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Hole spectral function and two-particle–one-hole response propagator

G. A. Rijsdijk, W. J. W. Geurts, and K. Allaart
Department of Physics and Astronomy, Free University, De Boelelaan 1081, 1081 HV Amsterdam, The Neth

W. H. Dickhoff
Department of Physics, Washington University, St. Louis, Missouri 63130

~Received 1 August 1995!

The fragmentation of one-nucleon knock-out strength at low energies is considered from the viewpoint
the two particle-one hole~and two hole- one particle! response propagator. The aim is to deal with particle-
particle ~and hole-hole! as well as particle-hole collectivity simultaneously. This is achieved on a Tamm-
Dancoff level by the so-called Faddeev approximation of the 2p1h propagator. Results of this approach
illustrate the relevance of this consistent treatment of both particle-particle~hole-hole! and particle-hole col-
lectivity. A further extension, within the framework of 2p1h RPAwhich was sometimes applied in the past, has
serious unsolved problems, some of which are discussed in detail.

PACS number~s!: 25.40.Kv, 21.10.Jx, 21.60.Jz, 24.10.Cn
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I. INTRODUCTION

Shell model properties of nuclei have been studied in d
tail recently by means of proton knockout reactions wi
electron beams. By measuring the momentum dependenc
the cross section for discrete final states, a direct confirm
tion is found that nucleons are residing in the various sh
model orbits@1–5#. Moreover, one demonstrates that the e
ergies of the final states, corresponding to the knockout fr
a specific bound orbital, exhibit a spreading which may
related to properties of the optical potential for scatteri
states@6–9#. Some uncertainty still remains about the abs
lute values of the spectroscopic factors deduced from
analysis of the data and therefore also about the occupa
probabilities of the various shell model orbits. There is som
consensus that these occupation probabilities of orbitals
below the Fermi energy are about 0.75@4,10#. On the other
hand, the analysis of just the (e,e8p) data shows some de
pendence on optical potentials used and on whether or n
relativistic nuclear model is adopted@11#.

Theoretical calculations of the spectroscopic streng
have been performed dealing with two different aspec
First, shell model orbits will be depleted due to the sho
range repulsion. This effect is sometimes represented by
introduction of correlation functions in a Slater determina
@12#. The short-distance binary collisions will be sensitive
hardly any other nuclear structure than just the local dens
Therefore the depletion of states below the Fermi level
well as the complete spectral function has been studied
nuclear matter at various densities, both by Green funct
methods@13,14# and with variational correlation functions
@15,16#. Finally, the spectral function in16O has been calcu-
lated in a Brueckner Hartree-Fock approach@17#. Nuclear
matter results have also been folded into phenomenolog
model calculations for finite nuclei@18#. Somewhat depend-
ing on the methods and interactions used, one finds a 1
20 % depletion of the orbits due to the short-range forc
Since the dominant mechanism dealt with in these calcu
tions is the hard binary collision, the occurrence of partic
with large~relative! momenta is implicit. When one of thes
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is knocked out, the residual nucleus is left behind with
excitation energy of 100 MeV and higher@17#. This has to be
verified by (e,e8p) reactions with high missing momentum
and energy. Additional and more direct information may
obtained by detection of pairs with high relative momen
and for low excitation energy of the final nucleus with tw
nucleons fewer@19,20#.

Besides the strongly repulsive short-range correlatio
there are also the long-range correlations assiocated with
shell structure and the surface of the nucleus which contr
ute to the depletion of shell model orbits. These long-ran
correlations are responsible for the fragmentation of knoc
out strength at low excitation energies of the final system,
to about 50 MeV@9,21,22#. Theoretically, these long-range
correlations may be taken into account by solving the Dys
equation with a self-energy in some approximation beyo
the static~Brueckner! Hartree-Fock potential. Dispersion an
correlation effects have been included by various auth
@9,21# in the form of dynamical contributions to the self
energy of second order in an effective interaction, e.g., aG
matrix. Results of such calculations account rather well
the overall spreading width of deeply bound states. On
other hand, the weaker fragments for discrete states at
energy are considerably underestimated. Higher order co
butions to the self-energy, in the form of a coupling of pa
ticle or hole motion to collective modes, may be the exp
nation for this. Attempts in this direction were made in Re
@22#, in which particle pairs and hole pairs as well a
particle-hole pairs in the self-energy were treated in t
Tamm-Dancoff approximation~TDA! or random-phase ap-
proximation~RPA!. These calculations were still unsatisfac
tory in some respects, however. First, there was some vio
tion of the Pauli principle, as is also implicit in
phenomenological particle-phonon models. In the calculat
of the collective phonon the presence of the particle or h
is ignored. Second, the method was not suitable to tr
particle-particle and hole-hole correlations simultaneou
with particle-hole correlations.

It is the aim of the present paper to develop a meth
which addresses these problems and to see how relevant
201 © 1996 The American Physical Society
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202 53RIJSDIJK, GEURTS, ALLAART, AND DICKHOFF
simultaneous treatment of both types of correlations is. Th
is most conveniently done by connecting the self-energy
the two-particles–one-hole (2p1h) response propagator. In
Sec. II this formalism will be presented. Two approximation
for the 2p1h response propagator, the Tamm-Dancoff an
random-phase approximations, will be considered in Se
II B and II C, respectively. Applications for the nuclei48Ca
and 90Zr are discussed in Sec. III. Section IV contains som
conclusions.

