UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE FÍSICA

MEDIDA DA DENSIDADE ELETRÔNICA EM DES-CARGAS DE GASES NOBRES E MISTURAS DE GASES NOBRES-HIDROGÊNIO

Márcia Petersen Hofmann

Dissertação realizada sob a orie<u>n</u> tação do Dr. Joel Louis R. Muzart e apresentada ao Departamento de Física da UFSC em preenchimento parcial dos requisitos para a obtenção do título de Mestre em Física.

Trabalho parcialmente financiado pelo Conselho Nacional de Dese<u>n</u> volvimento Científico e Tecnológico (CNPq) e pela Financiadora de Estudos e Projetos (FINEP)

Florianópolis

Medida da Densidade Eletrônica em Descargas de Gases Nobres Misturas de Gases Nobres-Hidrogênio

Márcia Petersen Hofmann

Esta tese foi julgada adequada para a obtenção do grau de

"Mestre em Ciências"

especialização Físico-Química, e aprovada em sua forma final pelo Curso de Pós-Graduação.

Prof. Joel Louis Renê Muzart, Dr. . Orientador

ill

Prof. Luis Taylor S. Siedler, Ph.D. Coordenador

BANCA EXAMINADORA:

Prof. Joel Louis Renê Muzart, Dr.

Prof. Ted Kay Taylor, Ph.D.

Prof. Subraman/ia Jayaraman, Ph.D.

e

A meu pai, irmãos e tia Selma

A minha mãe "in memoriam"

A todos aqueles que, como m<u>i</u> nha mãe, não tiveram chance de freqüentar escolas, por terem que, desde cedo, lutar pela sobrevivência, e que f<u>i</u> nanciaram, com o pagamento de impostos, este trabalho.

AGRADECIMENTOS

A todos os amigos que me apoiaram e me "agüentaram" durante o período de realização deste trabalho.

A Regina Piacentini pela realização dos desenhos.

Ao Carlos Duarte pelo cuidadoso e eficiente trabalho de datilografia.

Ao João e Joaquim pelo trabalho competente de confecção de peças.

E, por fim, muito especialmente, ao Professor Joel L.R. Muzart pelo que sua orientação exigente e dedicada representou na minha formação acadêmica.

RESUMO

Medidas de densidade eletrônica em descargas de gases nobres e misturas de gases nobres com Hidrogênio foram efetuadas, utilizando o método de cavidade ressonante na faixa de microondas.

Os resultados mostram que a reação de ionização quím<u>i</u> ca por transferência de energia dos Metastáveis do gás nobre para a molécula de Hidrogênio não produz nenhum aumento de densid<u>a</u> de eletrônica nas descargas de Hélio e Argônio mas que um aumento de densidade eletrônica é observado no Neônio.

Esses resultados são explicados considerando as reações de ionização possíveis em cada gás, suas velocidades e a velocidade de recombinação elétron-íon.

ABSTRACT

Measurements of the electronic density in discharges of noble gases and mixtures of noble gases with hydrogen were made using the microwane cavity resonance method.

The results show that chemical ionization reaction by transfer of energy from the metastable levels of the noble gas to the hydrogen molecule does not produce any increase of electronic density for discharges of Helium and Argon but an increase of electronic density is observed in Neon.

The results are explained considering the possible ionization reactions for each gas, their velocity and the velocity of electron-ion recombination.

SUMÁRIO

RESUMO	v
ABSTRACT	vi
INTRODUÇÃO	ix
CAPÍTULO I - FUNDAMENTOS TEÓRICOS	1
1. NOÇÕES GERAIS	1
1.1. Quase-Neutralidade de Plasmas 1.2. Difusão Ambipolar	3 6
1.3. Transições Radiativas e Estados Me- tastáveis	7
2. MECANISMOS DE TRANSFERÊNCIA METASTÁVEL- MOLÉCULAS	10
2.1. Reação de Ionização Química (Efeito Penning) 2.2. Reação de Excitação Química	11 11
3. CAVIDADE DE MICROONDAS	12
 3.1. Cavidades Ressonantes 3.2. Klystron de Reflexão 3.3. Acoplamento da Cavidade ao Circuito Externo 	12 15 17
4. TEORIA DAS PEQUENAS PERTURBAÇÕES	19
 4.1. Aplicação na Determinação da Densid<u>a</u> de Eletrônica, n_e	21
bações	23
CAPÍTULO II - MONTAGEM EXPERIMENTAL	26
1. DISPOSITIVO EXPERIMENTAL	26
1.1. Sistema de Vácuo	2628

ţ

viii

2. TECNICAS DE MEDIDAS	31
2.1. Estudo Experimental da Cavidade 2.2. Precisão das Medidas – Limite da Me- dida	31 36
CAPÍTULO III - RESULTADOS E DISCUSSÃO	38
1. RESULTADOS EXPERIMENTAIS DA DENSIDADE EL <u>E</u> TRÔNICA	38
 1.1. Argônio 1.2. Hēlio 1.3. Neônio 1.4. Evolução Temporal da Densidade Ele - 	38 42 47
2. APRESENTAÇÃO DE RESULTADOS DE DENSIDADE DE ESTADOS METASTÁVEIS, N ^M , ENCONTRADOS NA LITERATURA	52
3. DISCUSSÃO	55
3.1. Argônio	60
trônica para o Hélio e Neônio 3.3. Hélio 3.4. Neônio	60 63 66
CONCLUSÃO	68
REFERÊNCIAS BIBLIOGRAFICAS	69
APÊNDICE I – CÁLCULO DE B(α) PARA CAVIDADE TM ₀₂₀	71
APÊNDICE II - DISTRIBUIÇÃO RADIAL DA DENSIDADE ELETRÔNICA .	75

INTRODUÇÃO

Este trabalho se propõe a medir a evolução da densid<u>a</u> de eletrônica em descargas de gases nobres e misturas de gases nobres com hidrogênio.

Nas descargas de misturas de gases nobres com hidrog $\underline{\hat{e}}$ nio há transferência de energia dos estados metastáveis do gás nobre para o hidrogênio ionizando-o. As medidas de densidade el<u>e</u> trônica permitirão comprovar se as reações de ionização do hidr<u>o</u> gênio aumentam a densidade eletrônica.

No Capítulo I desenvolvemos o embasamento teórico necessário para o estudo da evolução da densidade eletrônica.

No Capítulo II descrevemos a montagem experimentalut<u>i</u> lizada nas medidas de densidade eletrônica e a técnica de medida empregada.

No Capítulo III apresentamos os resultados obtidos,e<u>x</u> perimentalmente, para as medidas de densidade eletrônica e faz<u>e</u> mos a discussão desses resultados.

CAPÍTULO I

FUNDAMENTOS TEÓRICOS

Neste capítulo desenvolvemos o embasamento teórico necessário para o estudo da evolução da densidade eletrônica em descargas de misturas de gases.

Depois de definir as características essenciais de um plasma, estudamos os mecanismos de transferência de energia entre átomos, excitados num nivel metastável, e moléculas, em particular o efeito Penning.

O sistema de microondas utilizado para medir a densid<u>a</u> de eletrônica é objeto de estudo na terceira parte deste capítulo.

1. NOÇÕES GERAIS

Numa temperatura absoluta diferente de zero qualquer gás apresenta um certo número de átomos ionizados. No entanto, as partículas carregadas passam a afetar substancialmente as pro priedades do gás somente em concentrações nas quais a carga espa cial formada por elas restringe seu movimento. Em concentrações suficientemente altas as interações entre as partículas carregadas, positiva e negativamente, resultam em persistente neutralidade macroscópica em volumes comparáveis ao do gás. Qualquer per turbação da neutralidade macroscópica induz fortes campos elétr<u>i</u> cos, os quais restauram rapidamente a neutralidade macroscópica. Um gás ionizado em tais concentrações é chamado PLASMA. O método mais comum para obter um plasma consiste em aquecer um gás a uma temperatura na qual a energia média das pa<u>r</u> tículas é comparável com a energia de ionização dos átomos ou m<u>o</u> léculas. Quando a energia média das partículas aproxima-se da energia de ionização o gás torna-se quase completamente ionizado.

Como um plasma pode ser obtido pelo aquecimento de uma substância no estado gasoso ele é, algumas vezes, chamado o qua<u>r</u> to estado da matéria.

O estado de um plasma em equilíbrio, bem como de qualquer gás, depende de sua composição, concentração dos componentes e temperatura.

Seja n_{α} a concentração parcial dos componentes do pla<u>s</u> ma, onde o subscrito α representa, conforme o caso, partículas neutras (a), ions (i) ou elétrons (e). Nos referimos aqui ao ch<u>a</u> mado plasma simples, o qual consiste de partículas neutras de uma só espécie, ions carregados da mesma espécie e elétrons. Então, o grau de ionização n pode ser definido como a razão entre a concentração do ion e a concentração total de ions e átomos ne<u>u</u> tros.

$$\eta = \frac{n_i}{n_i + n_a} \tag{I.1}$$

A temperatura plasma T é expressa em unidades de energia, isto é explicado pela expressão geralmente usada para a te<u>m</u> peratura:

$$T = k T_{K}$$
(I.2)

onde T_{K} é a temperatura Kelvin e k a constante de Boltzmann. A relação entre a energia média do movimento térmico das partícu-

las, W, e a temperatura plasma é dada, pela seguinte igualdade:

$$W = \frac{3}{2} T$$
 (I.3)

A temperatura de um plasma em equilíbrio determina, além da energia média, a distribuição de velocidade da partícula.

Um plasma pode ter várias temperaturas ao mesmo tempo. Isto ocorre freqüentemente porque os ions e os elétrons tem distribuições maxwellianas que correspondem a temperaturas diferentes $T_i \in T_e$ (porque a taxa de colisão entre ions ou entre elétrons é maior do que a taxa de colisões entre um ion e um elétron). Então cada espécie pode estar em equilibrio térmico próprio, mas o plasma pode não durar o suficiente para que as duas temperaturas se igualem.

Definimos a temperatura dos componentes do plasma como a medida da energia média do movimento aleatório das partículas, de acordo com a equação (I.3).

1.1. Quase-Neutralidade de Plasmas

Uma característica de plasmas é sua neutralidade macroscópica, mantida pela compensação mútua da carga espacial dos ions positivos e elétrons. Esta compensação ocorre em termos de médias, isto é, em volumes suficientemente grandes e por interv<u>a</u> los de tempo suficientemente longos. Por esta razão um plasma é considerado um meio quase-neutro.

Imagine que a neutralidade é perturbada em algum volume do plasma. Suponhamos, por simplicidade, que este distúrbio é

devido ao deslocamento de elétrons, que produz regiões de cargas volumétricas positiva e negativa, induzindo um campo elétrico que tende a restaurar a neutralidade.

,1

Definimos o RAIO DEBYE (ou comprimento), r_D, como sendo a medida do volume mínimo para que o plasma seja considerado neutro, ou seja, para volumes menores o critério de neutralidade não poderá ser admitido. Segundo GOLANT e outros^[1],

$$r_{\rm D} = \left(\frac{T}{4\pi n_{\rm e} e^2}\right)^{1/2}$$
(I.4)

onde n_e é a densidade eletrônica do plasma. Para simplificar a sua notação utilizamos seu valor numérico r_D \approx 500 $(\frac{T}{n_e})^{1/2}$, onde r_D é dado em cm, n_e em cm⁻³ e T em eV.

No nosso caso T % 5 eV e $\rm n_{e}$ % 10 10 cm $^{-3}$, então:

$$r_{\rm D} \approx 500 \left(\frac{5}{10^{10}}\right)^{1/2}$$

$$r_D \approx 1 \times 10^{-2} \text{ cm}$$

O raio do tubo que utilizamos é de 0,4 cm, portanto: $r_{TUBO} >> r_D$ e desta maneira o critério de neutralidade pode ser utilizado.

