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Hole spectral function and two-particle—one-hole response propagator

G. A. Rijsdijk, W. J. W. Geurts, and K. Allaart
Department of Physics and Astronomy, Free University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

W. H. Dickhoff
Department of Physics, Washington University, St. Louis, Missouri 63130
(Received 1 August 1995

The fragmentation of one-nucleon knock-out strength at low energies is considered from the viewpoint of
the two particle-one holéand two hole- one particlaesponse propagator. The aim is to deal with particle-
particle (and hole-holg as well as particle-hole collectivity simultaneously. This is achieved on a Tamm-
Dancoff level by the so-called Faddeev approximation of tipd 2 propagator. Results of this approach
illustrate the relevance of this consistent treatment of both particle-paftiole-holg and particle-hole col-
lectivity. A further extension, within the framework op2h RPA which was sometimes applied in the past, has
serious unsolved problems, some of which are discussed in detail.

PACS numbds): 25.40.Kv, 21.10.Jx, 21.60.Jz, 24.10.Cn

[. INTRODUCTION is knocked out, the residual nucleus is left behind with an
excitation energy of 100 MeV and highlel'7]. This has to be

Shell model properties of nuclei have been studied in deverified by (e,e’p) reactions with high missing momentum
tail recently by means of proton knockout reactions withand energy. Additional and more direct information may be
electron beams. By measuring the momentum dependence obtained by detection of pairs with high relative momenta
the cross section for discrete final states, a direct confirmaand for low excitation energy of the final nucleus with two
tion is found that nucleons are residing in the various shelhucleons fewef19,20.
model orbits| 1-5]. Moreover, one demonstrates that the en- Besides the strongly repulsive short-range correlations,
ergies of the final states, corresponding to the knockout fronthere are also the long-range correlations assiocated with the
a specific bound orbital, exhibit a spreading which may beshell structure and the surface of the nucleus which contrib-
related to properties of the optical potential for scatteringute to the depletion of shell model orbits. These long-range
stateg 6—9]. Some uncertainty still remains about the abso-correlations are responsible for the fragmentation of knock-
lute values of the spectroscopic factors deduced from theut strength at low excitation energies of the final system, up
analysis of the data and therefore also about the occupatian about 50 MeV[9,21,23. Theoretically, these long-range
probabilities of the various shell model orbits. There is somecorrelations may be taken into account by solving the Dyson
consensus that these occupation probabilities of orbitals justquation with a self-energy in some approximation beyond
below the Fermi energy are about 0[#510]. On the other the static(Brueckney Hartree-Fock potential. Dispersion and
hand, the analysis of just the,g’p) data shows some de- correlation effects have been included by various authors
pendence on optical potentials used and on whether or not[@,21] in the form of dynamical contributions to the self-
relativistic nuclear model is adoptgd1]. energy of second order in an effective interaction, e.ds a

Theoretical calculations of the spectroscopic strengthmatrix. Results of such calculations account rather well for
have been performed dealing with two different aspectsthe overall spreading width of deeply bound states. On the
First, shell model orbits will be depleted due to the short-other hand, the weaker fragments for discrete states at low
range repulsion. This effect is sometimes represented by thenergy are considerably underestimated. Higher order conti-
introduction of correlation functions in a Slater determinantbutions to the self-energy, in the form of a coupling of par-
[12]. The short-distance binary collisions will be sensitive toticle or hole motion to collective modes, may be the expla-
hardly any other nuclear structure than just the local densitynation for this. Attempts in this direction were made in Ref.
Therefore the depletion of states below the Fermi level a§22], in which particle pairs and hole pairs as well as
well as the complete spectral function has been studied iparticle-hole pairs in the self-energy were treated in the
nuclear matter at various densities, both by Green functioTamm-Dancoff approximatiofTDA) or random-phase ap-
methods[13,14 and with variational correlation functions proximation(RPA). These calculations were still unsatisfac-
[15,16. Finally, the spectral function if®0 has been calcu- tory in some respects, however. First, there was some viola-
lated in a Brueckner Hartree-Fock approddf]. Nuclear tion of the Pauli principle, as is also implicit in
matter results have also been folded into phenomenologic@henomenological particle-phonon models. In the calculation
model calculations for finite nucl¢ll8]. Somewhat depend- of the collective phonon the presence of the particle or hole
ing on the methods and interactions used, one finds a 10is ignored. Second, the method was not suitable to treat
20 % depletion of the orbits due to the short-range forcesparticle-particle and hole-hole correlations simultaneously
Since the dominant mechanism dealt with in these calculawith particle-hole correlations.
tions is the hard binary collision, the occurrence of particles It is the aim of the present paper to develop a method
with large (relative momenta is implicit. When one of these which addresses these problems and to see how relevant this
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FIG. 2. First and second order diagrams that contribute to the
irreducible self-energ}.* in Eq. (5). The lines represent the single-
pole approximation(6) to the Green function, with diagrare)
already taken into account. Diagrafin) then represents Eq10).
Interaction lines represent@-matrix interaction used in this work.

