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Performance of close-coupled wave packet methods
for molecule-corrugated surface scattering

G. J. Kroes and J. G. Snijders
Theoretische Chemie, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands

R. C. Mowrey
Chemistry Division, Code 6179, Naval Research Laboratory, Washington, DC 20375-5342

~Received 16 March 1995; accepted 22 June 1995!

The H21LiF~001! system was used to investigate the performance of the hybrid close-coupling
wave packet~CCWP! method and of a symmetry adapted, fully close-coupled wave packet~SAWP!
method for a molecule–surface problem characterized by fairly high corrugation. In the
calculations, a realistic,f-dependent model potential was used. The calculations were performed fo
a collision energy of 0.2 eV, with H2 initially in its j50 rotational state at normal incidence to the
surface. Large increases in the computational efficiencies of both wave packet methods we
achieved by taking advantage of the potential coupling matrices associated with both metho
becoming sparser with increasing molecule–surface distance. For the present model problem a
employing this increased sparseness at longer range, the SAWP method is faster than the CC
method by a factor of 2. The potential usefulness of the SAWP method for dissociative
chemisorption problems is discussed. ©1995 American Institute of Physics.
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I. INTRODUCTION

Wave packet methods have been applied to a variety
molecule–surface scattering problems. Examples include
scattering of molecules from surfaces which conta
impurities,1–3 scattering from otherwise disordere
surfaces,2,4,5 atom–surface scattering involving phono
excitation,2,6 rotationally2,7–16 or vibrationally17 inelastic
molecule-surface scattering, and reactions on surfaces.18–33

Wave packet methods are also ideally suited for vec
and parallel computers. As a result, in recent years mu
effort has been directed11,13,32,34–63at inventing wave packet
techniques which are more efficient in terms of either co
puter time or central memory usage. The efficiency of
wave packet method depends on the number of basis fu
tions used, the spectral range of the Hamiltonian, and
manner in which the Hamiltonian operations on the wa
function are carried out.59,64 Furthermore, recent work57,63

has shown that in special cases the point-group symmetr
the crystal surface can be used to improve the efficiency o
wave packet method for molecule-surface scattering. Ol
work65 had already shown how this can be done in t
framework of the time-independent close-coupling method66

The efficiency of performing the Hamiltonian operation
depends to a large extent on the representation used for
wave function. One approach is to use a full close-coupl
or variational basis representation~VBR!67 for all degrees of
freedom except the scattering coordinate.63 A drawback of
this method in its raw form is the unfavorable scaling of th
potential energy operation with the number of basis functio
N included in the coupled-channel expansion. The scaling
asN2, the potential energy operation on the wave functi
becoming a matrix–vector product. An alternativ
approach58,59 is to use a finite basis representation~FBR!67

for all degrees of freedom. In this method, the potential e
ergy operation is made cheaper by achieving a higher fac
izability of this operation on the wave function. In particula
J. Chem. Phys. 103 (12), 22 September 1995 0021-9606/95/103(1ed¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lice
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the potential energy operation is performed by transforming
the wave function from momentum space to coordinate
space consecutively for each degree of freedom, followed by
a simple multiplication in coordinate space, after which the
wave function is transformed back to momentum space. Fi-
nally, hybrid methods exist, which use an FBR for some
degrees of freedom and a VBR for the others. An example is
the so-called close-coupling wave packet~CCWP! method,8,9

which was the first wave packet method to be applied to
molecule-corrugated surface scattering. The CCWP metho
employs an FBR for the diffractive degrees of freedom,
while using a VBR or close-coupling representation for the
molecular rotations.

In the original CCWP method, the potential energy op-
eration scales with the number of rotational statesNrot in-
cluded in the scattering basis set asNrot

2 . The scaling is with
Nrot
3/2 in the FBR method devised by Lemoine and Corey,58,59

which would therefore seem to be more efficient. Their
method has challenged us to come up with improvements to
the existing CCWP method.

An obvious way to improve the efficiency of any hybrid
or VBR wave packet method is to take advantage of the
sparseness of the potential coupling matrix. In the CCWP
method ~VBR in rotational degrees of freedom only!, the
sparseness may result from certain coupling terms being zer
over the entire range of the scattering coordinate accessibl
in the scattering. Clearly, this will be the case if a model
potential is used which contains only low order rotational
expansion terms. At larger values of the scattering coordi-
nate, the sparseness may also result from certain couplin
terms being relevant only at short range~close to the sur-
face!. This is certainly expected to be the case in molecule–
surface scattering: The only spherical harmonics required to
describe the long rangeC3 interaction of a homonuclear mol-
ecule with a surface are theY00 andY20 harmonics.

68

The purpose of the present work is twofold. First, we
51212)/5121/16/$6.00 © 1995 American Institute of Physicsnse¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions
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investigate to what extent the efficiency of the CCW
method can be improved by exploiting the sparseness of t
potential coupling matrix. In the present research, we empl
a realistic molecule–surface potential recently developed f
H2 interacting with a LiF~001! surface.

69,70At medium range
and at long range the anisotropy of the potential is most
contained in second order spherical harmonics, through t
quadrupole-ionic lattice electrostatic interaction and the di
persion interaction. Close to the surface, higher order sphe
cal harmonics in the potential expansion are also importa
due to the short range repulsive interaction between H2 and
the surface ions. In contrast to the Wolken potential fo
H21LiF~001!,66 the new potential used here also depends o
the azimuthal orientational anglef of the molecule.

Second, we investigate whether an even more efficie
method can be obtained if a close-coupling representation
also used for the diffractive degrees of freedom, for the sp
cial case of normal incidence where the point-group symm
try of the crystal surface can be used to its maximum adva
tage. This work extends the application of the previous
developed symmetry-adapted full close-coupling wav
packet~SAWP! method63 to problems in which the molecule
surface potential also depends on the anglef, with the re-
striction presently that the initial magnetic rotational quan
tum number of the incident molecule is zero. Clearly, a fu
close-coupling method will only be efficient if only a few
low-order diffraction ~plane-wave! expansion terms are
needed in the molecule–surface potential, or if higher ord
terms are important only close to the surface. The latter
known to be true for potentials constructed from pa
interactions,71,72and model potentials used in calculations o
elastic atom–surface scattering usually employ Fourier term
to order no higher than two.73–75Because the LiF~001! sur-
face is a fairly corrugated surface, the H21LiF problem rep-
resents a fairly severe test case in deciding whether a f
close-coupling method can be made more efficient than t
hybrid CCWP method, provided that a realistic model poten
tial is used.