Outra grandeza característica de um plasma é a chamada freqüência plasma, ω_p , definida, de acordo com a referência ^[1], por:

$$\omega_{\rm p} = \left(\frac{4\pi n_{\rm e} e^2}{m_{\rm e}}\right)^{1/2}$$
(I.5)

onde ne é a densidade eletrônica do plasma, e é a carga do elé-

tron e m_e sua massa.

Para simplificar sua notação, utilizamos seu valor numérico $\omega_p = 5,6 \times 10^4 (n_e)^{1/2}$, onde ω_p é dado em s⁻¹ e n_e em cm⁻³.

No nosso caso, conforme vimos anteriormente, $n_e ~~ \% ~10^{10}~{\rm cm}^{-3}~e$ portanto $\omega_p ~~ \% ~10^9~{\rm s}^{-1}.$

É fácil de entender a natureza de tais oscilações. Os elétrons são atraídos pelos íons, passam perto por inércia, são atraídos novamente e assim por diante. As oscilações de uma carga espacial, por causa da perturbação da quase-neutralidade, são chamadas oscilações plasma e a freqüência, associada a elas, de FREQUÊNCIA PLASMA (ω_n).

As oscilações plasma determinam o mecanismo de restauração da quase-neutralidade. Obviamente, na média sobre muitos períodos de oscilação de um plasma ele pode ser considerado neutro. Portanto: t_D $\approx \frac{1}{\omega_p}$, onde t_D é a freqüência plasma recíproca.

$$t_{\rm D} \approx (\frac{m_{\rm e}}{4 n_{\rm e} e^2})^{1/2}$$
 (1.6)

Conforme a interação das cargas espaciais de elétrons e ions, mantém-se a neutralidade elétrica do plasma em volumes que excedem substancialmente r_D e por periodos muito maiores do que a freqüência plasma recíproca t_D $\approx \frac{1}{\omega}$.

Para estas condições serem satisfeitas por um plasma, as seguintes desigualdades devem valor: $L >> r_D; \tau >> t_D$, onde L é a dimensão característica do plasma e τ é o tempo característico da variação em seus parâmetros. De fato, estas desigualdades determinam a concentração de partículas carregadas, acima da qual o gás ionizado pode ser chamado plasma. Elas são geralmente sa-

tisfeitas com uma larga margem de segurança.

Para um plasma no qual a carga negativa é produzida p<u>e</u> los elétrons e a positiva por uma única espécie de íons, suas concentrações devem ser praticamente iguais:

 $n_e \approx n_i >> |n_i - n_e|$

1.2. Difusão Ambipolar

Um gás que apresenta inicialmente uma concentração não uniforme, posteriormente assume uma distribuição uniforme dentro do recipiente, se não houver um campo de força apreciável agindo sobre ele. Da mesma maneira, dois gases inicialmente separados tornam-se uniformemente misturados. O processo pelo qual a cond<u>i</u> ção de equilíbrio é alcançada chama-se DIFUSÃO.

Quando um gás contém uma apreciável capacidade de difundir elétrons e íons positivos, a separação de cargas, resul tante da maior rapidez de difusão do elétron, produz um campo elétrico de efeito considerável. O campo exerce forças de tal m<u>a</u> neira que aumenta a velocidade de arrastro dos íons e retarda a dos elétrons, e a separação de cargas atinge um estado de "bala<u>n</u> ço", no qual íons e elétrons difundem-se com a mesma velocidade. Este processo é chamado de DIFUSÃO AMBIPOLAR e é comum em desca<u>r</u> gas.

De acordo com CHEN^[2], o coeficiente de difusão ambip<u>o</u> lar, D_a, é definido por:

$$D_{a} = \frac{\mu_{i} D_{e} + \mu_{e} D_{i}}{\mu_{i} + \mu_{e}} , \qquad (1.7)$$

onde μ_i é a mobilidade do ion; μ_e é a mobilidade do elétron; D_e é o coeficiente de difusão do elétron e D_i é o coeficiente de difusão do ion.

A magnitude de D_a pode ser estimada se considerarmos em (I.7) $\mu_e \gg \mu_i$ (já que a massa do elétron é bem menor do que a do ion), então:

$$D_a \approx D_i + \frac{\mu_i}{\mu_e} D_e$$
 (I.8)

Se consideramos que a frequência de colisão, v, é uma constante e que v é suficientemente grande num estado esta cionário, podemos substituir em (I.8) a relação de Einstein $\mu = \frac{|e|D}{\kappa_T}$. Obtemos:

$$D_a \approx D_i + \frac{T_e}{T_i} D_i$$
 (1.9)

Para $T_e = T_i$:

$$D_a \approx 2D_i$$
 (I.10)

O efeito do campo elétrico ambipolar é de aumentar a difusão de íons por um fator de dois, mas a taxa de difusão das duas espécies juntas é controlada pela espécie mais lenta.

1.3. Transições Radiativas e Estados Metastáveis

Para átomos contendo mais do que um elétron, o momento angular total \vec{J} é dado pelo vetor soma de todos os momentos orbi tais individuais $\vec{I}_1 + \vec{I}_2 + \dots$ e spins $\vec{s}_1 + \vec{s}_2 + \dots$ e assim por

diante.

,1

No caso usual, os momentos angulares orbitais estão acoplados para produzir um momento angular orbital resultante $\vec{L} = \vec{L_1} + \vec{L_2} + \dots$ Similarmente os spins estão acoplados para formar um spin resultante $\vec{S} = \vec{s_1} + \vec{s_2} + \dots$ 0 momento angular total é então dado pelo acoplamento de \vec{L} e \vec{S} : $\vec{J} = \vec{L} + \vec{S}$.

Este tipo de acoplamento é conhecido como acoplamento LS.

No acoplamento LS, todas as quantidades \vec{L} , \vec{S} e \vec{J} são quantizadas. Suas intensidades são dadas por:

 $|\vec{L}| = \hbar \sqrt{L(L+1)}; |\vec{S}| = \hbar \sqrt{S(S+1)}; |\vec{J}| = \hbar \sqrt{J(J+1)};$

onde L, S e J são números quânticos com as seguintes propriedades:

- o número quântico L é sempre um inteiro positivo ou zero;
- o número quântico de spin S é ou inteiro ou semi-in teiro, dependendo se o número de elétrons é par ou ímpar, respectivamente.

A energia total de um dado estado depende da maneira como os vários momentos angulares estão adicionados para produzir o momento angular total resultante. Em conseqüência para dados valores de L e S, os vários valores de J correspondem a ene<u>r</u> gias diferentes. Isto resulta na estrutura fina das linhas espe<u>c</u> trais, segundo FOWLES^[3].

No caso do acoplamento LS, as regras de seleção que governam a transição permitida para radiação dipolar são as seguintes: $\Delta L = 0$, ± 1

 $\Delta S = 0$

 $\Delta J = 0, \pm 1 (J = 0 \rightarrow J = 0 \text{ proibida})$

Em todos os casos, o símbolo ∆ significa a diferença entre os correspondentes números quânticos dos estados inicial e final da transição.

Além das regras estabelecidas acima, há uma outra importante envolvendo um conceito conhecido como paridade. A paridade de um estado atômico pode ser par ou ímpar. Isto é determinado pela soma dos l valores dos elétrons individuais. Se a soma é par (ímpar), a paridade é par (ímpar). A seguinte regra de seleção aplica-se para radiação de dipolo elétrico a partir da transição entre dois estados:

par $\stackrel{\rightarrow}{\leftarrow}$ impar (permitidas) impar \rightarrow impar (proibidas) par \rightarrow par

Em outras palavras, para que a transição seja possível, a paridade do estado final precisa ser diferente da paridade do estado inicial.

É possível encontrar um estado excitado que não pode sofrer uma transição, por radiação de dipolo, para qualquer est<u>a</u> do mais baixo. Neste caso, o estado é dito METASTÁVEL. É possível também definir estados pseudo-metastáveis nos quais a trans<u>i</u> ção para o estado fundamental é permitida, mas existe um mecani<u>s</u> mo de reabsorção muito forte, de acordo com HOLSTEIN^[4] e RI-CARD^[5], fazendo com que a população desses níveis seja comparável com a dos estados metastáveis. No caso do Hélio, Neônio e A<u>r</u> gônio os níveis metastáveis e pseudo-metastáveis são apresenta dos na tabela I.

Se um átomo ou molécula está num estado metastável, sendo a transição para níveis mais baixos proibida, o processo

de destruição pode acontecer por excitação para níveis superiores, por colisão eletrônica, ou via colisões com outros átomos ou moléculas.

GÁS NOBRE	NÍVEL	ENERGIA (eV)
Hélio	2 ¹ s	20,6
	2 ³ s	19,8
Neônio	1P ₁ (PM)	16,94
	^{3P} 0	16,71
	3P ₁ (PM)	16,67
	^{3P} 2	16,61
Argônio	1P ₁ (PM)	11,93
	3P ₀) 11,71 .
	3P ₁ (PM)	11,62
	^{3P} 2 .	11,55

TABELA I - Energia dos Níveis Metastáveis e Pseudo-Metastáveis do Hélio, Neônio e Argônio.

PM = pseudo-metastável

2. MECANISMOS DE TRANSFERÊNCIA METASTÁVEL-MOLÉCULAS

Os mecanismos de reação entre átomos ou moléculas metastáveis, criados por uma descarga elétrica na mistura de dois gases, são estudados, particularmente, pelos seguintes mecanismos de transferência. 2.1. Reação de Ionização Química (Efeito Penning)

O efeito Penning esquematizado pela equação

 A^{M} + (BC) \rightarrow A + (BC)⁺ + e

é um mecanismo facilmente verificado. Ele é produzido quando a energia do metastável A^M é superior ao potencial de ionização do reagente molecular BC. O elétron "e", liberado, absorverá o excesso de energia da reação verificada acima.

Este efeito é mais provável se o átomo excitado está em um estado metastável, tendo desta forma um tempo de vida longo no qual ocorre uma colisão. O processo é então conhecido como efeito PENNING e pode ser um importante agente de ionização em descargas de misturas de gases.

2.2. Reação de Excitação Química

A reação de excitação química é definida pelos seguintes processos:

- excitação de moléculas neutras: A^{M} + (BC) \rightarrow A + (BC)*

- dissociação de moléculas neutras: A^M + (BC) → A + B* + C * - significa excitação.

Os mecanismos caracterizados pelas reações acima são pouco seletivos, mas são eficazes^[6].

Os mecanismos de excitação química se distinguem dos de ionização química pelo fato essencial de que a energia do metastável A^M é insuficiente para ionizar o reagente BC ou o composto ABC.

3. CAVIDADES DE MICROONDAS

O método de medida que utilizamos para medir a densid<u>a</u> de eletrônica em descargas de gases nobres e misturas de gases nobres com Hidrogênio, que a seguir passamos a descrever, é o m<u>é</u> todo de cavidade ressonante na faixa de microondas.

3.1. Cavidades Ressonantes

O termo guia de onda normalmente denota um tubo de metal oco através do qual energia eletromagnética pode propagar-se. Qualquer guia de onda pode teoricamente propagar um número infinito de diferentes tipos de ondas eletromagnéticas. Cada tipo, usualmente chamado MODO, tem sua própria configuração de campo elétrico e magnético. Cada modo tem também uma freqüência crítica, a assim chamada FREQUÊNCIA DE CORTE, abaixo da qual não pode propagar-se onda através do guia. A freqüência de corte para cada modo é determinada pelas dimensões do guia de onda.

Num guia cilíndrico existe duas grandes classes de modos que podem propagar-se, os modos transversos magnéticos TM e os modos transversos elétricos TE.

