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Abstract

In contrast with classical reasoning, where a
solution is either correct or incorrect, approx-
imate reasoning tries to compute solutions
which are close to the ideal solution, without
necessarily being perfect. Such approximate
reasoning can be used to exchange solution
quality for computation time, known as any-
time reasoning.

In this paper we study approximate versions
of diagnostic reasoning. Traditionally, diag-
nostic reasoning is characterised in terms of
the logical entailment relation. In this pa-
per we study the effects of replacing the log-
ical entailment relation with an approximate
version of the entailment relation, in partic-
ular an approximate version of Boolean Con-
straint Propagation (BCP).

We characterise the cheapest versions of ap-
proximate BCP which allows single compo-
nents and entire systems to be diagnosed cor-
rectly. From these upperbounds surprisingly
low values follow which are needed to cor-
rectly diagnose many of the typical circuit ex-
amples from the literature. A particularly in-
teresting property that we discovered is that
the point at which approximate diagnosis co-
incides with classical diagnosis is entirely de-
termined by the nature of the individual com-
ponents, and not by either the size or the
structural complexity of the overall device.
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1 MOTIVATION

Approximate reasoning is a form of reasoning that can
be used for solving complex problems. For approxi-
mate reasoning one defines a quality measure on the
output, and the computation then tries to optimize
this quality measure. This is in contrast with the con-
ventional notion of a solution, where a solution is ei-
ther correct or incorrect, with no middle ground. Opti-
mising the quality measure does provide such a middle
ground.

Approximate reasoning is interesting for several rea-
sons. First of all, most AI-problems (tasks) are hard
problems in term of their complexity measure. Plan-
ning, diagnosis and configuration are all examples of
AI tasks for which even simple varieties are already
intractable (e.g. [Bylander et al., 1991]). Therefore it
is necessary to look for cheaper but approximate solu-
tions instead of intractable precise solutions. Secondly,
it depends on the particular application of the prob-
lem type (e.g. design, diagnosis) whether a precise
solution is actually needed or whether an approximate
solution suffices. For instance, in diagnostic reason-
ing there is not always a need for computing precise
diagnoses, for example in cases where all possible diag-
noses will result in the same repair action (e.g. when
all fault-candidates are located on the same computer-
board that must be replaced or in the medical domain
when all possible diagnoses indicate the same drug to
be prescribed) [vanHarmelen & tenTeije, 1995]. As a
third reason, it is often not possible in practice to have
complete and correct data and knowledge. Examples
are missing attribute values in classification, incom-
plete medical knowledge for performing diagnosis and
incomplete requirements for design. So again, an ap-
proximate answer should be computed if possible, be-
cause an approximate answer is often better than no
answer at all.

A particularly interesting form of approximate reason-



ing is anytime reasoning [Dean & Boddy, 1988; Boddy
& Dean, 1989; Zilberstein & Russell, 1996]. The most
important characteristic of anytime reasoning is that
with increasing runtime, the quality of the solution
increases. Furthermore, the reasoning can be inter-
rupted at any time and will return the best result com-
puted until then. In this paper, we will concentrate on
this type of reasoning.

Many types of reasoning in AI such as diagnosis, clas-
sification, design and planning are characterised in
terms of logical entailment [Reiter, 1987; Green, 1969;
Rosenschein, 1981]. A general approach for construct-
ing approximate problem solving behaviour is to use
an approximation of the logical entailment for charac-
terising such a problem type and see what conclusions
can be drawn using approximate reasoning for a par-
ticular problem. This approach was already taken in
[tenTeije & vanHarmelen, 1996], where we used the
approximate entailment relations defined in [Schaerf
& Cadoli, 1995] to characterise approximate diagnos-
tic reasoning. In this paper we consider the sound
but incomplete approximation of the logical entailment
from [Dalal, 1996] in the context of diagnostic reason-
ing. The approximation of Dalal is called BCPk and is
based on boolean constraint propagation. The param-
eter k can be increased to improve the quality (and
of course also the cost) of this approximate entailment
relation as will be explained in section 3.

The general question that we study is “how can we use
BCPk for approximate diagnostic reasoning?”. This
question boils down to questions such as “how does
the quality of the diagnoses improve with time using
BCPk?”, “for which k do the BCPk diagnoses coincide
with the classical diagnoses?”, “what can be said about
the incorrect answers that BCPk gives?”, etc.