Developing a symmetry adapted treatment for norm
incidence is relevant to the study of dissociative chemisor
tion: Many H21metal reaction systems obey ‘‘normal energ
scaling’’,76–78 meaning that to a good approximation the
measured reaction probabilities depend only on the kine
energy associated with the translational motion normal to t
surface. Of course, this dependence can then be obtain
from calculations with normal incidence of the wave packe
At present, a major challenge in molecule–surface scatteri
is to perform a fully quantal six-dimensional~6D! wave
packet calculation on the dissociative chemisorption of H2 on
a low index copper surface. Accurate reaction barriers a
available for H21Cu from experiments,79 and 6D wave
packet calculations would constitute reliable tests of the mu
tidimensional potential energy surfaces now being calculat
for H2 interacting with low index copper surfaces using den
sity functional theory.80–82 The 6D reactive problem is the
5D inelastic problem augmented with the bond distance as
extra degree of freedom, and the symmetry adapted tre
ment we present here for H21LiF~001! can be readily ex-
tended to dissociative chemisorption of H2 on Cu~100!.
J. Chem. Phys., Vol. 103, Noded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lice
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The present paper is organized as follows. Section
presents the CCWP method and the SAWP method for n
mal incidence on a surface consisting of a square lattice.
both methods, we discuss how the sparseness of the pote
coupling matrix maximum can be used to its maximum a
vantage on a vector computer. In Sec. III we show the im
provement that can be obtained in both methods by empl
ing sparseness, and compare the efficiencies of the impro
CCWP method and the SAWP method. Section IV gives o
conclusions.

II. THEORY

In a previous paper,63 the CCWP and SAWP methods
were outlined and presented in considerable detail. In
present paper we will be more brief, except that now deta
are given concerning the methods used to employ the spa
ness of the potential coupling matrix. Also, we describe ho
the transformation to a symmetry-adapted basis set fo
homonuclear diatomic molecule scattering off a square l
tice ~including thef degree of freedom! can be effected. The
general features of the wave packet methods used are
scribed in Sec. II A. Details particular to the CCWP metho
are given in Sec. II B. A description of the SAWP metho
~including the transformation to the symmetry adapted ba
set! is given in Sec. II C. The spectral range associated w
both methods is discussed in Sec. II D. The essential featu
of thef-dependent model potential used in the present c
culations are briefly discussed in Sec. II E. Section II F giv
some numerical details concerning the calculations presen
and discussed in Sec. III.

A. Outline of wave packet methods

The Hamiltonian for a rigid rotor, diatomic molecule
scattering off a static corrugated surface can be written

Ĥ52
1

2M
¹R
21H rot1V~X,Y,Z,u,f!, ~1!

where we used atomic units. In Eq.~1!, M is the mass of the
diatomic molecule,R5(X,Y,Z) describes the position of the
molecule,H rot is the molecular rotational Hamiltonian, andV
is the molecule–surface interaction potential which depen
on R and also on the molecular orientation anglesu andf
~see Sec. II E!. TheX andY axes are parallel to the surface
and lie along the direction of the lattice vectors~here we
consider the case of a square surface unit cell!, andZ is taken
to be positive above the surface. The anglesu andf are the
polar and azimuthal angles defining the orientation of t
molecular axis with respect toZ andX.

The solution to the time-dependent Schro¨dinger equation
can be written as

C~R,u,f,t !5exp@2 iĤ ~ t2t0!#C~R,u,f,t0!, ~2!

whereC~R,u,f,t0! represents the initial state of the system
Equation~2! is an initial value problem, and to solve it we
first define the initial wave function

C~R,u,f,t0!5b~Z!A1/~LxLy! exp@ iK0r#Yj 0mj 0
~u,f!

~3!
. 12, 22 September 1995nse¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions
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as a Gaussian wave packet inZ

b~Z!5@2pj2#21/4 exp@2~Z2Z0!
2/4j21 ikZ0Z0#, ~4!

times the product of a normalized plane wave function f
the initial parallel translational motion and a spherical ha
monic describing the initial molecular rotation. In Eq.~3!,
Lx5Ly ~5a, we will be dealing with a square lattice! are the
magnitudes of the lattice vectors alongX andY, r5(X,Y),
andK0 is the vector of initial parallel momenta (kX0,kY0). In
Eq. ~4!, j is the width of the wave packet which is centere
onZ0 and travels in the negativeZ direction with an average
translational momentumkZ0.

In a wave packet calculation, the grid in the scatteri
coordinate can be made smaller if a separate grid which
tends to larger values ofZ is used to bring in the initial wave
function.38 In the separate grid, the same grid spacing
used, but the number of points used (NZsp

) is larger. The
separate grid is used to hold the diffractionally and rotatio
ally elastic channel until this channel can be accommoda
on the range of the ‘‘regular’’ grid where the molecule
surface potential is significant and the absorbing poten
~see below! is zero. Accommodation on the full grid is
judged to be possible if the norm of the wave function th
cannot be contained on this range of the regular grid is l
than a tolerance parameter tolsp. At the beginning two grids
are used, but after the wave function is transferred to
regular grid propagation continues using one grid only. T
separate grid method is used in both the CCWP method
the SAWP method, and was discussed in detail in Ref. 6

Several different numerical algorithms are available
perform the time propagation of the wave function.64 In the
present work, we use the Chebyshev propagation metho83

It involves the repeated evaluation of the action of t
Hamiltonian on the wave function. The number of times th
the action of the Hamiltonian on the wave function must
evaluated is related to the time step and the spectral ra
W, of the Hamiltonian,64 defined as

W5lmax2lmin , ~5!

wherelmax andlmin are the maximum and minimum eigen
values associated with the wave function. The computatio
cost of the wave packet propagation therefore depends
sitively on the spectral range associated with the wave pac
method,59,64 and the spectral range associated with t
CCWP and SAWP methods is considered in some detai
Sec. II D.

The calculation ofS-matrix elements involves the pro
jection of the wave function on asymptotic diffraction
rotation eigenstates. We use a recent method devised
Balint-Kurti et al.,41,45,84in which the wave function is ana-
lyzed at a fixed value of the scattering coordinate~Z`!, simi-
lar to what is done in the time-independent close-coupli
~CC! method.66 The wave function is projected on rotation
diffraction eigenstates at regular time intervals, obtaini
time-dependent coefficients
J. Chem. Phys., Vol. 103, Naded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lice
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Cj 8mj8nm
~Z` ,t !5A1/~LxLy!E

r
E

V
C~Z` ,r,u,f,t !