FIG. 1. Graphical representation of the Dyson equat&®nThe
double line represents the full propagatiw); the single line the
free propagatog®(w) of a nucleon in a suitably chosen mean-
field potential.

simultaneous treatment of both types of correlations is. This LS (Wolaf|Wa Ny Ha.vy)

is most conveniently done by connecting the self-energy to —(EA—EA L '
. m w ( 0 m ) 17

the two-particles—one-hole fAh) response propagator. In

sec. Il this formalism will be presented. Two approximations.l_his Green function also contains information on the process
for the 2p1h response propagator, the Tamm-Dancoff and P

random-phase approximations, will be considered in Sec%f adding a parti_cle(see Ref.[g]) which iIIustraFes that the
Il B and 11 C, respectively. Applications for the nucléiCa P strength that is not seen in removal experiments must be

and °%Zr are discussed in Sec. lIl. Section IV contains Someore.se_nt in particle addition experiments. The SP propagator
conclusions. T satisfies the well-known Dyson equatifi?3,24]

4

Il FORMALISM Gap(@) =0 3(0) + 2 gP(0) S5 @)gss(@),  (5)
. b2
A. Spectral function and self-energy

The present work is an extension of Rd] in which the  \yhich is graphically represented in Fig. 1. In this equation
reader may find a more extensive discussion of the compy;(©) depicted by a single line in the figure, is the Green

tational techniques. The quantity of interest is the hole specqnction of a freely propagating particle or hole in a suitably

tral function chosen mean-field potential. The irreducible self-en&dy
in Eqg. (5) may be written as an infinite series of successively
Si(a,0)= 2 (Th Ya,l¥e)|?s(w—(Ef—EnH), higher order terms in the interaction, minus the interaction
n=0 (1)  already included in the mean field gf%. In practice, the
series expansion at* has to be truncated at some point,
which implies a corresponding approximation of the spectral
function. The lowest two orders in the interaction are repre-
sented in the diagrams of Fig. 2. The lowest order diagram,
Fig. 2@), generates the self-consistent Hartree-Foidk)
field. Assuming that this is just the part of the interaction
already absorbed ig©®), this implies

which represents the probability density for removing a
nucleon from the orbite from the ground state of the nucleus
with A nucleons while ending up in theth state of the
A—1 system with energf,~* (n=0 denotes the ground
statg. The occupation probability of the orhit is obtained
by integration of the hole spectral function

6(a—F) 0(F—a)

a)—ng-i—in w—ng—in '

n,= f TdoSy(a0), @ 0ud(@)=Bap ()
with an upper limit of integrationsf =E5;—E5 "', The
spectral function can be calculated from the imaginary par
of the single-particldSP propagator or Green function,

here 6 is the step function which indicates whether the
rbit « is above or below the Fermi level and corresponds to
HF quantum numbers.
1 The second order ter@*(? is displayed in Fig. ).
Si(a,w)=lim—=Img,(»), o<eg, (3)  When this term is included in the Dyson equation one has to
7—0™ solve the coupled equations

by using the spectral or Lehmann representation of the SP
propagator which s given by 93 @) =gih(@)+ 2 g (@) 35 (@)gw)  (7)
Y
(Wola, i)Wy ap w)
w—(Eﬁ+l—E’8)+i7] and

gaﬁ<w>=;
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1 d
wi@)=3 2 f o f 57 ({@dVIuk) (VI BNGE 0= w1+ 02) g3 (@) g3 (@)} t:)

In Ref. [9] a single-pole approximation
0(a—F) O(F—a)

@) n
Yap™ “ﬁ{w—sa-i-in w—g,—in ©)

was substituted in expressi@8) for the second order self-energy. The valugsof the pole energies of shells close to the
Fermi level were matched in Rdi9] with the exprimental energies of the states with largest spectroscopic factor for each
j™ value. For more remote shellsstimated mean removal energies are identified wath. With the approximatior(9) the
self-energy(8) takes the approximate form

O(u—F)0(v—F)8(F—k) O(F—w)0(F—v)0(k—F)
o—(g,te,—g)tin o—(g,te,—g,~iny

1
@~32 <aK|V|w><w|V|ﬁK>{ 10

and the Dyson equatiofY) is then solved with this approxi- tions for the self-energy¥,*. These were presented as “trac-
mate form by the procedure sketched in R8}. It should be table” extensions of the second order self-energy,
noted that the use of a realistie-matrix interaction in the represented by the Goldstone diagrams in Figa), 3(b).
second order self-energy implies that only a limited domainThe freely propagating pair of particles or holes in diagrams
of the configuration space can be included before doublg(g), 3(b) was replaced by the Tamm-Dancoff approximation
counting becomes a serious problem. Using a phenomengy random-phase approximation for the particle-particle
logical interaction as in Ref21], the choice of the configu- propagatofdiagrams &), 3(d)]. Similarly, the freely propa-
ration space is arbitrary. In Rei21] approximation(9) was  gating particle-hole pair can be replaced by the TDA- or

avoided and complete self-consistency was obtained, ajpa. correlated particle-hole propadatédiagrams
though the fragmentation of strength in the low energy re- 3()]. P propagatuiag ®).

gion was also not completely satisfactory. In both Rg®.
and[21] it was therefore suggested that collective correla-
tions among the propagating lines in diagrafb)2i.e., in
2plh and 1p2h states, should be included in order to ac-
count for the collectivity of the phonons to which the particle
or hole couples. It is this kind of extension that will be con-
sidered in the following.

In order to arrive at an approximation f&* in which
correlations among all three propagating lines are included,
one needs a more formal treatment of the relation between
the self-energy and higher-point Green functions, especially
the two-particle—one-hole propagator. These relations are de-
rived by differentiating the SP propagator

; 1 — A Trgr A
B. Self-energy in a “Faddeev” approximation igap(t—t")=(WolT[c (t)cy(t)] W), (11)

In earlier work[22] the Dyson equation for the single-
particle propagator was solved for a number of approxima:

R
0

with respect to the time arguments, which will relate the SP
propagator to the two-particle propagator. This scheme can
be continued and leads to a set of coupled equations, in

[PhTDARPA

PKTDA/RPA

=
E - E
IR

@

FIG. 3. Second order self-energy terms represented by Gold-
stone diagramga) and (b). Extensions applied if22] are made by
including TDA or RPA correlations in the particle-particldia- FIG. 4. Lowest order reducible contribution to thpTh propa-
grams(c) and(d)] or particle-hole channgHdiagrams(e) and (f)]. gator.
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which then-body propagator is related to the{1)-body vation of the relation between the self-energy and tpé&f2
propagator and so dr25]. propagator, which will suit the aims of this investigation.