The structure of the paper is as follows: to make
this paper self-contained we repeat briefly in section 2
the standard definitions of consistency-based diagnosis
from the literature. Section 3 introduces the approxi-
mate entailment relation we will exploit for diagnostic
reasoning. The main results of this paper are discussed
in section 4, where we present examples and theorems
that characterise the behaviour of the approximate di-
agnostic reasoning that results from applying BCPk in
the standard definition of diagnosis. Finally, section 6
summarises and concludes.

2 CONSISTENCY-BASED
DIAGNOSIS

We briefly repeat the widely accepted definitions from
[Reiter, 1987]:

Definition 1 (From [Reiter, 1987])

• A system is a pair (SD, COMP) where SD, the sys-
tem description is a set of sentences in first order
logic, and COMP the set of system components
is a set of constants. The system description uses
abnormality predicates ab(c) for every c ∈ COMP,
interpreted to mean that component c does not
function normally.

• The observations are a set of first order sentences
OBS.

• A diagnosis problem exists iff
SD ∪ OBS ∪ {¬ab(c)|c ∈ COMP} is inconsistent.

• A candidate-set is set ∆ ⊆ COMP.
• A diagnosis is a non-empty candidate-set ∆ such

that SD ∪ OBS ∪ {¬ab(c)|c ∈ COMP \∆} is con-
sistent.

• A minimal diagnosis is a set ∆ such that ∆ is a
diagnosis but no ∆′ ⊂ ∆ is a diagnosis.

• A conflict set is a set C ⊆ COMP such that SD ∪
OBS ∪ {¬ab(c)|c ∈ C} is inconsistent.

Although in general, SD can be an arbitrary set of first-
order sentences, in practice (and also in our approach),
SD is assumed to consist of two parts: the behaviour
model which describes the normal behaviour of each
individual component, and the structure model which
describes the connections between the individual com-
ponents.

A slight complication arises because the approximate
deduction relation BCPk that we intend to use is only
defined for propositional theories. Fortunately, typical
behaviour and structure models are in fact function-
free and range over finite alphabets. Such first-order
theories can be rewritten as equivalent propositional
theories using standard methods.

3 DEFINING `BCP
k

This section repeats some of the definitions and results
from [Dalal, 1996] and [Dalal & Yang, 1997]. They
define the family of approximate deduction relations
BCPk.

Boolean Constraint Propagation [McAllester, 1990] is
a limited form of deduction which is a variant of unit
resolution [Chang & Lee, 1973]. It performs limited
deduction in linear time, as follows: given a theory
T 1, BCP monotonically expands T by adding literals
as follows: in each step, if any single clause in T and all

1We will assume all theories to be propositional, and in
clausal normal form.



the literals in T taken together entail any other literal
(or ⊥), then this literal (or ⊥) is added to the theory
T . [Dalal, 1996] defines BCP algebraically:

Definition 2 (`BCP ) A formula φ is inferable from
a theory T using BCP, denoted by T `BCP φ, iff
T ∪ {¬φ} =BCP ⊥ via the following rewrite rules for
=BCP :

1. {⊥} ∪ T =BCP {⊥}
2. {(α), (¬α ∨ α1 ∨ ... ∨ αn)} ∪ T =BCP

{(α), (α1 ∨ ... ∨ αn)} ∪ T

where α and the αi’s are any literals.

BCP is a sound but incomplete (ie approximate) de-
duction relation:

Example 1

{(P ∨Q), (P ∨ ¬Q), (¬P ∨Q), (¬P ∨ ¬Q)} ` ⊥
{(P ∨Q), (P ∨ ¬Q), (¬P ∨Q), (¬P ∨ ¬Q)} 6`BCP ⊥

This shows that `BCP cannot chain on the intermedi-
ate result P . Although incomplete in general, BCP is
complete for Horn theories. Its incompleteness comes
from the inability to use previously inferred clauses
during the reasoning process (ie “chaining”):

Example 2 Let T0 = {(P ∨Q), (P ∨ ¬Q), (¬P ∨ S ∨
T ), (¬P ∨ S ∨ ¬T )}, then

• T0 `BCP P (by adding ¬P to T0 and deriving ⊥
using the first two clauses), and

• T0 ∪ {P} `BCP S (by adding ¬S and using the
last two clauses), but

• T0 6`BCP S.

Allowing BCP to chain on arbitrary clauses would
make it sound and complete and would therefore
render it uninteresting as an approximate deduction
method.