II. FORMALISM

A. Spectral function and self-energy

The present work is an extension of Ref.@9# in which the
reader may find a more extensive discussion of the com
tational techniques. The quantity of interest is the hole spe
tral function

Sh~a,v!5 (
n50

u^Cn
A21uaauC0

A&u2d„v2~E0
A2En

A21!…,
~1!

which represents the probability density for removing
nucleon from the orbita from the ground state of the nucleu
with A nucleons while ending up in thenth state of the
A21 system with energyEn

A21 (n50 denotes the ground
state!. The occupation probability of the orbita is obtained
by integration of the hole spectral function

na5E
2`

«F
2

dvSh~a,v!, ~2!

with an upper limit of integration«F
25E0

A2E0
A21 . The

spectral function can be calculated from the imaginary p
of the single-particle~SP! propagator or Green function,

Sh~a,v!5 lim
h→0

1

p
Imgaa~v!, v,«F

2 , ~3!

by using the spectral or Lehmann representation of the
propagator which is given by

gab~v!5(
n

^C0
AuaauCn

A11&^Cn
A11uab

† uC0
A&

v2~En
A112E0

A!1 ih

FIG. 1. Graphical representation of the Dyson equation~5!. The
double line represents the full propagatorg(v); the single line the
free propagatorg(0)(v) of a nucleon in a suitably chosen mean
field potential.
is
to

s
d
cs.

e

pu-
c-

a
s

art

SP

1(
m

^C0
Auab

† uCm
A21&^Cm

A21uaauC0
A&

v2~E0
A2Em

A21!2 ih
. ~4!

This Green function also contains information on the proce
of adding a particle~see Ref.@9#! which illustrates that the
SP strength that is not seen in removal experiments must
present in particle addition experiments. The SP propaga
satisfies the well-known Dyson equation@23,24#

gab~v!5gab
~0!~v!1(

gd
gag

~0!~v!Sgd* ~v!gdb~v!, ~5!

which is graphically represented in Fig. 1. In this equatio
g(0), depicted by a single line in the figure, is the Gree
function of a freely propagating particle or hole in a suitabl
chosen mean-field potential. The irreducible self-energyS*
in Eq. ~5! may be written as an infinite series of successive
higher order terms in the interaction, minus the interactio
already included in the mean field ofg(0). In practice, the
series expansion ofS* has to be truncated at some point
which implies a corresponding approximation of the spectr
function. The lowest two orders in the interaction are repr
sented in the diagrams of Fig. 2. The lowest order diagra
Fig. 2~a!, generates the self-consistent Hartree-Fock~HF!
field. Assuming that this is just the part of the interactio
already absorbed ing(0), this implies

gab
~1!~v!5dabF u~a2F !

v2«a
HF1 ih

1
u~F2a!

v2«a
HF2 ihG , ~6!

where u is the step function which indicates whether th
orbit a is above or below the Fermi level and corresponds
HF quantum numbers.

The second order termS* (2) is displayed in Fig. 2~b!.
When this term is included in the Dyson equation one has
solve the coupled equations

gab
~2!~v!5gab

~1!~v!1(
gd

gag
~1!~v!Sgd*

~2!~v!gdb
~2!~v! ~7!

and

-

FIG. 2. First and second order diagrams that contribute to t
irreducible self-energyS* in Eq. ~5!. The lines represent the single-
pole approximation~6! to the Green function, with diagram~a!
already taken into account. Diagram~b! then represents Eq.~10!.
Interaction lines represent aG-matrix interaction used in this work.
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Sab*
~2!~v!5

1

2 (
mnklgd

E dv1

2p i E dv2

2p i
$^aduVumk&^nluVubg&gmn

~2!~v2v11v2!gkl
~2!~v1!ggd

~2!~v2!%. ~8!

In Ref. @9# a single-pole approximation

gab
~2!'dabF u~a2F !

v2«a1 ih
1

u~F2a!

v2«a2 ih G ~9!

was substituted in expression~8! for the second order self-energy. The values«a of the pole energies of shells close to th
Fermi level were matched in Ref.@9# with the exprimental energies of the states with largest spectroscopic factor for
j p value. For more remote shells~estimated! mean removal energies are identified with«a . With the approximation~9! the
self-energy~8! takes the approximate form

Sab*
~2!~v!'

1

2(mnk
^akuVumn&^mnuVubk&H u~m2F !u~n2F !u~F2k!

v2~«m1«n2«k!1 ih
1

u~F2m!u~F2n!u~k2F !

v2~«m1«n2«k2 ih J ~10!
-
y,

s
n
le
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ed,
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de-

P
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, in
and the Dyson equation~7! is then solved with this approxi-
mate form by the procedure sketched in Ref.@9#. It should be
noted that the use of a realisticG-matrix interaction in the
second order self-energy implies that only a limited doma
of the configuration space can be included before dou
counting becomes a serious problem. Using a phenome
logical interaction as in Ref.@21#, the choice of the configu-
ration space is arbitrary. In Ref.@21# approximation~9! was
avoided and complete self-consistency was obtained,
though the fragmentation of strength in the low energy
gion was also not completely satisfactory. In both Refs.@9#
and @21# it was therefore suggested that collective corre
tions among the propagating lines in diagram 2~b!, i.e., in
2p1h and 1p2h states, should be included in order to a
count for the collectivity of the phonons to which the partic
or hole couples. It is this kind of extension that will be co
sidered in the following.

B. Self-energy in a ‘‘Faddeev’’ approximation

In earlier work @22# the Dyson equation for the single
particle propagator was solved for a number of approxim

FIG. 3. Second order self-energy terms represented by G
stone diagrams~a! and~b!. Extensions applied in@22# are made by
including TDA or RPA correlations in the particle-particle@dia-
grams~c! and ~d!# or particle-hole channel@diagrams~e! and ~f!#.
in
ble
no-

al-
re-

la-

c-
le
n-

-
a-

tions for the self-energyS* . These were presented as ‘‘trac
table’’ extensions of the second order self-energ
represented by the Goldstone diagrams in Figs. 3~a!, 3~b!.
The freely propagating pair of particles or holes in diagram
3~a!, 3~b! was replaced by the Tamm-Dancoff approximatio
or random-phase approximation for the particle-partic
propagator@diagrams 3~c!, 3~d!#. Similarly, the freely propa-
gating particle-hole pair can be replaced by the TDA-
RPA-correlated particle-hole propagator@diagrams 3~e!,
3~f!#.