Um guia cilíndrico fechado em suas duas extremidades por faces planas constitui uma CAVIDADE RESSONANTE. Os modos de ressonância de uma cavidade são caracterizados por três índices m, n, p; estes índices se referem às variações do campo nas dir<u>e</u> ções ψ , r e z respectivamente. Assim

 ψ - azimutal (m)

r - radial (n)

z - longitudinal (p)

Os modos $TE_{m,n,p}$ e $TM_{m,n,p}$ tem comprimentos de onda de ressonância, de acordo com HARVEY^[7], dados por:

$$\lambda = 2 \left\{ \left(\frac{2 \, x_{mn}}{\pi d} \right)^2 + \left(\frac{p}{\ell_c} \right)^2 \right\}^{-1/2} , \qquad (I.11)$$

onde x_{mn} é a m-ésima raiz da derivada da função de Bessel J''(x_{mn}) = 0, para os modos TE; x_{mn} é a m-ésima raiz da função de Bessel de ordem m,J_m(x_{mn}) = 0, para os modos TM;

d é o diâmetro da cavidade;

 ℓ_c ē o comprimento da cavidade.

Elevando a equ (I.11) ao quadrado temos:

$$\lambda^{2} = 4 \left\{ \left(\frac{2 \, x_{mn}}{\pi d} \right)^{2} + \left(\frac{p}{\ell_{c}} \right)^{2} \right\}^{-1}$$

Substituindo λ por $\frac{c}{f}$ e trabalhando a equação obtemos:

$$(f d)^{2} = \left(\frac{c x_{mn}}{\pi}\right)^{2} + \left(\frac{cp}{2}\right)^{2} \left(\frac{d}{\ell_{c}}\right)^{2}$$
 (I.12)

A equação (I.12) nos fornece a freqüência de ressonância de uma cavidade cilíndrica de comprimento ℓ_c e diâmetro d, e mostra que o gráfico de (fd)² versus $(\frac{d}{\ell_c})^2$ é uma linha reta que intercepta $(\frac{c x_{mn}}{\pi})^2$ e tem inclinação $(\frac{cp}{2})^2$,^[7].

Uma outra característica da cavidade ressonante é seu fator de qualidade Q, definido por:

$$Q = \omega_r \frac{\text{energia armazenada na cavidade}}{\text{energia dissipada por segundo}}$$

Se uma onda eletromagnética for introduzida na cavidade haverá perdas energéticas, causando um amortecimento do campo. Matematicamente estas perdas se traduzem pelo aparecimento de uma componente imaginária na freqüência da onda eletromagnética. Assim:

$$\omega = \omega_r + j\omega_i \qquad (I.13)$$

Se o campo elétrico é da forma: $\vec{E} = \vec{E}_0 e^{j\omega t}$ a energia armazenada é:

$$W = \frac{\varepsilon_0}{2} \int \vec{E} \cdot \vec{E} * dV$$

vcavidade

Substituindo É pela sua expressão e integrando temos:

$$W = \frac{\varepsilon_{0}}{2} e^{-2\omega_{i}t} \int_{V_{cavidade}} \vec{F}_{0} \cdot \vec{E}_{0}^{*} dV$$

Fazendo: $W_{o} = \frac{\varepsilon_{o}}{2} \int_{V_{cavidade}} \vec{E}_{o} \cdot \vec{E}_{o} \cdot dV$

$$W = W_{o} e^{-2\omega_{i}t}$$

A energia perdida por período será:

$$\frac{dW}{dt} = \frac{d}{dt} (W_0 e^{-2\omega_i t}) = -2\omega_i W$$

Desta forma o coeficiente de qualidade Q da cavidade valerá:

 $Q = \frac{\omega r}{2\omega_i}$

$$\frac{\omega_{i}}{\omega_{r}} = \frac{1}{2Q}$$

Substituindo na equação (I.13) temos:

$$\omega = \omega_{\mathbf{r}} + \mathbf{j} \frac{\omega_{\mathbf{r}}}{2\mathbf{Q}}$$

$$\omega = \omega_{\mathbf{r}} \left[1 + \frac{\mathbf{j}}{2\mathbf{Q}}\right] \tag{I.14}$$

Com a equação (I.14), que nos fornece a pulsação complexa (ω) da onda eletromagnética, acabamos de definir os eleme<u>n</u> tos principais de uma cavidade ressonante e passamos a descrever o funcionamento do Klystron de reflexão, elemento importantíssimo do sistema de microondas.

3.2. Klystron de Reflexão

O Klystron de reflexão é um gerador de alta freqüência e baixa potência para microondas. Na banda X (entre 8 e 10 GHz) as microondas produzidas tem comprimentos de onda compreendidos entre 3,1 cm e 3,5 cm. Na FIGURA 1 esquematizamos um Klystron de reflexão com apenas uma cavidade ressonante.

Os elétrons são emitidos pelo cátodo aquecido indireta mente. O cátodo está a um potencial V_B negativo em relação a estrutu-

ESQUEMA DO KLYSTRON DE REFLEXÃO

ŗ\$

FIGURA 1

C - Cátodo R - Refletor G1 e G2- Grades ra ressonante, até a qual os elétrons são acelerados. Depois de atravessar as grades, os elétrons passam a uma região de arraste onde são freados pelo eletrodo refletor, que está a um potencial $V_{\rm C}$ negativo em relação ao cátodo. Os elétrons invertem seu sentido, são acelerados novamente até o ânodo e passam pela segunda vez através das grades. Na segunda passagem através das grades os elétrons fornecem energia ã estrutura ressonante, compensando a energia dissipada dentro da cavidade, de acordo com a referência [8].

Resumindo, os elétrons emitidos pelo cátodo são modul<u>a</u> dos em velocidade até que eles atravessam as grades no sentido $G_1 G_2$; repelidos pelo refletor R, e modulados em densidade, eles excitam, no seu retorno, as oscilações da cavidade.

3.3. Acoplamento da Cavidade ao Circuito Externo

Quando oscilações ressonantes ocorrem numa cavidade acoplada a um sistema de microondas externo, o sistema acoplado, como um todo, é efetivamente solicitado a participar das oscilações da cavidade. A alteração efetiva do volume e forma da cavidade, que é causada pela conexão do sistema acoplado, perturbará a freqüência ressonante da cavidade por um valor que depende do grau de acoplamento da cavidade com o sistema. As correntes, que são causadas pela corrente do sistema acoplado em ressonância, serão acompanhadas por perdas que diminuem o coeficiente de qualidade, Q, efetivo da cavidade e sistema de microondas combina dos.

O tamanho do buraco acoplador determina o grau de aco-

plamento entre a cavidade e o guia de onda e se comporta como um obstáculo ressonante, quando suas dimensões são da ordem de 1/4 do comprimento de onda incidente, conforme estudo teórico de H.A. Bethe^[9].

O melhor acoplamento é obtido quando os campos elétrico e magnético da cavidade e do guia de onda são paralelos.

Nós utilizamos uma cavidade cilíndrica ressonante no modo TM₀₂₀, cujo acoplamento está esquematizado abaixo

Ē

⊙ Ĥ

ÎĒ

GUIA DE ONDA

₽z

ÎĒ

CAVIDADE |

₽Ō

⊖ Ħ

ΤΜοεο

A equação de onda para E_z na cavidade cilíndrica ressonante é:

$$\frac{\partial^2 E_z}{\partial r^2} + \frac{1}{r} \frac{\partial E_z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 E_z}{\partial \Theta^2} + \frac{\partial^2 E_z}{\partial z^2} + \omega^2 \varepsilon \mu E_z = 0 ,$$

de acordo com ISHII^[10].

Assim, as componentes dos campos elétrico e magnético neste caso são, de acordo com JORDA^[11]:

Modo
$$TM_{020}$$

 $E_r = 0$
 $E_{\Theta} = 0$
 $E_z = J_{\Theta} \left(\frac{2 x_{02} \cdot r}{D}\right)$
 $H_z = 0$
 $H_z = 0$

Este tipo de acoplamento favorece a ressonância no modo TM_{020} escolhido para medir a densidade eletrônica.

4. TEORIA DAS PEQUENAS PERTURBAÇÕES

O embasamento teórico necessário para o desenvolvimento da teoria de pequenas perturbações, que será utilizada para determinar a densidade eletrônica em descargas de gases nobres pelo método de microondas, está contido no apêndice I da tese de J.L. MUZART^[12] e no artigo de V.E. GOLANT^[13].

Se introduzirmos um pequeno volume de plasmas no interior de uma cavidade ressonante num modo k (TE_{mnp} ou TM_{mnp}) bem definido, a freqüência de onda experimenta uma variação relativa que se expressa pela relação:

$$\frac{\Delta\omega}{\omega} = \frac{j}{2\varepsilon_0\omega} \frac{\int \sigma E_k^2 \, dV}{\int E_k^2 \, dV}$$
(I.15),

onde σ é a condutividade elétrica, válida quando a perturbação introduzida pelo plasma é pequena.

Se tomamos o logaritmo natural da equação (I.14) e após a escrevemos para uma variação finita das grandezas envolv<u>i</u> das, obtemos $\frac{\Delta \omega}{\omega}$, ou seja:

$$\frac{\Delta\omega}{\omega} = \frac{\Delta\omega}{\omega_{\rm r}} + \frac{\Delta[1 + j/2Q]}{[1 + j/2Q]}$$

Como: $\omega_r = 2\pi f e Q >> 1$, obtemos:

$$\frac{\Delta\omega}{\omega} = \frac{\Delta f}{f} + \frac{j}{2} \Delta(\frac{1}{Q})$$
 (I.16)

A condutividade elétrica σ que aparece em (I.15) é uma quantidade complexa:

 $\sigma = \sigma_r + j\sigma_i$

A identificação das partes reais e imaginárias de (I.15) e (I.16) fornece-nos as seguintes relações:

$$\frac{\Delta\omega}{\omega} = \frac{j}{2\varepsilon_0\omega} \frac{\int_V \sigma E_k^2 dV}{\int_V E_k^2 dV} = \frac{j}{2\varepsilon_0\omega} \frac{\int_V \sigma_r E_k^2 dV}{\int_V E_k^2 dV} + \frac{j}{2\varepsilon_0\omega} \frac{\int_V j\sigma_i E_k^2 dV}{\int_V E_k^2 dV}$$

$$\frac{\Delta\omega}{\omega} = \frac{j}{2\varepsilon_{0}\omega} \frac{\int_{V} \sigma_{r} E_{k}^{2} dV}{\int_{V} E_{k}^{2} dV} - \frac{1}{2\varepsilon_{0}\omega} \frac{\int_{V} \sigma_{i} E_{k}^{2} dV}{\int_{V} E_{k}^{2} dV}$$
(I.15')

Comparando (I.15') com (I.16), obtemos:

$$\frac{\Delta f}{f} = -\frac{1}{2\varepsilon_0 \omega} \frac{\int_V \sigma_i E_k^2 dV}{\int_V E_k^2 dV}$$
(I.17)

$$\Delta\left(\frac{1}{Q}\right) = \frac{1}{\varepsilon_{0}\omega} \frac{\int_{V} \sigma_{r} E_{k}^{2} dV}{\int_{V} E_{k}^{2} dV}$$
(I.18)

A introdução de um certo volume de plasma provoca um desvio Δf na freqüência de ressonância e uma variação $\Delta(\frac{1}{Q})$ do coeficiente de qualidade da cavidade. No entanto, para podermos aplicar o cálculo de pequenas perturbações é preciso que o volume de plasma seja pequeno em relação ao volume da cavidade.

4.1. <u>Aplicação na Determinação da Densidade</u> Eletrôni-to <u>ca, n</u>e

As equações (I.17) e (I.18) foram derivadas consideran do que o plasma é um meio com condutividade complexa:

51

$$\sigma = \sigma_r + j\sigma_i$$

O estudo do movimento dos elétrons na ausência de campo magnético nos permite determinar as componentes real ou imagi nária de σ . De acordo com V.E. GOLANT^[13] estas componentes são:

$$\sigma_{\mathbf{r}} = \frac{n_{\mathbf{e}} e^2}{m_{\mathbf{e}}} \cdot \frac{v_{\mathbf{e}}}{\omega^2 + v_{\mathbf{e}}^2} ; \quad \sigma_{\mathbf{i}} = -\frac{n_{\mathbf{e}} e^2}{m_{\mathbf{e}}} \cdot \frac{\omega}{\omega^2 + v_{\mathbf{e}}^2}$$

onde v_e é a frequência de colisão elétron-neutron. A quantidade v_e é real.

