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Performance of close-coupled wave packet methods
for molecule-corrugated surface scattering

G. J. Kroes and J. G. Snijders
Theoretische Chemie, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands

R. C. Mowrey
Chemistry Division, Code 6179, Naval Research Laboratory, Washington, DC 20375-5342

(Received 16 March 1995; accepted 22 June 1995

The H,+LiF(001 system was used to investigate the performance of the hybrid close-coupling
wave packetCCWP method and of a symmetry adapted, fully close-coupled wave p&8keYP)

method for a molecule—surface problem characterized by fairly high corrugation. In the
calculations, a realistiep-dependent model potential was used. The calculations were performed for

a collision energy of 0.2 eV, with Finitially in its j =0 rotational state at normal incidence to the
surface. Large increases in the computational efficiencies of both wave packet methods were
achieved by taking advantage of the potential coupling matrices associated with both methods
becoming sparser with increasing molecule—surface distance. For the present model problem and
employing this increased sparseness at longer range, the SAWP method is faster than the CCWP
method by a factor of 2. The potential usefulness of the SAWP method for dissociative
chemisorption problems is discussed. 195 American Institute of Physics.

I. INTRODUCTION the potential energy operation is performed by transforming
) . the wave function from momentum space to coordinate
Wave packet methods have been applied to a variety ofpace consecutively for each degree of freedom, followed by
molecule—surface scattering problems. Examples include thg qimple multiplication in coordinate space, after which the
_scatte_r!ngl_gf molecules  from surfaces which containaye function is transformed back to momentum space. Fi-
Impurities, = scattering from —otherwise disordered v hybrid methods exist, which use an FBR for some
surf_acc_eé; 26 atom_—surfagele scattering mvoh;m_g phonon degrees of freedom and a VBR for the others. An example is
excitation?® rotationally?’~1® or vibrationally’ inelastic the so-called close-coupling wave packeCWP method??

molecule-surface scattering, and reactions on.surfjécé"é. which was the first wave packet method to be applied to
Wave packet methods are also ideally suited for vector :
; olecule-corrugated surface scattering. The CCWP method

and parallel computers. As a result, in recent years muc

effort has been directdH332%4-6%¢ inventing wave packet employs an FBR for the diffractive degrees of freedom,

techniques which are more efficient in terms of either com—Whlle using a YBR or close-coupling representation for the
molecular rotations.

puter time or central memory usage. The efficiency of a . :
wave packet method depends on the number of basis func- In the original CCWP method, the potential energy op-

tions used, the spectral range of the Hamiltonian, and thgration scales with the number of rotational staigs; in-

manner in which the Hamiltonian operations on the waveCcluded in the scattering basis seti;. The scaling is with

function are carried oi®®* Furthermore, recent work®® Nrsétz in the FBR method devised by Lemoine aqd_Co”f’ei?, .
has shown that in special cases the point-group symmetry dyhich would therefore seem to be more _eff|C|ent. Their
the crystal surface can be used to improve the efficiency of '€thod has challenged us to come up with improvements to
wave packet method for molecule-surface scattering. Oldeln® existing CCWP method.
work® had already shown how this can be done in the An obvious way to improve the efficiency of any hybrid
framework of the time-independent close-coupling metffod. OF VBR wave packet method is to take advantage of the
The efficiency of performing the Hamiltonian operations SParseness of the potential coupling matrix. In the CCWP
depends to a large extent on the representation used for tfigethod (VBR in rotational degrees of freedom oplythe
wave function. One approach is to use a full close-couplingsParseness may result from certain coupling terms being zero
or variational basis representatioviBR)®’ for all degrees of ~over the entire range of the scattering coordinate accessible
freedom except the scattering coordin®té drawback of in the scattering. Clearly, this will be the case if a model
this method in its raw form is the unfavorable scaling of thepotential is used which contains only low order rotational
potential energy operation with the number of basis functiongxpansion terms. At larger values of the scattering coordi-
N included in the coupled-channel expansion. The scaling i®ate, the sparseness may also result from certain coupling
asN?, the potential energy operation on the wave functionterms being relevant only at short ranggose to the sur-
becoming a matrix—vector product. An alternative face. This is certainly expected to be the case in molecule—
approach™ is to use a finite basis representatidfBR)®’  surface scattering: The only spherical harmonics required to
for all degrees of freedom. In this method, the potential endescribe the long range; interaction of a homonuclear mol-
ergy operation is made cheaper by achieving a higher factoecule with a surface are thé,, andY,, harmonic<?
izability of this operation on the wave function. In particular, The purpose of the present work is twofold. First, we
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5122 Kroes, Snijders, and Mowrey: Molecule-corrugated surface scattering

investigate to what extent the efficiency of the CCWP  The present paper is organized as follows. Section I
method can be improved by exploiting the sparseness of thgresents the CCWP method and the SAWP method for nor-
potential coupling matrix. In the present research, we employnal incidence on a surface consisting of a square lattice. For
a realistic molecule—surface potential recently developed foboth methods, we discuss how the sparseness of the potential
H, interacting with a LiF001) surface®®7°At medium range  coupling matrix maximum can be used to its maximum ad-
and at long range the anisotropy of the potential is mostlyantage on a vector computer. In Sec. lll we show the im-
contained in second order spherical harmonics, through thprovement that can be obtained in both methods by employ-
guadrupole-ionic lattice electrostatic interaction and the dising sparseness, and compare the efficiencies of the improved
persion interaction. Close to the surface, higher order sphercCWP method and the SAWP method. Section IV gives our
cal harmonics in the potential expansion are also importangonclusions.

due to the short range repulsive interaction betwegrmht

the surface ions. In contrast to the Wolken potential for

H,+LiF(001),%6 the new potential used here also depends odl- THEORY

the azimuthal orientational anglg of the molecule. In a previous papel the CCWP and SAWP methods
Second, we investigate whether an even more efficien},o e outiined and presented in considerable detail. In the

method can be obtained if a close-coupling representation iﬁresent paper we will be more brief, except that now details

also used for the diffractive degrees of freedom, for the SPe;re given concerning the methods used to employ the sparse-
cial case of normal incidence where the point-group symme,

! _ ness of the potential coupling matrix. Also, we describe how
try of the crystal surface can be used o its maximum advang,e ransformation to a symmetry-adapted basis set for a
tage. This work extends the application of the previouslypomonyclear diatomic molecule scattering off a square lat-

developed symmetry-aadapted full - close-coupling  wavejce (including thes degree of freedojrcan be effected. The
packet(SAWP) method® to problems in which the molecule general features of the wave packet methods used are de-

surface potential also depends on the anglewith the re-  geriped in Sec. Il A. Details particular to the CCWP method
striction presently that the initial magnetic rotational quan-g given in Sec. Il B. A description of the SAWP method
tum number of the incident molecule is zero. Clearly, a full (jnc|uding the transformation to the symmetry adapted basis
close-coupling method will only be efficient if only a few gey is given in Sec. Il C. The spectral range associated with
low-order diffraction (plane-wavg expansion terms are poth methods is discussed in Sec. Il D. The essential features
needed in _the molecule—surface potential, or if higher ord(_e{)f the ¢-dependent model potential used in the present cal-
terms are important only close to the surface. The latter igyations are briefly discussed in Sec. Il E. Section Il F gives

known to be true for potentials constructed from pairsome numerical details concerning the calculations presented
interactions,"?and model potentials used in calculations onang discussed in Sec. IlL.

elastic atom—surface scattering usually employ Fourier terms _
to order no higher than tw6 "> Because the Li@01) sur- A Outline of wave packet methods

face is a fairly corrugated surface, thg-H.iF problem rep- The Hamiltonian for a rigid rotor, diatomic molecule
resents a fairly severe test case in deciding whether a fullcattering off a static corrugated surface can be written
close-coupling method can be made more efficient than the 1

hybrid CCWP method, provided that a realistic model poten-  fj— _ o VZ+Hot V(X,Y,Z,0,8), (1)
tial is used.

Developing a symmetry adapted treatment for normalyhere we used atomic units. In EG), M is the mass of the
incidence is relevant to the study of dissociative chemisorpgiatomic moleculeR=(X,Y,Z) describes the position of the
tion: Many H,+metal reaction systems obey “normal energy molecule H,,, is the molecular rotational Hamiltonian, akd
scaling”,”®~"® meaning that to a good approximation the is the molecule—surface interaction potential which depends
measured reaction probabilities depend only on the kinetign R and also on the molecular orientation angkeand ¢
energy associated with the translational motion normal to thesee Sec. Il E The X andY axes are parallel to the surface
surface. Of course, this dependence can then be obtaingghd lie along the direction of the lattice vectdisere we
from calculations with normal incidence of the wave packet.consider the case of a square surface uni},cafidZ is taken
At present, a major challenge in molecule—surface scatteringh be positive above the surface. The anglemd ¢ are the
is to perform a fully quantal six-dimension&D) wave polar and azimuthal angles defining the orientation of the
packet calculation on the dissociative chemisorption ol molecular axis with respect @ and X.

a low index copper surface. Accurate reaction barriers are  The solution to the time-dependent Saltirmer equation
available for H+Cu from experiment%? and 6D wave can be written as

packet calculations would constitute reliable tests of the mul- A

tidimensional potential energy surfaces now being calculated YV (R.6,¢,t)=exd —iH(1—1o) ¥ (R, 6, $,1o), )

for H, interacting with low index copper surfaces using den-whereW(R,6,¢,t,) represents the initial state of the system.
sity functional theory®~%* The 6D reactive problem is the Equation(2) is an initial value problem, and to solve it we
5D inelastic problem augmented with the bond distance as afiyst define the initial wave function

extra degree of freedom, and the symmetry adapted treat- ]

ment we present here for,HLiF(001) can be readily ex- W(R,0,4,t0) =b(Z)V1/(LyLy) exdiKop]Yjgm (6.4)
tended to dissociative chemisorption of bin Cu100). 3
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as a Gaussian wave packet4n

Cj’m.’nm(zocvt): Vl/(LxLy)f f \P(Zw,Pﬁvﬁl’:t)
i pJQ

b(Z)=[2m&?] "V ex — (2~ Zo)/4&%+ikz Zo], (4) X ext —i (Ko+ Gom)p]