3exp@2 i ~K01Gnm!r#

3Yj 8mj8
* ~u,f!dr dV. ~6!

In Eq. ~6!, n andm are the diffraction quantum numbers
associated with the final translational state of the molecu
andGnm is the reciprocal lattice vector

Gnm5S 2pn

Lx
,
2pm

Ly
D . ~7!

Furthermore,j 8 andmj8 are the rotational quantum number
associated with the molecule’s final rotational state. T
S-matrix elementsSj 8mj8nm j0mj 0

(E) for a (j 0mj 0
→ j 8mj8nm)

transition are calculated from theCj 8mj8nm
(Z` ,t) using time

to energy Fourier transforms.41,45,84 The probabilities
P( j 0mj 0

→ j 8mj8nm) are obtained from

P~ j 0mj 0
→ j 8mj8nm!5uSj 8mj8nm j0mj 0

~E!u2. ~8!

A nice feature of the asymptotic analysis method di
cussed above and also shared by some other methods60,61 is
that the scattered wave function is not needed beyond
analysis value of the scattering coordinateZ` . Therefore, the
grid in the scattering coordinate needs to contain only t
range over which the potential acts plus a small interv
which lies beyondZ` and is used for absorbing the scattere
wave packet. For this purpose, we add an optical potentia
the quadratic form62

VI~Z!52 iA2@
3
2 Z̄

2#, ~9a!

Z̄5~Z2ZI
min!/L, ~9b!

to the Hamiltonian of Eq.~1!, the optical potential being
defined over the range@ZI

min ,ZI
min 1 L#.

B. The close-coupling wave packet (CCWP) method

The CCWP method7–9,14 is a hybrid wave packet
method, meaning that a close-coupling representation is u
for some, but not all, of the degrees of freedom other th
the scattering coordinate. Using a close-coupling represen
tion for the rotational degrees of freedom, but a DVR repr
sentation for the translational degrees of freedom, the wa
function is written

C~ t !5(
jmj

x
jmj

j 0mj 0~R,t !Yjmj
~u,f!. ~10!

In Eq. ~10!, the functionsx
jmj

j 0mj 0(R,t) represent the center-of-

mass translational motion for the rotational states included
the expansion of the wave function. AlongZ, Y, andX, Nz ,
Ny , and Nx regularly spaced grid points are used. For
square lattice, a square grid of points inX and Y is used
(Ny5Nx). In the rotational expansion,Nrot rotational states
o. 12, 22 September 1995nse¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions
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are included,j ranging from 0 to jmax, and the magnetic
rotational quantum numbermj ranging from2j to 1j for
eachj .

Using the expansion of Eq.~10!, the action of the kinetic
energy operator associated with the translational motion
the molecule is evaluated efficiently85,86by transforming the
translational functions to momentum space using conse

tive FFT’s ~alongZ, Y, andX! of thex
jmj

j 0mj 0(R,t). The asso-

ciated computational cost scales asNzNxyNrot3
~logNz1logNy1logNx!, whereNxy is the product ofNy

and Nx . The actual kinetic energy operation is perform
together with the rotational energy operation in the combin
momentum/angular momentum space by multiplying
value of the wave function at each grid point by the sum
the kinetic and rotational energies, which scales
NzNxyNrot . This if followed by an inverse 3D Fourier trans
form back to coordinate space.

The potential energy operation is performed by prem

tiplying the vectorx
jmj

j 0mj 0(R,t) with a potential coupling ma-

trix on each point (Z,Y,X). The elements of the matrix are

Vj 8mj8 jmj
~R!5E Yj 8mj8

* ~u,f!V~R,u,f!Yjmj
~u,f!dV.

~11!

If no attention is paid to the possible sparseness of the
trix, the potential energy operation scales asNzNxyNrot

2 . If,
on the other hand, the potential coupling matrix is spa
because many coupling terms are zero over the entire ra
of the scattering coordinate, the scaling is given
NzNxyNrotNcoup

rot , whereNcoup
rot is the average number of rota

tional states the potential couples to a given rotational st
This will be useful if, to describe the dependence of t
molecule–surface potential on the molecular orientation,
potential is expanded in spherical harmonicsYj 9mj 9

and only
low order ~relative to the maximum value ofj in the rota-
tional basis set! expansion functions are used. In such a ca
the matrix elementsVj 8mj8 jmj

(R) with widely differing j 8 and

j and/or widely differingmj8 andmj will be zero because the
integrals^ j 8mj8u j 9mj9u jmj& are zero for allj 9 andmj9 con-
tained in the potential expansion. This was true in the pre
ous investigation63 but not in the present work. Here, we wi
mostly consider whether advantage can be taken of the
tential coupling matrix being sparser at larger values of
scattering coordinate, due to certain coupling matrix e
ments being important only at short range~close to the sur-
face!.

The method we developed to reduce both the CPU t
and storage requirements associated with the potential
ergy operation basically involves not using coupling mat
elements in the multiplication once their absolute values
come less than some threshold valueVt at larger values of
the scattering coordinate. The method used is very sim
For each coupling matrix element@Eq. ~11!# and each grid
value ofX andY, the size of a particular matrix element
scanned as a function ofZ, moving from the largest value o
the scattering coordinate on the grid inwards. An array
used to keep track of the value ofZ at which the matrix
element exceeds the threshold value for at least one
J. Chem. Phys., Vol. 103, Nded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lice
of

cu-

d
ed
e
of
as
-

l-

a-

se
nge
y
-
te.
e
he

e,

vi-

po-
he
e-

e
en-
ix
e-

le:

is

rid

point (X,Y), say atZp . In the propagation, the multiplication
with the potential coupling matrix element is then only pe
formed for grid values ofZ<Zp . Using the same maximum
valueZp for all grid points (X,Y) allows efficient vectoriza-
tion overX andY simultaneously, which is quite important if
the calculations are performed on a vector processing co
puter like the one used in the present work~a Cray C98!. In
such a case, gains made by achieving smaller vector leng
may be rather insignificant in case the number of vecto
remains the same.

If the sparseness of the potential at intermediate and lo
range is taken into account in the manner described abo
the scaling of the potential energy operation with the numb
of rotational states will be no longer clear~it will depend on
the range of the coupling terms!. In Sec. III, we will give
results concerning the resulting improvement in efficien
for the model problem under investigation in the prese
work.