Quando a frequência do campo é muito maior que a frequência de colisão do elétron, $\omega >> v_e$, temos:

$$\sigma_{\mathbf{r}} \approx \frac{\frac{\mathbf{n}_{\mathbf{e}} e^2 v_{\mathbf{e}}}{\mathbf{m}_{\mathbf{e}} \omega^2}$$
, $\sigma_{\mathbf{i}} \approx -\frac{\mathbf{n}_{\mathbf{e}} e^2}{\mathbf{m}_{\mathbf{e}} \omega}$ $\sigma_{\mathbf{r}} << \sigma_1$

Substituindo as expressões acima em (I.17), temos:

$$\frac{\Delta f}{f} \approx -\frac{1}{2\varepsilon_0 \omega} \frac{\int_V \frac{n_e e^2}{m_e \omega} \cdot E_k^2 dV}{\int_V E_k^2 dV}$$
$$\frac{\Delta f}{f} \approx \frac{e^2}{2m_e \varepsilon_0 \omega^2} \frac{\int_V n_e E_k^2 dV}{\int_V E_k^2 dV}$$

(I.17')

Fazendo: $n_c = \frac{m_e \varepsilon_o \omega^2}{e^2}$ e substituindo em (I.17') podemos escrever:

$$\frac{\Delta f}{f} \approx \frac{1}{2n_c} \frac{\int_V n_e(\mathbf{r}) E_k^2 dV}{\int_V E_k^2 dV}$$
(I.19)

onde n_c é a concentração crítica, ou seja, a concentração na qual a freqüência do campo é igual a freqüência do plasma.

Num cálculo aproximado das integrais de (I.19) B. AGDUR e B. ENANDER^[14] mostram que podemos escrever $\frac{\Delta f}{f}$ da seguinte for ma:

$$\frac{\Delta f}{f} = A(\alpha) [1 - \epsilon'] , \qquad (I.20)$$

onde ε' é a parte real da constante dielétrica relativa ε_r ; A(α) é um fator de forma que depende do modo de ressonância da cavidade e do coeficiente α :

$$\alpha = \frac{\text{raio da coluna de plasma}}{\text{raio da cavidade}} = \frac{r_p}{r_c}$$

A variação da concentração eletrônica, segundo J.L. DELCROIX^[15], é dada pela relação:

$$n_e(r) = n_e(o) \cdot J_o(2, 4 \frac{r}{r_p})$$
,

onde n_e(o) é a concentração eletrônica no centro do tubo de descarga e J_o a função de Bessel de primeira espécie de ordem zero. No apêndice da tese de J.L. JORDA^[11] está demonstrado que a relação (I.19) conduz a:

$$\frac{\Delta f}{f} = B(\alpha) [1 - \varepsilon'] , \qquad (I.21)$$

onde $B(\alpha)$ é um coeficiente que depende do modo de ressonância da cavidade, do coeficiente α e da distribuição da densidade dentro do tubo.

No apêndice I desta tese consta a demonstração da expressão para $B(\alpha)$, bem como seu cálculo para o modo que vamos uti lizar $(TM_{0.20})$.

A relação: $\varepsilon' = 1 - \frac{\omega_p^2}{\omega^2 + v_e^2}$, onde $\omega_p^2 = \frac{n_e e^2}{m_e \varepsilon_o} = \text{frequência}$ plasma e as equações (I.17), (I.18) e (I.21) permitem calcular a densidade eletrônica média <n_e> e a frequência de colisão v_e :

No apêndice II mostramos que:

11

$$\langle n_e \rangle = 0,432$$
. $\frac{4\pi^2 m_e \varepsilon_o}{e^2} f \frac{\Delta f}{B(\alpha)} [1 + \frac{v_e^2}{\omega^2}]$ (I.22)

Podemos observar que a medida da densidade eletrônica depende, entre outros, do coeficiente de colisão elétron-neutro , v_e . Resultados encontrados na literatura^[12] mostram que no nosso caso $v_e << \omega$ e a equação final é:

$$\langle n_e \rangle = 0,432 \frac{4\pi^2 m_e \varepsilon_0}{e^2} f \frac{\Delta f}{B(\alpha)}$$
 (I.23)

4.2. Limites da Teoria de Pequenas Perturbações

A equação usada para determinar a mudança na freqüência de ressonância da cavidade em função da densidade eletrônica ē:

$$\frac{\Delta f}{f} = \frac{e^2}{2m_e \varepsilon_0 \omega^2} \frac{\int_V n_e E_k^2 dV}{\int_V E_k^2 dV}$$
(I.17')

Esta equação no entanto é válida somente quando $\frac{\Delta f}{f}$ é muito pequeno. Isto mostra uma das aproximações feita na derivação de (I.17'), isto é, que o campo na cavidade com o plasma pr<u>e</u> sente (\vec{E}) pode ser substituído pelo campo sem o plasma (\vec{E}_0). Quando a densidade eletrônica é baixa a aproximação é boa, o pla<u>s</u> ma não causando distúrbio apreciável no campo elétrico. Nestas condições o método convencional de microondas é muito bem suced<u>i</u> do. A medida que a densidade eletrônica vai aumentando, entreta<u>n</u> to, o campo com o plasma torna-se significativamente diferente do campo sem o plasma, por três razões:

- a) a carga espacial alternada, comumente chamada "ressonância plasma" que aparece quando a densidade el<u>e</u> trônica do plasma aumenta;
- b) o plasma começa a blindar o interior de campos externos quando $\omega_p >> \omega$;
- c) quando a densidade eletrônica e a pressão são altas o suficiente, tal que o valor de Q está baixando, a superposição das maiores freqüências pode também fazer E ser diferente de E_o pela adição de E_o com alguns campos de alta freqüência.

As duas primeiras razões estão diretamente ligadas à densidade eletrônica do plasma, levando BUCHSBAUM e BROWN^[16] por um lado e GOLANT^[13] por outro a definir uma densidade ou conce<u>n</u> tração crítica, n_c, para a qual a freqüência plasma é igual a freqüência da onda utilizada.

Na FIGURA 2 extraída da referência [13] está represen-

tada a variação de $\frac{\Delta f}{f}$ em função de $\frac{\langle n_e \rangle}{n_c}$ para $\alpha = 0,1$, fixando desta forma os limites da aproximação linear da teoria de pequenas perturbações.

5.1

(Cavidade TM_{020} de acordo com V.E. GOLANT)

Uma cavidade eletromagnética, convenientemente acoplada ao circuito externo, permite-nos determinar as concentrações de elétrons num plasma, desde que este não perturbe o campo elétrico da cavidade.

Em conclusão podemos com este sistema medir a densidade eletrônica n_e, para estudar a sua evolução em descargas de misturas He-H₂ , Ne-H₂ e Ar-H₂.

CAPÍTULO II

MONTAGEM EXPERIMENTAL

Neste capítulo descrevemos, resumidamente, a montagem experimental utilizada nas medidas de densidade eletrônica e a técnica de medida empregada.

1. DISPOSITIVO EXPERIMENTAL

Consiste do sistema de vácuo e circuito elétrico, para gerar o plasma, e do sistema de microondas, ligado a cavidade ressonante, para medir a densidade eletrônica.

1.1 - Sistema de Vácuo

Com o sistema de vácuo esquematizado obtemos um vácuo da ordem de 10^{-5} Torr, ou melhor (FIG. 3). Consegue-se este vácuo com uma bomba mecânica e uma bomba de difusão.

A limpeza do sistema foi verificada por SÔNIA M. DA SILVA^[18] medindo a absorção de linhas e comprovando que a abso<u>r</u> ção é constante, e em conseqUência a densidade de metastáveis não muda.

A mistura é feita da seguinte maneira: fecha-se V_1 e V_2 (o sistema fica, então, isolado). Abre-se V_3 colocando 0,76 Torr de H_2 , que medimos com o medidor TR201 previamente calibrado para o hidrogênio. Em seguida completamos com gás nobre (He, ESQUEMA DA MONTAGEM DO SISTEMA DE VÁCUO

FIGURA 3

A - Ânodo.

1.1

C - Cátodo.

M-Manômetro.

R - Reservatório para mistura.

BD-Bomba de difusão.

BM-Bomba mecânica.

TD-Tubo de descarga.

TH-Tubo de H2

TGN-Tubo de gás nobre.

PM30 - Penningvac - LEYBOLD-HERAEUS - medidor de pressão na faixa de 10⁶ a 10² Torr.

TR201 - LEYBOLD-HERAEUS - medidor de pressão, com funcionamento baseado na condutividade térmica, na faixa de 10²a 5 Torr.
Ne ou Ar) até 1 atm medida com um manômetro Bourdon (calibr<u>a</u> do de 0 a 760 Torr, de 20 em 20 Torr). Obtemos assim uma mistura de gás nobre mais 1×10^{-3} H₂.

Uma vez feita a mistura esperamos um certo tempo, para que se estabeleça o equilíbrio, e fechamos a válvula V₄. Feito isto, usamos a mistura, armazenada no reservatório, para ajustar a pressão no tubo de descarga.

1.2 - Descarga

O sistema de vácuo é acoplado ao dispositivo utilizado para fazer a descarga (FIG. 4).

O tubo de descarga tem $\phi_{int} = 8 \text{ mm e } \phi_{ext} = 10 \text{ mm}.$

Os eletrodos estão ligados a uma resistência de carga que estabiliza a descarga, e a uma fonte de alta tensão que pode variar de 0 a 3000 V. O miliamperímetro é utilizado para ler a corrente que desejamos para o circuito. A corrente máxima compatível com a fonte de alta tensão utilizada é 20 mA.

1.3 - Sistema de Microondas

O sistema de microondas está esquematizado na FIGURA 5.

O Klystron, gerador de alta freqüência para microondas, produz microondas de comprimentos compreendidos entre 3,1 cm e 3,5 cm e com freqüências compreendidas entre 8 e 10 GHz. É alimentado pelo Klystron Power Supply e a freqüência da onda, fornecida por ele, pode ser modificada girando B. oon

ESQUEMA DO DISPOSITIVO DE DESCARGA

FIGURA 4

- A Ânodo.
- C Cátodo.
- FAT Fonte de alta tensão variável.
- mA Miliamperímetro.
- RC Resistência de carga.
- TD-Tubo de descarga,

ESQUEMA DA MONTAGEM DO SISTEMA DE MICROONDAS

FIGURA 5

A-Atenuador variável.

B-Dispositivo que regula a freqüência emitida pelo klystron.

C-Cavidade ressonante.

D-Detector.

E-Dispositivo que regula a freqüência de ressonância do freqüencímetro.

F-Frequencímetro.

I-Isolador.

K-Klystron.

PM7812 - Klystron Power Supply - PHILIPS.

PM7832 - SWR-meter - PHILIPS.

PM3200 - Osciloscópio - o - 10 MHz - PHILIPS.

O isolador (uma linha unidirecional) evita que a onda refletida venha perturbar o funcionamento do Klystron.

No freqüencimetro lemos a freqüência de ressonância da cavidade ressonante, ajustando a freqüência de ressonância da c<u>a</u> vidade do freqüencimetro em E.

A detecção dos sinais emitidos pela cavidade $ilde{e}$ feita pelo detector D.

2. TÉCNICAS DE MEDIDAS

Esta parte compreende o estudo experimental da cavidade e um relato sobre as medidas realizadas.

2.1 - Estudo Experimental da Cavidade

A cavidade ressonante que utilizamos, esquematizada na FIGURA 6, funciona no modo TM₀₂₀ (ver secção 3.1, Cap. I) e tem as seguintes dimensões:

d = 53,60 mm e $\ell_{c} = 27,00 \text{ mm}$

A frequência de ressonância da cavidade, calculada a partir da equação (I.12), é:

 $f_{CALCULADA} = 9834 \text{ MHz} \quad TM_{020}$

A medida de freqüência de ressonância é feita da seguinte maneira: gira-se o dispositivo que regula a freqüência do Klystron (ver FIG. 6), para variar sua freqüência, observando no medidor de onda quadrada (SWR - meter) o seu máximo. Assim que

o máximo é encontrado fazemos o ajuste fino, da freqüência do Klystron, através do botão que regula a tensão do Klystron Power Supply. A seguir, variamos a freqüência de ressonância do freqüencímetro até que o máximo seja observado no osciloscópio. O valor da freqüência medida pelo freqüencímetro, desta maneira, é a freqüência de ressonância da cavidade.