This is the motivation for defining BCPk [Dalal, 1996],
where chaining is allowed, but only on formulae of lim-
ited length:

Definition 3 (`BCP
k ) For any theory T and clauses

φ and ψ:

T `BCP φ
T `BCP

k φ
,

T `BCP
k ψ; (T, ψ) `BCP

k φ
T `BCP

k φ
if |ψ| ≤ k

Clearly, when k increases, `BCP
k is allowed to chain

on ever more formulae, and will become ever more
complete. For example, T0 `BCP

0 P , T0 6`BCP
0 S and

T0 `BCP
1 S. `BCP

1 is complete for 2-CNF theories.

4 USING BCPk FOR DIAGNOSIS

This section contains our results of applying BCPk to
diagnostic reasoning. First we will start with the effect
of using a sound but incomplete reasoner for Reiter’s
definition of diagnostic reasoning. After this, we give
a number of examples of diagnostic reasoning using
BCPk as illustration. We continue with some intuitions
of using BCPk in diagnosis and finally we present our
results of anytime diagnostic reasoning using approxi-
mate BCP.

4.1 USE OF A SOUND, BUT
INCOMPLETE REASONER

Using a sound but incomplete approximation of the en-
tailment relation (i.e. BCPk or the 3-S-approximation
from [Schaerf & Cadoli, 1995]) in Reiter’s definition
of diagnosis has two effects. First, using such an ap-
proximation results in less diagnostic problems. The
assumption that all components are functioning cor-
rectly, together with the observed behaviour and the
system description could be classically inconsistent but
still consistent under the approximate entailment re-
lation (since ⊥ could be deducible classically, but not
by the weaker approximate entailment):

Theorem 1 (Approximate diagnostic problems
are classical problems)
For any sound but incomplete entailment relation |∼:
if SD ∪ OBS ∪ {¬ab(c)|c ∈ COMP}|∼ ⊥
then SD ∪ OBS ∪ {¬ab(c)|c ∈ COMP} ` ⊥

The second effect is that diagnoses which are not clas-
sical diagnoses are possibly approximate diagnoses. In
the classical case such a diagnosis together with the
observed behaviour and system description derives ⊥.
Again, because of the incompleteness of the approxi-
mation, ⊥ might not follow in the approximate case
and therefore it could be an approximate diagnosis:

Theorem 2 (Every classical diagnosis is an ap-
proximate diagnosis)
For any sound but incomplete approximate entailment
relation

{∆|∆ is a classical diagnosis} ⊆
{∆|∆ is an approximate diagnosis}

NB: This result only holds if we consider the set of all
diagnoses. It is no longer true when restricted to the
set of minimal diagnoses.
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Figure 1: Examples of approximate reasoning in diagnosis using `BCP
k

4.2 EXAMPLES AND INTUITION

Figure 1 describes a number of examples of how BCPk
acts in diagnosis. The left-hand side gives the system

descriptions and the observations. On the right-hand
side the resulting diagnoses are given together with the



k for which they were discovered. Below we describe
how the k parameter influences the outcome of the
reasoning process.

Combining the definition of diagnosis from [Reiter,
1987] and the definitions of BCPk allows us to define
the notion of a BCPk diagnosis:

Definition 4 (BCPk diagnosis)
A non-empty candidate diagnosis set ∆ ⊆ COMP is a
BCPk diagnosis iff
SD∪OBS∪{¬ab(c)|c ∈ COMP\∆} is BCPk-consistent.

4.2.1 BCP0 for a Single Component

The k parameter determines the quality of the com-
puted diagnosis. Its influence is illustrated by means
of a simple example. Consider performing diagnosis
on a system consisting of only one AND gate in figure
2.

C
0

Figure 2: An AND gate with one known input

The system description only contains one behaviour
model, and no structural model. The behaviour model
of c is2:

ab c ∨ ¬in1 c 0 ∨ ¬in2 c 0 ∨ out c 0
ab c ∨ ¬in1 c 0 ∨ ¬in2 c 1 ∨ out c 0
ab c ∨ ¬in1 c 1 ∨ ¬in2 c 0 ∨ out c 0
ab c ∨ ¬in1 c 1 ∨ ¬in2 c 1 ∨ out c 1

The first of these states that given two 0 input val-
ues and assuming correct behaviour, the output also
equals 0 and similar for the other formulae.

Assume that we are given the observation OBS =
{in1 c 0} and that we want to derive that the output
of this component is 0: out c 0, assuming it is working
correctly: ¬ab c.