In addition to the action of the Hamiltonian on the wav
function, the propagation of the wave function in time als
involves operations which are intrinsic to the propagatio
algorithm used. The Chebyshev algorithm involves additio
and multiplications with phase factors which all scale a
NzNxyNrot .

The calculation of the initial wave function@Eqs.~3! and
~4!# can be performed trivially by calculating
b(Z)3exp@iK0r# on the grid inX, Y, andZ. Arbitrary angles
of incidence can be handled by extending the FFT sche
using the shifting theorem of Fourier analysis, as describ
in Ref. 54. The extra~shifting! operations required scale a
NzNxyNrot . In the calculation of theS-matrix elements, the
projection of the wave function on the rotation-diffractio
eigenstates is done using consecutive FFT’s

x
jmj

j 0mj 0(Z` ,Y,X,t) along Y and X for all rotational states

present in the basis set@see Eq.~6!#.
The amount of central memory required when using t

Chebyshev algorithm to propagate the wave function is fo
storage arrays,87 where the memory taken up by one storag
array is the amount of memory required to hold the full wav
function. In the CCWPmethod, the memory required to sto
the wave function is 23NzNxyNrot ~the factor 2 is from the
wave function being complex!. If the potential coupling ma-
trix is full and no use is made of coupling matrix elemen
being of short range, the amount of memory required to sto
the matrix on the grid isNzNxyNrot~Nrot11! ~the coupling
matrix being complex-Hermitian, and storing only the upp
triangle!. If use is made of certain coupling matrix elemen
being important only at short range, the amount of cent
memory required to hold the coupling matrix will depend o
just how sparse the coupling matrix is at longer range. T
improvements we achieved in the present case are discus
in Sec. III.

C. The symmetry adapted rotationally and
diffractionally close-coupled wave packet (SAWP)
method

It is also possible to use a full close-coupling represe
tation for all the degrees of freedom other than the scatter
coordinate
o. 12, 22 September 1995nse¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions
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C~ t !5 (
jmjnm

f
jmjnm

j 0mj 0 ~Z,t !fnm jmj
~X,Y,u,f!, ~12a!

where

fnm jmj
~X,Y,u,f!5A1/A exp@ i ~K01Gnm!r#

3Yjmj
~u,f!. ~12b!

In Eq. ~12b!, A is the surface area of the surface unit cell. W
have called the resulting method the rotationally and diffra
tionally close-coupled wave packet~RDWP! method.63

An advantage of using a close-coupling representati
also for the diffractional degrees of freedom is that the k
netic energy operation can be done more efficiently. Becau
the wave function is expanded in translational eigenfunctio
for theX andY degrees of freedom, Fast Fourier transform
~FFt’s! need to be carried out forZ only. However, this ad-
vantage will often be more than offset by the increased c
of the potential energy operation.

The potential energy operation is expected to be mo
expensive in the RDWP method because, for a full potent
coupling matrix, the potential energy operation will now
scale withNzNdif

2 Nrot
2 , which is much more unfavorable than

the CCWP scaling~NzNxyNrot
2 , Nxy will be approximately

equal toNdif , which is the number of diffraction states in
cluded in the basis set!. The problem may be somewhat al
leviated if, in the potential expansion, only diffraction expan
sion functions of low order are required, and only rotation
expansion functions with lowj are required. In this case the
scaling may be given asNzNcoup

dif NdifNcoup
rot Nrot , whereNcoup

dif is
the average number of diffraction states a given diffractio
state will be coupled to by the potential, andNcoup

rot has pre-
viously been defined in Sec. II B. Upper bounds toNcoup

dif are
5 and 13 for a diffraction orderOp of 1 and 2 in the potential
expansion respectively (Op5unu1umu), and Ncoup

dif 59 and
25 for nmax

p is 1 and 2, respectively, whereumu <u nu
< nmax

p . However, apart from exceptional cases63 the RDWP
method is not expected to be more efficient than the CCW
method, the potential energy operation being more expens
by a factorNdif/NxyNcoup

dif .
A different situation may arise in case the symmetry

the lattice is used. For the case of a diatomic molecule int
acting with a rigid lattice surface of a given point grou
symmetry, the molecule-surface potential may be expand
in symmetry adapted functions. If the diatomic is homo
nuclear, these functions should be symmetric with respec
exchanging the atoms of the molecule and transform acco
ing to the totally symmetric representation of the point grou
associated with the crystal face~theA1 representation of the
C4v group for the case of the square lattice that we consid!

V~Z,r,u,f!5 (
Gr jmjGdnm

cA1Gr jmjGdnm
~Z!

3vA1Gr jmjGdnm
~r,u,f!. ~13!

In Eq. ~13!, due to the inversion symmetry of the moleculej
takes on even values only. In the symmetry adapted clo
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coupling wave packet~SAWP! method, we then expand the
wave function in symmetry adapted rotation-diffraction func-
tions as

C~ t !5 (
GaGr jmjFdnm

f
GaGr jmjGdnm

j 0mj 0 ~Z,t !

3gGaGr jmjGdnm
~r,u,f!exp@ iK0r#. ~14!

As can be seen from Eq.~14!, a grid representation is
used inZ, usingNZ equally spaced points. In Eqs.~13! and
~14!,mj takes on only positive values. The symbolG denotes
the irreducible representationG of a symmetrized rotation-
diffraction function anda its subspecies,Gr the irreducible
representation of the symmetry adapted rotational function~s!
andGd the irreducible representation of the symmetrized dif
fraction function~s!, which are combined to obtain a rotation-
diffraction function belonging to the subspeciesa of the ir-
reducible representationG. As will be explained in some
detail below, the indexes making up the subscripts define th
symmetry-adapted rotation-diffraction functions of Eqs.~13!
and ~14! in an unambiguous manner.

We will now first consider the construction of a basis se
of symmetrized rotation-diffraction eigenstates. We start b
constructing symmetry-adapted diffraction functions. This is
done by operating on exp~i ~Gnmr! (n>m>0) with the
group projection operator88

Oi j
~G!5

nG
0G (

BPG
Di j

~G!~B21!B. ~15!

In Eq. ~15!, G is the irreducible representation that is pro-
jected out,0G is the order of the group~8 for C4v!, nG is the
dimension of the irreducible representationG ~2 for E and 1
for the other irreducible representations!, B is an operation
belonging to the group, andDi j

(G)(B21) is annG by nG irre-
ducible matrix representation of the inverse operation. Fo
the one-dimensional irreducible representations,Di j

(G)(B21)
is simply equal to the character@xG(B)#21 corresponding to
the operationB. For theE irreducible representation of the
C4v group, theD matrices are given in Table I.