*
times the product of a normalized plane wave function for XYj’mj’(a’ $)dp dQ. (6)
the initial parallel translational motion and a spherical har- ) )
monic describing the initial molecular rotation. In E®), In Eq. (6), n andm are the diffraction quantum numbers

L,=L, (=a, we will be dealing with a square latticare the associated with the final translational state of the molecule,

magnitudes of the lattice vectors aloXgandY, p=(X,Y),  @ndGpy is the reciprocal lattice vector
andK is the vector of initial parallel momentzk(o,kyo). In omn 27m

Eq. (4), ¢ is the width of the wave packet which is centered G”m:(L_’ /)
on Z, and travels in the negativé direction with an average X y

translational momenturky, . Furthermorej’ andm are the rotational quantum numbers

In a wave packet calculation, the grid in the scatteringassociated with the molecule’s final rotational state. The
coordinate can be made smaller if a separate grid which ex8-matrix element§j,m;nmjomj (E) for a (jom;,—] 'm{nm)

. . . S J 0
tends toslglrger values @ is used to bring in the initial wave ansition are calculated from th®) m/nm(Z-- ,t) Using time
function™ In the separate grid, the same grid spacing |st ner Fourier transf rn%’45’é4 Th robabilit
used, but the number of points usellsizgp) is larger. The o ene g){, ,ou € anstornis: € probabiiiies
L . ! . P(jom; —]'mjnm) are obtained from

separate grid is used to hold the diffractionally and rotation- 0
ally elastic channel until this channel can be accommodated p
on the range of the “regular” grid where the molecule—

surface potential is significant and the absorbing potential A nice feature of the asymptotic analysis method dis-

(see below is zero. Accommodation on the full grid is cussed above and also shared by some other mé&fis
judged to be possible if the norm of the wave function thath,; the scattered wave function is not needed beyond the
cannot be contained on this range of the regular grid is lesgna|ysis value of the scattering coordingte Therefore, the
than a tolerance parametergolAt the beginning two grids g in the scattering coordinate needs to contain only the
are used, but after the wave function is transferred t0 theznge over which the potential acts plus a small interval
regular grid propagation continues using one grid only. Thgyhich Jies beyondZ.. and is used for absorbing the scattered

separate grid method is used in both the CCWP method angaye packet. For this purpose, we add an optical potential of
the SAWP method, and was discussed in detail in Ref. 63. o quadratic forff?

Several different numerical algorithms are available to

)

(jomj0_>j,mj’nm)z|Sj’mj'nmjoij(E)|2- (8

perform the time propagation of the wave functfrin the V(2)= —iAz[%z_z], (9a)
present work, we use the Chebyshev propagation méthod. o
It involves the repeated evaluation of the action of the z=(z—zM"/L, (9b)

Hamiltonian on the wave function. The number of times that

the action of the Hamiltonian on the wave function must beto the Hamiltonian of Eq(1), the optical potential being
evaluated is related to the time step and the spectral rangéefined over the rangez™,Z™" + L].

W, of the Hamiltoniarf* defined as

W=\ max— Amin» (5) B. The close-coupling wave packet (CCWP) method

The CCWP method®* is a hybrid wave packet
where\ . and\,;, are the maximum and minimum eigen- method, meaning that a close-coupling representation is used
values associated with the wave function. The computationdPr some, but not all, of the degrees of freedom other than
cost of the wave packet propagation therefore depends sefie scattering coordinate. Using a close-coupling representa-
sitively on the spectral range associated with the wave packéion for the rotational degrees of freedom, but a DVR repre-
method®® and the spectral range associated with thesentation for the translational degrees of freedom, the wave
CCWP and SAWP methods is considered in some detail ifiunction is written
Sec. II D. _

The calculation ofS-matrix elements involves the pro- qf(t)ZZ XJ_O
jection of the wave function on asymptotic diffraction- jm; M
rotation eigenstates. We use a recent method devised by ) jom,
Balint-Kurti et al.*-*58%in which the wave function is ana- In Eq. (10), the functlons(jmj °(R,t) represent the center-of-
lyzed at a fixed value of the scattering coordin@g), simi-  mass translational motion for the rotational states included in
lar to what is done in the time-independent close-couplinghe expansion of the wave function. Alodg Y, andX, N,,
(CC) method®® The wave function is projected on rotation- Ny, and N, regularly spaced grid points are used. For a
diffraction eigenstates at regular time intervals, obtainingsquare lattice, a square grid of points XhandY is used
time-dependent coefficients (Ny=N,). In the rotational expansiom,, rotational states

m;

(RO Y, (6,6). (10)
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5124 Kroes, Snijders, and Mowrey: Molecule-corrugated surface scattering

are included,j ranging from 0 toj ., and the magnetic point (X,Y), say atZ, . In the propagation, the multiplication
rotational quantum numben; ranging from—j to +j for  with the potential coupling matrix element is then only per-
eachj. formed for grid values oZ<Z,. Using the same maximum
Using the expansion of E¢L0), the action of the kinetic valueZ, for all grid points (X,Y) allows efficient vectoriza-
energy operator associated with the translational motion ofion overX andY simultaneously, which is quite important if
the molecule is evaluated efficierfti?® by transforming the the calculations are performed on a vector processing com-
translational functions to momentum space using consecputer like the one used in the present woakCray C98. In
tive FFT's (alongZ, Y, andX) of theX'.Oij(R,t). The asso- Such a case, gains made by achieving smaller vector lengths
. . M may be rather insignificant in case the number of vectors
ciated computational cost scales a®N,N,,N,,X .
(log N,+log N,+log N,), whereN,, is the produc¥ ofN remains the same. . . :
and NZ The élctual kxin’etic eners))l/ operation is perforymed If the sparseness of the pptentlal at mtermed@te and long
X range is taken into account in the manner described above,

together with the rotational energy operation in the combineqhe scaling of the potential energy operation with the number

\r?(?men;uihm/ aan\lea][ r:n(t)imr?nium zpaﬁde b3i/ntn:)u't;ﬁly'ngmth$of rotational states will be no longer cle@r will depend on
alue ot the wave function at each grid point by Ih€ sum 0fy, range of the coupling termsin Sec. I, we will give
the kinetic and rotational energies, which scales a

o . ; Yesults concerning the resulting improvement in efficiency
NzNyyNror. This if fqllowed by an inverse 31 Fourier trans- for the model problem under investigation in the present
form back to coordinate space.

) . worl
) The potential ejr;ﬁ_rgy operguon IS performed py premul- In addition to the action of the Hamiltonian on the wave
tiplying the vectoerijO(R,t) with a potential coupling ma-  fynction, the propagation of the wave function in time also
trix on each point Z,Y,X). The elements of the matrix are involves operations which are intrinsic to the propagation
algorithm used. The Chebyshev algorithm involves additions
A = * _ and multiplications with phase factors which all scale as
Virmjm, (R) J YJ-,mjf(ﬁ.qb)V(R.0,¢)Y1mj(0,¢)dﬂ- Nszmef p
(1D) The calculation of the initial wave functidiEqgs.(3) and
If no attention is paid to the possible sparseness of the ma4)] can be performed trivially by calculating
trix, the potential energy operation scalesl\dasz\leerot. If, b(Z) xXexfdiKyp] on the grid inX, Y, andZ. Arbitrary angles
on the other hand, the potential coupling matrix is spars@f incidence can be handled by extending the FFT scheme
because many coupling terms are zero over the entire rangesing the shifting theorem of Fourier analysis, as described
of the scattering coordinate, the scaling is given byin Ref. 54. The extrdshifting) operations required scale as
NZNXmetNL%‘up, WhereNrc%tup is the average number of rota- NN, N;. In the calculation of theS-matrix elements, the
tional states the potential couples to a given rotational statqrojection of the wave function on the rotation-diffraction
This will be useful if, to describe the dependence of theeigenstates is done using consecutive FFT's of
molecule—surface potential on the molecular orientation, thg(J_Omjo(Zw ,Y,X,t) along Y and X for all rotational states
potential is expanded in spherical harmon‘i’qaﬂj,, and only Im

I d lati h . | b th present in the basis sgtee Eq.(6)].
ow order (relative to the maximum value gfin the rota- The amount of central memory required when using the

tional ba;us sgtexpansion functpns are useq. In su.c’h a CaseChebyshev algorithm to propagate the wave function is four
the matrix elememyi’mj'imj(R) with widely differingj” and storage array®’ where the memory taken up by one storage
j and/or widely differingm; andm; will be zero because the array is the amount of memory required to hold the full wave
integrals(j'm/|j"m{|jm;) are zero for allj” andm{ con-  function. In the CCWP method, the memory required to store
tained in the potential expansion. This was true in the previthe wave function is N Ny Nior (the factor 2 is from the
ous investigatio??’ but not in the present work. Here, we will wave function being compléxIf the potential coupling ma-
mostly consider whether advantage can be taken of the parix is full and no use is made of coupling matrix elements
tential coupling matrix being sparser at larger values of theheing of short range, the amount of memory required to store
scattering coordinate, due to certain coupling matrix elethe matrix on the grid iN,Ny NNy +1) (the coupling
ments being important only at short ran@dose to the sur- matrix being complex-Hermitian, and storing only the upper
face. triangle. If use is made of certain coupling matrix elements
The method we developed to reduce both the CPU timgeing important only at short range, the amount of central
and storage requirements associated with the potential efemory required to hold the coupling matrix will depend on
ergy operation basically involves not using coupling matrixjust how sparse the coupling matrix is at longer range. The
elements in the multiplication once their absolute values be'rmprovements we achieved in the present case are discussed
come less than some threshold vaMieat larger values of in Sec. III.
the scattering coordinate. The method used is very simple: )
For each coupling matrix elemefq. (11)] and each grid €. The symmetry adapted rotationally and
value ofX and, the size of a particular matrix element is diffractionally close-coupled wave packet (SAWP)
scanned as a function &f, moving from the largest value of method
the scattering coordinate on the grid inwards. An array is It is also possible to use a full close-coupling represen-
used to keep track of the value df at which the matrix tation for all the degrees of freedom other than the scattering
element exceeds the threshold value for at least one gridoordinate
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jom: TABLE I. The D{P) (B~ matrices used in this work are given for the
V(t)= E f.m_mn(z,t)d)nmjm(x,Y, 0,0), (129 operationB belonging to theC,, group. TheC, operation rotates the posi-
jmjnm I . tive x axis on to the positivg axis, andoy, is along the linex=y.