To avoid extensive formal development we will not carry This result can be found by inspection of thmth order term
out this procedure here, but instead give a less formal derief the perturbation expansion fgr,z(t—t") for m=2,

_)m

1
(m)(t f dtl J' < 0|T[ 1) l(tm_Z)k%n kalmnck(tm l)CI (tm 1) n(tm—l)cm(tm—l)

xp% qurscpum)cf(t )Co(tm) € (tm) Co(t)Ch(L")

|‘I’o>, (12

in which two of the interactionlsl1 are written out explicitly. Contraction af,(t) with a creation operator at one intermediate
time and contraction o, p(t") with an annihilation operator at different intermediate time can be performedn(mé4-1)
ways and one obtains

1 _i\m—=2 ryp o
gup(t—t)= Ef Aty J At (t— tn- ﬁ[ > zvk.mn{((m'_%)!f_mdtp-fmdtm_z(—i)

Imn;pgs
X<®O|T[Hl(t1)"'H1(tm—Z)CIT(tm—1)Cn(tm—1)Cm(tm—1)C;(tm)ca(tm)cs(tm)]|(DO>} pqrs] g(O)(t t).

(13

The expression between curly brackets is then recognized asttherder reducible self-energy(™ and can be written as
(M) 7y 1 (m-2) nl
zaﬁ(t_t )_Imnz'pqs 2ValmannI pqs,(t_t )Equﬁsa (14)
in which R(M~2) is the (m—2)th order term in the perturbation expansion of thELR propagator,
iRmnpadt =) =(WoITLel (Dea(Hiem(teh(t ) ed(t ) es(t) ][ W) (15)

This relation applies for all ordem®=2 in H,.

In the irreducible self-energ¥*, one should leave out all diagrams in the perturbation expansidr ¥anich fall apart in
two pieces by cutting through a single fermion line. The first contribution to these reducible diagrams is of second order and
is shown in Fig. 4. The expression for the nonstatic patk dfis then[26]

. 1 — 1
aﬁ(w):lm%qsivalmannl;pqs(w)Equﬁsn (16)

where byli the part ofR not containing reducible diagrams is meant. This quantity is referred to aspthle Zsponse
propagatoff 26]. _
One may note that if the zeroth order expressionRpr
0(1-F)0(2—F)0(F—-3) 6(F—1)0(F—2)6(3—F)
w—(e1tey—e3z)t+in w—(e1tey,—e3)—in

R(lg)g, 1213/ (0) = (811 8901 — 812 6211) O3z , (17
is used in Eq(16), one obtains the familiar expression for the second order irreducible self-gigggil0)].

Approximations for>* beyond second order can now be constructed by calcul&ifrgm an integral equation, which
sums an infinite subset of diagrams fr In its most general form such an equation will be very difficult to deal with. The
three-body vertex which connects two six-point Greens functions can in general depend on six time arguments. If, however,
the restriction to two time arguments is made, thereby limiting the class of diagrams which could be summed by the equation,
one solves, after Fourier transformation,

R(®)=R()+RO(w)K(»)R(w), (18)

with a certain choice for the vertd&. As a first approximation one can take the so-cal®] Faddeev or disconnected part
or the three-body verteK, which is the sum of three two-body vertices, one in igechannel and two in theh channels.
The simplest case is when the two-body vertices are taken to be first order in the interaction. With this ch¢jcedail8)

is graphically represented in Fig. 5.
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With the methods known from the particle-particle and particle-hole d@88sEq. (18) can be cast into a secular equation,
the so-called p1h TDA equation[27]

[w'—(e1te2—€3)]D],5=[0(1—F)8(2—F)O8(F—3)— 8(F—1)8(F—2)6(3—F)]

1
X E V23/32r 511I+V13r317 522!+EV121’2!533! bI’Z’S’ . (19)
1’2’3’

Note that in this equation the summation indicé2'B’ sat- andhhp states, see Fig. 6. These correlations are, however,
isfy the conditions that either '>F, 2’>F, 3'<F or different from the ones usually considered at the two-body
1'<F, 2’<F, 3'>F; i.e., the correlations within theph level in thepp or ph RPA. With the assumptions made in
andhhp spaces are treated separately. From here on we wiEg. (18), it is not obvious how to include ground-state cor-
denote the restrictions on the three indices of tipdl2 re-  relations at the two-body level in thep2h response propa-
sponse propagator by a string of three charagtessh and  gator. In the next subsection we will discuss this further.
reserve the expressiomp2h for the general case. In math- From Eq.(19) it may be inferred that after omission of the
ematical expressions the three-character string enclosed Itwro particle-hole vertices, one is left with essentially the
brackets will denote the collection of states with the restric-TDA equation andR becomes

tions given by the character string. The phase space factors

give rise to a positive sign for 123{pph} and to a negative —

sign for 123={hhp}. This resembles the fact that there is no Rizgv203(@)

sign difference between the forward and backward terms of ppTDA oyt
the 2p1h response propagatfe.g., Eq.(17)], in contrast to _ Mo (0tes)dsy (1231273 < {pph}),
the particle-particle and particle-hole propagators. In terms _HESII.??’(Q)+83) sy (123,12'3"e {hhp)).
of the eigenvalues and eigenvectors of EtP) the 2plh
response propagator is written as (22)
Rooiror ()= biod1iora (20) Similarly, omission of the particle-particle vertex and one of
123,123 > 0o’ the particle-hole vertices reduces HG9) to the ph TDA
equation and leads to
and the corresponding expression ¥t becomes
. ( ) E [2123%Va312b523][21’2’3’%Vl’Z’ﬁ3’bI’2'3’] R123;l’2’3’(w)
w)=— m .
“p v 0o o e (0—e)dy (123123 e {pph}),
—I5 8 (w—e1)8yy  (123,12'3" ¢ {hhp)).