By operating with the group projection operator on
exp@i ~Gnm!r# with n>m>0, linear combinations of degen-
erate diffraction eigenfunctions are formed, where the dif
fraction functions transform among one another under th
operations of the point group and form what we term a ‘‘dif-
fraction manifold’’ which is characterized by the values of
n>m>0. The linear combinations formed belong to differ-
ent subspacesDi

(G), each corresponding to a subspecies of th
various irreducible representations. For theC4v group, the

TABLE I. The Di j
(E) ~B21! matrices used in this work are given for the

operationB belonging to theC4v group. TheC4 operation rotates the posi-
tive x axis on to the positivey axis, andsd1 is along the linex5y.

B E C4 C4
2 C4

3 sxz syz sd1 sd2

D11
(E)(B21) 1 0 21 0 1 21 0 0

D12
(E)(B21) 0 1 0 21 0 0 1 21

D21
(E)(B21) 0 21 0 1 0 0 1 21

D22
(E)(B21) 1 0 21 0 21 1 0 0
o. 12, 22 September 1995nse¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions
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Downloa
symmetries areA1, A2, B1, B2, E
1, andE2, where we use

superscripts to distinguish the two subspecies ofE symme-
try. Furthermore, for one and the same value of the indexj
the projection operatorsOi j

(E) ~i51,2! obtained using theD
matrices of Table I generate functions ofE1 andE2 symme-
try which are partners. This will be relevant when the sym
metry adapted diffraction functions are combined with sym
metry adapted rotational functions to form symmetry adapte
rotation-diffraction functions ofA1 symmetry.

Application of the group projection operator of Eq.~15!
yields 1A1 function for n5m50, 1A1, 1B1, 1E

1, and 1E2

function for diffraction manifolds withn.m50, 1A1, 1B2,
1E1, and 1E2 function for diffraction manifolds withn5m
.0, and 1A1, 1A2, 1B1, 1B2, 2E

1, and 2E2 functions for
diffraction manifolds withn.m.0. The derivation of ex-
pressions for the symmetry adapted functions is straightfo
ward, and we only give the expressions for theE functions
for diffraction manifolds withn.m.0

HE1nm~r!52A1/A sin knx coskmy, ~16a!

HE2nm~r!52A1/A sin kny coskmx, ~16b!

HE1mn~r!52A1/A sin kmx coskny, ~16c!

HE2mn~r!52A1/A sin kmy cosknx. ~16d!

In Eq. ~16!, kn5n32p/a. Furthermore, Eqs.~16a! and
~16b! define partners, and similarly so for Eqs.~16c! and
~16d!.

Symmetry adapted rotation functions can be construct
by operating with the group projection operator@Eq. ~15!# on
the spherical harmonicsYjmj

(u,f), where spherical harmon-
ics characterized by the samej value and the same absolute
value ofmj are said to form a ‘‘rotational manifold.’’ For the
C4v group, application of the group projection operato
yields 1A1 function for mj50, 1E1, and 1E2 function for
umj u51,3,5,7••• , 1B1 and 1B2 function for umj u52,6,10••• ,
and 1A1 and 1A2 function for umj u54,8,12••• . For instance,
we have

RA1 j umj u~u,f!5A1

2
$1Yj umj u~u,f!1Yj2umj u~u,f!%,

~17a!

RA2 j umj u~u,f!5
1

i
A1

2
$Yj umj u~u,f!2Yj2umj u~u,f!%,

umj u54,8,12••• . ~17b!

A symmetry adapted basis set containing rotation
diffraction basis functions of the totally symmetric represen
tation can now be obtained by combining diffraction func
tions belonging to the same diffraction manifold and rotatio
functions belonging to the same rotational manifold obser
ing the direct product rules which are appropriate for th
point group under consideration. For theC4v group, the only
nontrivial relation for functions which are totally symmetric
involvesE functions and can be written89
J. Chem. Phys., Vol. 103, Noded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lice
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A1~r,u,f!5A1

2
$E1~r! ^E1~u,f!

1E2~r! ^E2~u,f!%. ~18!

In Eq. ~18!, the functionsE1~r! andE2~r! are partners, and
the same is true forE1~u,f! andE2~u,f!. For instance, the
two A1 basis functions that can be obtained from the~n52,
m51! diffraction manifold and aumj u51 rotational manifold
are given by

gA1E j1E21~r,u,f!5A1

2
$HE121~r!RE1 j1~u,f!

1HE221~r!RE2 j1~u,f!%, ~19a!

gA1E j1E12~r,u,f!5A1

2
$HE112~r!RE1 j1~u,f!

1HE212~r!RE2 j1~u,f!%. ~19b!

Equations~19a! and ~19b! illustrate the meaning of the
subscripts of the symmetry adapted functionsv andg in Eqs.
~13! and ~14! respectively, and show how the indices in th
subscripts define these functions unambiguously for theC4v
group. The first index denotes the symmetry of the rotatio
diffraction function, the second index the irreducible repre
sentation to which the rotational functions contained in th
rotation-diffraction function belong, the third index is the
rotational quantum numberj and the fourth index is the ab-
solute value of the magnetic rotational quantum numb
umj u, meaning that rotational functions withmj51umj u and
mj52umj u are mixed in. The fifth indexGd denotes the ir-
reducible representation to which the diffraction function
contained in the rotation-diffraction function belong, and th
sixth and seventh indices aren andm, respectively, which
define the diffractional manifold to which the diffraction
function belongs. The symmetry adapted rotation-diffractio
functionsgA1Gr jmjGdnm

(r,u,f) andvA1Gr jmjGdnm
(r,u,f) are

defined without ambiguity through the direct product rule
@like Eq. ~18!# and the procedure~outlined above! by which
symmetry adapted diffraction functions and symmetr
adapted rotation functions are obtained. Note in particul
how our notation distinguishes between
gA1Gr jmjEnm

(r,u,f) and gA1Gr jmjEmn(r,u,f), wheren.m

in both cases@see Eqs.~16a!–~16d!#.
Now that we have outlined how a symmetry-adapted b

sis can be constructed, we will consider the potential ener
operation in the SAWP method. In the SAWP method, th
evaluation of the potential energy operation involves premu

tiplying the vectorf
GaGr jmjGdnm

j 0mj 0 (Z,t) with the potential cou-

pling matrix at each grid point inZ. The elements of this
matrix are

VG8a8G
r8 j 8mj8G

d8n8m8GaGr jmjGdnm
~Z!