In order to arrive at an approximation forS* in which
correlations among all three propagating lines are includ
one needs a more formal treatment of the relation betwe
the self-energy and higher-point Green functions, especia
the two-particle–one-hole propagator. These relations are
rived by differentiating the SP propagator

igab~ t2t8!5^C0
AuT@ca~ t !cb

†~ t8!#C0
A&, ~11!

with respect to the time arguments, which will relate the S
propagator to the two-particle propagator. This scheme
be continued and leads to a set of coupled equations

old-

FIG. 4. Lowest order reducible contribution to the 2p1h propa-
gator.
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which then-body propagator is related to the (n11)-body
propagator and so on@25#.

To avoid extensive formal development we will not car
out this procedure here, but instead give a less formal d
ry
eri-

vation of the relation between the self-energy and the 2p1h
propagator, which will suit the aims of this investigation
This result can be found by inspection of themth order term
of the perturbation expansion forgab(t2t8) for m>2,
e

er and

e
wever,
uation,

t

igab
~m!~ t2t8!5

~2 i !m

m! E
2`

`

dt1•••E
2`

`

dtmK F0uTFH1~ t1!•••H1~ tm22! (
klmn

1

4
Vklmnck

†~ tm21!cl
†~ tm21!cn~ tm21!cm~ tm21!

3 (
pqrs

1

4
Vpqrscp

†~ tm!cq
†~ tm!cs~ tm!cr~ tm!ca~ t !cb

†~ t8!G uF0L , ~12!

in which two of the interactionsH1 are written out explicitly. Contraction ofca(t) with a creation operator at one intermediat
time and contraction ofcb

†(t8) with an annihilation operator at different intermediate time can be performed in 4m(m21)
ways and one obtains

gab
~m!~ t2t8!5(

kr
E

2`

`

dtm21E
2`

`

dtmgak
~0!~ t2tm21!H (

lmn;pqs

1

2
Vklmn F ~2 i !m22

~m22!! E2`

`

dt1•••E
-`

`

dtm22~2 i !

3^F0uT[H1~ t1!•••H1~ tm22!cl
†~ tm21!cn~ tm21!cm~ tm21!cp

†~ tm!cq
†~ tm!cs~ tm!] uF0&G12VpqrsJ grb~0!~ tm2t8!.

~13!

The expression between curly brackets is then recognized as themth order reducible self-energyS (m) and can be written as

Sab
~m!~ t2t8!5 (

lmn;pqs

1

2
Va lmnRmnl;pqs

~m22! ~ t2t8!
1

2
Vpqbs , ~14!

in which R(m22) is the (m22)th order term in the perturbation expansion of the 2p1h propagator,

iRmnl;pqs~ t2t8!5^C0
AuT@cl

†~ t !cn~ t !cm~ t !cp
†~ t8!cq

†~ t8!cs~ t8!#uC0
A&. ~15!

This relation applies for all ordersm>2 in H1 .
In the irreducible self-energyS* , one should leave out all diagrams in the perturbation expansion forR which fall apart in

two pieces by cutting through a single fermion line. The first contribution to these reducible diagrams is of second ord
is shown in Fig. 4. The expression for the nonstatic part ofS* is then@26#

Sab* ~v!5 (
lmn;pqs

1

2
Va lmnR̄mnl;pqs~v!

1

2
Vpqbs , ~16!

where byR̄ the part ofR not containing reducible diagrams is meant. This quantity is referred to as the 2p1h response
propagator@26#.

One may note that if the zeroth order expression forR̄,

R̄123;182838
~0!

~v!5~d118d2282d128d218!d338H u~12F !u~22F !u~F23!

v2~«11«22«3!1 ih
1

u~F21!u~F22!u~32F !

v2~«11«22«3!2 ih J , ~17!

is used in Eq.~16!, one obtains the familiar expression for the second order irreducible self-energy@Eq. ~10!#.
Approximations forS* beyond second order can now be constructed by calculatingR̄ from an integral equation, which

sums an infinite subset of diagrams forR̄. In its most general form such an equation will be very difficult to deal with. Th
three-body vertex which connects two six-point Greens functions can in general depend on six time arguments. If, ho
the restriction to two time arguments is made, thereby limiting the class of diagrams which could be summed by the eq
one solves, after Fourier transformation,

R̄~v!5R̄~0!~v!1R̄~0!~v!K~v!R̄~v!, ~18!

with a certain choice for the vertexK. As a first approximation one can take the so-called@26# Faddeev or disconnected par
or the three-body vertexK, which is the sum of three two-body vertices, one in thepp channel and two in theph channels.
The simplest case is when the two-body vertices are taken to be first order in the interaction. With this choice forK, Eq. ~18!
is graphically represented in Fig. 5.
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With the methods known from the particle-particle and particle-hole cases@23#, Eq.~18! can be cast into a secular equatio
the so-called 2p1h TDA equation@27#

@vn2~«11«22«3!#b123
n 5@u~12F !u~22F !u~F23!2u~F21!u~F22!u~32F !#

3 (
182838

HV238328d1181V138318d2281
1

2
V121828d338J b182838n . ~19!
er,
y

-

f

Note that in this equation the summation indices 182838 sat-
isfy the conditions that either 18.F, 28.F, 38,F or
18,F, 28,F, 38.F; i.e., the correlations within thepph
andhhp spaces are treated separately. From here on we w
denote the restrictions on the three indices of the 2p1h re-
sponse propagator by a string of three charactersp or h and
reserve the expression 2p1h for the general case. In math-
ematical expressions the three-character string enclosed
brackets will denote the collection of states with the restri
tions given by the character string. The phase space fac
give rise to a positive sign for 123P$pph% and to a negative
sign for 123P$hhp%. This resembles the fact that there is n
sign difference between the forward and backward terms
the 2p1h response propagator@e.g., Eq.~17!#, in contrast to
the particle-particle and particle-hole propagators. In term
of the eigenvalues and eigenvectors of Eq.~19! the 2p1h
response propagator is written as

R̄123;182838~v!5(
n

b123
n b182838

n

v2vn ~20!

and the corresponding expression forS* becomes

Sab* ~v!5(
n

@(123
1
2Va312b123

n #@(182838
1
2V1828b38b182838

n
#

v2vn .

~21!