In Egs.(20) and (21) the indexv denotes both the forward

and the backward solutions of thgg2h TDA equation. In

the former case the summation indices in E2{l) run over

the pph states, in the latter over thehp states. Using these expressions in Ed6) is then a formal way to
It should be noted that the first order Faddeev approximaconstruct the self-energy approximatiors* PP™°A  and

tion does not contain the aforementioned reducible diagrams; * PhTPA ;sed earlief22].

Furthermore, no ground-state correlations are present in this

approximation. In the present approach ground-state correla-

tions appear if the verteK contains also terms of second

order in the interaction, which can connect the spaceggpdf

(23

1 11
R| = —

I
FIG. 6. Second order diagram for the vert€&of Eq. (18) which

FIG. 5. Graphical representation of E4.8) with the first order  connectshhp andpph amplitudes of the @1h response propaga-
Fadeev approximation fdf. tor.
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C. Extension with RPA-type two-particle—one-hole possible combinations for the indices 123 to be below or
correlations above the Fermi level. The forward part of th@lh re-

Since the RPA is more suitable to emphasize the collecSPonse propagator now has in additiongtph amplitudes
tivity of the (low energy excitations, to which particle and also nonzerdvhh amplitudes to account for ground-state cor-
hole motion couple, it is expected that the fragmentation of€lations in thepp channel and nonzemphp andhpp am-
spectral strength at low energy and especially the occupatioplitudes to account for ground-state correlations in e
of orbits just above or below the Fermi level are better rechannels. Similarly, the backward part of thelh response
produced in an RPA type of approach for thelh and propagator has in addition tohp amplitudes also nonzero
2h1p propagators. This will be illustrated for the hole spec-ppp, hph, andphh amplitudes. Because(®) does not exist
tral funnction of the(unoccupied f,,, proton orbit in“8Ca.  for the quantum numbers 123 associated with these addi-
The problem encountered with the inclusion of ground-statdional amplitudes, one needs a more general form of the in-
correlations at the two-body level in thep2h response tegral equation than the one adopted in Ekf). Neverthe-
propagator is that the restriction>IF, 2>F, 3<F or 1<F, less, in Ref.[28], using the concept of mass operators for
2<F, 3>F for the indices is lifted. Instead thep2h re-  higher-point Green functionf29,30, the following secular
sponse propagator has nonzero contributions for all eightquation was proposed:

[w"— (g1t~ 83) [ ]pe= > {[0(F=3)— 60(F—2)]Vog 32 810 +[O(F—3)— O(F— 1) V1331 62
12'3

1
+[6(1-F)08(2—F)—6(F— 1)0(F_2)]§V12172/533r Tlipigrs (24)

which differs from Eq.(19) only in the phase space factors. These phase space factors allow for the appearance of the
additional amplitudes. The equation still separates into a forward part, which couplep lthepace with theohp, hpp, and

hhh spaces, and a backward part which coupleshthp space to thénph, phh, andppp spaces. The content of E(R4)
becomes clear if the submatrices between the different spaces are written out explicitly. We will do this only for the forward
part as the backward part goes the same way. For the forward paf24dhen reads

A B, B, Bj /X 1 X
Bl A X1 -1 X3
BJ A, xy| = -1 X5 | @9
B] Az \ X% -1/ | xy

with the submatrices and subvectors given by

{A}p1p2h3 iP1Porhy (e p1+ &p, ™ 8h3) 59191’ 5p2p2/ 5h3h3’ + Vp2h3/h3p2/ 59191’ + Vp1h3,h3p1, 5p2p2/ + Evp1p2pl’p2’ 5“3“3’ ’
{Al}plth3 Pprhypg = T (8p1+ €h,™ Sps) 5plpl, 5h2h2, é\p3p3r + Vh2p3,p3h2y 5plpl, )
{Az}hlp2p3 hyporpg ™ (8h1+ €p, 8p3) 5h1h1, 5p2p2, 5p3p3/ + Vh1p3,p3hl, 5p2p2, )
{1Asthynyhying hyihg = = (8n,+ 8n, = 8ng) Shyny, Shohy, Sngha, + 5 Vighhy iy, Sngh,
{Bl}plpth;plfhzyps,:Vp2p3,h3h2,5plpl, )
{Bz}plpzhs;hl,pzypy:Vp1p3yh3h1y5p2p2,:
Balp,pyhginghyhg =5 Viypohyhy: Shghs,

{XV}Plpzhsz FglthS' {Xz}plthsz F;thpS '
{X2thypops=Thypypsr {XaHhgnohs=Th nhg - (26)

The form (e, +e,—e3) 811 5o 833 Which is retained for the diagonal elements in the additional subspaces does not seem
to make sense because, as stated eaRiét,does not exist in these subspaces. One should therefore discard solutions which
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have their greatest components in the additional subspaces as unphysical. This is immediately clear when the interaction is set
to zero and Eq(25 should yield the zeroth order approximation B which exists only in thepph subspace. This
observation was not made in R¢R8].

The relevance of Eq25) can be checked by taking the limit where the interaction is considered in one channel only. If, for
instance, only the interaction in thEp channel is considered, E(5) reduces to

[ b=t )l
=" v (27)
Bl As/\ X} -1/\X3
with the submatrixA now given by
{A}plp2h33pl’p2’h3’ - (8p1+ €p,~ shs) 59191'59292'5h3h3’ + Evplpzpl'Pz'éhshs’ : (28)
|
The total matrix is now diagonal in the indiceg andhs.. matrix in the right hand side of E¢25). A positive sign in

For each value of these indices Eg7) comprises p RPA  Eq. (31) then indicates a physical solution and a negative
eigenvalue equation. The eigenvalues corresponding to thgign an unphysical solution.

physical and unphysical solutions of EQ7) are then easily It should be noted that E@25) is not a restatement of an
recognized as integral equation, as is the case for thglh TDA equation.