where B E G, C; C on o0y 0o O
. DP(B™Y 1 0o -1 0 1 -1 0 0

Poamim (XY, 0,4) = V1/A exfli(Ko+ Gnm)p] pEBYH o 1 0 -1 0 o 1 -1
DP(B™Y) 0 -1 0 1 0 0 1 -1

Xijj(ﬁ,qb). (12b DH(BYH 1 0 -1 0 -1 1 0 0

In Eq.(12b), A is the surface area of the surface unit cell. We

have called the resulting method the rotationally and diffrac-

tionally close-coupled wave packékDWP) method®® coupling wave packetSAWP) method, we then expand the
An advantage Of using a C|Ose_coup|ing representatioﬁ.\/ave function in Symmetry adapted rotation-diffraction func-

also for the diffractional degrees of freedom is that the ki-tions as

netic energy operation can be done more efficiently. Because

the wave function is expanded in translational eigenfunctions  W(t)= > fJFOEDJ-m_F amlZ:0)

for the X andY degrees of freedom, Fast Fourier transforms Pal'rjmjFgnm =55

(FFt's) nee_d to be carried out fat only. However, this ad- XgFaF,jijdnm(p191¢)eXF[i Kop]. (14
vantage will often be more than offset by the increased cost . o
of the potential energy operation. As can be seen from Eq14), a grid representation is

The potential energy operation is expected to be moré!sed inZ, usingN; equally spaced points. In Egl3) and
expensive in the RDWP method because, for a full potentia{14), m; takes on only positive values. The symibodlenotes
coupling matrix, the potential energy operation will now the irreducible representatidn of a symmetrized rotation-
scale withN,N3;N2,, which is much more unfavorable than diffraction function andw its subspecied], the irreducible
the CCWP SC&"”Q(Nszerzou N,y will be approximately representa_tion of '_[he symmetry at_;lapted rotational fu_n(ﬂ)on_
equal toNg;, which is the number of diffraction states in- andl'y the irreducible representation of the symmetrized dif-
cluded in the basis etThe problem may be somewhat al- fraction functioris), which are combined to obtain a rotation-
leviated if, in the potential expansion, only diffraction expan-diffraction function belonging to the subspecief the ir-
sion functions of low order are required, and only rotational'educible representatioli. As will be explained in some
expansion functions with loy are required. In this case the detail below, the indexes making up the subscripts define the
scaling may be given aNZNSgu N aitN, Noot, WhereNggupis symmetry-adapted rotation-diffraction functions of E(fs3)
the average number of diffraction states a given diffractior@nd(14) in an unambiguous manner. ' _
state will be coupled to by the potential, ahkﬁ?fup has pre- We will now first gons@er the constructlon of a basis set
viously been defined in Sec. Il B. Upper boundsl\lﬁfup are Of symme_:trlzed rotat|on-d|ffract|or_1 e|ge_nstates._We star_t k?y
5 and 13 for a diffraction ordeD, of 1 and 2 in the potential Cconstructing symmetry-adapted diffraction functions. This is
expansion respectivelyQ,=|n|+|m[), and N&f,=9 and done by operating on eXGnnp) (N=m=0) with the
25 for nP,, is 1 and 2, respectively, whergn| <| n|  group projection operat

< nP..,. However, apart from exceptional caStthe RDWP nr

method is not expected to be more efficient than the CCWP ijr):% > D{(B™hHB. (15)
method, the potential energy operation being more expensive BeG

by a factorNdif/nyNggup. In Eq. (15), I' is the irreducible representation that is pro-

A different situation may arise in case the symmetry ofjected out’G is the order of the grouf8 for C,,), ny is the
the lattice is used. For the case of a diatomic molecule interdimension of the irreducible representatiorf2 for E and 1
acting with a rigid lattice surface of a given point group for the other irreducible representationB is an operation
symmetry, the molecule-surface potential may be expandebelonging to the group, ariai(jr)(B‘l) is annp by ny irre-
in symmetry adapted functions. If the diatomic is homo-ducible matrix representation of the inverse operation. For
nuclear, these functions should be symmetric with respect tthe one-dimensional irreducible representatidhsr,)(B’l)
exchanging the atoms of the molecule and transform accords simply equal to the charactgy' (B)]™* corresponding to
ing to the totally symmetric representation of the point groupthe operatiorB. For theE irreducible representation of the
associated with the crystal fa¢he A, representation of the C,, group, theD matrices are given in Table |I.

C.,, group for the case of the square lattice that we consider By operating with the group projection operator on
exfdi(G,m)p] with n=m=0, linear combinations of degen-

erate diffraction eigenfunctions are formed, where the dif-

V(Z.p.0, ¢):r jn%dnm CAlrrjijdnm(Z) fraction functions transform among one another under the
o operations of the point group and form what we term a “dif-

XU jmrgnm(Ps 0, B). (13)  fraction manifold” which is characterized by the values of

n=m=0. The linear combinations formed belong to differ-
In Eq. (13), due to the inversion symmetry of the molecille ent subspaces!"’, each corresponding to a subspecies of the
takes on even values only. In the symmetry adapted closesarious irreducible representations. For fig, group, the
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5126 Kroes, Snijders, and Mowrey: Molecule-corrugated surface scattering
symmetries aré\;, A,, B;, B,, E*, andE?, where we use
superscripts to distinguish the two subspecie& afymme-
try. Furthermore, for one and the same value of the index
the projection operator®{F (i=1,2) obtained using th®

; : 2
matrices of Table | generate functions®f andE symme In Eq. (18), the functionsEX(p) and E(p) are partners, and

try which are partners. This will be relevant when the sym- : 1 5 .
metry adapted diffraction functions are combined with sym—the same is true foE (6,4) and E*(6,4). For instance, the

: . (tiwo A; basis functions that can be obtained from the-2,
metry adapted rotational functions to form symmetry adapte In=1) diffraction manifold and 4m | =1 rotational manifold
rotation-diffraction functions ofA; symmetry. are given by !

Application of the group projection operator of E45)
yields 1A, function forn=m=0, 1A, 1B,, 1E*, and 1E?
function for diffraction manifolds witm>m=0, 1A, 1B,
1E?, and IE? function for diffraction manifolds witthh=m

1
Al(p! 01¢) = \/; {El(p)® El( 9! d))

+E*(p)®EX(6,¢)}. (18

1
Oa,Ej1E21(p, 0, ) = \[E {He121(p)Rexj1(0, &)

>0, and 1A, 1A,, 1B,, 1B,, 2E%, and ZE?2 functions for +He21(p)Rezja (6, 4)}, (199
diffraction manifolds withn>m>0. The derivation of ex- 1

pressions for the symmetry adapted_ functions is strgightfor— gAlElelz(p,a(ﬁ): \[E {Hewo(p)Reyj1(6,¢)

ward, and we only give the expressions for tdunctions

for diffraction manifolds withn>m>0 +Hez12(p)Re21(6, )} (19b)

Hetnm(p)=2V1/A sin kyx coskpy, (163 Equations(19a and (19D illustrate the meaning of the
subscripts of the symmetry adapted functiorsndg in Egs.
Heznm(p) =2V1/A sink,y coskqx, (16b (13 and(14) respectively, and show how the indices in the
subscripts define these functions unambiguously forGhe
Hetmn(p) = 2V1/A sin kyx cosk,y, (160  group. The first index denotes the symmetry of the rotation-
diffraction function, the second index the irreducible repre-
Hezmn(p) = 2V1/A sinkyy coskpx. (160  sentation to which the rotational functions contained in the

rotation-diffraction function belong, the third index is the
: e rotational quantum numbgrand the fourth index is the ab-
(16b) define partners, and similarly so for Eq460 and  gojyte value of the magnetic rotational quantum number
(16d. _ _ |m;|, meaning that rotational functions with;=+|m;| and
Symmetry adapted rotation functions can be constructeg;inj: —|m;| are mixed in. The fifth indexXy denotes the ir-
by operating with the group projection operafB. (15]on  reqycible representation to which the diffraction functions
the spherical harmonice;r, (6, ¢), where spherical harmon- - contained in the rotation-diffraction function belong, and the
ics characterized by the samevalue and the same absolute sixth and seventh indices areand m, respectively, which
value ofm; are said to form a “rotational manifold.” For the define the diffractional manifold to which the diffraction
C,, group, application of the group projection operatorfunction belongs. The symmetry adapted rotation-diffraction
yields 1A; function for m;=0, 1E% and IE? function for functionsga rjm ram(P: 6, #) andv a - jm 1 om0+ 6, 4) are
|mj|=1,3,5,%--, 1B, and 1B, function for [m;|=2,6,10--,  gefined without]ambiguity through the direct product rules
and 1A and 1A, function for[m;|=4,8,12-- . For instance, [jike Eq. (18)] and the proceduréutlined abovieby which
we have symmetry adapted diffraction functions and symmetry
adapted rotation functions are obtained. Note in particular
how our notation distinguishes between
gAlrrjijnm(P101¢) and gAlFrjijmn(Pvaa ¢), wheren>m
in both caseg$see Eqs(16a9—(16d)].

In Eq. (16), k,=nX2w/a. Furthermore, Eqs(16a and

1
Rayjjm|(6: )= \[5 {+Yjim|(0: )+ Y m (6, H)},

(173

1 1
Railm (6, ¢)=+ \[E {Yiim|(60:8) =Y m| (6, b)},

(17b

Now that we have outlined how a symmetry-adapted ba-
sis can be constructed, we will consider the potential energy
operation in the SAWP method. In the SAWP method, the
evaluation of the potential energy operation involves premul-

tiplying the vectorf!® o (Z,t) with the potential cou-

Im;|=4,8,12-- .