In Eqs. ~20! and ~21! the indexn denotes both the forward
and the backward solutions of the 2p1h TDA equation. In
the former case the summation indices in Eq.~21! run over
the pph states, in the latter over thehhp states.

It should be noted that the first order Faddeev approxim
tion does not contain the aforementioned reducible diagram
Furthermore, no ground-state correlations are present in
approximation. In the present approach ground-state corre
tions appear if the vertexK contains also terms of second
order in the interaction, which can connect the spaces ofpph

FIG. 5. Graphical representation of Eq.~18! with the first order
Fadeev approximation forK.
ill

by
c-
tors

o
of

s

a-
s.

this
la-

andhhp states, see Fig. 6. These correlations are, howev
different from the ones usually considered at the two-bod
level in thepp or ph RPA. With the assumptions made in
Eq. ~18!, it is not obvious how to include ground-state cor
relations at the two-body level in the 2p1h response propa-
gator. In the next subsection we will discuss this further.

From Eq.~19! it may be inferred that after omission of the
two particle-hole vertices, one is left with essentially thepp
TDA equation andR̄ becomes

R̄123;182838~v!

5H P12;1828
ppTDA

~v1«3!d338 ~123,182838P $pph%!,

2P12;1828
ppTDA

~v1«3!d338 ~123,182838P $hhp%!.

~22!

Similarly, omission of the particle-particle vertex and one o
the particle-hole vertices reduces Eq.~19! to the ph TDA
equation and leads to

R̄123;182838~v!

5H P23;2838
phTDA

~v2«1!d118 ~123,182838P $pph%!,

2P23;2838
phTDA

~v2«1!d118 ~123,182838P $hhp%!.

~23!

Using these expressions in Eq.~16! is then a formal way to
construct the self-energy approximationsS* ppTDA and
S* phTDA used earlier@22#.

FIG. 6. Second order diagram for the vertexK of Eq. ~18! which
connectshhp andpph amplitudes of the 2p1h response propaga-
tor.
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C. Extension with RPA-type two-particle–one-hole
correlations

Since the RPA is more suitable to emphasize the colle
tivity of the ~low energy! excitations, to which particle and
hole motion couple, it is expected that the fragmentation
spectral strength at low energy and especially the occupat
of orbits just above or below the Fermi level are better r
produced in an RPA type of approach for the 2p1h and
2h1p propagators. This will be illustrated for the hole spec
tral funnction of the~unoccupied! f 7/2 proton orbit in 48Ca.
The problem encountered with the inclusion of ground-sta
correlations at the two-body level in the 2p1h response
propagator is that the restriction 1.F, 2.F, 3,F or 1,F,
2,F, 3.F for the indices is lifted. Instead the 2p1h re-
sponse propagator has nonzero contributions for all eig
c-

of
ion
e-

-

te

ht

possible combinations for the indices 123 to be below o
above the Fermi level. The forward part of the 2p1h re-
sponse propagator now has in addition topph amplitudes
also nonzerohhhamplitudes to account for ground-state cor
relations in thepp channel and nonzerophp andhpp am-
plitudes to account for ground-state correlations in theph
channels. Similarly, the backward part of the 2p1h response
propagator has in addition tohhp amplitudes also nonzero
ppp, hph, andphh amplitudes. BecauseR̄(0) does not exist
for the quantum numbers 123 associated with these ad
tional amplitudes, one needs a more general form of the i
tegral equation than the one adopted in Eq.~18!. Neverthe-
less, in Ref.@28#, using the concept of mass operators fo
higher-point Green functions@29,30#, the following secular
equation was proposed:
of the

rward

eem
hich
@vn2~«11«22«3!#G123
n 5 (

182838
H @u~F23!2u~F22!#V238328d1181@u~F23!2u~F21!#V138318d228

1@u~12F !u~22F !2u~F21!u~F22!#
1

2
V121828d338J G182838

n , ~24!

which differs from Eq.~19! only in the phase space factors. These phase space factors allow for the appearance
additional amplitudes. The equation still separates into a forward part, which couples thepph space with thephp, hpp, and
hhh spaces, and a backward part which couples thehhp space to thehph, phh, andppp spaces. The content of Eq.~24!
becomes clear if the submatrices between the different spaces are written out explicitly. We will do this only for the fo
part as the backward part goes the same way. For the forward part Eq.~24! then reads

S A B1 B2 B3

B1
T A1

B2
T A2

B3
T A3

D S Xn

X1
n

X2
n

X3
n

D 5vnS 1 21

21

21
D S Xn

X1
n

X2
n

X3
n

D , ~25!

with the submatrices and subvectors given by

$A%p1p2h3 ;p18p28h385~«p1
1«p2

2«h3!dp1p18
dp2p28

dh3h381Vp2h38h3p28
dp1p18

1Vp1h38h3p18
dp2p28

1
1

2
Vp1p2p18p28

dh3h38 ,

$A1%p1h2p3 ;p18h28p3852~«p1
1«h22«p3

!dp1p18
dh2h28dp3p38

1Vh2p38p3h28
dp1p18

,

$A2%h1p2p3 ;h18p28p3852~«h11«p2
2«p3

!dh1h18dp2p28
dp3p38

1Vh1p38p3h18
dp2p28

,

$A3%h1h2h3 ;h18h28h3852~«h11«h22«h3!dh1h18dh2h28dh3h381
1

2
Vh1h2h18h28

dh3h38 ,

$B1%p1p2h3 ;p18h28p385Vp2p38h3h28
dp1p18

,

$B2%p1p2h3 ;h18p28p385Vp1p38h3h18
dp2p28

,

$B3%p1p2h3 ;h18h28h385
1

2
Vp1p2h18h28

dh3h38 ,

$Xn%p1p2h35Gp1p2h3
n , $X1

n%p1h2p35Gp1h2p3
n ,

$X2
n%h1p2p35Gh1p2p3

n , $X3
n%h1h2h35Gh1h2h3

n . ~26!