This also implies that a diagramatic representation of the
wVphys= wﬁ+2—8h3a 7 unphys= wﬁ*2—8h3, (29  2plh RPA equation is not possible. The ground-state corre-
lations at the two-body level are treated without considering
where a more complicated energy-dependent integral equation but
at the expense of the appearance of unphysical solutions. The
wh =+ (EST2—Ep) (300  coupling ofpp phonons angh phonons takes place only at
forward energies in thpph subspace whereas the additional
are the eigenvalues of thep RPA equation. If furthermore subspaces serve to provide the phonons with their RPA char-
the normalization condition acter. If the additional subspaces are left out, Ep) re-
duces to the g1h TDA equation.
— y o The unphysical solutions should not be confused with the
12362{pph} I'12d 125 123;{pph} Iiod'125=* 8, (3D usual negative energy solutions of the or ph RPA equa-
_ tion. The backward part of thegdh RPA response propaga-
is adopted, the forward part &(w) becomes tor is given by the physical solutions of a separate equation
in the hhp subspace extended with thgh, phh, andppp
Xpy2nyaten subspaces.
033, Practical implementation of thepdh RPA equation in
the case of medium heavy nuclei lik&Ca and®°Zr may be
123;1'2'3' e{pphtu{hhh}, (32 troublesome because of the huge dimension of the secular
equation to be solved. The number of states to be considered
whereX”"2" are thepp RPA eigenvectors corresponding to for the 2plh TDA equation[the submatridA in Eq. (25)] is
the eigenvalues’ " of the pp RPA equation. When used in already several thousands and its solution reaches the prac-
Eq. (16), this expression together with its equivalent for thetical limits of the possibilities of present mainframe comput-
backward part, will lead to the self-energy approximationers. A partial solution of the @Lh RPA equation, which will
3 *PPRPA of [22]. In a similar way, neglecting the interaction give the forward part oR(w) in the pph subspace only, is
in the pp channel and in one of theh channels in Eq(25  possible by treating the influence of coupling to the addi-
will lead to the self-energy approximatioB*P"RPA Note tional subspaces as an energy-dependent interaction in the
that the normalization condition is different from the one pph subspace. We first rewrite E(®5) as a matrix inversion
given in Ref.[28]. Its form follows from the geometrical problem,

ﬁ caorrl W)= "
123; 12 3( ) ; w—(wﬁ+2—83)+l7]

o—A —B; -B, —B; \ !

_ -B] —w—A;

Rlw)=| BI Cw-A, (33
—-BJ —w—A,

In the pph subspaceﬁ(w) is then given by
R(w)=[o—~A-K(w)] ™, (39
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with

1 1
K(w)IBlT_lBl—F BZT_AZBZ+ B,

A Bl. (35)

_(,L)_As

The inverses of the matricesw—A;, —w—A,, and— o — A3 are easily obtained as they are diagonal in one of the indices.
They can be expressed as the TDA solutions inttheand hp spaces,

1
- — phTDA _
[ _(1)_A1 Hh2p3;h2’p3’(w Spl)aplpl’ !
(U s SRUPY Y

1
- — phTDA _
( —w—A; thps?hl’ps'(w sz)ﬁpzpz" (36)
h1PoP3:hy Py Py

1
hhTDA
_— =1, h wtep)od .
[—w—Ag _ hahz hy g ( ha) Onghy,
hyhohgshy by hy,

In terms of the TDA eigenvalues and eigenvectétép) is written as

A,n A,n
honpagn ' hompgm
2"F3 2"F3
Kp1p2h3;p1,p2,h3,(w)— %p:’,\rr/pzp3"h3h2"n§0 (J)_(Sp _wﬁ) h2mh3,p3mp2,5plp1,
1
hympgm
A,n A,n
hynpar ' hympam
1"F3 1"F3
_E \ h.h 2 — =V )

1 " A hymharpampqr ’
hyrpar P1P3 N3Ny n#0 w—(gpz—wn) 17N37 P3Py’ “P2P2
hympgm

A—2nT+A—-2n
hyrhon ' hymhom
172 172
2 Vpphphy D ———a7——V 5 (37)
nhon A-2 hymhompqrpsr ©hohgy -
hyrhon P1P2Ny g 4 o— (o, _8h3) 17 NomP1rPar N3Ny

hymhym

The 2p1h response propagator can now be calculated as a continuous function of the energy by direct matrix inversion of the
right hand side of Eq(34). This will, however, formally result in

Vphys T Vphys 7 unphyq Punphys
R (w)= Y, e Pubelly s Pibels PuPely oy (@) + RURNYs (), (39
P1Pohgipy /g L @ _V - — w"phys - w— @’uphys  P1PoN3ipypyrha w P1Pohg:pyrPyrhy L @)
pnys unphys

and the separation of physical and unphysical solutions is nwhere for simplicity in the calculation the self-energy is
longer possible, particularly when the unphysical solutiongaken to be diagonal.
appear in the same energy region as the physical ones. On The presence of unphysical solutions in the self-energy
the other hand, the unphysical solutions contribute throughwvill give a negative contribution to the spectral strength. In
their components in theph subspace only, which may be the energy region where the physical solutions dominate the
assumed to be small as long as the solutions are only modpectral strength, the calculation can be then justified by con-
erately collective. sidering it as a lower estimate of the true spectral strength.
In the calculation of2* (w) with Egs.(34) and (19) the
energy is given a small imaginary past-w+iA, to avoid
singularities arising from the pole structure Bfw) and
K(w). The hole spectral function is calculated by direct in-  The calculations presented in this section are performed
version of Eq.(5), with the sameG-matrix interactions used in the calculations
of Ref. [22]. The single-particle propagators are approxi-
1 mated by a single-pole expression with energies deduced
— from experiment. The procedure to assure the appearance of
Sh(a, ) IMg (@) . )
™ the largest single-particle strength fragment of the valence
1 states at the experimental values is similar as in R8fsaand
= [22].
an g Hw) =3k (w) ]’ (39 In the remainder of this section we will denote the ap-

. RESULTS FOR “8Ca AND °%zr
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TABLE |. Spectroscopic factors of quasihole statestiK.