SD ∪ {in1 c 0} ∪ {¬abc} `BCP
0 out c 0

Adding ¬out c 0 to the theory, and performing unit
resolution on these literals and the behaviour model
results, among others, in:

¬in2 c 0
¬in2 c 1

2Notations such as out c 0 are the propositional trans-
lation of the first-order formula out(c) = 0.

As a result of the translation into propositional logic,
the clause in2 c 1∨ in2 c 0 is in SD. This can be used
to derive the empty clause using the previous two lit-
erals, establishing the desired conclusion. This shows
that k = 0 allows some inference over the behaviour of
components.

4.2.2 Connections Between Components

To allow computed values to spread throughout an
entire system, they have to be propagated from one
component to another.

?1
C

1 C2

Figure 3: Propagating values from one component to
another

Consider the example in figure 3. An output value
of 1 is known for component c1. To propagate this
value towards c2, the value has to go through the link
connecting these two components. After propositional
translation, the formulas in the structure model that
describe the link in the above example look like (For
all v in some defined set VALUES):

¬out c1 v ∨ in1 c2 v and ¬in1 c2 v ∨ out c1 v

If for example out c1 1 is known, then also its coun-
terpart, in1 c2 1 is BCP inferable. In other words, if a
value assignment to one side of a link can be inferred
for a certain k, the value on the other side of the link
can be inferred as well.

4.2.3 BCP0 for Multiple Components

Consider the following example:

C
D 0

0

Figure 4: Reasoning about multiple components

As before, we try to use BCP0 to derive that the output
of this circuit is 0:

SD ∪ {in1 c 0} ∪ {¬ab c,¬ab d} `BCP
0 out d 0

The SD for this circuit consists of clauses for both
and-gates, augmented with the clause stating the con-
nection between the two. Unlike the single-component



case from section 4.2.1, no new literals can be in-
ferred. The only possible steps yield the following bi-
nary clauses (resulting from the description of C):

¬in2 c 0 ∨ out c 0
¬in2 c 1 ∨ out c 0

This states that regardless of its second input value,
C’s output will be 0. Although this is classically deriv-
able, such a combination of two binary clauses is not
allowd under BCP0. As a result, BCP0 is not able to
show that the output of the entire circuit is 0 either.

Observation: Notice that BCP0 would not have failed
on this example if either of the other two input values
had been given. Classically, these values are irrelevant
to the output of the circuit. For BCP0 however, this
redundant information would have been just enough to
achieve the desired conclusion. For example, knowing
either in2 c 0 or in2 c 1 would allow further reduc-
tion of one of the above two binary clauses, leading to
out c 0.

4.2.4 BCP1 for Multiple Components

Now we will show that unlike BCP0, BCP1 is able to
derive the output of the above example:

SD ∪ {in1 c 0} ∪ {¬ab c,¬ab d} `BCP
1 out d 0 (1)

According to definition 3, we are allowed to hypoth-
esise a formula of length k (here k = 1, ie a literal),
to prove this hypothesis, and then exploit this result
in the subsequent reasoning. Such chaining on formu-
lae of length 1 is exactly what was disallowed under
BCP0. In the example of fig. 4 the obvious literal to
use is out c 0. This is easily established under BCP1

(in fact, we saw it already followed under BCP0). We
are then allowed to add out c 0 to the left hand side
of (1). This enables a similar inference on component
D to derive the required result.

4.2.5 BCPk for more complex components

Notice that the circuit from fig. 4 is equivalent to a
single AND-component with three input gates: The

C
0

Figure 5: Reasoning about multiple components

same results as above hold for this complex compo-
nent: BCP0 cannot derive out c 0, while BCP1 can.

BCP0 cannot further reduce the following set of binary
clauses:

¬in2 c 1 ∨ ¬in3 c 1
¬in2 c 1 ∨ ¬in3 c 0
¬in2 c 0 ∨ ¬in3 c 1
¬in2 c 0 ∨ ¬in3 c 0

As before, classically this set of clauses is inconsis-
tent (as desired), but BCP0 cannot derive this. BCP1
is able to derive this inconsistency by first hypoth-
esising (for instance) in2 c 0.3 This hypothesis can
be proved using the clause in2 c 0∨ in2 c 1 (resulting
from the translation to propositional logic) and the
same clause for in3 c, in combination with the first
two binary clauses above. Now we can chain on this
result (in2 c 0) which gives the required empty clause
by combining the last two binary clauses above with
the exclusion clause for in3 c.