The form («11«22«3)d118d228d338 which is retained for the diagonal elements in the additional subspaces does not s
to make sense because, as stated earlier,R̄(0) does not exist in these subspaces. One should therefore discard solutions w
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have their greatest components in the additional subspaces as unphysical. This is immediately clear when the interac
to zero and Eq.~25! should yield the zeroth order approximation forR̄, which exists only in thepph subspace. This
observation was not made in Ref.@28#.

The relevance of Eq.~25! can be checked by taking the limit where the interaction is considered in one channel only.
instance, only the interaction in thepp channel is considered, Eq.~25! reduces to

S A B3

B3
T A3

D S Xn

X3
nD 5vnS 1

21D S X
n

X3
nD , ~27!

with the submatrixA now given by

$A%p1p2h3 ;p18p28h385~«p1
1«p2

2«h3!dp1p18
dp2p28

dh3h381
1

2
Vp1p2p18p28

dh3h38 . ~28!
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The total matrix is now diagonal in the indicesh3 andh38.
For each value of these indices Eq.~27! comprises app RPA
eigenvalue equation. The eigenvalues corresponding to
physical and unphysical solutions of Eq.~27! are then easily
recognized as

vnphys5vn
A122«h3, vnunphys5vn

A222«h3, ~29!

where

vn
A6256~E0

A622E0
A! ~30!

are the eigenvalues of thepp RPA equation. If furthermore
the normalization condition

(
123P$pph%

G123
n G123

n8 2 (
123¹$pph%

G123
n G123

n8 56dnn8 ~31!

is adopted, the forward part ofR̄(v) becomes

R̄123; 182838~v!5(
n

X12
A12,nX1828

A12,n

v2~vn
A122«3!1 ih

d338,

123;182838P$pph%ø$hhh%, ~32!

whereXA12,n are thepp RPA eigenvectors corresponding to
the eigenvaluesvn

A12 of thepp RPA equation. When used in
Eq. ~16!, this expression together with its equivalent for th
backward part, will lead to the self-energy approximatio
S* ppRPA of @22#. In a similar way, neglecting the interaction
in thepp channel and in one of theph channels in Eq.~25!
will lead to the self-energy approximationS* phRPA. Note
that the normalization condition is different from the on
given in Ref. @28#. Its form follows from the geometrical
the

e
n

e

matrix in the right hand side of Eq.~25!. A positive sign in
Eq. ~31! then indicates a physical solution and a negativ
sign an unphysical solution.

It should be noted that Eq.~25! is not a restatement of an
integral equation, as is the case for the 2p1h TDA equation.
This also implies that a diagramatic representation of th
2p1h RPA equation is not possible. The ground-state corr
lations at the two-body level are treated without considerin
a more complicated energy-dependent integral equation
at the expense of the appearance of unphysical solutions. T
coupling ofpp phonons andph phonons takes place only at
forward energies in thepph subspace whereas the additiona
subspaces serve to provide the phonons with their RPA ch
acter. If the additional subspaces are left out, Eq.~25! re-
duces to the 2p1h TDA equation.

The unphysical solutions should not be confused with th
usual negative energy solutions of thepp or ph RPA equa-
tion. The backward part of the 2p1h RPA response propaga-
tor is given by the physical solutions of a separate equati
in thehhp subspace extended with thehph, phh, andppp
subspaces.

Practical implementation of the 2p1h RPA equation in
the case of medium heavy nuclei like48Ca and90Zr may be
troublesome because of the huge dimension of the secu
equation to be solved. The number of states to be conside
for the 2p1h TDA equation@the submatrixA in Eq. ~25!# is
already several thousands and its solution reaches the p
tical limits of the possibilities of present mainframe compu
ers. A partial solution of the 2p1h RPA equation, which will
give the forward part ofR̄(v) in the pph subspace only, is
possible by treating the influence of coupling to the add
tional subspaces as an energy-dependent interaction in
pph subspace. We first rewrite Eq.~25! as a matrix inversion
problem,
R̄~v!5S v2A 2B1 2B2 2B3

2B1
T 2v2A1

2B2
T 2v2A2

2B3
T 2v2A3

D 21

. ~33!

In the pph subspaceR̄(v) is then given by

R̄~v!5@v2A2K~v!#21, ~34!
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with

K~v!5B1

1

2v2A1
B1
T1B2

1

2v2A2
B2
T1B3

1

2v2A3
B3
T . ~35!

The inverses of the matrices2v2A1 , 2v2A2 , and2v2A3 are easily obtained as they are diagonal in one of the indic
They can be expressed as the TDA solutions in thehh andhp spaces,

H 1

2v2A1
J
p1h2p3 ;p18h28p38

5Ph2p3 ;h28p38

phTDA ~v2«p1
!dp1p18

,

H 1

2v2A2
J
h1p2p3 ;h18p28p38

5Ph1p3 ;h18p38

phTDA ~v2«p2
!dp2p28

, ~36!

H 1

2v2A3
J
h1h2h3 ;h18h28h38

5Ph1h2 ;h18h28

hhTDA ~v1«h3!dh3h38 .

In terms of the TDA eigenvalues and eigenvectors,K(v) is written as

Kp1p2h3 ;p18p28h38
~v!52(

h29p39
h2-p3-

Vp2p39h3h29(nÞ0

Th29p39
A,n Th2-p3-

A,n

v2~«p1
2vn

A!
Vh2-h38p3-p28

dp1p18

2(
h19p39
h1-p3-

Vp1p39h3h19(nÞ0

Th19p39
A,n Th1-p3-

A,n

v2~«p2
2vn

A!
Vh1-h38p3-p18

dp2p28

2(
h19h29
h1-h2-

Vp1p2h19h29(n
Th19h29
A22,nTh1-h2-

A22,n

v2~vn
A222«h3!

Vh1-h2-p18p28
dh3h38 . ~37!

The 2p1h response propagator can now be calculated as a continuous function of the energy by direct matrix inversio
right hand side of Eq.~34!. This will, however, formally result in

R̄p1p2h3 ;p18p28h38
~v!5 (

nphys

Gp1p2h3

n phys Gp18p28h38

nphys

v2vnphys
2 (

nunphys

Gp1p2h3

n unphysGp18p28h38

nunphys

v2vnunphys
5R̄p1p2h3 ;p18p28h38

phys ~v!1R̄p1p2h3 ;p18p28h38

unphys ~v!, ~38!
is
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and the separation of physical and unphysical solutions is
longer possible, particularly when the unphysical solutio
appear in the same energy region as the physical ones
the other hand, the unphysical solutions contribute throu
their components in thepph subspace only, which may be
assumed to be small as long as the solutions are only m
erately collective.

