Results

The skin temperature, due to the cooling procedure,

dropped by 16.8 ³ 2.3 ° C, which shows that the pro-

cedure was quite eŒective in decreasing skin temperature.

This amount of skin cooling corresponds with a drop in

muscle temperature of approximately 5 ° C.#! The eŒect
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Repetitive movement test

Figure 3 Changes in clinical assessments after cooling per subject (N ¯ 16). Initial scores are shown as bar height, the shaded area represents the
decrease in score after cooling. Abscissa: patient number. Ordinate : re¯ ex}clonu score (table I). Left side of bars : Achilles tendon re¯ ex. Right side
of bas: ankle clonus.

Figure 4 Typical result of the repetitive movement test after signal-processing. Ankle-angle is in degrees of plantar ¯ exion. Solid line : before cooling.
Dashed line : after cooling.

on the knee tendon re¯ ex, initially normal for all but 2

patients, was minimal, but the eŒects on Achilles tendon

re¯ ex and ankle clonus were signi® cant. An overview is

shown in ® gure 3. All 5 patients who showed no response

on Achilles tendon re¯ ex were assessed as grade 0 or 1,

including the 2 non-responders with respect to the ankle

clonus.

A typical result of the repetitive movement test is

shown in ® gure 4. This patient showed not only an

increase in the SR-EMG of the m. triceps surae, but also
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Table 2 Group means, mean diŒerence (standard deviation), and levels of signi® cance of performance parameters of the repetitive movement tests,

before and after cooling m. triceps surae. Signi® cant eŒects are marked with an asterisk

Parameter Applied at

Group mean (s.d.)

Mean

diŒerence p-valueBefore After

Passive ROM Dorsal RM 22.7 (4.6) 23.8 (3.1) 1.1 (3.7) 0.255

[deg] Plantar RM 21.4 (3.7) 22.3 (2.8) 0.8 (2.6) 0.218

Active ROM Dorsal RM 15.8 (6.8) 16.0 (7.3) 0.2 (5.0) 0.872

[deg] Plantar RM 12.6 (4.3) 14.4 (6.2) 1.8 (3.4) 0.049*

Frequency Dorsal RM 22.2 (4.8) 24.0 (3.6) 1.8 (3.1) 0.036*

[}min.] Plantar RM 25.5 (5.6) 24.0 (4.9) ® 1.4 (4.1) 0.177

Score Dorsal RM 295 (154) 336 (183) 41 (105) 0.146

[deg] Plantar RM 224 (114) 294 (168) 70 (124) 0.040*

Figure 5 EŒect of cooling on the muscle activation per subject, as absolute SR-EMG (upper part of ® gure) and relative change (lower part of ® gure).
Before cooling is shown as open bars, after cooling is shown by ® lled bars.

of the m. tibialis anterior, which was not the case in all

patients.

The parameters that characterize the performance of

the repetitive movement did not change dramatically

under the in¯ uence of cooling the m. triceps surae. Small

changes which just reached the level of signi® cance were

seen in the active range of motion and the score of the

plantar repetitive movement, as well as the frequency of

the dorsal repetitive movement (table 2).

From ® gure 5 it can be seen that the eŒect of cooling

apparently increased the activation level of the m. triceps

surae, being the muscle that was cooled. The eŒect on the

absolute levels is shown per patient in ® gure 5. It can also

be seen from this ® gure that the subject-speci® c levels of

SR-EMG vary considerably. Therefore it was decided to

express the change as a percentage of the mean pre- and

post-cooling SR-EMG level per patient. After this

normalization procedure the eŒect of cooling emerged
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Repetitive movement test

Table 3 Group means, mean diŒerence (standard deviation), and levels of signi® cance of muscle activation parameters of the agonist muscles : m.

tibialis anterior (dorsal RM-test) and m. triceps surae (plantar RM-test). Values are shown before and after cooling m. triceps surae. Signi® cant eŒects

are marked with an asterisk

Parameter Applied at

Group mean (s.d.)

Mean

diŒerence p-valueBefore After

Maximum SR-EMG m. tibialis ant. 22.3 (25.3) 26.6 (26.3) 4.3 (11.4) 0.153

[lV] m. triceps surae 8.7 (8.7) 20.5 (24.9) 11.8 (19.3) 0.028*

SR-EMG modulation m. tibialis ant. 71.9 (27.1) 79.1 (24.3) 7.17 (17.9) 0.130

[% ] m. triceps surae 57.8 (30.3) 66.5 (29.7) 8.7 (15.1) 0.035*

SR-EMG relative level m. tibialis ant. 86.5 (32.8) 113.5 (32.8) 26.9 (65.5) 0.121

[% ] m. triceps surae 67.1 (25.5) 133.0 (25.5) 65.9 (51.0) 0.000*

clearly (® gure 5). In table 3, group mean activation

parameters on both m. tibialis anterior and m. triceps

surae are shown. All parameters for the m. triceps surae

increased signi® cantly, but the increase in all parameters

of m. tibialis anterior did not reach a signi® cant level.

Discussion

The super® cial cooling of m. triceps surae has an

apparent eŒect on spasticity, as it is observed by common

clinical assessment during physical examination.",$ This

was con® rmed in this study. Hyperre¯ exia of the Achilles

tendon was eliminated in all patients, and clonus

disappeared in all but one patient. Knee tendon re¯ exes

were scarcely aŒected, indicating a local eŒect of cooling.