Summarising: although BCP0 can be used to reason
about single simple components, and about the con-
nections between them, higher values of k are required
to reason about more complex circuits. These intu-
itions will be made more precise in the subsequent
theorems.

5 THEOREMS ON DIAGNOSTIC
REASONING WITH BCPk

After presenting the intuition of using BCPk, this sec-
tion presents the formal results about the effects of
using BCPk in diagnostic reasoning. After some ini-
tial and easy results, we will be mostly concerned with
upperbounds on values for k: for which values of k
do classical diagnosis and approximate diagnosis coin-
cide. Some of these results are quite surprising and
yield much lower values for k than might be expected.

5.1 EFFECTS OF THE
INCOMPLETENESS OF BCPk

In section 4.1, we mentioned the general effect of a
sound and incomplete approximation of the entailment
relation for consistency based diagnosis. As a special
case, the following holds for BCPk:

Theorem 3 (Every k diagnostic problem is also
a k + 1 diagnostic problem)
if SD∪OBS∪{¬ab(c)|c ∈ COMP} is BCPk-inconsistent
then SD ∪ OBS ∪ {¬ab(c)|c ∈ COMP} is BCPk+1-
inconsistent

3In fact, any of the literals in these clauses would have
done the trick.



Theorem 4 (Increasing k leads to fewer diag-
noses)
For any SD, COMP and OBS:

{∆|∆ is a BCPk+1 diagnosis} ⊆
{∆|∆ is a BCPk diagnosis}

As already stated after theorem 2, this is only true for
the set of all diagnoses. Examples 3 and 4 from figure
1 show that this result does not hold when restricted
to minimal diagnoses. For example, in example 3 from
the figure, {c1, c3} is a diagnosis at k = 2 as well, albeit
not a minimal not.

5.2 AN UPPERBOUND FOR k ON
SINGLE COMPONENTS

In general, the values that BCPk can derive depend
on the value of k (obviously), the complexity of the
component (section 4.2.5) and the set of known input
or output values of the component (the final observa-
tion from section 4.2.1). The following lemma provides
a precise characterization of the relation between the
value of k and the formulas that can be inferred about
a single component.

Lemma 1 (Upperbound for k for a single com-
ponent)
Consider a system (SD, COMP), a set VALUES and an
observation set OBS. For every component c ∈ COMP
having n links going in or out, of which m(≤ n) values
are elements of OBS and a literal φ, which is either ⊥
or an assignment of a value v ∈ VALUES to an input
or output of c, the following holds:

If k ≥ n−m− 1 and SD ∪ OBS ∪ {¬ab c} ` φ,
then SD ∪ OBS ∪ {¬ab c} `BCP

k φ

Next, we will use this lemma to establish an upper-
bound for the value of k that is required to reason
about entire circuits instead of only single components.

5.3 AN OBSERVATION-INDEPENDENT
UPPERBOUND for k

It is possible to derive an upper bound of k for a given
system (SD,COMP) that is needed to compute classi-
cal diagnoses for an arbitrary diagnostic problem. A
surprising result is that this upperbound depends only
on the types of the components in COMP, and not and
not on how they are connected. This upperbound is
computed as follows:

First we apply lemma 1 to each component with m = 0
(no observations, ie. the worst case), giving as value
n − 1 for each component, where n is the number of

links going in or out. We then take the maximum of
all these values:

Definition 5 kmax(SD, COMP) = maximum of n− 1
over all components in COMP

Theorem 5 (Invariance of k with system size)
Let SD and SD′ be two system descriptions which con-
tain the same types of components (ie they only differ
in the number of components and how these compo-
nents are connected, their structure model), then

kmax(SD) = kmax(SD′)

Proof sketch: Lemma 1 ensures that a component
can be correctly simulated at k = n − 1 (taking m =
0, the worse case). An entire circuit is simply the
union of the component descriptions (we can ignore the
connection clauses, since section 4.2.2 showed that the
connection clauses can be dealt with even by k = 0).
The k required for an entire circuit is therefore not
higher than the k for the most complex component,
ie. the maximum of n− 1 over all components. 2

Lemma 1 ensures that for this value of k we will obtain
only the classical diagnoses.

5.4 AN OBSERVATION-DEPENDENT
UPPERBOUND for k

Although the previous result stated that the maxi-
mally needed value of k is independent of the system
interconnection, this value can in general be lowered
when information about the given observations is ex-
ploited. We will now derive the maximal value for k
that is needed for a given SD and a set of observations
OBS. For this value of k or higher, BCPk diagnoses
coincide with the classical results.