In the calculation ofS* (v) with Eqs. ~34! and ~19! the
energy is given a small imaginary partv→v1 iD, to avoid
singularities arising from the pole structure ofR̄(v) and
K(v). The hole spectral function is calculated by direct i
version of Eq.~5!,

Sh~a,v!52
1

p
Imgaa~v!

52
1

p
ImH 1

gaa
~0!21~v!2Saa* ~v! J , ~39!
no
ns
. On
gh

od-

n-

where for simplicity in the calculation the self-energy
taken to be diagonal.

The presence of unphysical solutions in the self-ener
will give a negative contribution to the spectral strength.
the energy region where the physical solutions dominate
spectral strength, the calculation can be then justified by c
sidering it as a lower estimate of the true spectral strengt

III. RESULTS FOR 48Ca AND 90Zr

The calculations presented in this section are perform
with the sameG-matrix interactions used in the calculation
of Ref. @22#. The single-particle propagators are approx
mated by a single-pole expression with energies dedu
from experiment. The procedure to assure the appearanc
the largest single-particle strength fragment of the valen
states at the experimental values is similar as in Refs.@9# and
@22#.

In the remainder of this section we will denote the a
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proximation for the self-energy obtained by using the TD
approximation for the 2p1h response propagator in Eq.~16!
as the 2p1h TDA self-energy. If the RPA approximation fo
the 2p1h response propagator is used, the resulting appro
mation for the self-energy will be denoted as the 2p1h RPA
self-energy.

A. Results for 48Ca with the 2p1h TDA self-energy

In Figs. 7 and 8 the 2s and 1d spectral functions, calcu-
lated with the 2p1h TDA self-energy, are displayed. In orde
to gain insight into the effects of the simultaneous coupli
to pp and ph phonons in the self-energy, one should com
pare these results with theph TDA and pp TDA results
obtained earlier@22#. As mentioned before in Sec. II thes
are limiting cases of the more general 2p1h TDA approach
in which the interaction is considered in only one of the thr
possible channels.

Special attention must be devoted to the removal of
spurious 12 particle-hole excitation, resembling the couplin
to the center of mass motion. When solving the 2p1h TDA
equation, however, this solution will mix with other configu
rations and it will not be clear which solutions of the 2p1h
TDA equation should be discarded. This problem was de

FIG. 7. The 2s hole spectral function of48Ca calculated with
the ph TDA, pp TDA, and 2p1h TDA self-energy. The state at
Ex50.0 MeV has been reduced by a factor of 5 for plotting pu
poses. The experimental data are from Ref.@5#.

FIG. 8. The 1d hole spectral function of48Ca calculated with
the ph TDA, pp TDA, and 2p1h TDA self-energy. The experi-
mental data are from Ref.@5#.
A
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with by a method which shifts the spurious solutions suffi
ciently far away from the other solutions, so as to identif
them easily. The details concerning this method are given
the Appendix.

From Table I it can be seen that the spectroscopic facto
for the 1

2
1 ground state and the32

1 state at 0.36 MeV of
47K are somewhat smaller than in thepp TDA calculation,
which gives the smallest values of the two TDA calculation
The 1

2
1 at 3.85 MeV has a spectroscopic factor of 0.104 an

lies in between theph TDA and pp TDA result. This also
applies for the summed spectroscopic strengths in the exp
mentally accessible regions listed in Table II.

The 1f spectral function is shown in Fig. 9. The consid
erable strength below 5.5 MeV found experimentally is sti
not quite reproduced, but the 2p1h TDA calculation does
show an enhancement of strength in the low energy regi
compared with the calculations of Ref.@22#. Up to 5.5 MeV
missing energy the 2p1h TDA calculation yields a summed
strength of 0.21 whereas theph TDA and pp TDA calcula-
tions yield 0.12 and 0.05, respectively, and the experimen
value is 0.51~12!.

The effect of the simultaneous coupling topp and ph
phonons in the self-energy seems more pronounced in thef
spectral function than in the 2s and 1d spectral functions.
This can be understood by examining the coupling of th
single-particle states to thepph and hhp states which lie
closest to the Fermi level. Because of parity and angul
momentum conservation, these states are of different type
the occupied and unoccupied proton single-particle states.
a consequence of this, the simultaneous coupling topp and
ph phonons in the self-energy has a different effect on th
positions of the poles of the self-energy just below and abo
the Fermi energy for the occupied and unoccupied prot
single-particle states. The positions of these poles, listed
Table III for the valence shells and the various self-energ
approximations, are important for describing the details
the spectral function at low values of the missing energy.

Thehhp states closest to the Fermi level to which the 1f
single-particle states couple are made up of two proton ho
in the 2s1d shell and a proton particle in the 2p1 f shell or a
proton and a neutron hole in the 2s1d shell and a neutron
particle in the 2p1 f 5/2 shell. The collective negative parity

r-

TABLE I. Spectroscopic factors of quasihole states in47K.

Jp E ~MeV! Expt. @5# S* (2) S* phTDA S* ppTDA S* 2p1hTDA

1
2

1 0 1.07~7! 1.53 1.42 1.28 1.24
3
2

1 0.36 2.26~16! 2.94 2.75 2.56 2.45
1
2

1 3.85 0.167~14! 0.036 0.044 0.134 0.104

TABLE II. Spectroscopic strengths in the experimental regio
for 48Ca.