Fal"rjmjl"dnm
pling matrix at each grid point itZ. The elements of this
A symmetry adapted basis set containing rotation-matrix are
diffraction basis functions of the totally symmetric represen-
tation can now be obtained by combining diffraction func-VF’a’Fr’J'mj’F{,n’m’FaFriijdnm(Z)
tions belonging to the same diffraction manifold and rotation
functions belonging to the same rotational manifold observ-

ing the direct product rules which are appropriate for the

point group under consideration. For t8g, group, the only

nontrivial relation for functions which are totally symmetric

involvesE functions and can be writtéh

= gF'a'F;mj’Fén’m’(Pv‘ga PIV(R,0,0)
XQrar,jmrgm( P, 6 $)dp dQ

I'=I' and a'=a,

(209
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Kroes, Snijders, and Mowrey: Molecule-corrugated surface scattering 5127

Vr'a'r'j'm!r/n'm'rarrjm.rdnm(z)=0 otherwise. (20p  the potential depends og). In Sec. Ill, we will discuss to
v . what extent it is possible to limit the expansion of the poten-
tial to low order terms for the fairly corrugated model system

Expanding the wave function as in Ed4) thus has the ) L "
advantage that the potential coupling matrix becomes bloc nder |nvest_|gat|on, and _whether the SAWP method is then
ess expensive computationally than the CCWP method.

diagonal, making the potential energy operation less expe ; : .
9 9 b gy op P In performing the potential energy operation, extra sav-

sive. Apart from the term eXpKyp], the initial rotation- . | btained if il ) i

diffraction function will contain only one irreducible repre- Ings may also obtained it many potential matrix coupiing

sentation (for |m|=0 or odd or two irreducible elements are important only at short range. The method
{ adopted is principally similar to the one used in the CCWP

representationéor |m]-|>0 and even, from now on we con- thod. F h i trix el 201 th
sider the case of a homonuclear diatomic interacting with gnethod. For each coupling matrix elemeflg. (20)], the

square lattice However, for an arbitrary angle of incidence, f5|ze ?rf] tr|1e ele[[ner;t IS ?ct:ﬁnnedttas. a funct:jqu;t)fnovL?wg id
this will not help one to reduce the number of rotation- rom the fargest value of the scatlering coordinate on the gri

diffraction functions required in the basis set: The presencg]wards‘tl‘.et lIJS suptpok')se that thle abs?lute ;/;IueFof ttr;]e cou-

of the term expiKyp] leads to off-diagonal couplings in the piing matnix €lements becomes farger hétna £p- Forne

kinetic energy operation. While the kinetic energy matrix iSpartlcular matrix element, the multiplication is then carried

no longer diagonal in this case, it is still highly blocked, out for values ofZ smaller than or equal @, only.

because the couplings are only between between symmetB/ To.take fuII.advanta.ge of the increased sparseness of the

adapted states belonging to the same diffraction manifold. o:enufal iﬁUpgzgvgatr'ﬁhatJongif ftangehon atl V(E)ctordcorp-d
However, it is possible to reduce the number of rotationPY€"> 1N the method a strategy has to be adopte

diffraction basis functions in the case of normal incidérce }E/;/]m?cl\jv;omi\;]vhdat\r/no:e 'cpmpllcatizge;han thef?ne (L;sed in
In such a case rotation-diffraction functions of no more than' ' method. Vectorizing over égree of ireedom

two irreducible representations need to be included in th or all matrix coupling elements will not be very efficient.
basis set. In the special case we consitle initial value of his strategy only has the effect of decreasing the average

m; is zerd only symmetrized rotation-diffraction functions vector length, while the number of vectors is not decreased.

i . . . . .
belonging to theA; representation need to be included. Be- Vectorizing over the states included in the b.aS'S set Is (.)f
course not efficient at long range, where a given state will

cause these functions are eigenfunctions of the rotation:
diffraction part of the Hamiltonian, the SAWP method sharesOnly couple to a few others. . :

with the RDWP method the advantage that, for performing We fqund that the most eff|C|ent ;cheme consists of a
the kinetic energy operation, FFT's need to be carried out fOFombmatlon. For elgments W.h'Ch are important over a long
the Z degree of freedom only. In the SAWP method, the'ange of the scattering coordingienger than sanZ,), the

(translational-rotationa) kinetic energy operation scales as vTEilélr?“rﬁn“Z; tlg t;/:(;)tgrrmltz)?r?]egvaetrzs.h;??argzltggczgzgsvec
N log(N,)N, , where N, is the number of symmetrized . - . i
i t_g( ;?ﬁAl . ; tAl_ luded in the b _y t and b torizing over states, skipping zero-matrix elements and the
lro a_lon-tl :ﬁcrn_ S z?jes_l;m uadeadn ‘ ?_ (ta5|_s Sﬁ in eéoupling matrix elements already handled in the part vector-
onging to theA, Irreducible representatiotlypically, 1or 4,04 oyerz. Of course, the scheme will be optimal only for

. 1 o

C4, symmetry of the latticeN,, = §NdifNroJ- The kinetic o harticular value foAZ, . The optimal range is estimated

energy operation is thus much cheaper in the SAWP methogy calculating, for each conceivable rang&, the number

than in the CCWP' method both becau_se the FFT's akng ¢ vectorsN, ,(AZ) which can be made ovez as well as

andY can be avoided and becausig is much less than thejr average length,,(AZ), and also the number of vectors

N,yNo: (by approximately a factor)8 over statedN, (AZ) as well as the associated average vector
Of course, the SAWP method will be more efficient thanlengthsl ,(AZ). The optimal rangé Z, is then calculated as

the CCWP method only if the gains made by performing the .

kinetic energy operation more efficiently are not offset by ~ AZ;=miN(AZ){N,,(AZ)(t;+1,,(AZ)t;)

losses incurred in performing the potential energy operation s i

less efficiently. For normal incidencen; =0, and a full TNy(AZ)(ts+1,5(A2)ty), (21)

potential coupling matrix, the potential energy operation willwheret; andt$ are start-up CPU times for multiplications

scale asNzN,il, which means that a huge saving is obtainedvectorizing overZ and states respectively, atidandt are

at least relative to the RDWP method. Additional savings cadncremental CPU times. The valuestdfandts and oft; and

be obtained if the expansion of the potenfiity. (13)] can t will depend on the computer used, and were obtained from

be limited to terms that are of low order in diffraction and test calculations in the present work.

rotation, such that many coupling matrix elements are zero In the SAWP method, the propagation of the wave func-

over the entire range of the scattering coordinate. If the potion (the Chebyshev algorithrscales asN,N, . compared

tential energy operations in the RDWP method are more exto NNy N, for the CCWP method. Becaus, should be

pensive than those in the CCWP method by a factompproximatelyN, Ny, the propagation algorithm should

Ngir/Nx,NSoup, this scale factor changes to approximatelyrequire much less CPU time in the CCWP method.

Na /N X Ngt/NgNG,, for the SAWP  method We now turn our attention to the setting up of the initial

(N=NgN,o;, and the factos comes from the coupling ma- wave function and the asymptotic analysis. In the SAWP

trix being real symmetric in the SAWP method rather thanmethod, the calculation of the initial wave functifgs. (3)

complex Hermitian, as in the CCWP and RDWP methods ifand(4)] simply involves setting‘jAOﬁOAloo(Z,t = 0) equal to
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5128 Kroes, Snijders, and Mowrey: Molecule-corrugated surface scattering

b(Z), while setting all other expansion coefficients to zero.potential in case use is made of the sparseness of the poten-
The asymptotic analysis is performed by first calculatingtial coupling matrix will depend on the particular scattering
time-dependent coefficientﬁ:Aljmjrdnm(zoc ,t); these are problem. Results for the model problem investigated in this

simply equal tof °™io (Z..,t). From these coefficients, WOrk are given in Sec. lil.

AlFrjmjl"dnm
S’-matrix elements labeled by the same indices are calcu-
lated. Defining the transformation D. The spectral range associated with the different
methods
QM:Z biTin, (223 For any wave packet method, the number of Hamil-

tonian operations required to propagate the wave function
where . and i are collective indexes and the symmetry over some given timdt is linearly proportional to the spec-
adapted and nonadapted functiojsand ¢ are defined in tral range of the Hamiltoniah®®%* For the methods dis-
Egs. (12) and (14), respectively, the actuad matrix for  cussed in the previous subsections, the spectral range follows
rotation-diffraction transition§Eq. (8)] can be obtained by from using
applying the transformation

Mma= Taat Thact Troact Trs A Vinaso (233
S=TST" (220

max max
A max= Vimin, (23b)

in Eq. (5). In Eq. (233, the calculation of the maximum

inetic energies iz, Y, andX (T .y, Thax, @andTh,,) and of
he maximum rotational energy/Ss, is easily performed for

The expressions fdB in terms ofS' along with the symme-
try restrictions this places oB-matrix elements and prob-
abilities can be obtained from some tedious, but otherwis

straightforward algebra. Note th@itdefines a direct transfor-

mation of the basis rather than a transformation of the matri)Po'[h t_he CC\_NP and SAWP methoo_l, following either from
representation of the wave functidh the grid spacing employed for a particular degree of freedom
One advantage of the SAWP r.nethod over the CCWE' the parameters characterising the close-coupling expan-
method is that there is an enhanced freedom in the choice &O?(I'ke | mtax)‘t.lnl Eas.(23), Vﬁ“.‘“r']s .the mlnlllmukm molefcule—th
diffraction eigenstates to expand in. The spectral diffractiorb 12c€ potential energy, which IS usuafly known from the

basis effectively used in the CCWP method is a square gri&n olecglz—lsurf?rc]:e pc|>ter|1t|tz_:1I wefllthdepth. _Howevetr, at1§ Id's'
of N, points in the two-dimensionalp(,p,) momentum cussed below the calcuiation of the maximum potential en-

space. In case a close-coupling representation is used for tﬁégyVmax Is not so straightforward in the CCWP and SAWP

diffractive degrees of freedom, it is also possible to use ethqu. . . . .
diamond-shaped grid in momentum space, by including only Itis a Iong standlng_practlce to impose a maximug,
diffraction states up to diffraction ordd 4, where the dif- on th_e poFentlaI energy in order to red_uce the spectral range.
fraction orderO,,=|n|+|m|, in constructing the symmetry It is likewise useful to impose a maximum on the total ki-

. . tic energy” Imposing a maximunT ., on the total kinetic
adapted basis. The number of states required for convergengg : . cut
in such a diamond-shaped grid may well be less than th&NErgy 1S €asy in both the CCWP and SAWP methods, be-

number required for convergence using a square grid. This it ause 'nb.bOtQ methodf th/e wavle functlontcan be obtalrtletq n
investigated in Sec. Ill, e combined momentum/angular momentum representation.