5E gG8a8G
r8mj8G

d8n8m8~r,u,f!V~R,u,f!

3gGaGr jmjGdnm
~r,u,f!dr dV

G85G and a85a, ~20a!
. 12, 22 September 1995nse¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions
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VG8a8G
r8 j 8mj8G

d8n8m8GaGr jmjGdnm
~Z!50 otherwise. ~20b!

Expanding the wave function as in Eq.~14! thus has the
advantage that the potential coupling matrix becomes blo
diagonal, making the potential energy operation less exp
sive. Apart from the term exp@iK0r#, the initial rotation-
diffraction function will contain only one irreducible repre
sentation ~for umj u50 or odd! or two irreducible
representations~for umj u.0 and even, from now on we con-
sider the case of a homonuclear diatomic interacting with
square lattice!. However, for an arbitrary angle of incidence
this will not help one to reduce the number of rotation
diffraction functions required in the basis set: The presen
of the term exp@iK0r# leads to off-diagonal couplings in the
kinetic energy operation. While the kinetic energy matrix
no longer diagonal in this case, it is still highly blocked
because the couplings are only between between symm
adapted states belonging to the same diffraction manifold

However, it is possible to reduce the number of rotatio
diffraction basis functions in the case of normal incidence65:
In such a case rotation-diffraction functions of no more tha
two irreducible representations need to be included in t
basis set. In the special case we consider~the initial value of
mj is zero! only symmetrized rotation-diffraction functions
belonging to theA1 representation need to be included. Be
cause these functions are eigenfunctions of the rotatio
diffraction part of the Hamiltonian, the SAWPmethod share
with the RDWP method the advantage that, for performin
the kinetic energy operation, FFT’s need to be carried out
the Z degree of freedom only. In the SAWP method, th
~translational1rotational! kinetic energy operation scales a
NZ log(NZ)NA1

, whereNA1
is the number of symmetrized

rotation-diffraction states included in the basis set and b
longing to theA1 irreducible representation~typically, for
C4v symmetry of the latticeNA1

5 1
8NdifNrot!. The kinetic

energy operation is thus much cheaper in the SAWP meth
than in the CCWP method both because the FFT’s alongX
and Y can be avoided and becauseNA1

is much less than
NxyNrot ~by approximately a factor 8!.

Of course, the SAWP method will be more efficient tha
the CCWP method only if the gains made by performing th
kinetic energy operation more efficiently are not offset b
losses incurred in performing the potential energy operati
less efficiently. For normal incidence,mj 0

50, and a full
potential coupling matrix, the potential energy operation w
scale asNZNA1

2 , which means that a huge saving is obtaine

at least relative to the RDWPmethod. Additional savings c
be obtained if the expansion of the potential@Eq. ~13!# can
be limited to terms that are of low order in diffraction an
rotation, such that many coupling matrix elements are ze
over the entire range of the scattering coordinate. If the p
tential energy operations in the RDWP method are more e
pensive than those in the CCWP method by a fact
Ndif/NxyNcoup

dif , this scale factor changes to approximate
1
2NA1

/N 3 Ndif /NxyNcoup
dif for the SAWP method

~N5NdifNrot , and the factor12 comes from the coupling ma-
trix being real symmetric in the SAWP method rather tha
complex Hermitian, as in the CCWP and RDWP methods
J. Chem. Phys., Vol. 103, Naded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lice
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the potential depends onf!. In Sec. III, we will discuss to
what extent it is possible to limit the expansion of the pote
tial to low order terms for the fairly corrugated model syste
under investigation, and whether the SAWP method is th
less expensive computationally than the CCWP method.

In performing the potential energy operation, extra sa
ings may also obtained if many potential matrix couplin
elements are important only at short range. The meth
adopted is principally similar to the one used in the CCW
method. For each coupling matrix element@Eq. ~20!#, the
size of the element is scanned as a function ofZ, moving
from the largest value of the scattering coordinate on the g
inwards. Let us suppose that the absolute value of the c
pling matrix elements becomes larger thanVt at Zp . For the
particular matrix element, the multiplication is then carrie
out for values ofZ smaller than or equal toZp only.

To take full advantage of the increased sparseness of
potential coupling matrix at longer range on a vector com
puter, in the SAWP method a strategy has to be adop
which is somewhat more complicated than the one used
the CCWPmethod. Vectorizing over theZ degree of freedom
for all matrix coupling elements will not be very efficient
This strategy only has the effect of decreasing the avera
vector length, while the number of vectors is not decreas
Vectorizing over the states included in the basis set is
course not efficient at long range, where a given state w
only couple to a few others.

We found that the most efficient scheme consists of
combination. For elements which are important over a lo
range of the scattering coordinate~longer than sayDZr!, the
multiplication is vectorized overZ. The multiplications
which remain to be performed at short range are done v
torizing over states, skipping zero-matrix elements and t
coupling matrix elements already handled in the part vect
ized overZ. Of course, the scheme will be optimal only fo
one particular value forDZr . The optimal range is estimated
by calculating, for each conceivable rangeDZ, the number
of vectorsNvz(DZ) which can be made overZ as well as
their average lengthl vz(DZ), and also the number of vectors
over statesNvs(DZ) as well as the associated average vect
lengthsl vs(DZ). The optimal rangeDZr is then calculated as

DZr5min~DZ!$Nvz~DZ!~ tz
s1 l vz~DZ!tz

i !

1Nvs~DZ!~ ts
s1 l vs~DZ!ts

i !, ~21!

where tz
s and ts

s are start-up CPU times for multiplications
vectorizing overZ and states respectively, andtz

i and ts
i are

incremental CPU times. The values oftz
s andts

s and oftz
i and

ts
i will depend on the computer used, and were obtained fro
test calculations in the present work.

In the SAWP method, the propagation of the wave fun
tion ~the Chebyshev algorithm! scales asNzNA1

, compared
to NzNxyNrot for the CCWP method. BecauseNA1

should be
approximately 1

8NxyNrot , the propagation algorithm should
require much less CPU time in the CCWP method.