0.5
"1 *Caleen)K;1=0 phTDA J™ E (MeV) Expt.[5] S*( S*PhTDA s xppTDA x x2pInTDA
0.3
02 %* 0 1.077) 1.53 1.42 1.28 1.24
011 ﬂ . %* 0.36 2.2616) 2.94 2.75 2.56 2.45
00 S 3* 385 0.16714 0.036 0.044  0.134 0.104
041 POTDA 2pthTDA
0.3 4
TS with by a method which shifts the spurious solutions suffi-
ot H I ciently far away from the other solutions, so as to identify
a0 | | . P : Lo oo 0o, them easily. The details concerning this method are given in
1] 5 10 15 20 0 5 10 15 20 .
Ey (MeV) Ey (MeV) the Appendix.

From Table | it can be seen that the spectroscopic factors
for the 3 ground state and thé™ state at 0.36 MeV of
4K are somewhat smaller than in tipe TDA calculation,
which gives the smallest values of the two TDA calculations.
The ™ at 3.85 MeV has a spectroscopic factor of 0.104 and
lies in between thgph TDA and pp TDA result. This also
applies for the summed spectroscopic strengths in the experi-
mentally accessible regions listed in Table II.

FIG. 7. The 3 hole spectral function of®Ca calculated with
the ph TDA, pp TDA, and 2p1h TDA self-energy. The state at
E,=0.0 MeV has been reduced by a factor of 5 for plotting pur-
poses. The experimental data are from REf.

proximation for the self-energy obtained by using the TDA
approximation for the @1h response propagator in EQL6) The 1f spectral function is shown in Fig. 9. The consid-

as the D1h TDA self-energy. If_the RPA approximation for erable strength below 5.5 MeV found experimentally is still
the 2p1h response propagator is used, the resulting approxi-

: ) not quite reproduced, but thep2h TDA calculation does
g]e"’ll]f_'ggefgythe self-energy will be denoted as thel RPA show an enhancement of strength in the low energy region

compared with the calculations of R¢22]. Up to 5.5 MeV
missing energy the 2Lh TDA calculation yields a summed
A. Resullts for “8Ca with the 2p1h TDA self-energy strength of 0.21 whereas tiph TDA and pp TDA calcula-
tions yield 0.12 and 0.05, respectively, and the experimental
value is 0.5112).

The effect of the simultaneous coupling pp and ph
phonons in the self-energy seems more pronounced infthe 1
spectral function than in thes2and 1d spectral functions.

obtained earlief22]. As mentioned before in Sec. Il these T.his can t_)e understood by examining the coupling O.f the
single-particle states to theph and hhp states which lie

are limiting cases of the more genergdh TDA approach . )
g g @ PP closest to the Fermi level. Because of parity and angular

in which the interaction is considered in only one of the three ¢ tion. th ot ¢ diff i f
possible channels. momentum conservation, these states are of different type for

Special attention must be devoted to the removal of théhe occupied and unqccupieq proton single-part.icle states. As
spurious I particle-hole excitation, resembling the coupling a consequence of this, the S|multaneou.s couplingpand
to the center of mass motion. When solving th&lh TDA ph phonons in the self-energy has a d_|fferent effect on the
equation, however, this solution will mix with other configu- positions .Of the poles of the self-gnergyjust below gnd above
rations and it will not be clear which solutions of theTh the Fermi energy for the occupied and unoccupied proton

TDA equation should be discarded. This problem was dea ingle-particle states. The positions of these poles, listed in
able 1l for the valence shells and the various self-energy

approximations, are important for describing the details of
4 the spectral function at low values of the missing energy.

In Figs. 7 and 8 the 2 and 1d spectral functions, calcu-
lated with the 21h TDA self-energy, are displayed. In order
to gain insight into the effects of the simultaneous coupling
to pp and ph phonons in the self-energy, one should com-
pare these results with theh TDA and pp TDA results

. #Cale,p)K; | = The hhp states closest to the Fermi level to which the 1
1 €PK; =2 phTDA . .
single-particle states couple are made up of two proton holes
“ in the 2s1d shell and a proton patrticle in thep2f shell or a
1] M proton and a neutron hole in thesPd shell and a neutron
0 ﬁﬂL Dlocan particle in the D1fs, shell. The collective negative parity
41 ppTDA 2pthTDA
TABLE Il. Spectroscopic strengths in the experimental region
[ ] 48
for **Ca.
| J‘I
. n HM " _ “-wILIrL.IIJ'L,-.n;I . 2*(2) E* phTDA E* ppTDA E*ZplhTDA Expt. [5]
o 5 0 B °o 5 B 552
E, (MeV) Ey (MeV) 2815
<15.0 MeV 1.58 1.58 1.44 1.50 1.¢9)
FIG. 8. The M hole spectral function oféCa calculated with  1dg/, 5/
the ph TDA, pp TDA, and 2p1h TDA self-energy. The experi- <19.5 MeV 7.97 8.20 7.45 8.04 6.63)