Another advantage gained from using the full expansior{n the fully spectral representation the total kinetic energy

in molecular eigenstates in the SAWP method is that, if theoperation simply becomes a multiplication to be carried out

collision energy distribution is not too broad, the energy of " each grid point in momentum space. Imposing the cut-off

the motion away from the surface will be reasonably We"val_uiz IC“‘ 'Shq(?]n_? _S|m|ply bytrs]ettllrj g elqu?rI] tog‘(":‘{/\% any d
defined for each scattered channel. This means that the prgp'cvpor V':Ih '3 thls arger lan cut: bn € a an
cedure used to absorb the scattered wave function can éA‘ methods, the same value can be used fgr

optimized by making the optical potential channel depen- A great a?vantage fOf a rge_thtor(]j n wh(;gh tthe potenuatll
dent. In all cases we use a fixed value Egrthe range over energy operation IS pertormed In the coorcinate representa-

which the optical potential acts, which enables us to workon .(FBRVmethodsb I|I§e the EBWThmetfl@cf? I'S that a
with a grid of fixed size. However, the proportionality con- maximum Vi, can be Imposed on the potential energy op-

stant of the optical potenti§, for a quadratic potential, see e;ator n thet same n;gnnter, by sm}ply pﬁ.t&m.ga?ual tO\t/hCU‘
Eqg. (9a] is adjusted to the translational energy with which & @ny paint In coordinate space for whithis farger than
the scattered channel is expected to emerge, using procgﬁm' This advantage is not shared by methods employing the

dures described in Ref. 62, to obtain optimal absorpteze close-couplmg _representatlon_ or VER' What one can do,
also Sec. Il f. however, is to impose a maximul,;, on the orientation-

In the SAWP method, the amount of memory required toa”i/ a;(elr atges .potentladln d”;)e thCCWP tr;:etho)d otr ?n th? th
store the wave function is X N,N,_, which is much less potential that Is averaged both over the orientation of the
1 molecule and over the projection of its position on the sur-

than in the CCWP method. In case the potential couplinqace unit cell(in the SAWP method Suppose that in the
matrix is full, the amount of memory required to store its CCWP method, we expand the potential as
upper triangle is%NzNAl(NAl + 1) (as was mentioned be- ’

fore, the potential coupling matrix is real symmetric in the V(Z,Y,X, 6 ¢):2 C{(Z,Y,X)V(6, ) (24)
SAWP methodl The amount of memory required to hold the B = T
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and in the SAWP method, we expand the potential as erations per timestefor smaller timesteps in case the same
number of Hamiltonian operations per timestep is Wsed

V(z,Y,x,0,¢):20 Ci(Z)V{(X,Y,0,8). (25)
1=

Suppose that the expansion functions used in E2§.  E. Model potential
and (25) are normalized in such a way that their maximum The model potential we use here has recently been de-
absolute value is 1. In either casé, will be v27Yoo. A yjised and used by us in calculations on scattering ofrém
maximum can then be imposed on the potential by, beforg;roo1) at a collision energy of 0.1 €¥.7° For a full de-
calculating the potential coupling matrix, imposing a cut off serintion of the model potential, the reader is referred to Ref.
on the potential energy expansion rather than the potentigly Here, we only briefly review its most essential features,
energy itself. TCT:S is done by setting, in all cases where Wgyhich ensure that the model potential is both a useful and
find thatCo>Viax, realistic test example for comparing the performance of the

_yscut SAWP and CCWP methods for an,Hsurface system of
Co=Vmax: (26 ] ) i
fairly high corrugation.
C;=0, j=1. (26b) Essential components contained in the potentialiare

. long-ranged(~Z~3) attractive interaction, the anisotropy of
cut _
The value ofV,, that will be needed to get converged re which is described by th&.,, spherical harmonic(ii) a

sults will typically be somewhat higher than the cut-off Valuemedium-ranged electrostatiquadrupole-ionic lattic®) in-

Vou ONe W(.Md use if '.{he potential energy operat|on_ Wer€eraction which contributes both to the anisotropy and the
performed in the coordinate representation. To see this, su

Rorru ation, favoring different orientations across the unit
pose for a moment that we would use such a method, ang 9 g

ell, and (iii) a short-ranged repulsive interaction, which
that a cut-off valueV,; would be needed to get converged | Git) 9 P

: ads to higher order corrugation terms and anisotropic terms
results. Now SUppose We are using t.he_CCWP method, an hich become increasingly important close to the surface.
that for some pointX,Y,Z) the potential is lower thaW

. . . ) . ._The last feature of the model potential makes it a useful test
for a few orientations, but higher for most orientations. Th'smodel for algorithms which try to exploit the increasing
;’:’.'"h metﬁn g'at T?e onenta_tlonally averaged potsngal ISsparseness of the potential coupling matrix at longer range

\gher Cﬁtn cut- I WE NOW IMPOSE & Maximum ON BY ~ (gacs 11 B and 11 G. The inclusion of the electrostatic inter-
puttlng_Vmax eq_ual 1OV ou We are now in effect Increasing the action leads to a fairly large difference in the spectral ranges
potential at points wher¥ is low enough to affect our final associated with the CCWP and SAWP methégsc. Il D
results. Therefore, the value dff, should be Iarggr t_han No such large difference is observed when using the previ-
Veu and large enough to ensure that the potential is OI']%usly investigate®¥ Wolken potentiaP® the corrugation of
modified at p0|nt§ X(’Y’.Z) for W.h'Ch thg F’Otef‘“a' s larger which is described by only a single Fourier term, while only
Fhan.VC”‘ for all orientations. Using a similar Il.ne of reason- eY,q spherical harmonic is used to describe the anisotropy.
Ing, It can be demonstrated that, in calculating the spectr he Wolken potential favors one orientation of the molecule
range using across the unit cell.

A mas= Teurt CVEL, (27 . For the CCWP calculations, the model p(_)teﬁﬂ?A/as
o first calculated for a number of molecular orientations for
it will be necessary to use a value oflarger than one, \4jyes ofX, Y, andZ corresponding to the grid points. Sub-
because the averaged potential will always be less than the,guently, the potential was expanded in spherical harmonics
maximum value oV. The spectral range associated with thejnc|yding functions withj ,,,, Up to 6(a total of 28 rotational
cIose-_coupllng methods is thus larger than the spectral ranggnctiong. In the SAWP calculations we use the expansion
associated with an FBR methoghereh.,=Tcyt+Vew: AS  of Eq. (13), retaining terms with diffraction ordein|+ |m|
a consequence, a d.|sadvantage of the cIose-coupImg_met_hogﬁ to 6 andj . Up to 6. The expansion coefficients for the
is that, for a given timestep, a larger number of Hamiltoniansy mmetry adapted rotation-diffraction functions were calcu-
operations are required for propagating the wave function iflated from spherical harmonic coefficients obtained previ-
time in a stable manner. _ o ously in a calculation employing 16 grid points alo¥gand

In the calculations discussed in Sec. Wi is @ param- 15 noints alongy. In both cases, convergence of the expan-
eter with respect to which convergence is sought. The valugjon with respect to the number of functions included was
of ¢ required by the CCWP and SAWP methods is estabghecked for by recalculating the potential from the expansion

lished by trial and error. Selecting too small a value éor  anq comparing with the original model potential on a grid of
results in using a timestep that is too large and, consequentlﬁoims.

instability in the propagation of the wave function, which
usually shows up after taking only a few time steps. The
difficulty with imposing a maximum on the potential when . .

. . L . F. Numerical details
using a close-coupling representation is a larger disadvantagé
in the SAWP method than in the CCWP method because the The numerical values of the input parameters common to
close-coupling representation is used for two additional dethe CCWP and SAWP calculations presented here are given
grees of freedom in the SAWP method. As a result, than Table Il. Most of these parameters have already been dis-
SAWP method is expected to require more Hamiltonian opcussed in Secs. Il A-ll D. The average initial momentum
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TABLE II. Numerical parameters used as input in the calculations are givenan asymptotic valudZ,) of the scattering coordinate. To

Parameter CCwP SAWP
Initial wave packet
Width ¢ (bohn 1.118 1.118
Initial position Z, (bohr) 25.0 25.0
Average initial momentunkZo (atomic unit3 7.349 7.349
Basis set parameters
N, 108 108
Grid spacingAZ (bohn 0.25 0.25
Lattice parametea (A) 2.84 2.84
Maximum value ofj in basisj yax 6 6
Time propagation
Size time stegatomic unit$ 1500 800
Number of time steps 30 56
Total propagation tim& 45000 44800
Tolerance parameter tgl 10718 10713
Number of Hamiltonian operatiors,,, 2250 3808
Optical potential
Initial value of rangeZ™ (bohn 22.75 22.75
Proportionality constand, (hartreg 0.061 0.061
RangeL (bohr 4.0 4.0
Other
Analysis value ofZ, Z,, (bohn 22.75 22.75
Time interval analysid\t,, (atomic unit$ 150 160
Tolerance norm elastic grid tgl 1071 1071
Number of grid points elastic gril!lZS 128 128
Cut-off potential expansioWS, (eV) g 0.6 0.9
Coefficientc in Eq. (27) 1.4 2.0
Cut-off kinetic energyT . (eV) 0.6 0.6

kZo given in Table Il corresponds to a collision enefgy, of

0.2 eV, and all calculations were performed for normal inci-
dence of the wave packet.
The Chebyshev meth8twas used to propagate the

obtain correct results\t,,, should be much smaller than the
timestep used in the calculatiofsee Table Il for the values
used forAt,,andZ,). As described in Ref. 84, obtaining the
wave function atZ=Z7,, at intermediate times presents no
problem in case the Chebyshev algorithm is used. At any
intermediate time, the wave function is obtainedZat Z.,
simply by using the Bessel expansion coefficients appropri-
ate to that time. The procedure used involves no extra Hamil-
tonian operation&? and requires little overhead.