The characterisation of the upper bound of k is based
on conflict sets.

Definition 6
• Given SD, OBS and a minimal conflict set mcs,
ie. SD ∪ OBS ∪ {¬ab(c)|c ∈ mcs} ` ⊥, then
kneeded(mcs, SD, OBS) is defined as the minimal k for
which SD ∪ OBS ∪ {¬ab(c)|c ∈ mcs} `BCP

k ⊥;
• Given all minimal conflict sets mcs1 . . . mcsn for a
diagnostic problem (SD,COMP,OBS), k∗ is defined as
follows:

k∗ = max1≤i≤n(kneeded(mcsi, SD, OBS))

This definition of k∗ allows the following theorem:

Theorem 6 (When BCPk diagnoses equal clas-
sical diagnoses)



∆ is a BCPk∗ diagnosis for (SD, COMP, OBS) iff
∆ is a classical diagnosis for (SD, COMP, OBS).

Theorem 6 is of great importance since it provides an
upper bound for k. No k greater than k∗ needs to be
tried, since the results can not get any better.

The question remains how the minimal k can be dis-
covered for which SD∪OBS∪ {¬ab(c)|c ∈ mcs} `BCP

k
⊥, which actually comes down to checking how the
conflicting observations can be propagated through the
part of the system that is the minimal conflict set.
The behaviour of components that are not in mcs does
not matter: they are not assumed to be working cor-
rectly and no conclusions can be drawn for them. For
this, first the minimal conflict sets have to be found.
The task of determining the minimal conflicts sets is
of the same complexity as performing classical diag-
nostic reasoning; from the minimal conflict sets, the
classically correct diagnoses can very easily be deter-
mined.

As a result, the upper bound k∗ from the above theo-
rem is not one that can be effectively exploited: even
though we know it exists, determining its actual value
is of the same complexity as performing (classical) di-
agnosis in the first place.

Of course, one expects that the observation-dependent
upperbound k∗ is sharper than kmax, the observation-
independent upperbound. This is indeed the case:

Theorem 7 For any problem (SD,COMP,OBS):

kmax(SD) ≥ k∗

The following table shows the values of kmax and k∗

for all the examples from figure 1:

Example no. kmax k∗

Example 1 2 0
Example 2 2 1
Example 3 3 3
Example 4 3 2

Theorem 7 states that kmax is only a sufficient but
not necessary upperbound. On the other hand, kmax

is easily computable (linear in the size of the circuit)
while the cost of computing k∗ is of the same order as
performing classical diagnosis in the first place. The
figures from the above table show that the cheap up-
perbound kmax does not overshoot the optimal value
by very much, at least on the small examples from
figure 1.

5.5 BINARY CIRCUITS CAN BE
DIAGNOSED WITH k=1

Systems consisting of the traditional one- or two-input
gates such as AND, OR and NOT gates play a central
role in most literature on formalising diagnosis. The-
orem 8 states a surprising result about such systems
consisting only of components with at most two inputs.

Theorem 8 (k = 1 suffices for diagnosing binary
circuits)
For all electronic circuits consisting of components

with no more than two inputs, ∆ is a BCP1 diagnosis
iff ∆ is a classical diagnosis.

Proof sketch: Even full classical entailment can
only derive results about components with at least
one known input or output signal. Choose such a
component. Lemma 1 guarantees that for this com-
ponent BCP1 can derive all classically valid results
(since n = 3,m ≥ 1). Therefore, for this component,
BCP1 reasoning completely emulates classical reason-
ing. This argument can be repeated for every subse-
quent classical reasoning step. 2

This is a quite surprising result, because apparently
all diagnostic problems for this kind of systems can be
solved with an entailment relation as simple as BCP1,
regardless of the size or structural complexity of the
system.

5.6 RECOGNISING DIAGNOSTIC
PROBLEMS WITH k=0

As can be seen from examples 2 and 3 from fig. 1,
sometimes BCPk is not able to even recognise the ex-
istence of a diagnostic problem. It is not able to derive
inconsistency, and suggests the empty diagnosis (ie. no
component is functioning incorrectly. The following
theorem says that in certain cases, BCPk is guaran-
teed to recognise a diagnostic problem if there is one.

Theorem 9 (recognising diagnostic problems at
k=0)
For all electronic circuits for which all the inputs are
known, ∆ is a BCP0 diagnosis iff ∆ is a classical di-
agnosis.