Para repetir as medidas devemos tirar o freqüencimetro da freqüência de ressonância, já que ele é uma cavidade ressona<u>n</u> te que absorve parte da energia, na mesma faixa da cavidade do plasma, o que pode prejudicar a procura da freqüência da cavidade, que contém o plasma.

A medida da frequência de ressonância de nossa cavidade ressonante é:

> $f_{MEDIDA} = 9907,5 \text{ MHz}$ TM_{020} $f_{MEDIDA} = 9086 \text{ MHz}$ TM_{210}

Os desvios encontrados nas freqüências podem ter sido gerados pelos buracos do acoplamento e pelo fato de que as "tampas" da cavidade apresentam cortes, para permitir a montagem com o tubo de quartzo.

A teoria de pequenas perturbações nos fornece, de aco<u>r</u> do com [12], as seguintes relações, que nos permitem calcular os desvios na freqüência devido a introdução do tubo de quartzo na cavidade:

$$\frac{\Delta f}{f} = (1 - \frac{\varepsilon'}{\varepsilon_0}) K'$$

onde $\frac{\varepsilon'}{\varepsilon_0}$ = 3,78 para o quartzo e K' = K_{ext} - K_{int}

$$K_{\text{ext,int}} = \frac{\alpha^2}{2 J_1^2(x_{02})} \{0, 76[J_1^2(x_{02} \alpha) + J_0^2(x_{02} \alpha)]\}$$
(II.1)

A expressão acima corresponde a um perfil retangular do material introduzido na cavidade.

Os valores de K_{ext} e K_{int}, para o nosso caso, segundo os cálculos apresentados no Apêndice I e a equação (II.1), são:

- para
$$\phi_{\text{ext}} = 10 \text{ mm}$$
 temos $\alpha = \frac{5}{26,8} \approx 0,187$ e $x_{02} = 5,52$

Então:

$$K_{ext} = 8,74 \times 10^{-2}$$

- para $\phi_{\text{int}} = 8 \text{ mm}$ temos $\alpha = \frac{4}{26,8} \approx 0,149$ e $x_{02} = 5,52$

Então:

$$K_{int} = 6,09 \times 10^{-2}$$

Desta forma, o cálculo para K' dá:
K' = 2,65 x 10⁻²

Portanto:

$$\Delta f_{CALCULADO} = -730 \text{ MHz}$$

ou seja a frequência de ressonância da cavidade, no modo TM_{020} , calculada é:

$$f_{THBO} = 9177,5 \text{ MHz} \text{ TM}_{020}$$

enquanto a frequência medida é:

$f_{MEDIDA} = 9155 \text{ MHz} \quad TM_{020}$

A razão de termos escolhido um tubo de quartzo, ao invés de um de pirex, é devido ao fato de que com o pirex há um amortecimento grande no pico de ressonância da cavidade, dificu<u>l</u> tando as medidas e tornando-as muito imprecisas. A análise da equação

$$\Delta\left(\frac{1}{Q}\right) = \frac{\varepsilon''}{\varepsilon_{o}} K'$$

e dos valores de $\frac{\varepsilon''}{\varepsilon_0} = 3,78 \times 10^{-4}$ para o quartzo e $\frac{\varepsilon''}{\varepsilon_0} = 4,7 \times 10^{-2}$ para o pirex, de acordo com [12], evidencia que o fator de qual<u>i</u> dade (Q) da cavidade é prejudicado pelo pirex.

Sem a presença do plasma, as freqüências medidas para os modos TM₀₂₀ e TM₂₁₀ são 9907,5 e 9086 MHz, respectivamente. Com o tubo de quartzo:

 $f_{MEDIDA} = 9155 \text{ MHz} \qquad TM_{020}$ $f_{MEDIDA} = 9070 \text{ MHz} \qquad TM_{210}$

Com o tubo de quartzo, portanto, há uma proximidade maior entre os picos para os dois modos de ressonância, este fato, no entanto, não causa confusão já que, quando se realiza o plasma o pico do modo TM_{210} praticamente não se desloca (vai até 9080 MHz no máximo) e o modo TM_{020} se desloca para freqüências crescentes.

2.2 - Precisão das Medidas - Limite da Medida

Para fazermos as medidas de freqüência giramos o dispo sitivo regulador da freqüência emitida pelo Klystron manualmente. Outros métodos foram tentados mas, em razão do mecanismo de variação da freqüência do Klystron, não obtivemos êxito. Desta maneira, a precisão da medida da freqüência de ressonância da cavi dade, sem plasma, é da ordem de 1 MHz. Por outro lado, quando a densidade eletrônica aumenta, o pico de ressonância fica amortecido e em conseqüência o máximo não fica tão bem definido, o que piora a precisão das medidas.

Na faixa de 9155 até 9162 MHz a precisão avaliada exp<u>e</u>rimentalmente é de $_{\sim}$ 1 MHz, então o erro relativo é:

$$\frac{\delta(\Delta f)}{\Delta f} = \frac{1}{7} = 0,14$$

A 9170 MHz a precisão é de ∿ 2 MHz, então

$$\frac{\delta(\Delta f)}{\Delta f} = \frac{2}{15} = 0,13$$

Quando o pico do modo TM_{020} se desloca a 9220 MHz a precisão é de \sim 10 MHz, então:

$$\frac{\delta(\Delta f)}{\Delta f} = \frac{10}{65} = 0,15$$

Portanto, o erro que cometemos \overline{e} da ordem de \sim 15%.

Por outro lado, como o pico fica amortecido com plasma, o Δf máximo que podemos medir experimentalmente é da ordem de 80 MHz limitando, então, a densidade eletrônica máxima que podemos medir. Usando a equação (I.23), o valor de B(α) calculado no Apêndice I e medindo Δf podemos obter o valor da densidade eletrônica média em cm⁻³. Calculando no sistema MKSA temos:

1-1

$$< n_e^{>} = 1 \times 10^9 \Delta f (MHz)$$
 (II.2)

Usando o limite imposto pela teoria de pequenas pertu<u>r</u> bações (ver FIG. 2), a densidade eletrônica máxima que podemosm<u>e</u> dir, teoricamente, é:

$$\frac{\Delta f}{f} = 8 \times 10^{-2} \rightarrow \Delta f_{max} = 8 \times 10^{-2} \cdot 10^{4}$$
$$\Delta f_{max} = 8 \times 10^{2} \text{ MHz}$$
$$(n_{e})_{max} = 1 \times 10^{9} \cdot 8 \times 10^{2}$$
$$(n_{e})_{max} = 8 \times 10^{11} \text{ cm}^{-3}$$

O valor da densidade eletrônica máxima, obtida experimentalmente é:

$$(n_e)_{max exp.} = 1 \times 10^{.9} \cdot 80$$

 $(n_e)_{max exp.} = 8 \times 10^{.10} \text{ cm}^{-.33}$

eri-

CAPÍTULO III

RESULTADOS E DISCUSSÃO

Neste capítulo apresentamos os resultados obtidos, experimentalmente, para as medidas de densidade eletrônica, feitas através do sistema de microondas.

A discussão dos resultados encontra-se na terceira pa<u>r</u> te deste capítulo.

1. RESULTADOS EXPERIMENTAIS DA DENSIDADE ELETRÔNICA

1.1 - Argônio

A TABELA II mostra os resultados das medidas de densidade eletrônica para o Argônio.

A representação gráfica, dos resultados experimentais, da TABELA II se encontra nas FIGURAS 7, 8 e 9.

Em relação a estas figuras fazemos algumas constatações, enumeradas abaixo:

- as medidas em valor absoluto concordam perfeitamente com os resultados de JORDA^[11];
- 2. a evolução da densidade eletrônica, com a pressão e a corrente, é linear de 0,2 Torr até 3 Torr aproximadamente, contudo o seu comportamento para pressões menores não está bem definido, o que concorda com os resultados de JORDA;

3. não há aumento de densidade eletrônica até uma pro-

FIGURA 7 - Densidade eletrônica do Argônio em função da pressão. I = 5 mA

FIGURA 8 - Densidade eletrônica do Argônio em função da pressão. I = 10 mA

porção de 1.10^{-3} de hidrogênio. As barras de erro, representadas nas FIGURAS 7, 8 e 9, são colocadas em relação as curvas. As curvas são traçadas para o gás puro e o erro admitido, para colocar as barras de erro, foi de 15%. Através das barras de erro, podemos observar que não houve mudança na densidade eletrônica, quando introduzimos hidrogênio, uma vez que a maioria dos pontos se encontra dentro das ba<u>r</u> ras de erro;

4. na proporção de 1.10⁻² de hidrogênio a densidade eletrônica diminui, para as pressões mais altas, e neste caso a temperatura eletrônica é, provavelmente, modificada, alterando, então, as condições de equilíbrio do plasma. Medidas para pressões superio res a 3 Torr não foram possíveis, já que verificamos um amortecimento grande do pico de ressonância, o que tornava as medidas muito imprecisas.

1.2 - Hélio

A TABELA III mostra os resultados das medidas de densi dade eletrônica para o Hélio.

A representação gráfica, dos resultados experimentais, da TABELA III se encontra nas FIGURAS 10 e 11. As curvas foram traçadas para o Hélio puro.

y-7

			<u>.</u>			
P(Torr) I(mA)	0,2	0,5	1	2	3	MISTURA
	8,3	9,6	13,0	16,4	18,1	ARGÔNIO PURO
	8,3	9,3	11,3	20,5	18,5	Ar + 5.10 ⁻⁶ H ₂
; E	7,0	8,0	12,5	18,8	23,2	$Ar + 1.10^{-5}H_2$
5	6,0	9,5	10,8	22,5	27,0	Ar + 1.10 ⁻⁴ H_2
	7,5	9,5	11,0	19,2	25,0	$Ar + 1.10^{-3}H_2$
	7,0	10,5	10,5	11,0	10,0	Ar + 1.10^{-2} H ₂
10	13,5	17,8	22,6	44,6		ARGÔNIO PURO
	13,0	18,0	24,0	37,5		Ar + 5.10 ⁻⁶ H ₂
	12,5	17,5	23,0	45,0		$Ar + 1.10^{-5}H_2$
	11,5	19,0	25,8	34,5		$Ar + 1.10^{-4}H_2$
	14,0	17,0	23,0	39,0		$Ar + 1.10^{-3}H_2$
	14,0	17,0	20,5	24,5		Ar + 1.10^{-2} H ₂
20	24,7	34,1	48,2	69,0		ARGÔNIO PURO
	23,0	34,0	46,8			Ar + 5.10 ⁻⁶ H_2
	21,8	33,5	52,0			Ar + 1.10 ⁻⁵ H_2
	19,3	33,3	46,5			Ar + 1.10 ⁻⁴ H_2
	23,2	33,8	47,5			Ar + 1.10 $^{-3}$ H ₂
	25,3	32,0	45,0			Ar + 1.10 ⁻² H_2

TABELA II - Densidade eletrônica em uma descarga de Argônio, $n_e \cdot 10^{-9}$ (cm⁻³)

Para o Helio fazemos as seguintes constatações:

- os resultados de densidade eletrônica para o Hélio puro concordam perfeitamente com resultados de JOR-DA;
- não há aumento de densidade eletrônica, com a intro dução de Hidrogênio, até uma proporção de 1.10⁻³ de hidrogênio;
- 3. para 1.10⁻² de hidrogênio a densidade eletrônica d<u>i</u> minui, o que mostra que, para esta proporção de hi-

- Densidade eletrônica em uma descarga de Hélio, n_e.10⁻⁹ (cm⁻³) TABELA III

He + 5.10 $^{-6}H_{2}$ He + $1.10^{-5}H_2^{-1}$ He + $1.10^{-3}H_2^{-1}$ $^{\rm H}_2$ He + 5.10 $^{-6}$ H₂ He + 1.10^{-2} H² He + $1.10^{-5}H_{3}$ He + 1.10⁻⁴ H_{3}^{-1} He + 1.10^{-2} H₃ HELIO PURO HÉLIO PURO He + 1.10^{-3} MISTURA He + 1.10^{-4} 55,5 31,3 29,8 30,8 28,5 22,0 50,0. 55,0 55,0 50,0 25,0 30,0 ഹ 33,0 38,5 41,5 24,5 23,0 24,0 25,5 25,0 16,2 36,8 40,5 18,5 3,7 32 **,** 0 · 21,0 21,8 11,5 32,0 33,3 36,8 18,5 18,5 18,0 20,0 37,7 М 25,0 21,3 25,5 2,2 11,5 14,3 16,5 11,0 27,2 23,2 17,8 16,0 14,7 17,0 1,6 I ī I I 1 L 18,5 11,3 15,0 32,8 1,5 7,0 8,5 14,0 9,5 0**°**6 8,0 14,5 ı 1,3 8,5 9,5 ī 1 T 1 ŧ 1 1 I ı. 1 6,3 5,8 7,0 9,5 3**,**0 4**,**0 7,0 ī 1 ----1 ł ī P (Torr) 10 ŝ I (mA)

drogênio, provavelmente o equilíbrio do plasma é modificado, como foi observado para o Argônio também.