The model potential used in the present work is switched
off smoothly in the range 20—22.75 bohr, using the function
of Egs.(10) of Ref. 94. In this range, the interaction potential
is already quite small. The validity of the switching proce-
dure was checked by also performing calculations in which
the model potential acts over an even longer rangg.of

In the CCWP method, when performing the FFT's for a
given rotational state the wave function is held in an array
ar(nz,ny,nx), where the first dimension is ft, etc. The
FFT's were performed consecutively using the scilib Cray
routine CFFTMLT, vectorizing alongf and X when per-
forming the FFT’s inZ, vectorizing alongZ when perform-
ing FFT’s alongY, and vectorizing alond@ andY when
performing FFT’s alongX. Care was taken to avoid memory
bank conflicts. The 3D FFT routine CFFT3D is very ineffi-
cient for low values oN, andN, ,** but the efficiency of the
algorithm outlined above and using CFFTMLT is
comparablé to that of a sophisticated algorithm using rota-
tions to obtain optimized vector lengtfs.

Details in which the CCWP calculations and SAWP cal-
culations differ are given in Sec. Ill.

wave function in time. For both the CCWP and the SAWP|||_ RESULTS AND DISCUSSION
method, the total propagation time and the number and size

of the time steps used are given in Table Il. The order of the

In order to compare the performance of the CCWP and

Chebyshev expansions employed was taken such that tf®AWP methods, first an accurate reference calculation was
highest order Bessel expansion coefficient was less than thgerformed using the SAWP method. In this calculation, the

tolerance parameter tgl(see Table ). To avoid instabilities

potential expansion of Eq13) was used. In the potential

in the propagation due to the use of an optical potential, thexpansion, we included diffraction terms witim|<|n|

time step was chosen small enough to ensure that the ordetn

of the Chebyshev expansion did not exceed 80. For bot
methods, we also give the values\fL, andc required for
convergence in Table [kee Sec. Il [ and the total number
of Hamiltonian operationdN,,,, required for getting prob-
abilities. For a discussion of these values, see Sec. Ill.

In all calculations, we use the empirical, Hotational
energies as obtained from Ref. 93, rather than treating

k=3, and rotational terms with up to 6. In the wave

function expansionEq. (14)], diffraction terms were in-
cluded such thgm| +|n|<0,,=9, and rotational terms were
included withj up to 6. No attempt was made to use the
increased sparseness of the potential coupling matrix at
longer range in the reference calculation. Tests were per-
formed to ensure that the reference calculation converged all
probabilities for rotationally and diffractionally inelastic

a rigid rotor. All calculations presented here are for scatteringcattering from thg =0 initial rotational state that are larger

of H, from its j =0 rotational state, and of course we only
include rotational states withis even in the basis sets. In the
SAWP calculations, thé, parameters given in Table Il rep-
resent maximum values, and we obtain channel depende
optimal A, values using linear interpolation of Table Il of
Ref. 62.

As discussed in Sec. Il A, the calculation Sfmatrix

than 10* to within less than 0.5%.

The next step was to perform CCWP and SAWP calcu-
lations, and to investigate to what extent one can take advan-
tdage of the sparseness of the potential coupling matrix at
long range using the methods outlined in Secs. 11 B and Il C.
In performing these comparative calculations, we demand
that the results agree with those of the reference calculation

elements involves time to energy Fourier transforms of timeto within 1% for all probabilities larger than 16, The

dependent coefficients computed at fixed time intendls,

CCWHP results are discussed in Sec. lll A, and the SAWP

by projecting the wave function on asymptotic eigenstates atesults in Sec. Ill B. These sections focus on the improve-
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TABLE lIl. Probabilities for rotationally and diffractionally inelastic scatteriRg00— jm;nm) are given for five different calculations. Calculation A is an
accurate reference calculation performed with the SAWP method, n8ipg= 3 andO,,=9. Calculations B and C are CCWP calculations viith= Ny,=12.
Calculations D and E are SAWP calculations in whit, = 2 andO,,=8. In calculations C and E, the sparseness of the potential coupling matrix at longer
range was used as outlined in Secs. |1 B and Il C, usipg3.2x10 ° meV.

3
=]
3

Aref) B(CCWP C(CCWP  D(SAWP  ESAWP j m;

S
3

Aref) B(CCWP  C(CCWP  D(SAWP)  E(SAWP)

0.853p-2) 0.8526-2) 0.8526—2) 0.8536—2) 0.8526-2) 2 1
0.1756-1) 0.1756-1) 0.1756—1) 0.1757—1) 0.1758—1)
0.4982-2) 0.4986-2) 0.4986—2) 0.4989—2) 0.4994—2)
0.1281-1) 0.1281—1) 0.1281—1) 0.1281-1) 0.1281-1)
0.2084-2) 0.2084-2) 0.2079-2) 0.2084—2) 0.2083—2)
0.2516-1) 0.2516-1) 0.2516—1) 0.2516—1) 0.2516—1)
0.3715-3) 0.3723-3) 0.3727-3) 0.3727-3) 0.372§-93)
0.9240-2) 0.9233-2) 0.9233-2) 0.9247-2) 0.9239-2)
0.3881-1) 0.3887-1) 0.3887—1) 0.3879-1) 0.38794—1)
0.9751-3) 0.97927-3) 0.9791-3) 0.9764—3) 0.9757-3)
0.1142-1) 0.1141-1) 0.1141-1) 0.114G-1) 0.114G-1)
0.1001-2) 0.100Z-2) 0.1001—2) 0.100§—2) 0.1004-2) 2 2
0.2884-2) 0.2881-2) 0.2881—2) 0.2889-2) 0.2887—2)
0.2026-3) 0.2021-3) 0.2021—3) 0.2014-3) 0.2013—3)
0.7331-2) 0.7334-2) 0.733G—2) 0.7334-2) 0.7333-2)
0.1887-3) 0.188%-3) 0.1886—3) 0.1889—3) 0.1887—3)
0.3729-3) 0.3735-3) 0.3734-3) 0.3741-3) 0.3739-3)
)
)
)
)
)

0 0.1457-2) 0.1457—2) 0.1456—2) 0.1455-2) 0.1454—2)
0 0.1606-2) 0.1605-2) 0.1605-2) 0.1607—2) 0.1606—2)
1 01551-2) 0.1551-2) 0.1551—2) 0.1458-2) 0.1546-2)
0 0.4642-3) 0.4655-3) 0.4654—3) 0.4648—3) 0.4643—3)
1 0.2492-2) 0.2491-2) 0.2491—2) 0.2492—-2) 0.2492—2)

-1 0.2399-2) 0.2398-2) 0.2399-2) 0.2404—2) 0.2401—2)
1 01044-2) 0.1045-2) 0.1044-2) 0.1044-2) 0.1043-2)

-1 06177-3) 0.6194-3) 0.6192-3) 0.6192-3) 0.6188—3)
2 0.1062-2) 0.1062-2) 0.1062-2) 0.1061-2) 0.1061—2)

0.2853-3) 0.2853—3) 0.2853—3) 0.2859—3) 0.2855-23)

-2 0.2251-3) 0.225§-3) 0.2259-3) 0.2252—3) 0.2250—3)
0 02732-2) 02737-2) 0.2737-2) 0.2737-2) 0.2736—2)
0 0.1687-2) 0.1687-2) 0.1686-2) 0.168§—2) 0.1688—2)

1 0.2135-3) 0.2135-3) 0.2134-2) 0.213§-3) 0.2135-93)

0

1

)
)

0.2126-3) 0.2127-3) 0.2126-3) 0.2123-3) 0.2124-3)
0.4563-2) 0.4563—2) 0.4563—2) 0.4561—2) 0.4562—2)

-1 05923-3) 0.5923-3) 0.5927-3) 0.5927-3) 0.5924—3)
1 01888-2) 0.1886-2) 0.1886-2) 0.1887-2) 0.1886-2)
-1 0.3645-3) 0.3636-3) 0.3635-3) 0.3643—3) 0.3645-3)
2 01170-2) 0.117G-2) 0.117G-2) 0.1172-2) 0.1172-2)
1 0.1481-3) 0.1489-3) 0.1489-3) 0.1487-3) 0.148G—23)
2 09760-3) 0.9756-3) 0.9757-3) 0.9756-3) 0.975(—3)
3 0.1025-3) 0.1022-3) 0.1022-3) 0.1025-3) 0.1023-3)

0.8804-2) 0.8804—2) 0.8803—2) 0.8803—3) 0.8804—2)
0.3291-3) 0.3276-3) 0.3276-3) 0.3287-3) 0.3281-3)
0.1364-2) 0.1363-2) 0.1363—2) 0.1364—2) 0.1364—2)
0.7215-3) 0.7209-3) 0.7207—3) 0.7208—3) 0.7211-3)
0.1510-3) 0.1507-3) 0.1507—3) 0.151G-3) 0.1511-3)

W NN W R NP oM ®D®WAEN®AEN®RENPRP O
N N P O R O O O W WMNINUERERNIEROIROUER O O o
W WA N W W NN ®RE N R ®ON®®NN® RN R

0 0 sum 0.711@)  0.71090)  0.71090)  0.71090)  0.711G0)