S* (2) S* phTDA S* ppTDA S* 2p1hTDA Expt. @5#

2s1/2
,15.0 MeV 1.58 1.58 1.44 1.50 1.39~11!
1d3/215/2

,19.5 MeV 7.97 8.20 7.45 8.04 6.82~63!
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isoscalarph phonons and the collective positive paritypp
phonons in theA22 nuclei have large components in thi
space. The mixing of these phonons by the 2p1h TDA equa-
tion moves the pole just below the Fermi energy of the bac
ward part of the 2p1h response propagator towards th
Fermi energy compared to the cases where onlyph or pp
phonons are included in the 2p1h response propagator. This
explains the appearance of more 1f spectral strength in the
low energy region.

The 2s and 1d single-particle states couple to thehhp
states made up of a proton hole in the 2s1d shell, a neutron
hole in the 1f 7/2 level, and a neutron particle in the
2p1 f 5/2 shell. Other possibilities require particles or holes
more remote shells. Close to the Fermi level the density
hhp states to which the 2s1d single-particle states couple is
smaller than for the 1f single-particle states. In the 2s1d
case the space ofhhp states close to the Fermi level contain
also repulsive positive parity charge exchangeph phonons
and the pole just below the Fermi energy of the 2p1h re-
sponse propagator is now intermediate between the ca
where onlyph or pp phonons are considered.

For the forward part of the 2p1h response propagator the
situation is reversed~see Table III!. The combined effect is
that for both the occupied and unoccupied proton sing
particle states the gap in the self-energy is narrowed by ab
1 MeV compared to the cases where onlyph or pp phonons
are included. This explains the reduction of the quasiho
peaks of the 2s and 1d strength distributions.

At higher missing energies the simultaneous coupling
pp and ph phonons produces spectral functions somewh
intermediate between theph TDA andpp TDA calculations.
This can again be explained by the mixing of collective an

FIG. 9. The 1f hole spectral function of48Ca calculated with
theph TDA, pp TDA, and 2p1h TDA self-energy. The experimen-
tal data are from Ref.@5#.

TABLE III. Positions of self-energy poles around Fermi energ
for 48Ca.

1d3/2 2s1/2 1f7/2
«5216.17 «5215.81 «529.63

S* (2) 220.61 23.45 220.96 23.45 221.99 24.83
S* phTDA 220.01 26.50 220.37 26.50 218.94 25.43
S* ppTDA 218.54 24.46 218.54 24.82 220.14 26.36
S* 2p1hTDA 219.38 26.77 219.22 26.52 218.63 25.85
k-

of

ses

-
ut

le

o
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d

repulsive phonons. Apart from the aforementioned summ
spectroscopic strengths this is also visible from the total o
cupation numbers listed in Table IV.

B. 1g9/2 hole spectral function for 90Zr

As a further illustration of the 2p1h TDA self-energy is
used in a calculation for the proton hole spectral function
90Zr. In this nucleus pairing correlations cause a partial o
cupation of the 2p1/2 and 1g9/2 shells and it is therefore of
interest to see to what extend this method is applicable
such a situation. Because of the size of the 2p1h and 1h2p
spaces, the TDA calculations had to be performed with o
major shell fewer~i.e., five oscillator shells! than the aproxi-
mationspp TDA andph TDA. In spite of this smaller model
space, the 2p1h TDA calulation for the unoccupied 1g lev-
els shows an enhancement of strength in the low energy
gion as compared to the aforementioned approximations. T
results of these calculations are compared in Fig. 10 and
Tables V and VI. The experimental results are taken fro
Ref. @2#. The ph TDA and pp TDA calculations were per-
formed in the larger model space.

Up to 5.75 MeV missing energy the summed spectro
scopic strengths for theph TDA and pp TDA are 0.33 and

FIG. 10. The 1g hole spectral function of90Zr calculated with
the ph TDA, pp TDA, and 2p1h TDA self-energy. Experimental
data are taken from Ref.@2#.

TABLE IV. Occupancies for48Ca.

Shell S* (2) S* phTDA S* ppTDA S* 2p1hTDA

1s1/2 0.967 0.968 0.965 0.967
1p3/2 0.955 0.956 0.950 0.952
1p1/2 0.951 0.951 0.944 0.948
1d5/2 0.920 0.925 0.898 0.918
1d3/2 0.877 0.885 0.842 0.876
2s1/2 0.869 0.860 0.818 0.836
1 f 7/2 0.060 0.063 0.082 0.076
1 f 5/2 0.048 0.044 0.064 0.051
2p3/2 0.033 0.031 0.049 0.036
2p1/2 0.030 0.028 0.042 0.033
1g2d3s 0.014 0.014 0.018 0.017
1h2 f3p 0.006 0.006 00.007 0.006
Total 20.053 20.093 20.165 20.230
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0.27, respectively. The 2p1h TDA result is 0.56, as com-
pared to the experimental value of 0.71.

C. Extension to 2p1h RPA self-energy

As explained in Sec. II C the use of the 2p1h RPA is
beset with problems, notably the lack of a clear separati
between physical and unphysical solutions. This separati
where possible at all, is further obscured by the method
direct matrix inversion with the effectiveK(v) as embodied
in Eqs. ~34! and ~35!. This method must be used becaus
otherwise the dimensions of the numerical problem beco
prohibitive. For the same reason we implemented the R
only for the backward~hole! part of the 2p1h reponse
propagator, in an attempt to get an impression of the r
evance of an RPA-type extension of the 2p1h TDA method
appplied here. An advantage of the treatment via the co
struction of the effectiveK(v) is that it is possible to iden-
tify contributions from unstable RPA solutions such as, e.
the 32 in the ph RPA. These 32 are then replaced by their
Tamm-Dancoff counterparts. In this way we obtain a parti
RPA-type extension of the 2p1h TDA propagator, avoiding
some of the problematic RPA features.

The relevance of such an extension for the hole spec
function of orbits above the Fermi level is illustrated in Fig
11 for the 1f proton hole strength, calculated as a continuo
distribution according to Eq.~39!. For comparison the 2p1h
TDA result is also shown as a continuous distribution. Th
energy distribution is computed with an imaginary part o
0.25 MeV. Note that the RPA strength distribution will be
come negative for missing energies lower than 0.5 MeV.
this energy region the self-energy has only poles correspo
ing to the unphysical solutions of the 2p1h RPA equation.
Although their strength is small, they will give a wrong en
ergy behavior for the self-energy and the spectral functio
For larger values of the missing energy the stronger physi
solutions dominate and the spectral strength distribution
positive everywhere. It should be remarked, however, th
the influence of the unphysical 2p1h RPA solutions could
have become large here as well, if the RPA 2p1h had also
been applied for the forward part of the 2p1h propagator. So
a straightforward application of some form of the 2p1h RPA

TABLE V. Spectroscopic factors of quasihole states in89Y.