Proof sketch: For recognising a diagnostic problem,
we must prove

SD ∪ {¬ab c|c ∈ COMP} ∪ OBS `BCP
0 ⊥ (2)

For some components c, all inputs will be known (since
all inputs to the circuit are assumed to be known).
The description of components consists of clauses of



the following form:

ab c ∨ ¬in1 c v ∨ ... ∨ ¬ ∈n c v ∨ out cv

Fro the literals given on the left-hand side of (2), this
can be reduced to the literal out c v (because all inputs
of c are known). This amounts to “removing compo-
nent c from the circuit”. This process can be repeated
until no components are left. At that time, only liter-
als are left, and inconsistency can be derived by BCP0.
2

The strength of the theorem is that it applies to sys-
tems of arbitrary complexity. The weakness of this
theorem is that it only applies when all input signals
are known. If n inputs values are unknown, then the
theorem can be applied for all of the 2n possible open
combinations. If n is not too large, 2n applications of
unit resolution may still be more efficient then a single
application of a general resolution procedure.

6 CONCLUSIONS

In this paper we have shown how approximate boolean
constraint propagation can be used for approximate
diagnostic reasoning.

We have taken the well-known definition of Reiter’s
consistency based diagnosis, and replaced the logical
entailment in its definition with a sound but incom-
plete approximation of the logical entailment. Using
such an approximated version less diagnostic problems
are recognized, but when a diagnostic problem is rec-
ognized more diagnoses are found. We were able to
characterise the cheapest versions of approximate BCP
which allows single components and entire circuits to
be diagnosed correctly. From these upperbounds sur-
prisingly low values follow which are needed to cor-
rectly diagnose many of the typical examples from the
literature. A particularly interesting property that we
discovered is that the complexity level at which ap-
proximate diagnoses coincide with classical diagnoses
is entirely determined by the nature of the individual
components, and not by either the size or the struc-
tural complexity of the overall device.

The question remains whether k is a good indicator
for the complexity of diagnostic problems. For tradi-
tional diagnosis of binary circuits, k is definitely not a
good indicator: theorem 8 states that k = 1 already
captures all complexity. This leaves k = 0 as the only
approximating step. For more complex components
with more input- and output gates, the value where
k-diagnosis becomes classical is higher. In principle,
makes it possible to approximate more gradually the
classical case with increasing k. This would make k

an attractive indicator of diagnostic complexity in the
case of complex components. Whether or not this is
the case cannot be established by the small examples
that we have studied so far.

Related work In [tenTeije & vanHarmelen, 1996],
we already studied approximate diagnosing by using
the approximate entailment from Schaerf and Cadoli
[Schaerf & Cadoli, 1995] in several definitions of di-
agnosis. Compared with this earlier work, one of the
drawbacks of using BCPk for approximation is that we
are not able to give guidelines for a good choice for
k. We can only say that one should start at k = 0
and must increase k until the upperbound has been
reached. For the Cadoli/Schaerf approximation on the
other hand, we were able to give strategies for good
choices for the parameter that determines cost and
quality of the approximation [tenTeije & vanHarme-
len, 1997].

A second point in favour of the Schaerf/Cadoli approx-
imations is the desired gradual behaviour of an approx-
imate diagnostic method. For the Schaerf/Cadoli ap-
proximation, we have observed such gradual behaviour
(see the examples in [tenTeije & vanHarmelen, 1996]),
while for BCPk this question is still open, and the ini-
tial evidence is discouraging. A further problem with
BCPk is that even the initial step in the approximating
process (k = 0) is already quite strong (BCP0 is com-
plete for Horn theories), thereby removing much scope
for approximating steps which were possible under the
Schaerf/Cadoli approximation.

Other work in approximate diagnosis is done by Pos
[Pos, 1993]. She takes a more algorithmic approach
and applies the approach proposed in [Russel & Zil-
berstein, 1991] to diagnostic reasoning. The diagno-
sis task is decomposed in a number of subtasks (con-
flict generation, discrimination and conversion) and for
each of these a number of anytime algorithms are pro-
posed which should be chosen and scheduled. She dis-
cusses three methods for scheduling several anytime
algorithms and applies these to diagnosis. This work
is complementary to our approach, which deals with
declarative specifications only.