We now turn our attention to the setting up of the initia
wave function and the asymptotic analysis. In the SAW
method, the calculation of the initial wave function@Eqs.~3!
and~4!# simply involves settingf A1 j0A100

j 00 (Z,t 5 0) equal to
o. 12, 22 September 1995nse¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions
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b(Z), while setting all other expansion coefficients to zer
The asymptotic analysis is performed by first calculati
time-dependent coefficientsCA1 jmjGdnm

(Z` ,t); these are

simply equal tof
A1Gr jmjGdnm

j 0mj 0 (Z` ,t). From these coefficients

S8-matrix elements labeled by the same indices are cal
lated. Defining the transformation

gm5(
i

f iTim , ~22a!

where m and i are collective indexes and the symmet
adapted and nonadapted functionsg and f are defined in
Eqs. ~12! and ~14!, respectively, the actualS matrix for
rotation-diffraction transitions@Eq. ~8!# can be obtained by
applying the transformation

S5TS8T†. ~22b!

The expressions forS in terms ofS8 along with the symme-
try restrictions this places onS-matrix elements and prob-
abilities can be obtained from some tedious, but otherw
straightforward algebra. Note thatT defines a direct transfor-
mation of the basis rather than a transformation of the ma
representation of the wave function.90

One advantage of the SAWP method over the CCW
method is that there is an enhanced freedom in the choic
diffraction eigenstates to expand in. The spectral diffracti
basis effectively used in the CCWP method is a square g
of Nxy points in the two-dimensional (px ,py) momentum
space. In case a close-coupling representation is used fo
diffractive degrees of freedom, it is also possible to use
diamond-shaped grid in momentum space, by including o
diffraction states up to diffraction orderMdif , where the dif-
fraction orderOw5unu1umu, in constructing the symmetry
adapted basis. The number of states required for converge
in such a diamond-shaped grid may well be less than
number required for convergence using a square grid. Thi
investigated in Sec. III.

Another advantage gained from using the full expansi
in molecular eigenstates in the SAWP method is that, if t
collision energy distribution is not too broad, the energy
the motion away from the surface will be reasonably w
defined for each scattered channel. This means that the
cedure used to absorb the scattered wave function can
optimized by making the optical potential channel depe
dent. In all cases we use a fixed value forL, the range over
which the optical potential acts, which enables us to wo
with a grid of fixed size. However, the proportionality con
stant of the optical potential@A2 for a quadratic potential, see
Eq. ~9a!# is adjusted to the translational energy with whic
the scattered channel is expected to emerge, using pr
dures described in Ref. 62, to obtain optimal absorption~see
also Sec. II F!.

In the SAWP method, the amount of memory required
store the wave function is 23 NzNA1

, which is much less
than in the CCWP method. In case the potential coupl
matrix is full, the amount of memory required to store i
upper triangle is12NzNA1

(NA1
1 1) ~as was mentioned be

fore, the potential coupling matrix is real symmetric in th
SAWP method!. The amount of memory required to hold th
J. Chem. Phys., Vol. 103, Naded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lice
o.
g

cu-

y

ise

rix

P
of
n
rid

the
a
ly

nce
the
is

on
he
of
ll
ro-
be
n-

rk
-

h
ce-

to

ng
s

e
e

potential in case use is made of the sparseness of the po
tial coupling matrix will depend on the particular scatterin
problem. Results for the model problem investigated in th
work are given in Sec. III.

D. The spectral range associated with the different
methods

For any wave packet method, the number of Hami
tonian operations required to propagate the wave functi
over some given timeDt is linearly proportional to the spec-
tral range of the Hamiltonian.8,59,64 For the methods dis-
cussed in the previous subsections, the spectral range follo
from using

lmax5Tmax
z 1Tmax

y 1Tmax
x 1Tmax

rot 1Vmax, ~23a!

lmax5Vmin , ~23b!

in Eq. ~5!. In Eq. ~23a!, the calculation of the maximum
kinetic energies inZ, Y, andX ~Tmax

z , Tmax
y , andTmax

x ! and of
the maximum rotational energyTmax

rot is easily performed for
both the CCWP and SAWP method, following either from
the grid spacing employed for a particular degree of freedo
or the parameters characterising the close-coupling exp
sion~like jmax!. In Eqs.~23!, Vmin is the minimum molecule–
surface potential energy, which is usually known from th
molecule–surface potential well depth. However, as di
cussed below the calculation of the maximum potential e
ergyVmax is not so straightforward in the CCWP and SAWP
methods.

It is a long standing practice to impose a maximumVcut
on the potential energy in order to reduce the spectral ran
It is likewise useful to impose a maximum on the total ki
netic energy.91 Imposing a maximumTcut on the total kinetic
energy is easy in both the CCWP and SAWP methods, b
cause in both methods the wave function can be obtained
the combined momentum/angular momentum representati
In the fully spectral representation the total kinetic energ
operation simply becomes a multiplication to be carried o
on each grid point in momentum space. Imposing the cut-o
valueTcut is done simply by settingT equal toTcut at any
point for which T is larger thanTcut. In the CCWP and
SAWP methods, the same value can be used forTcut.

A great advantage of a method in which the potenti
energy operation is performed in the coordinate represen
tion ~FBR methods like the FBWP method58,59! is that a
maximumVcut can be imposed on the potential energy op
erator in the same manner, by simply puttingV equal toVcut
at any point in coordinate space for whichV is larger than
Vcut. This advantage is not shared by methods employing t
close-coupling representation or VBR. What one can d
however, is to impose a maximumVmax

cut on the orientation-
ally averaged potential~in the CCWP method! or on the
potential that is averaged both over the orientation of th
molecule and over the projection of its position on the su
face unit cell ~in the SAWP method!. Suppose that in the
CCWP method, we expand the potential as

V~Z,Y,X,u,f!5(
j>0

Cj~Z,Y,X!Vj~u,f! ~24!
o. 12, 22 September 1995nse¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions
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and in the SAWP method, we expand the potential as

V~Z,Y,X,u,f!5(
j>0

Cj~Z!Vj~X,Y,u,f!. ~25!

Suppose that the expansion functions used in Eqs.~24!
and ~25! are normalized in such a way that their maximum
absolute value is 1. In either case,V0 will be A2pY00. A
maximum can then be imposed on the potential by, befo
calculating the potential coupling matrix, imposing a cut o
on the potential energy expansion rather than the poten
energy itself. This is done by setting, in all cases where w
find thatC0.Vmax

cut ,

C05Vmax
cut , ~26a!

Cj50, j>1. ~26b!