mental data are from Ref5].
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0s TABLE IV. Occupancies for*Ca.
:: #Ca(e,e'p)"K; 1 =3 phTDA Shell s *(2) s % PhTDA s * PPTDA s +2p1hTDA
021 "1 1Sy, 0.967 0.968 0.965 0.967
0.1
0'0 il 0o . 1psp 0.955 0.956 0.950 0.952
1pys 0.951 0.951 0.944 0.948
041 ppTDA 2pINTDA 1dsp, 0.920 0.925 0.898 0.918
w ] 1dg), 0.877 0.885 0.842 0.876
1 251 0.869 0.860 0.818 0.836
0.1
" LA ﬂnmﬂﬂ e 1f4 0.060 0.063 0.082 0.076
’ 0 5 1 15 20 ° 5 0 15 20 1fg 0.048 0.044 0.064 0.051
Bx (Me¥) Ex (4et) 2Pas 0.033 0.031 0.049 0.036
-  2p 0.030 0.028 0.042 0.033
" FISﬂgAThe _I:Ingole Zpecltrhal_rgjxcn?? of°Ca ?re;]lculated.wnh 1g2d3s 0.014 0.014 0.018 0.017
tafgata e f‘igm Re’é? 2 sell-energy. The expenmen- ) of3p 0.006 0.006 00.007 0.006
o Total 20.053 20.093 20.165 20.230

isoscalarph phonons and the collective positive parinp
phonons in theA—2 nuclei have large components in this
space. The mixing of these phonons by thpelB TDA equa-
tion moves the pole just below the Fermi energy of the back
ward part of the plh response propagator towards the
Fermi energy compared to the cases where qiiyor pp

repulsive phonons. Apart from the aforementioned summed
spectroscopic strengths this is also visible from the total oc-
cupation numbers listed in Table IV.

phonons are included in thep2h response propagator. This B. 1gy;; hole spectral function for *Zr
explains the appearance of moré dpectral strength in the  As a further illustration of the @1h TDA self-energy is
low energy region. used in a calculation for the proton hole spectral function in

The 2 and 1d single-particle states couple to théip  97zr |n this nucleus pairing correlations cause a partial oc-
states made up of a proton hole in theld She”, a neutron Cupation of the 91/2 and 199/2 shells and it is therefore of
hole in the I¥;, level, and a neutron particle in the interest to see to what extend this method is applicable to
2plfg, shell. Other possibilities require particles or holes insych a situation. Because of the size of tipel B and 1h2p
more remote shells. Close to the Fermi level the density 0§paces, the TDA calculations had to be performed with one
hhp states to which the<d single-particle states couple is major shell fewefi.e., five oscillator shellsthan the aproxi-
smaller than for the 1. single-particle states. In thes2d mationspp TDA and ph TDA. In spite of this smaller model
case the space ofhp states close to the Fermi level contains space, the g1h TDA calulation for the unoccupieddLlev-
also repulsive positive parity charge exchamge phonons  els shows an enhancement of strength in the low energy re-
and the pole just below the Fermi energy of thel® re-  gion as compared to the aforementioned approximations. The
sponse propagator is now intermediate between the casessults of these calculations are compared in Fig. 10 and in
where onlyph or pp phonons are considered. Tables V and VI. The experimental results are taken from

For the forward part of the@Lh response propagator the Ref.[2]. The ph TDA and pp TDA calculations were per-
situation is reversegsee Table Ill. The combined effect is  formed in the larger model space.
that for both the occupied and unoccupied proton single- Up to 5.75 MeV missing energy the summed spectro-

particle states the gap in the self-energy is narrowed by aboucopic strengths for thph TDA and pp TDA are 0.33 and
1 MeV compared to the cases where oplyor pp phonons

are included. This explains the reduction of the quasihole
peaks of the 8 and 1d strength distributions. 190
At higher missing energies the simultaneous coupling to
pp and ph phonons produces spectral functions somewhat
intermediate between theh TDA and pp TDA calculations. M Hﬁ

075 07r(e,e'p)®Y; I =4 phTDA

This can again be explained by the mixing of collective and 21

0.00

Lo

TABLE lll. Positions of self-energy poles around Fermi energy

for *éCa 075 PpTDA 2pIhTDA
' v 050
1d3/2 281/2 1f 712 0.25
e=—1617  £=-1581 e=—9.63 - et | Jh~
T S S A 5 5 ® 5 =
3% (2) —20.61 —3.45 —20.96 —3.45 —21.99 —4.83 Ey (MeV) Ey (MeV)
S*PHTDA 5001 —-6.50 —20.37 —6.50 —18.94 —5.43
S*PPTDA 1854 —4.46 —18.54 —4.82 —20.14 —6.36 FIG. 10. The 1 hole spectral function of°Zr calculated with

S*2plhTDA 1938 —6.77 —19.22 —6.52 —18.63 —5.85 theph TDA, pp TDA, and 21h TDA self-energy. Experimental
data are taken from Ref2].
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TABLE V. Spectroscopic factors of quasihole state$9¥.

0.5
E o 1 —— 2plhRPA
J™ (MeV) Expt. [2] 2*(2) S* ppTDA S 2p1hTDA 0.4 Ca;l=3
= —— 2plhTDA
3 0 0.727) 1.55 1.37 1.36 203
3- 151  1.8614)  3.08 2.67 2.68 5
3- 175 27119  4.42 3.90 4.02 2 02
=
0.27, respectively. The®Lh TDA result is 0.56, as com- o1
pared to the experimental value of 0.71. 00 : ] ] . :
-5 0 5 10 15 20 25
C. Extension to 201h RPA self-energy E (MeV)