Future work As mentioned above, it would be an
attractive anytime behaviour if with every increase of
k the quality of the diagnoses would increase a little
bit. However, in our rather small experiments (both in
size and in number), we often observe a behaviour that
is the opposite of this: for small values of k the approx-
imate diagnoses remained the same, only to suddenly
jump to the entire set of classical diagnoses. The next
step in our study of BCPk is to do more experiments for



testing under which conditions performing BCPk diag-
nosis would result in better anytime behaviour. An-
other way of extending our experiments is to use more
complicated behaviour models. The same should be
done for investigating the tightness of the upperbound
kmax on more realistic examples. In our examples
we considered only models of the correct behaviour
of components and therefore we are allowed to use the
minimal consistency based diagnosis hypothesis [McIl-
raith, 1994]. A new subject of study is whether our
results are depend on this minimal consistency based
diagnosis hypothesis.

In [tenTeije & vanHarmelen, 1996], we showed that the
use of a unsound but complete approximation gives
useful results for performing diagnosis. Therefore an-
other direction of further research is to look for an
unsound but complete BCP approximation.

Acknowledgements

We are grateful to Wouter Teepe for providing an im-
plementation of BCPk, and to Rineke Verbrugge for
supervising him during this work and for useful dis-
cussions in the early stages of this work.

References

[Boddy & Dean, 1989] M. Boddy and T. Dean. Solv-
ing time-dependent planning problems. In IJCAI–
89.

[Bylander et al., 1991] T. Bylander, D. Allemang, M.
Tanner, and J. Josephson. The computational
complexity of abduction. Artificial Intelligence,
49:25–60, 1991.

[Chang & Lee, 1973] C. Chang and R.C. Lee. Sym-
bolic Logic and Mechanical Theorem Provering.
Academic Press, London, 1973.

[Dalal & Yang, 1997] M. Dalal and L. Yang. Prelim-
inary emperical results on anytime propositional
reasoning (abstract). In AAAI97 workshop, 1997.

[Dalal, 1996] M. Dalal. Semantics of anytime family
of reasoners. In ECAI’96, pages 360–364, 1996.

[Davis & Hamscher, 1988] R. Davis and W. C. Ham-
scher. Model-based reasoning: Troubleshooting.
In H. E. Shrobe, editor, Exploring Artificial Intel-
ligence, pages 297–346. Morgan Kaufmann, 1988.

[Dean & Boddy, 1988] T. Dean and M. Boddy. An
analysis of time-dependent planning. In AAAI’88,
pages 49–54, 1988.

[Green, 1969] C. Green. Application of theorem prov-
ing to problem solving. InIJCAI’69, pages 219–239,
1969.

[McAllester, 1990] D. McAllester. Truth maintenance.
In AAAI’90, pages 1109–1116, 1990.

[McIlraith, 1994] S. McIlraith. Further contributuins
to characterizing diagnosis. Annals of Mathematics
and AI, 11(1–4), 1994. Special issues on Model-
based diagnosis.

[Pos, 1993] A. Pos. Time-constrained model-based di-
agnosis. Technical report, University of Twente,
department of computer science, 1993. Master’s
thesis.

[Reiter, 1987] R. Reiter. A theory of diagnosis from
first principles. Artificial Intelligence, 32:57–96,
1987.

[Rosenschein, 1981] S. Rosenschein. Plan synthesis: a
logical perspective. In IJCAI’81, pages 331–337,
1981.

[Russel & Zilberstein, 1991] S. Russel and S. Zilber-
stein. Composing real-time systems. In IJCAI’91,
pages 212–217, 1991.

[Schaerf & Cadoli, 1995] M. Schaerf and M. Cadoli.
Tractable reasoning via approximation. Artificial
Intelligence, 74(2):249–310, April 1995.

[tenTeije & vanHarmelen, 1996] A. ten Teije and F.
van Harmelen. Computing approximate diagnoses
by using approximate entailment. In KR’96, 1996.
Morgan Kaufman.

[tenTeije & vanHarmelen, 1997] A. ten Teije and F.
van Harmelen. Exploiting domain knowledge for
approximate diagnosis. In IJCAI’97, pages 454–
459, August 1997.

[vanHarmelen & tenTeije, 1995] F. van Harmelen and
A. ten Teije. Approximations in diagnosis: moti-
vations and techniques. In A. Levy and P. Nayak,
editors, Proceedings of SARA-95, Symposium on
Abstraction, Reformulation, and Approximation,
pages 149–155, Aug 1995.

[Zilberstein & Russell, 1996] S. Zilberstein and S.J.
Russell. Optimal composition of real-time systems.
Artificial Intelligence, 82(1–2):181–213, 1996.