The elimination of hyperre¯ exia of the Achilles tendon

and ankle clonus might be an important improvement

for the patient. However, this eŒect is only temporary,

and will last for only two hours at the most. Patients

might wish to use this easily applicable method when

they need relief for a short period of time. The eŒect

might also be bene® cial when the hyperre¯ exes and}or

clonus hinder a therapeutic intervention, e.g. the ap-

plication of a peripheral nerve block## or a casting

procedure in the manufacture of an ankle-foot-orthosis .

In addition to this well-known clinical fact, we

attempted to reveal some changes in muscle activation

and performance in repetitive movement of the ankle, i.e.

the RM-test. For this purpose the Smoothed Recti® ed

EMG (SR-EMG) was recorded as a measure for the

relative level, or envelope, of EMG muscle activation.

The additional process of ensemble averaging thus

further averages the cycle-to-cycle variation of muscle

activation. It must be stressed that an adequate de-

scription of the recording and signal-processing tech-

niques used is necessary, as seemingly minor changes in

these techniques might signi® cantly aŒect the parameters

that are based on it.#$

The results of this study show that an increased

agonist EMG-activity of the m. triceps surae is observed

after cooling. However, this does not result in better

performance on the RM-test. Only a minor, clinically

non-relevant increase in range of motion in the direction

of plantar ¯ exion was seen, which could be explained by

a higher muscular force of the m. triceps surae as a result

of higher activation. In only one patient a slight co-

contraction of the m. triceps surae during dorsal ¯ exion

was seen. As a result of cooling, this co-contraction

diminished. This phenomenon is compatible with the

idea that co-contraction of the m. triceps surae is due to

disinhibition of re¯ exes, triggered by muscle spindle

activity following lengthening of the muscle. This

induced co-contraction would be reduced after

decreasing the sensitivity of muscle spindles by cooling

the muscle, an eŒect that was seen in some patients in a

study by Knuttson.$ However, in the present study this

was certainly not a general observation. An increase in

dorsal ¯ exion, which would have been of functional

relevance, did not occur. In the light of these observations

it might be hypothesised that limited dorsal ¯ exion is not

due to hyperre¯ exia of the m. triceps surae, but is caused

by mechanical factors, e.g. a shortened m. triceps surae

complex.*,#% ± #(

An increase in SR-EMG of the m. triceps surae was

not observed in all patients. Apparently there is no

uniform response to cooling muscles in patients with

spasticity. Post-hoc analysis showed no correlation of

this response with the response to clinical examination.

Functional improvement was not systematically

assessed, but it was noticed that only patients who were

hindered by a severe ankle-clonus improved their gait

after the cooling. At this point it is not clear how the

RM-test of the ankle, following cooling the m. triceps

surae in spastic patients might contribute to clinical

decision-making.

An explanation of the increased activation of the m.
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J. Harlaar et al.

triceps surae might be twofold. Firstly, due to the

decrease in temperature, the electronic and}or the

electro-physiological properties of the muscle tissue

might be changed, so that a higher electrical signal is

measured at the same level of activation of the muscle.

Studies that describe the eŒect of cooling on the EMG,

using stimulation to control the level of activation, are

scarce. In anaesthetized cats it was found that both EMG

and muscle force increased with temperature reduction,

the EMG increase being less variable.#) In contrast, the

M response in normal human m. triceps surae was found

to decrease after cooling the m. triceps surae."&,#! Cooling

slows down the chemical and electrophysiological pro-

cesses along the muscle ® bre, which results in a decrease

of the velocity of the motor unit action potential, and

thus a lower, but prolonged M-response.#*,$! The eŒect

on the interferenced signal (i.e. the surface EMG of gross

muscle contraction) will be a lowering of the bandwidth

of the EMG.#*,$",$# The SR-EMG, being an estimation

of the root mean square value of the EMG, is unaŒected

by a shift in the EMG power spectrum.

A second explanation of the higher levels of EMG

after cooling focuses on spinal nerve activity. Cooling of

the skin at the m. triceps surae aŒects the sensory in¯ ow

from skin receptors which increases the H re¯ ex#!,$$ or

leaves it unaŒected."& Cooling of the muscle decreases the

H-re¯ ex,#! but leaves the H}M ratio unaŒected."& As the

sensitivity of muscle spindles to stretch is decreased at a

lower temperature,"$,"% the Achilles tendon re¯ ex (T-

re¯ ex) is decreased."&,#! These results indicate that the

excitability of the alpha-motorneuron pool is unchanged

under the in¯ uence of muscle cooling. However, this is

found in normal subjects without voluntary eŒort. There

is no a priori reason why this should be generalized to

patients with spasticity, and to situations in which

supraspinal drive is present. For example. Sinkjñ r et al.

showed the H-re¯ ex modulation to be a function of

excitation level in patients with spasticity.$%

Placing normal subjects in a low ambient temperature

showed a doubling of the m. soleus EMG in a functional

task.$& Long-term exposure to low ambient temperature

(muscle temperature decreased by 5 ° C) showed variable

eŒects in the EMG of upper-arm muscles, with a

decreased performance.$’ On the other hand Mucke and

Heuer found unchanged mechanical output with a strong

decrease in the EMG after cooling.#* It can be concluded

that the current literature on the eŒects of muscle-

cooling on surface EMG cannot be unambiguously

phrased to explain the eŒects that were found in this

study. Meanwhile, the most plausible cause of the

increase in SR-EMG of m. triceps surae after cooling in

patients with spasticity, is an increased level of ex-

citability of the alpha-motorneuronpoo l in voluntary

movements.
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