Nas medidas de densidade eletrônica a 1,5 Torr, observamos um comportamento estranho da proporção de 1.10^{-4} de hidrogênio e corrente de 10 mA. Isto é, o valor da densidade eletrônica medida a 1,5 Torr é bem mais alto do que o medido para as demais pro porções de hidrogênio na mesma corrente e pressão. (Ver FIGU-RA 11). Por isso, foram feitas medidas a 1,3 Torr e 1,6 Torr. Achamos que este fato se deve a instabilidades no plasma. Efeito semelhante acontece na corrente de 5 mA para a proporção de 1.10^{-5} de hidrogênio. Entretanto, esta anomalia, em relação as medidas feitas em outras pressões, não indica, de maneira clara, que hã um aumento de densidade eletrônica.

1.3 - Neônio

A TABELA IV mostra os resultados das medidas de densidade eletrônica para o Neônio.

A representação gráfica, dos resultados experimentais, da TABELA IV se encontra nas FIGURAS 12, 13 e 14. As curvas e barras de erro foram traçadas para o Neônio puro.

As constatações, em relação aos valores medidos, para o Neônio são as seguintes:

- as medidas em valor absoluto concordam perfeitamente com resultados de JORDA;
- há um aumento da densidade eletrônica para pressões superiores a 1,5 Torr, quando introduzimos hidrogê-

I = 5 mA

FIGURA 13 - Densidade eletrônica do Neônio em função da pressão I = 10 mA

P(Torr) I(mA)	0,5	1	1,5	2	3	4	5	MISTURA
	-	4,8	6,5	7,7	13,0	15,0	17,0	NEÔNIO PURO
	-	4,0	7,0	10,3	20,3	22,2	25,7	Ne + 5.10 $_{\rm L}$ H ₂
5	-	5,0	6,8	9,5	17,7	25,8	31,5	Ne + 1.10^{-3} H ₂
-	-	4,0	6,3	15,5	22,8	28,0	27,0	Ne + 1.10^{-4} H ₂
	-	4,0	6,5	10,5	20,8	26,5	22,7	Ne + 1.10^{-3} H ₂
	-	4,3	8,0	9,0	10,5	11,0	10,5	Ne + 1.10^{-2} H ₂
	5,3	9,8	12,3	15,2	24,0	34,5	40,5	NEÔNIO PURO
10	6,0	8,5	13,0	24,6	49,0	53,7	65,0	Ne + 5.10 ⁻⁶ H ₂
	5,5	8,0	12,5	16,2	49,0	65,5	65,8	Ne + 1.10^{-5} H ₂
	6,8	9,0	12,4	39,3	46,0	56,2	63,5	Ne + 1.10^{-4} H ₂
	6,0	9,0	12,0	38,2	43,2	50,0	59,5	Ne + 1.10^{-3} H ₂
	6,0	9,3	24,3	14,8	16,2	19,8	20,0	Ne + 1.10^{-2} H ₂
	11,3	13,7	18,0	27,0	42,0	54,0	-	NEÔNIO PURO
20	10,3	14,0	31,2	54,6	79,6	-	-	Ne + 5.10 ⁻⁶ H ₂
	9,5	13,0	20,7	38,4	73,2	·	-	Ne + 1.10^{-5} H ₂
	10,0	13,5	24,2	67,3	79,5	_	-	Ne + 1.10^{-4} H ₂
	10,5	14,0	29,7	57,0	71,5	-	-	Ne + 1.10^{-3} H ₂
	10,3	20,0	46,5	23,0	32,7	-	-	Ne + 1.10^{-2} H ₂
								-

FIGURA IV - Densidade eletrônica em uma descarga de Neônio, $n_e \cdot 10^{-9}$ (cm⁻³)

+1

nio na descarga. Colocamos as barras de erro, nas FIGURAS 12, 13 e 14, da mesma forma que o fizemos para o Argônio e o Hélio. Como há, para o Neônio, uma grande parte das medidas com hidrogênio bem fora das barras de erro não podemos considerar que houve erro experimental, e portanto, isto significa que realmente houve aumento de densidade eletrônica; 3. o aumento de densidade eletrônica é, aproximadamente, o mesmo para qualquer proporção de hidrogênio

até 1.10^{-3} ;

- 4. a densidade eletrônica diminui para 1.10⁻² de hidr<u>o</u> gênio, conforme foi verificado para o Argônio e o Hélio.
- 5. os resultados são obtidos fazendo uma média de 3 a 4 medidas consecutivas. O tempo necessário para fazer essas medidas, em geral, não ultrapassa 2 minutos. No entanto, em alguns casos demoramos mais tem po para execução das medidas e então observamos que a densidade eletrônica diminui com o tempo. Por isso fizemos medidas em função do tempo, que apresentamos no item seguinte.

1.4 - Evolução Temporal da Densidade Eletrônica

A variação da densidade eletrônica em função do tempo foi medida para uma pressão total de 4 Torr de Neônio, contendo uma proporção de 1.10⁻⁵ de hidrogênio e uma corrente de descarga de 10 mA. Os resultados são apresentados na FIGURA 15.

de 4 Torr e corrente de 10 mA.

Observamos também uma mudança na cor da descarga, que inicialmente é vermelha e gradativamente fica rosa. Esta cor da descarga é a mesma que no caso da mistura com 1.10⁻² de hidrogênio.

É possível que as molêculas de hidrogênio, que difundem com grande facilidade, sejam acumuladas nos eletrodos. Com o bombardeamento de elétrons e ions no ânodo e cátodo, durante a descarga, a temperatura dos eletrodos aumenta, liberando, assim, as moléculas de hidrogênio. Medidas com eletrodos que possam ser limpos poderiam ajudar a explicar este fenômeno, o que não foi possível com os eletrodos utilizados.

Medidas de temperatura eletrônica e de campo elétrico na coluna positiva também são necessárias para tentar explicar esta evolução.

2. <u>APRESENTAÇÃO DE RESULTADOS DE DENSIDADE DE ESTADOS</u> METASTÁVEIS, N^M, <u>ENCONTRADOS NA LITERATURA</u>

Como vimos, no CAPÍTULO I, o possível acréscimo de de<u>n</u> sidade eletrônica se deve a transferência de energia dos estados metastáveis para a molécula de hidrogênio ionizando-a. Por esta razão, julgamos interessante apresentar resultados encontrados na literatura.

Para o Argônio os resultados, obtidos por RAKOWITZ^[19], mostram que a densidade dos diversos estados metastáveis varia de 10¹¹ a 10¹² cm⁻³.

Em função da pressão, a densidade dos estados metastáveis é aproximadamente constante até 2 Torr e diminui para pres

sões mais altas.

As FIGURAS 16, 17, 18 e 19 representam resultados obtidos, por A. RICARD^[5], para o Hélio e Neônio. A simples observação destas figuras evidencia que a densidade máxima de estados metastáveis ocorre para 2 Torr, assumindo valores entre 10^{10} e 10^{12} cm⁻³. A densidade de estados metastáveis existente faz com que haja um número de átomos excitados, nos estados metastáveis, suficiente para aumentar a densidade eletrônica.

3. DISCUSSÃO

Para que o efeito Penning ocorra é necessário que a energia dos metastáveis seja superior aos potenciais de ioniza ção do hidrogênio.

Os potenciais de ionização do hidrogênio, de acordo com DELCROIX^[20], são:

н ₂	14,7 eV	H(2s) +	H(1s)
^H 2	15,3 eV	$H_2^+ + e$	
^H 2	<u>16,6 eV</u>	H(3s) +	H(1s)
H ₂	<u>18,1 eV</u>	H(1s) +	H ⁺ + e
н2	28,3 eV	H(2s) +	H ⁺ + e

· · · ·

.

3.1 - Argônio

A comparação dos valores da energia dos estados metastáveis e pseudo-metastáveis do Argônio, contidos na TABELA I (CAP. I, seção 1.3), em torno de 12 eV, com os potenciais de ionização do hidrogênio mostra que não hã possibilidade de ocorrer o efeito Penning. Em outras palavras, não pode haver aumento de densidade eletrônica, o que comprovam os resultados representados nas FIGURAS 7,8 e 9. A presença de hidrogênio em pequenas quantidades (até 1.10^{-3}) não modifica a descarga.

3.2 - Cálculo do Tempo de Recombinação Eletrônica para o Hélio e Neônio

Para o Hélio e o Neônio, cujas energias dos estados metastáveis são respectivamente da ordem de 16,6 eV e 20 eV, o efeito Penning acontece. No entanto, se a recombinação eletrônica for mais rápida do que a reação de ionização, o efeito Penning não vai aumentar a densidade eletrônica.

Em plasmas pouco ionizados, com temperatura eletrônica em torno de 5 eV, o processo principal de destruição dos elétrons se processa pela difusão ambipolar e recombinação nas pare des^[21].

A FIGURA 20^[5], e os valores de c, uma constante carac terística de cada gás, tabelados ^[22], nos permitem determinar as temperaturas eletrônicas, T_e, para o Hélio e para o Neônio. Calculamos as temperaturas eletrônicas para os dois gases, mencion<u>a</u> dos acima, nas pressões de 1 Torr, 2 Torr e 5 Torr. Os valores

obtidos se encontram na TABELA V.

TABELA V - Temperaturas eletrônicas do Hélio e do Neônio em função da pressão.

P(Torr)	1	2	5	GÁS
T _e (eV)	3,3	2,5	1,9	HÉLIO
	2,5	1,9	1,5	NEÔNIO

A mobilidade reduzida do ion de Hélio, de acordo com DELCROIX^[23], é dada por:

$${}^{\mu}iH_{e} \frac{n_{o}}{n_{L}} = 10,4 \text{ cm}^{2} \text{ V}^{-1}\text{s}^{-1}$$
(III.1),

onde n_o é o número de partículas neutras por cm³ exprimido em função da pressão, em Torr.

$$n_o = 3, 2 \cdot 10^{16} p (cm^{-3})$$
,

 $n_L = 2,687.10^{19}$ partículas. cm⁻³ é o número de Loschmidt e μ_{iH_e} é a mobilidade do íon para o Hélio.

Segundo DELCROIX^[24], a mobilidade reduzida do íon de Hélio é 10 cm² V⁻¹s⁻¹ e se mantém praticamente constante, em rel<u>a</u> ção a variação do campo elétrico, da pressão e da densidade de átomos neutros.