2 0 sum 0.6216-1) 0.6214-1) 0.6213—-1) 0.6215-1) 0.6215-1)
2 1 sum 0.5367-1) 0.536§—1) 0.5368§—1) 0.5366-1) 0.5365—1)
2 2 sum 0.5938-1) 0.5937—-1) 0.5937-1) 0.5939—1) 0.5939—1)

ments obtained using the increased sparseness of the potgrotential expansion used in the calculation contained spheri-
tial matrices at longer range. cal harmonics withj up to 6 (see also Sec. Il E and the
The performance of the CCWP and SAWP methods igesulting potential coupling matrix was full, only 13% of the
compared in Sec. Il C. In this section, we also speculate ofnatrix elements being zero over the entire range of the scat-
the efficiency of a CCWP method using symmetry and theering coordinate. Test calculations showed that in the poten-
efficiency of using different representations at differenttja| expansion spherical harmonics should be included yith
ranges of the scattering coordinate, using a mixed schemgp to 6 in order to get converged results.
We will also briefly discus; the potential gsefulnes§ of t.he In the other calculatiofCCWP Q we did take advan-
SAWP method for performing 6D calculations on dissocia-age of the sparseness of the potential coupling matrix. In
tive che.mlsorptlon of Hon a surfgce of square lattice sym- this calculation, we neglected matrix coupling elements once
mgtry, like the C@0Q surface, in the context of such a their absolute value became larger than a threshold wAlue
mixed scheme. at larger values ofZ (see Sec. Il B for the exact method
A. CCWP results used in the matrix—vector multiplications corresponding to
To obtain converged results using the CCWP method, ifN€ Potential energy operation on the wave function. Trial
was necessary to use 12 grid points aloXgand Y calculatlonsé in which we mcreased.the threshold valuby
(Nx:Nyzlz). This corresponds to using a square diffrac-@ factor 16%in subse_(guent caIcuIauon; showed that for con-
tion basis containing 144 states. In the rotational basis se¥ergenceV,=3.2x10 = meV was required.
channels withj up to 6 were required for convergence The CPU times and central memory requirements of the
(N,,+=28). The spectral basis effectively used in the CCWPCCWP calculations are compared in Table IV. As can be
calculations therefore contained 4032 rotation-diffractionseen from this table, exploiting the increase in the sparseness
states. of the potential coupling matrix with increasing scattering
In Table IIl, results of two different CCWP calculations coordinate leads to a large reduction in the CPU time re-
are compared with the results of an accurate reference calcquired for the potential energy operation and the amount of
lation. In one calculatiofCCWP B we do not attempt to central memory required to hold the potential coupling ma-
exploit the sparseness of the potential coupling matrix. Therix on the grid inX, Y andZ (by a factor 4.5 in both cases
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5132 Kroes, Snijders, and Mowrey: Molecule-corrugated surface scattering

TABLE IV. CPU times(in CPU § and central memory requiremertis tion. The two calculations use the same rotation-diffraction
Mw) are given for four different calculations. Calculations B and C are hasis set in the wave funCtiQﬂWmax:G, OW=8) and the same
C?W:”tPa'Cl{'at'OrT_S r‘r""")tmx:;‘y:sé- Cz'C‘I“a“OI”SIDt, a“dCE arg :A:’XP parameters for the potential expansigpa,==6, NP = 2).
Calculations In whichng,,, = an w=0. In calculations an y e . . .

sparseness of the potential coupling matrix at longer range was used Jshe resultlng symmetry adapted basis S(.:"t contains 534 statgs,
outlined in Secs. Il B and I C using,=3.2x10"2 meV. The calculations Whereas a nonsymmetry adapted basis set would contain
were performed on a Cray Y-MP C98. [02+(0,,+ 1)%] X N,,,=4060 stategN, /N = 7.6, which

is close to 8. In the SAWP D calculation, we do not use the
increased sparseness of the potential coupling matrix at

CCWRB) CCWRC) SAWRD) SAWRE)

CPU times . longer range, though we do take advantage of matrix cou-
Ehle:t":ﬁh;‘(’) :égzo”thm 10;21'9 1011:;0 22’28 22869 pling elements being zero over the entire rangeZofOf

K. FFts alongX andY  100.6 1018 0 0 course, this is the case if the mtegrals over the states that are
K, multiplications 6.9 6.8 2.4 2.4 coupled and the potential expansion functions are zero for all
\Y 459.2 101.9 878.5 146.4 expansion functiongsee Eqs(13) and (15)], and this was
Rest 41.8 42.4 11.8 13.7  true for approximately 50% of the potential coupling matrix
Total . 7535 396.1 9239 1940 glements. In the SAWPE calculation, in addition the nonzero
Memory requirements l tri | t lected t

v, arrays <001 0.06 017 a9  coupling matrix elements are neglected once at long range
V, matrix elements 9.4 21 26 1.1 their absolute value becomes less thgn using the proce-
Storage arrays wave 4.4 4.4 0.46 0.46 dure described in Sec. Il C. Trial calculations similar to the
function ones performed before using the CCWP method showed that

Total 14.5 8.0 43 81 for convergence the same value &f, was required

(3.2x10 meV).
Memory requirements and CPU times are compared for
The total CPU time is reduced by a factor 1.9, and totatn® two SAWP calculations in Table IV. As can be seen,

memory usage by a factor 1.8. We expect even larger gain%mpl_oying the increased sparseness of the p_otential coupling
in efficiency for cases in which more rotational states ardnatrix at long range leads to a large reduction of the CPU
necessary to describe the scattering, like the scattering of NiT€ Spent on performing the potential energy operaftmn
from LiF.185%We also expect that our adaption of the ccwp@ factor of §. Because most of the total CPU time in the
method will make it competitive with the FBWP method of SAWP method is spent in performing the potential energy
Lemoine and Coré{>® mentioned in Sec. I. We hope to operation, the total cost of the calculation is also greatly
carry out a comparison of the efficiency of the CCWP and'@duced(by a factor of 4.75 However, the less expensive

FBWP methods for the present model system and fof@lculation now requires more memory. The increase in
N,+LiF in the near future. memory is mostly due to reserving space for an array which

keeps track of which coupling matrix elements are important
in the part of the potential matrix multiplication which is
B. SAWP results vectorized over states and performed at short range only.

In performing SAWP Ca'cu'ationS, we first checked In the SAWPE Calculation, the multiplication with the
whether it is best to use a square diffraction basis in théliagonal potential matrix elements was vectorized QueDf
calculations[such that, in the wave function expansion of the off-diagonal nonzero matrix elements, roughly 10% are
Eq. (14), [m| <| n| < n"_., wheren"_, is the maximum important for 15 or more grid points iz (in the range 3.5—
value ofm andn in the basis sétor a diamond shaped basis 7-0 bohr and beyondand, for these matrix elements, the
set (such that/m|+|n|<0,,, where O, is the maximum Multiplication was vectorized ovet, the associated compu-
diffraction order in the basis et was found that the use of tational cost being roughly 38% of the total time required for
a diamond shaped diffraction basis set was cheaper. For cof1€ potential energy operation. The multiplication with off-
verged resdults, it is necessary to use eit@er=8 (diamond  diagonal matrix elements which are o_nl_y important in the
shaped basjsor n!". = 6 (square bas)s Using j,=6 in  fange 3.5-6.75 bohr was done vectorising over states. The
the rotational basis, the rotation-diffraction basis set therSe Of the mixed vectorising scheme is essential for obtain-
contains 534 functions when using the diamond shaped basi8d the large reduction in CPU time for performing the po-
and 618 functions in case the square basis is used. tential energy operation: A reduction factor of only 1.8 would

For the potential expansion the opposite was found to b&ave been achieved if all multiplications would have been
true. Converged results are obtained in case diffraction termRerformed vectorising oveZ, which is to be contrasted to
are retained in the potential expansion such thaf the factor of 6 achieved using the mixed scheme.
<| n| = nP, = 2. In contrast, a diamond shaped basis for
the potential expansion functions requirea + |n|<0,=4.
Using j max="56 in the potential expansion, the number of sym-
metry adapted rotation-diffraction functions is 98 in case the  To compare the performance of the CCWP and SAWP
square basis is used, and 158 in case the diamond shapexthods in terms of CPU time usage and memory require-
basis was used. ments, we again refer to Table IV. In terms of CPU time, the

In Table Ill, we compare the results of two different CCWP method is slightly more efficient than the SAWP
SAWP calculations with the results of the reference calculamethod if the sparseness of the potential coupling matrix at