As explained in Sec. Il C the use of thepPh RPA is FIG. 11. The ¥ hole spectral function of®Ca calculated with

beset with problems, notably the lack of a clear separatioge 21 TpA (thin line) and 2p1h RPA self-energy(thick line).
between physical and unphysical solutions. This separation,

where possible at all, is further obscured by the method of i )
direct matrix inversion with the effectivié(w) as embodied 'S ONly possible after a method has been found to avoid or
in Egs. (34) and (35). This method must be used because'®€move the unphysmgl solutions, discussed in Sec. Il C.
otherwise the dimensions of the numerical problem become 1h€ RPA calculation shows a further enhancement of

prohibitive. For the same reason we implemented the RPALENGth at low energies. The strength up to 5.5 MeV missing
only for the backward(hole) part of the D1lh reponse ©ENergy is now 0.41, nearly twice the strength obtained with

propagator, in an attempt to get an impression of the relthe 2p1h TDA method and closer to the experimental value

evance of an RPA-type extension of thelh TDA method 0.51(12). The value of the RPA calculation is derived by

appplied here. An advantage of the treatment via the confitting the strength distribution with a sum of Lorentzians,
struction of the effectivé () is that it is possible to iden- which is the formal expression for a spectral function when

tify contributions from unstable RPA solutions such as, e.g.!€ €nergy has a finite imaginary part. At higher values of the

the 3~ in the ph RPA. These 3 are then replaced by their missing energy the RPA distribution is rather similar to the
Tamm-Dancoff counterparts. In this way we obtain a partiaITDAhresmlt' \ation <h hat the eff f i
RPA-type extension of thef?Lh TDA propagator, avoiding The calculation shows that the effects of couplingpqf
some of the problematic RPA features. andph collective modes is more pronounced if ground-state

The relevance of such an extension for the hole spectr£orrelati?‘nshare included. Comparled_ with thpl® TDA
function of orbits above the Fermi level is illustrated in Fig. approach the ground-state correlations induce an extra

11 for the ¥ proton hole strength, calculated as a continuou€n€rdy-dependent interactiét{w). The energy dependence
distribution according to Eq39). For comparison thepeth  ©f K(@) assures a stronger coupling of phonons in configu-
TDA result is also shown as a continuous distribution. The/ations where the interaction is attractive in both fipand
energy distribution is computed with an imaginary part ofPh channels, which is the case for thép states to which
0.25 MeV. Note that the RPA strength distribution will be- € 1f single-particle levels couple at low energy. At higher
come negative for missing energies lower than 0.5 MeV. IrfNergies this effect is compensated by mixing with phonons
this energy region the self-energy has only poles correspondNich become more repulsive in the RPA.

ing to the unphysical solutions of thgp2h RPA equation.

Although their strength is small, they will give a wrong en- IV. SUMMARY AND CONCLUSIONS

ergy behavior for the self-energy and the spectral function.

the influence of the unphysicalp2h RPA solutions could
have become large here as well, if the RPALR had also
been applied for the forward part of th@ 2h propagator. So
a straightforward application of some form of thplh RPA

(2p1h) response propagator. The latter was treated in a
Tamm-Dancoff approximation, with proton hole states in
“8Ca and the @ orbit in %Zr as illustrative examples. A
realisticG-matrix interactior] 9] deduced from the Bonn po-
tential was used.

TABLE VI. Spectroscopic strengths in the experimental region For unoccupied proton levels it was found that simulta-

for *Zr. neous coupling to particle-particle and particle-hole collec-
5+ S, * PPTDA S, * 2p1NTDA Expt.[2] tive modes moves the lower edge of the gap in the self-

energy towards the Fermi energy. An enhancement of

521722 spectral strength at low values of the missing energy then

<21.0 MeV  11.44 10.85 11.34 8.7 results for these levels as compared to methods where either
2124312 particle-particle or particle-hole collective modes are in-
<7.0MeVv 476 4.39 4.30 2.975) cluded in the self-energy. The amount of strength in this

region is, however, still less than found experimentally.
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For both occupied and unoccupied proton levels the siis modified by adding to the interaction in thé ph channel
multaneous coupling to particle-particle and particle-holea two-body operatow, the matrix elements of which in the
collective modes narrows the gap in the self-energy and thph space obey
spectroscopic factors of the quasihole states are reduced.

The details of spectral strength distributions at low energy
are intimately related to the low-energy behavior of the
2plh response propagator. In this energy region a descrip-
tion of the 201h response propagator beyond a factorizationif n# ngyousand
in a correlated two-body propagator and a spectator one-
body propagator is essential. At the lowest energies, where E W
collective features may be most pronounced, the replacement pihyr P1hprhaPy
of a Tamm-Dancoff by a RPA-correlated propagation can
make a big difference. Especially the description of holefor the spurious solution.
strength for orbits above the Fermi level seems to require the With W added to the interaction in the 1ph channel, the
application of such methods. ph TDA equation will yield unaltered eigenvectors and ei-

Straightforward application of a method known in the lit- genvalue&)’,? for n# ngyuious The eigenvalue of the spuri-
erature as @1lh RPA is not possible, however, because ofous solution, however, will be shifted upwards in energy by
unsolved problems with a multitude of unphysical solutionsan amountEg,x. In the calculationsEg=300 MeV is
that cannot simply be identified and removed. A reformula-adopted. The matrix elements ¥f can be found from
tion of the 221h RPA in a way that avoids these problems is

An _
2, Wonngp, Xpiih, =0 (A2)
P1rhy!

A.n i A.n i
XAt £ XD (A3)

an important point of further investigation. XTWX=D, (A4)
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andD the diagonal matrix with the eigenvalues\f

Eshitt
APPENDIX From Eq.(A4) one finds forw

In principle one should project the spurious ph TDA W=XDXT. (A7)
phonon out of thepph space[27]. In order to avoid the

complications involved with this procedure the following  when the modified interaction is used in thplh TDA

method was considered. Tiph TDA equation equation one or more solutions will appear at much higher
(in the forward caseor much lower(in the backward cage
> {(ep.—2n.) 8., Ohbs + Vo hoshop. JXAT energy. These solutions are discarded as they consist for a
prfy Pt 720 TPaPar TRl TPl aPar TRy major part of the spurious 1 ph TDA phonon. The mixing
AUAN of the 1= ph TDA phonon in the other solutions can then be
:‘”nxpihz (A1) assumed to negligible due to the large difference in energy.
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