Para o ion de Neônio a mobilidade reduzida^[23], é dada por:

$${}^{\mu}iN_{e} \frac{n_{o}}{n_{L}} = 4,1 \text{ cm}^{2} \text{ V}^{-1}\text{s}^{-1}$$
 (III.2),

63

onde μ_{iN} é a mobilidade do ion para o Neônio.

A mobilidade reduzida do íon de Neônio se mantém, apr<u>o</u> ximadamente, constante, em relação a variação do campo elétrico, da pressão e da densidade de átomos neutros, de acordo com DEL-CROIX^[25].

Usando as equações (III.1) e (III.2), calculamos μ_{iH_e} e μ_{iN_e} . Uma vez obtidos μ_{iH_e} e μ_{iN_e} , determinamos o coeficiente de difusão ambipolar, equação (I.10), para os dois gases em que<u>s</u> tão. Ver TABELA VI.

De acordo com CHEN^[2],

$$\frac{a}{(D_a \tau)^{1/2}} = 2,4$$
 (III.3),

onde a ϵ o raio do tubo utilizado, $D_a \epsilon$ o coeficiente de difusão ambipolar e $\tau \epsilon$ o tempo de recombinação.

A equação (III.3) nos permite, portanto, calcular o tempo de recombinação para o Hélio e para o Neônio. Os resultados obtidos se encontram na TABELA VI.
3.3 - Hélio

A comparação dos valores de energia dos estados metastáveis do Hélio, contidos na TABELA I (CAP. I, seção 1.3) com os potenciais de ionização do hidrogênio mostra que hã possibil<u>i</u> dade de ocorrer o efeito Penning, para as seguintes reações:

$$H_e^M + H_2 \rightarrow H_e + H_2^+ + e$$
 (5 eV)

$$H_e^M + H_2 \rightarrow He + H(1s) + H^+ + e (2 eV)$$

No entanto, os valores calculados para o tempo de recombinação do Hélio (ver TABELA VI) são menores do que os valores do tempo de reação, contidos na TABELA VII, obtidos por SÔ-NIA M. SILVA^[18]. Em consequência, a recombinação é muito mais rápida do que a reação e, portanto, não há aumento de densidade eletrônica, como comprovam os resultados apresentados nas FIGU-RAS 10 e 11.

TABELA VII - Tempos de reação e relaçãoentreo tempo de reação e recombinação do Hélio

NÍVEL	P(Torr)	^τ REAÇÃO (s)	τ REAÇÃO/ τ RECOMBINAÇÃO
2 ¹ s	2	1.10 ⁻⁵	7,4
2 ³ s	2	3.10 ⁻⁵	22,2

TABELA VI - Valores de µ_i, D_a e ^TRECOMBINAÇÃO calculados para o Hélio e o Neônio

.

r?

. .

Ω	1,68.10 ³ cm ² v ⁻¹ .s ⁻¹ 6,46.10 ³ cm ² .s ⁻¹ MBINAÇÃO = 4,3.10 ⁻⁶ s	6,7.10 ^{'2} cm ² V ⁻¹ .s ⁻¹ 2,06.10 ³ cm ² .s ⁻¹ OMBINAÇÃO = 13,5.10 ⁻⁶ s
	$\begin{bmatrix} -1 & \mu_{1} & = \\ 0 & a & = \\ c & \tau_{RECO} \end{bmatrix}$	s ¹ μ = D μ = D = ¹ REO
. 2	$\mu_{i} = 4, 2.10^{3} \text{ cm}^{2}\text{V}^{-1}.\text{s}$ $D_{a} = 2,06.10^{4} \text{ cm}^{2}.\text{s}^{-1}$ $\tau \text{ RECOMBINAÇÃO} = 1,35.10^{-6} \text{ s}$	$\mu_{i} = 1,68.10^{3} \text{ cm}^{2} \text{ V}^{-1}.\text{ s}$ $D_{a} = 6,46.10^{3} \text{ cm}^{2}.\text{ s}^{-1}$ $\tau_{\text{RECOMBINAGAO}} = 4,3.10^{-6} \text{ s}$
1	$\mu_{i} = 8, 4.10^{3} \text{ cm}^{2}\text{v}^{-1}.\text{s}^{-1}$ $D_{a} = 5, 56.10^{4} \text{ cm}^{2}.\text{s}^{-1}$ $\tau_{\text{PECCMBINAGAO}} = 5.10^{-5} \text{ s}^{-1}$	$\mu_{i} = 3,36.10^{3} \text{cm}^{2} \text{v}^{-1}.\text{s}^{-1}$ $D_{a} = 1,68.10^{4} \text{ cm}^{2}.\text{s}^{-1}$ $\tau_{\text{PECC}=INAGAO} = 1,65.10^{-6} \text{ s}$
P(Torr) GAS	HÉLIO	NEÔNIO

3.4 - Neônio

17

A comparação dos valores de energia dos estados metastáveis e pseudo-metastáveis do Neônio, contidos na TABELA I (CAP. I, seção 1.3), com os potenciais de ionização do hidrogênio mostra que há possibilidade de ocorrer o efeito Penning, para a seguinte reação:

 $N_e^M + H_2 \rightarrow N_e + H_2^+ + e \quad (1, 3 eV)$

Os tempos de reação para o Neônio, calculados por SÔ-NIA M. SILVA^[18], encontram-se na TABELA VIII.

NÍVEL	P(Torr)	^T REAÇÃO (s)	τ REAÇÃO/ τ RECOMBINAÇÃO
3P _o	1 2 5		∿30,3 ∿23,3 ∿ 7,4
3P ₂	1 2 5	$ \sqrt{5}, 0.10^{-5} \sqrt{8}, 0.10^{-5} \sqrt{1}, 0.10^{-4} $	∿30,3 ∿18,6 ∿ 7,4
1P ₁ (PM)	1 2 5	7,6.10 ⁻⁶ 1,1.10 ⁻⁵ 1,1.10 ⁻⁵	4,6 2,6 0,8
3P ₁ (PM)	1 2	$ \sqrt{1}, 0.10^{-5} \\ \sqrt{3}, 0.10^{-5} $	<pre>~ 6,1 ~ 7,0</pre>

TABELA VIII - Tempos de reação e relação entre o tempo de reação e recombinação do Neônio.

A análise da relação entre o tempo de reação e recombinação do Neônio, $\frac{\tau_{\text{REAÇAO}}}{\tau_{\text{RECOMBINAÇAO}}}$, evidencia que os estados metas táveis, $3P_0$ e $3P_2$, não podem contribuir para o aumento de densidade eletrônica, já que para estes estados: $\tau_{\text{REAÇAO}} >> \tau_{\text{RECOMBINAÇAO}}$ e portanto a recombinação é muito mais rápida do que a reação.

Os estados pseudo-metastāveis do Neônio, no entanto, podem contribuir para o aumento de densidade eletrônica, uma vez que o $\tau_{\text{REAÇAO}}$ é da mesma ordem de grandeza que o $\tau_{\text{RECOMBINAÇAO}}$. Para pressões mais altas (a partir de 2 Torr) a relação entre o tempo de reação e o de recombinação é menor, e portanto a contr<u>i</u> buição dos estados pseudo-metastáveis, $1P_1$ e $3P_1$, passa a ser mais significativa. Para o estado $1P_1$, inclusive, na pressão de 5 Torr: $\tau_{\text{REACAO}} < \tau_{\text{RECOMBINAÇAO}}$.

A probabilidade de se observar o aumento de densidade eletrônica, devido ao efeito Penning, a partir da pressão de 2 Torr é maior, já que, a esta pressão, a densidade dos estados pseudo-metastáveis, em particular o 3P₁, FIGURA 19, atinge o seu valor máximo.

CONCLUSÃO

Este trabalho foi executado com o objetivo de medir a evolução da densidade eletrônica em descargas de gases nobres e misturas de gases nobres com hidrogênio.

Medidas de densidade eletrônica, através do sistema de microondas, foram feitas para o Argônio, o Hélio e o Neônio.

- As conclusões a que chegamos foram as seguintes:
- Não há aumento de densidade eletrônica em descargas de Argônio, com a introdução do hidrogênio. Isto já era esperado, pois as energias dos estados metastáveis e pseudometastáveis do Argônio são menores que os potenciais de ionização do hidrogênio.
- 2) Não há aumento de densidade eletrônica em descargas de Hélio, com a introdução de hidrogênio, embora a transferência de energia dos estados metastáveis do Hélio para a molécula de hidrogênio seja possível. Este fenômeno é explicado pelo fato de que o tempo de recombinação do Hélio é bem menor que o tempo de reação.
- 3) Há aumento de densidade eletrônica em descargas de Neônio, com a introdução de hidrogênio. Neste caso, o efeito Penning provoca um aumento de densidade eletrônica, já que para o Neônio o tempo de reação é da mesma ordem de grandeza do tempo de recombinação.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] GOLANT, V.E. et alii. <u>Fundamentals of plasma physics</u>. New York, J. Wiley, 1980.
- [2] CHEN, F.F. <u>Introduction to plasma physics</u>. New York, Plenum Press, 1974.
- [3] FOWLES, G.R. Introduction to modern optics. New York, Holt, Rinehart and Winston, 1968.
- [4] HOLSTEIN, T. Imprisonment of resonance radiation in gases. gases II. Phys. Rev., 83(6): 1159-1168, 1951.
- [5] RICARD, A. <u>Contribution à l'étude des atomes métastables</u> <u>dans des décharges luminescentes de gaz rares à l'état</u> <u>stationnaire</u>. Tese de doutorado, L'Université Paul Sabatier de Toulouse, 1971.
- [6] DELCROIX, J.L. et alii. <u>Atomes et molécules métastables</u> <u>dans les gaz ionisés</u>. Paris, Centre National de la Recherche Scientifique, 1975.
- [7] HARVEY, A.F. <u>Microwave engineering</u>. London, Academic Press, 1963.
- [8] CARRERA, M.P. <u>Física de laboratório, parte B</u>. Barcelona, Reverté, 1971.
- [9] BETHE, H.A. Theory of diffraction by small holes. <u>Phys</u>. Rev., 66(7), 1944.
- [10] ISHII, T.K. <u>Microwave engineering</u>. New York, The Ronald Press, 1966.
- [11] JORDA, J.L. <u>Determination des concentrations electroniques</u> <u>dans des decharges luminescentes de gaz rares par la</u> <u>methode de la cavite resonnante</u>. Tese de doutorado, L'Uni versité Paul Sabatier de Toulouse, 1972.
- [12] MUZART, J.L. <u>Determination des densites electroniques et</u> <u>du taux de destruction des métastables dans me decharge</u> <u>luminescente de gas rares</u>. Tese de doutorado, Faculte des Sciences de L'Université de Toulouse, 1970.

- [13] GOLANT, V.E. Microwave plasma diagnostic techniques. Sov. Phys. Techn. Phys., 5(11): 1197-1310, 1961.
- [14] AGDUR, B. & ENANDER, B. Resonances of a microwave cavity partially filled with a plasma. <u>J. Appl. Phys.</u>, <u>33</u>(2): 575-581, 1962.
- [15] DELCROIX, J.L. Physique des plasmas. Paris, Dunod, 1963.
- [16] BUCHSBAUM, S.J. & BROWN, S.C. Microwave measurements of high electron densities. <u>Phys. Rev.</u>, <u>106</u>(2): 196-199, 1957.
- [17] BUTKOV, E. <u>Física matemática</u>. Rio de Janeiro, Guanabara Dois, 1978.
- [18] SILVA, S.M. <u>Estudo da transferência de energia entre esta-</u> <u>dos metastáveis de gases nobres e hidrogênio</u>. Tese de Mestrado, UFSC, 1983.
 - [19] RAKOWITZ, J. <u>Etude des atomes metastables presents</u> dans <u>des decharges luminescentes stationnaires d'Argon a basse</u> <u>pression</u>. Tesde de doutorado, L'Université Paul Sabatier de Toulouse, 1974.
 - [20] DELCROIX, J.L. <u>Propriete physico-chimiques des gaz simples</u> <u>4-hydrogene</u>. Relatório do Laboratoire de Physique des Gaz et des Plasmas, Université de Paris-Sud, Orsay, 1982.
 - [21] DELCROIX, J.L. <u>Physique des plasmas</u>. Paris, Dunod, 1966. Tomo II.
 - [22] FRANCIS, G. The glow discharg at low pressure. In: Flügge, S. (ed.), <u>Handbuch der physik</u>. Berlin, Springer-Verlag, 1956.
 - [23] DELCROIX, J.L. Notions generales sur les gaz ionises et les plasmas. Relatório do Laboratoire de Physique des Gaz et des Plasmas, Université de Paris-Sud, Orsay, 1981.
 - [24] DELCROIX, J.L. Propriete physico-chimiques des gaz simples-<u>2-helium</u>. Relatório do Laboratoire de Physique des Gaz et des Plasmas, Université de Paris-Sud, Orsay, 1982.
- [25] DELCROIX, J.L. Propriete physico-chimiques des gaz simples-<u>3-gaz rares (sans He)</u>. Relatório do Laboratoire de Physi que des Gaz et des Plasmas, Université de Paris-Sud, Orsay, 1982.