Jp
E

~MeV! Expt. @2# S* (2) S* ppTDA S* 2p1hTDA

1
2

2 0 0.72~7! 1.55 1.37 1.36
3
2

2 1.51 1.86~14! 3.08 2.67 2.68
5
2

2 1.75 2.77~19! 4.42 3.90 4.02

TABLE VI. Spectroscopic strengths in the experimental regio
for 90Zr.

S* (2) S* ppTDA S* 2p1hTDA Expt. @2#

1 f 5/217/2

,21.0 MeV 11.44 10.85 11.34 8.75~63!
2p1/213/2

, 7.0 MeV 4.76 4.39 4.30 2.97~15!
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is only possible after a method has been found to avoid
remove the unphysical solutions, discussed in Sec. II C.

The RPA calculation shows a further enhancement
strength at low energies. The strength up to 5.5 MeV miss
energy is now 0.41, nearly twice the strength obtained w
the 2p1h TDA method and closer to the experimental valu
0.51~12!. The value of the RPA calculation is derived b
fitting the strength distribution with a sum of Lorentzian
which is the formal expression for a spectral function wh
the energy has a finite imaginary part. At higher values of t
missing energy the RPA distribution is rather similar to th
TDA result.

The calculation shows that the effects of coupling ofpp
andph collective modes is more pronounced if ground-sta
correlations are included. Compared with the 2p1h TDA
approach the ground-state correlations induce an ex
energy-dependent interactionK(v). The energy dependenc
of K(v) assures a stronger coupling of phonons in config
rations where the interaction is attractive in both thepp and
ph channels, which is the case for thehhp states to which
the 1f single-particle levels couple at low energy. At highe
energies this effect is compensated by mixing with phono
which become more repulsive in the RPA.

IV. SUMMARY AND CONCLUSIONS

The combined effect of particle-particle and particle-ho
correlations on the proton self-energy and the associated h
spectral function is investigated by employing the relatio
between the self-energy and the two-particle–one-h
(2p1h) response propagator. The latter was treated in
Tamm-Dancoff approximation, with proton hole states
48Ca and the 1g orbit in 90Zr as illustrative examples. A
realisticG-matrix interaction@9# deduced from the Bonn po-
tential was used.

For unoccupied proton levels it was found that simult
neous coupling to particle-particle and particle-hole colle
tive modes moves the lower edge of the gap in the se
energy towards the Fermi energy. An enhancement
spectral strength at low values of the missing energy th
results for these levels as compared to methods where ei
particle-particle or particle-hole collective modes are i
cluded in the self-energy. The amount of strength in th
region is, however, still less than found experimentally.

FIG. 11. The 1f hole spectral function of48Ca calculated with
the 2p1h TDA ~thin line! and 2p1h RPA self-energy~thick line!.
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For both occupied and unoccupied proton levels the
multaneous coupling to particle-particle and particle-ho
collective modes narrows the gap in the self-energy and
spectroscopic factors of the quasihole states are reduced

The details of spectral strength distributions at low ener
are intimately related to the low-energy behavior of th
2p1h response propagator. In this energy region a descr
tion of the 2p1h response propagator beyond a factorizatio
in a correlated two-body propagator and a spectator o
body propagator is essential. At the lowest energies, wh
collective features may be most pronounced, the replacem
of a Tamm-Dancoff by a RPA-correlated propagation ca
make a big difference. Especially the description of ho
strength for orbits above the Fermi level seems to require
application of such methods.

Straightforward application of a method known in the lit
erature as 2p1h RPA is not possible, however, because o
unsolved problems with a multitude of unphysical solution
that cannot simply be identified and removed. A reformul
tion of the 2p1h RPA in a way that avoids these problems i
an important point of further investigation.
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APPENDIX

In principle one should project the spurious 12 ph TDA
phonon out of thepph space@27#. In order to avoid the
complications involved with this procedure the following
method was considered. Theph TDA equation

(
p18h28

$~«p1
2«h2!dp1p18

dh2h281Vp1h28h2p18
%Xp18h28

A,n

5vn
AXp1h2

A,n ~A1!
si-
le
the
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gy
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n
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n
le
the

-
f
s
a-
s

a-
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al

is modified by adding to the interaction in the 12 ph channel
a two-body operatorW, the matrix elements of which in the
ph space obey

(
p18h28

Wp1h28h2p18
Xp18h28

A,n 50 ~A2!

if nÞnspuriousand

(
p18h28

Wp1h28h2p18
Xp18h28

A,n spurious5Eshi f tXp1h2

A,n spurious ~A3!

for the spurious solution.
WithW added to the interaction in the 12 ph channel, the

ph TDA equation will yield unaltered eigenvectors and e
genvaluesvn

A for nÞnspurious. The eigenvalue of the spuri-
ous solution, however, will be shifted upwards in energy
an amountEshift . In the calculationsEshift5300 MeV is
adopted. The matrix elements ofW can be found from

XTWX5D, ~A4!

whereX is the matrix of eigenvectors,

X5~•••,XA,i ,•••,XA,nspurious! ~A5!

andD the diagonal matrix with the eigenvalues ofW,

D5S � 0

�

Eshift

D . ~A6!

From Eq.~A4! one finds forW

W5XDXT. ~A7!

When the modified interaction is used in the 2p1h TDA
equation one or more solutions will appear at much high
~in the forward case! or much lower~in the backward case!
energy. These solutions are discarded as they consist f
major part of the spurious 12 ph TDA phonon. The mixing
of the 12 ph TDA phonon in the other solutions can then b
assumed to negligible due to the large difference in energ
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