C. Comparison of the methods
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longer range is not used, though it requires much moreCCWP method. According to the scaling relations and taking
memory. On the other hand the SAWP method is faster thamto account the effect of the increased spectral range, the
the CCWP method by a factor of 2 if the increased sparsepotential energy operation would be expected to become
ness at longer range is used, while requiring roughly themore expensive by a factor no larger than 2.8 in changing to
same amount of memory for this case. the SAWP method. Because the average number of diffrac-
In previous worke® we compared the efficiency of the tion states a given diffraction state will couple to is less than
CCWP and SAWP methods for the,HLiF(001) model the upperbound\lggup, the scaling of the potential energy
problem using the Wolken potenti& In those calculations, operation is not as severe, and the potential energy operation
we found the SAWP method to be faster by a factor of 9.in the SAWP method is only more expensive by a factor 1.9
Given that result, the performance of the SAWP method foiin the calculations not employing sparseness at longer range.
the present model potential is somewhat disappointingBecause the potential energy operations dominate the com-
Whether the SAWP method will be more efficient than theputational cost61%) also in the CCWP method if sparseness
CCWP method and by how much in the end depends on at longer range is not used, the SAWP method is more ex-
trade-off: For any particular problem, the SAWP method will pensive in this caséy a factor 1.2, though requiring much
be more efficient if gains made by performing the kineticless central memortby a factor 3.4.
energy operation are not offset by losses incurred in perform-  If the increased sparseness of the coupling matrix at
ing the potential energy operation less efficiently. longer range is used, the potential energy operations no
The absolute increase in computational cost of the polonger dominate the total computational cost of the CCWP
tential energy operatiofiin going from CCWP to SAWP method(only 26%, see Table IV As a result, it now be-
depends oni) the extent to which the cost associated with comes favorable to change to a method in which the evalu-
the potential energy operation dominates the total computaation of the potential energy operation is more expensive, but
tional cost in the CCWP method affiil) the extent to which the kinetic energy operation is less expensive, the SAWP
this cost is further increased by switching from the CCWPmethod now being cheaper by a factor 2. If the sparseness at
method to the SAWP method. The relative cost of the potenlonger range is used, the potential energy operations are
tial energy operation depends on the size of the rotationahore expensive by only a factor 1.4 in the SAWP method,
basis setN,,) and the average number of rotational states a&ompared to a factor 1.9 if sparseness at longer range is not
given rotational state is coupled to in the potential couplingused. This is probably a result of the potential expansion
matrix (Ng%tup). The factor by which the cost of the potential coefficients [Eq. (13)] decreasing fast with increasing
energy operation increases is determined by the averageolecule—surface distance for expansion functions which are
number of diffraction states a given diffractional state isof high diffraction order.
coupled to in the SAWP method\l‘c’gup). Reasons that the In the CCWP calculations that we present, symmetry
SAWP method is more expensive than the CCWP method fowas not used. However, it should be possible to implement
the present model problefif no use is made of increased the use of symmetry also in the CCWP method, by only
sparseness of the potential coupling matrix at longer rangeexpanding the wave function on symmetry needed points in
while the reverse was trliéfor the Wolken potentidf are  x andy.>"*° For the present examplen;=0 initially, the
(i) for the present¢ dependentmodel potential, the relative total wave function had; symmetry it is only necessary to
cost of the potential energy operation in the CCWP methodise points with 8&x<a/2 and Osy=x, resulting in 28
is much larger(61%) than for the Wolken potential9%o), symmetry needed points rather than 144 as usedAénea
because a larger rotational basis set is requikggl=28 in-  method which we will call the “SNWP” methodSNWP for
stead of  and because the larger potential expansion osymmetry needed close-coupling wave packet mettiod
average couples more rotational states with one anothgotential energy operation would be performed only on the
(N{:%tup=24.5 instead of 2)6and (ii) in going to the SAWP symmetry needed points, and likewise for the FFT’s al@ng
method, the cost of the potential energy operation increasagquired for performing the kinetic energy operation, result-
by a larger factor because the larger potential expansion oing in savings by a factor of 144/2%.1). One way to per-
average couples more diffractional states with one anothdborm the transformations to momentum space alrandY
(upperbounds arhlggup=25 for the model potential, instead is to first expand the wave function on the fully grid (144
of 5 for the Wolken potenti&f). points and then perform FFT’s along andy.>® Using this
An additional reason for the decreased efficiency of theprocedure, there would still be a saving in performing the
SAWP method for the model potential used in the presentransformations along andy relative to the cost involved in
work was discussed in Secs. Il D and Il E. The inclusion ofthe CCWP methodby a factor 1.7 for the present example
the electrostatic interaction in the model potential leads to &ecause the FFT's along need only be performed for
larger spectral range, the problem being most severe for the<y=<a/2 and vice versa for the FFT’s aloyg*® The entire
SAWP method. As can be seen from Table II, as a resulscheme discussed here is completely analogous to the
fewer Hamiltonian operationgby a factor of 1.7 are re- scheme already used successfully by Lemoine in FBWP cal-
quired in the CCWP calculations. In the previous calcula-culations on N+LiF using a model potentiaf’
tions on the Wolken potential, roughly the same number of  Estimates of the computational costs of the SNWP
Hamiltonian operations was required in both methods. method are compared with the costs of the CCWP and
The net result is that the potential energy operation beSAWP methods for the case that the increased sparseness of
comes more expensive in the SAWP method than in théhe potential coupling matrix at longer range is used in Table
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TABLE V. CPU times(in CPU 9§ and central memory requirementis surface using the hybrid representation, and much easier to
Mw) are given for four different calculations. The first two calculations are do so in the FBWP method, in which the potential energy
the CCWRC) and SAWRE) calculations of Table IV. Under “SNWP,” we operation is performed in coordinate space.

ive the estimated cost of a CCWP calculation that Id | t . .
give the estimated cost ol a caieutation matwould employ SYmmely e estimated cost of a mixe@NWP at short range,
by only propagating symmetry-needed diffraction states. Under “mixed,

we give the estimated cost of a calculation using a mixed apprieehalso ~ SAWP at long rangescheme is also given in Table V, and
the tex). The (estimated costs are for a Cray Y-MP C98. compared to that of the SAWP onfsictual costsand SNWP

only (estimated cosjsschemes. In the mixed scheme, the
momentum representation is used as the primary representa-

CCWRC) SAWRE) SNWP Mixed

CPU times tion for thex, y, 6, and ¢ degrees of freedom. The potential
Chebyshev algorithm 43.0 8.9 8.3 5.3 energy operation is performed by matrix multiplications for
K, FFts alongZ 101.8 22.6 199 133 7=7a, (SAWP) and by performing transforms alongand
K, FFt's alongX andY 101.8 0 59.2 15.3 d I . ltivlicati [ | af
K. multiplications 6.8 54 14 14 Yyan (smalley matrix multiplications at smaller values
v 101.9 146.4 108 478 (SNWPB. The time-step used is that used in the SNWP or
Rest 42.4 13.7 200 12.0 CCWP scheme. As can be seen from Table V, the mixed
Total _ 396.1 194.0 128.6  95.1 scheme is expected to be cheaper. However, the same caveat
Memory requirements applies as that given before in discussing the SNWP esti-
V, arrays 0.06 4.69 0.06 0.1 . . -

. mates: It is not clear beforehand whether optimal vector
V, matrix elements 21 11 0.41 0.6 . ) .
Storage arrays wave function a4 0.46 0.9 0.6 lengths can be achieved in the mixed scheme and., therefore,
Total 8.0 8.1 1.4 1.3  what the actual performance of such a scheme will be on a

machine like the one presently us@Cray Y-MP C98.
As mentioned in Sec. |, the use of symmetry is relevant
to performing high dimensionality calculations on reactive

V. The estimated costs of the operations in the SNWF§catt(_aring of mole_cules at surfaces. Many dissociative chemi-
method have been obtained by dividing the costs of the o gorption problemsin particular, Fhe H+Cu .benchmark Sys-
erations of the CCWP method by a factor 5.14, except forthéem) opey pormal energy s_cahng, meaning that to a good
cost of transforming along andy (a factor 1.7 and the apprc_)xmatlon the dissociation probability qnly depends on
overhead(simply a rough estimate, there should be addi-the quetlc energy normal tq the surface. This means t_hat the
tional costs for expanding the wave function on the full grideIt'd'menS'onal DFT(dgnsﬂy functional theor?ypotentlal

in X andy prior to transforming along andy). As can be energy surfaces now being developed fgrtbw index cop-

—82 . L .
seen from the table, the estimated cost of the SNWP methodt" surfaceS~* can in principle be t.ESt.Ed by perfor_mlng
is actually less than that of the SAWP method. Similarly, theVave packet calculations for normal incidence only, ideally

SNWP method would require less memory. Obviously, thiSmodeling all molecular degrees of freedom. Compared to the

then calls into question the usefulness of the SAWP metho !ve-dimensiona(SD) inelastic scattering problem _discussed
However, a number of considerations show that the SAW ere, one more degree of fre(_adc(m the_ HTH d|§tanc)e
would need to be added, resulting in a six-dimensig68I)

method may in fact still be quite useful.
problem.

For one thing, it is not clear whether the savings pre- A licat hat should in 6D calculati ;
dicted for the SNWP method would actually be achieved in comp |cat_|0n that should oceur in calcu auon; 'S
hat many rotational states should have to be included in the

calculations on machines with vector processing capabilities. =, .
For instance, the vector length that would be achieved i asis set, because the rotational constant of the molecule

performing the potential energy operation using the Schemgecreases as It d|sso_<:|ates. As a result, the calculations
discussed in Sec. Il B would be less optini28) than in the should be quite expensive and require much central memory,

CCWP method144, the optimal vector length on the Cray is and 6D wave packet calculations on dissociative chemisorp-
64 or “a lot more”). We still have to establish how well the tion haye not yet been_reported. Employing symmetry in
SNWP method would work in practice for the model prob- calculations on normal incidence would reduce both CPU

lem presently under consideration, which we hope to do iffme and central memory re_quwements. In this context, we
the near future. expect the SAWP method discussed here to be useful, pro-

Second, it may still be favorable to combine the SAWPvided it is used in a mixed scheme. Problems with imposing
method (used at long rangewith the CCWP or FBWP a maximum on the potential coupling matrix using a close
method(used at short range and employing symmetRyes- cou_pli_ng repre_sentation §h0u|d be especial_ly severe for dis-
ently, most of the CPU time spent in performing the potemialsomanve_r(lalacjuve sczeaé[tt_armg folrl son;e (_:orrbmatlorr:Z ahd
energy operation in the SAWP method goes to performing{)’ especially in case- 1S smail andr IS large where, in
this operation at short rang82%, forZ< 7ay). It may there- erpen_d|cular or|entat|on§, the _m_olecule will pqmt one of its
fore well be favorable to use a scheme in which a symmetr;?‘tomS Into t.he surface. Itis antlmlpated that using the FBWP
adapted full close-coupling representation is used at |arggepresenttatlon for such c_o_mbmauonsZ)_andr should help
molecule—surface distances and a hybi@CWP or full much to increase the efficiency of a mixed scheme.

FBR (FBWP) representation is used for the y, 6, and ¢

coordinates close to the surface. Using such a scheme, Iarglé/r CONCLUSIONS
time steps can be taken than in the SAWP only scheme, We have used the HLiF(001) system to test the per-
because it is easier to place an upper bounf atose to the  formance of two wave packet methods on a molecule—
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surface system of fairly high corrugation. A new, rangg. We expect that such a scheme would be highly useful
¢-dependent model potential was used. The potential useid performing six-dimensiondbD) wave packet calculations
yields a good description of the most important aspects 0bn the benchmark problem of dissociative chemisorption of
the system under investigation, like the increased anisotropi, on low index copper surfaces, for which normal energy
and corrugation close to the surface and the anisotropy asseealing is observed. Such calculations would constitute im-
ciated with the long range interaction. The comparison exportant tests of the multidimensional potential energy sur-
tends previous work which was done usingrdndependent faces that are now being developed for theH&u system
model potential due to Wolken, which contains only a fewusing density functional theory.
anisotropic and corrugation expansion terms.
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