APÊNDICE I

CÁLCULO DE $B(\alpha)$ PARA CAVIDADE TM_{0.20}

A relação fundamental da teoria de pequenas perturba - ções é, desprezando ν_e^2 em relação a ω^2

$$\frac{\Delta f}{f} = \frac{1}{2n_c} \frac{\int_0^{r_c} n_e(r) |E_o|^2 r dr}{\int_0^{r_c} |E_o|^2 r dr} , \qquad (A.I.1)$$

$${}^{m_e \varepsilon_o \omega^2}$$

onde $n_c = \frac{e e o}{e^2}$

Numa cavidade eletromagnética ressonante no modo TM₀₂₀ o campo elétrico se reduz a uma componente axial, ou seja:

$$E_{o} = E_{z} = J_{o} \left(\frac{2 x_{02} r}{D}\right) \text{ ou } E_{z} = J_{o} \left(x_{02} \frac{r}{r_{c}}\right)$$
,

onde x₀₂ é o segundo zero da função de Bessel de ordem zero. A integral do denominador de (A.I.1) é segundo Butkov^[17]:

$$\int_{0}^{r_{c}} |E_{0}|^{2} r dr = \int_{0}^{r_{c}} J_{0}^{2} (x_{02} \frac{r}{r_{c}}) r dr = \frac{r_{c}^{2}}{2} J_{1}^{2} (x_{02})$$

Para calcular a integral do numerador de (A.I.1) devemos fazer um desenvolvimento em série da função de Bessel caracterizando o perfil da densidade: $n_e(r) = n_e(o) J_o(2, 4 \frac{r}{r_p})$. Genericamente temos:

$$J_{n}(x) = \sum_{k=0}^{\infty} \frac{(-1)^{k} (x/2)^{n+2k}}{k! \Gamma(n+k+1)}$$

Para n = 0 e k = 0, 1, 2, 3, ...

$$J_{0}(x) = 1 - \frac{x^{2}}{2^{2}} + \frac{x^{4}}{2^{2} \cdot 4^{2}} - \frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6^{2}} + \cdots$$

Especificamente no nosso caso:

$$J_{0}(2,4\frac{r}{r_{p}}) = 1 - \frac{(2,4r/r_{p})^{2}}{2^{2}} +$$

+
$$\frac{(2,4 \text{ r/r}_{p})^{4}}{2^{2}.4^{2}}$$
 - $\frac{(2,4 \text{ r/r}_{p})^{6}}{2^{2}.4^{2}.6^{2}}$ + ...

$$J_{0}(2,4\frac{r}{r_{p}}) \approx 1 - \frac{1}{2} (2,4\frac{r}{2r_{p}})^{2}$$

Assim:

$$\frac{\Delta f}{f} = \frac{1}{2n_c} \frac{\int_{0}^{r_p} n_e(r) J_0^2 (x_{02} r/r_p) r dr}{\frac{r_c^2}{2} J_1^2(x_{02})}$$

A expressão acima pode ser separada em dois termos, o primeiro correspondendo a um perfil retangular da densidade eletrônica, ou seja, $n_e(r) = n_e(o) = constante e o segundo corres$ pondendo a um perfil de Bessel

$$\frac{\Delta f}{f} = \frac{n_{e}(o)}{2n_{c}} \quad \frac{\int_{o}^{r_{p}} J_{o}^{2} (x_{02} r/r_{p}) r dr}{\frac{r_{c}^{2}}{2} J_{1}^{2} (x_{02})}$$

$$-\frac{1/2 \left(\frac{2,4}{2}\right)^2 \left(\frac{1}{r_p}\right)^2 \int_{0}^{r_p} J_0^2 (x_{02} r/r_p) r^3 dr}{\frac{r_c^2}{2} J_1^2 (x_{02})}$$
(A.I.2)

$$\int_{0}^{z} J_{m}^{2}(\lambda x) x^{3} dx = \frac{z^{4}}{6} \left\{ J_{m}^{*}(\lambda z) \left[1 + \frac{2m^{2} - 1}{\lambda^{2} z^{2}} \right] \right\}$$

+
$$J_{m}^{2}(\lambda z) \left[1 + \frac{m^{2}}{\lambda^{2} z^{2}} - \frac{2m^{2}(m^{2} - 1)}{\lambda^{4} z^{4}}\right] - \frac{2}{\lambda z} J_{m}(\lambda z) J_{m}^{*}(\lambda z)$$

Através da substituição dos valores de (A.I.2) na expressão acima, obtemos através de cálculos:

$$\frac{\Delta f}{f} = \frac{n_e(\alpha)}{n_c} \frac{\alpha^2}{2J_1^2(x_{02})} \{0, 76[J_1^2(x_{02} \alpha) + J_0^2(x_{02} \alpha)] - 0, 24[2J_0(x_{02} \alpha) - \frac{J_1(x_{02} \alpha)}{x_{02}\alpha}] \frac{J_1(x_{02} \alpha)}{x_{02}\alpha} \}$$
(A.I.3)

O desenvolvimento em série das funções de Bessel J_o e J_1 , com x_{02} = 5,52, nos fornece:

$$2J_{1}^{2}(5,52) = 0,23$$

$$J_{1}(5,52 \alpha) = 2,76 \alpha - 10,5 \alpha^{3}$$

$$J_{1}^{2}(5,52 \alpha) = 7,62 \alpha^{2} - 58 \alpha^{4} + 110 \alpha^{6}$$

$$J_{0}(5,52 \alpha) = 1 - 7,62 \alpha^{2} + 14,5 \alpha^{4}$$

$$J_{0}^{2}(5,52 \alpha) = 1 - 15,2 \alpha^{2} + 87,1 \alpha^{4}$$

Assim:

$$\frac{\Delta f}{f} = \frac{n_e(0)}{n_c} \alpha^2 (2,52 - 15 \alpha^2 + 53,7 \alpha^4)$$

Por outro lado
$$\frac{\Delta f}{f} = \frac{\langle n_e \rangle}{0,432} \cdot \frac{e^2}{m_e \varepsilon_0 \omega^2} B(\alpha)$$
, para $v_e^2 << \omega^2$,

então:

$$B(\alpha) = 2,52 \alpha^{2} - 15 \alpha^{4} + 53,7 \alpha^{6}$$

No nosso caso: $\alpha = \frac{r_p}{r_c} = \frac{4 \text{ mm}}{26,80 \text{ mm}}$ $\alpha = 0,149$

 $B(0,149) = 2,52 (0,149)^{2} - 15 (0,149)^{4} + 53,7 (0,149)^{6}$ B(0,149) = 0,0491

APÊNDICE II

DISTRIBUIÇÃO RADIAL DA DENSIDADE ELETRÔNICA

Devido a simetria cilíndrica do tubo no qual se encontra o plasma a densidade eletrônica média <n_e> deve ser obtida a partir da equação abaixo

$$\langle n_{e} \rangle = \frac{1}{\pi r_{p}^{2}} \int_{0}^{r_{p}} n_{e}(r) 2\pi r dr$$
 (A.II.1)

Como $n_e(r) = n_e(o) J_o(2, 4 \frac{r}{r_p})$, segundo J.L. DELCROIX^[15],

temos:

$$\langle n_{\Theta} \rangle = \frac{1}{\pi r_{p}^{2}} \int_{0}^{r_{p}} n_{e}(0) J_{\Theta}(2, 4 \frac{r}{r_{p}}) 2\pi r dr$$

$$\langle n_{e} \rangle = \frac{n_{e}(0)2\pi}{\pi r_{p}^{2}} \int_{0}^{r_{p}} J_{O}(2, 4 \frac{r}{r_{p}}) r dr$$

$$Por outro 1ado: J_{O}(2, 4 \frac{r}{r_{p}}) = 1 - \frac{(2, 4 r/r_{p})^{2}}{2^{2}} + r/r_{p}^{4} = (2, 4 r/r_{p})^{6}$$

+
$$\frac{(2,4 \text{ r/r}_{p})^{4}}{2^{2}.4^{2}}$$
 - $\frac{(2,4 \text{ r/r}_{p})^{6}}{2^{2}.4^{2}.6^{2}}$ + ...

desta forma:

$$= \frac{2 n_{e}(0)}{r_{p}^{2}} \int_{0}^{r_{p}} \left[1 - \frac{(2, 4 r/r_{p})^{2}}{4} + \frac{(2, 4 r/r_{p})^{4}}{64} - \frac{(2, 4 r/r_{p})^{6}}{2304} + \dots\right] r dr$$

$$< n_{e} > = \frac{2 n_{e}(0)}{r_{p}^{2}} \left[\frac{r_{p}^{2}}{2} - \frac{2 4^{2}}{4r_{p}^{2}} \frac{r_{p}^{4}}{4} + \frac{2 4^{4}}{64r_{p}^{4}} \frac{r_{p}^{6}}{6} - \frac{2 4^{6}}{2304r_{p}^{6}} \frac{r_{p}^{8}}{8} + \cdots \right]$$
$$< n_{e} > = \frac{2 n_{e}(0)}{r_{p}^{2}} \left[\frac{r_{p}^{2}}{2} - 0 36 r_{p}^{2} + 0 3864 r_{p}^{2} - 0 368 r_{p}^{2} + 0 3864 r_{p}^{2} \right]$$
$$= 0.010368 r_{p}^{2} + \cdots]$$
$$n_{e} = 0.432 n_{e}(0)$$

Como, segundo tese de J.L. JORDA^[11]:

$$\frac{\Delta f}{f} = \frac{n_e(o)}{n_c} B(\alpha) \left[1 + \frac{v_e^2}{\omega^2}\right]^{-1}, \text{ onde } n_c = \frac{m_e \varepsilon_0 \omega^2}{e^2}$$
$$\frac{\Delta f}{f} = \frac{\langle n_e \rangle}{0,432} \cdot \frac{e^2}{m_e \varepsilon_0} \cdot \frac{1}{\omega^2} B(\alpha) \left[1 + \frac{v_e^2}{\omega^2}\right]^{-1}$$
$$\langle n_e \rangle = \frac{0,432}{f} \frac{m_e \varepsilon_0 (2\pi f)^2 \Delta f}{f e^2 B(\alpha)} \left[1 + \frac{v_e^2}{\omega^2}\right]$$

$$\langle n_e \rangle = \frac{0,432 \ 4\pi^2 m_e \varepsilon_0}{e^2} f \cdot \frac{\Delta f}{B(\alpha)} [1 + \frac{\nu_e^2}{\omega^2}]$$

O termo entre colchetes é aproximadamente 1, uma vez que podemos desprezar v_e^2 em relação a ω^2 .

Assim:

$$\langle n_e \rangle = 0,432 \frac{4\pi m_e \varepsilon_0}{e^2} f \cdot \Delta f \frac{1}{B(\alpha)}$$
 (A.II.2)