The value ofVmax
cut that will be needed to get converged re

sults will typically be somewhat higher than the cut-off valu
Vcut one would use if the potential energy operation we
performed in the coordinate representation. To see this, s
pose for a moment that we would use such a method, a
that a cut-off valueVcut would be needed to get converge
results. Now suppose we are using the CCWP method, a
that for some point (X,Y,Z) the potential is lower thanVcut
for a few orientations, but higher for most orientations. Th
will mean that the orientationally averaged potential
higher thanVcut. If we now impose a maximum onV by
puttingVmax

cut equal toVcut we are now in effect increasing the
potential at points whereV is low enough to affect our final
results. Therefore, the value ofVmax

cut should be larger than
Vcut and large enough to ensure that the potential is on
modified at points (X,Y,Z) for which the potential is larger
thanVcut for all orientations. Using a similar line of reason
ing, it can be demonstrated that, in calculating the spect
range using

lmax5Tcut1cVmax
cut , ~27!

it will be necessary to use a value ofc larger than one,
because the averaged potential will always be less than
maximum value ofV. The spectral range associated with th
close-coupling methods is thus larger than the spectral ra
associated with an FBR method~wherelmax5Tcut1Vcut!. As
a consequence, a disadvantage of the close-coupling meth
is that, for a given timestep, a larger number of Hamiltonia
operations are required for propagating the wave function
time in a stable manner.

In the calculations discussed in Sec. III,Vmax
cut is a param-

eter with respect to which convergence is sought. The va
of c required by the CCWP and SAWP methods is esta
lished by trial and error. Selecting too small a value forc
results in using a timestep that is too large and, consequen
instability in the propagation of the wave function, whic
usually shows up after taking only a few time steps. Th
difficulty with imposing a maximum on the potential when
using a close-coupling representation is a larger disadvant
in the SAWP method than in the CCWP method because
close-coupling representation is used for two additional d
grees of freedom in the SAWP method. As a result, t
SAWP method is expected to require more Hamiltonian o
J. Chem. Phys., Vol. 103, Naded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lice
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erations per timestep~or smaller timesteps in case the sam
number of Hamiltonian operations per timestep is used!.

E. Model potential

The model potential we use here has recently been
vised and used by us in calculations on scattering of H2 from
LiF~001! at a collision energy of 0.1 eV.69,70 For a full de-
scription of the model potential, the reader is referred to R
70. Here, we only briefly review its most essential featur
which ensure that the model potential is both a useful a
realistic test example for comparing the performance of
SAWP and CCWP methods for an H2–surface system of
fairly high corrugation.

Essential components contained in the potential are~i! a
long-ranged~;Z23! attractive interaction, the anisotropy o
which is described by theY20 spherical harmonic,~ii ! a
medium-ranged electrostatic~quadrupole-ionic lattice92! in-
teraction which contributes both to the anisotropy and
corrugation, favoring different orientations across the u
cell, and ~iii ! a short-ranged repulsive interaction, whic
leads to higher order corrugation terms and anisotropic te
which become increasingly important close to the surfa
The last feature of the model potential makes it a useful t
model for algorithms which try to exploit the increasin
sparseness of the potential coupling matrix at longer ra
~Secs. II B and II C!. The inclusion of the electrostatic inter
action leads to a fairly large difference in the spectral rang
associated with the CCWP and SAWP methods~Sec. II D!.
No such large difference is observed when using the pre
ously investigated63 Wolken potential,66 the corrugation of
which is described by only a single Fourier term, while on
theY20 spherical harmonic is used to describe the anisotro
The Wolken potential favors one orientation of the molecu
across the unit cell.

For the CCWP calculations, the model potential70 was
first calculated for a number of molecular orientations f
values ofX, Y, andZ corresponding to the grid points. Sub
sequently, the potential was expanded in spherical harmo
including functions withjmax up to 6~a total of 28 rotational
functions!. In the SAWP calculations we use the expansi
of Eq. ~13!, retaining terms with diffraction orderunu1umu
up to 6 andjmax up to 6. The expansion coefficients for th
symmetry adapted rotation-diffraction functions were calc
lated from spherical harmonic coefficients obtained pre
ously in a calculation employing 16 grid points alongX and
16 points alongY. In both cases, convergence of the expa
sion with respect to the number of functions included w
checked for by recalculating the potential from the expans
and comparing with the original model potential on a grid
points.

F. Numerical details

The numerical values of the input parameters common
the CCWP and SAWP calculations presented here are g
in Table II. Most of these parameters have already been
cussed in Secs. II A–II D. The average initial momentu
o. 12, 22 September 1995nse¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions
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kZ0 given in Table II corresponds to a collision energyEcol of

0.2 eV, and all calculations were performed for normal inc
dence of the wave packet.

The Chebyshev method83 was used to propagate the
wave function in time. For both the CCWP and the SAW
method, the total propagation time and the number and s
of the time steps used are given in Table II. The order of th
Chebyshev expansions employed was taken such that
highest order Bessel expansion coefficient was less than
tolerance parameter tolch ~see Table II!. To avoid instabilities
in the propagation due to the use of an optical potential, t
time step was chosen small enough to ensure that the or
of the Chebyshev expansion did not exceed 80. For bo
methods, we also give the values ofVmax

cut andc required for
convergence in Table II~see Sec. II D!, and the total number
of Hamiltonian operationsNHam required for getting prob-
abilities. For a discussion of these values, see Sec. III.

In all calculations, we use the empirical H2 rotational
energies as obtained from Ref. 93, rather than treating H2 as
a rigid rotor. All calculations presented here are for scatterin
of H2 from its j50 rotational state, and of course we only
include rotational states withj is even in the basis sets. In the
SAWP calculations, theA2 parameters given in Table II rep-
resent maximum values, and we obtain channel depend
optimal A2 values using linear interpolation of Table III of
Ref. 62.

As discussed in Sec. II A, the calculation ofS-matrix
elements involves time to energy Fourier transforms of tim
dependent coefficients computed at fixed time intervalsDtan
by projecting the wave function on asymptotic eigenstates

TABLE II. Numerical parameters used as input in the calculations are give

Parameter CCWP SAWP

Initial wave packet
Width j ~bohr! 1.118 1.118
Initial positionZ0 ~bohr! 25.0 25.0
Average initial momentumkZ0 ~atomic units! 7.349 7.349
Basis set parameters
Nz 108 108
Grid spacingDZ ~bohr! 0.25 0.25
Lattice parametera ~Å! 2.84 2.84
Maximum value ofj in basisjmax 6 6
Time propagation
Size time step~atomic units! 1500 800
Number of time steps 30 56
Total propagation timeT 45000 44800
Tolerance parameter tolch 10213 10213

Number of Hamiltonian operationsNham 2250 3808
Optical potential
Initial value of rangeZ1

min ~bohr! 22.75 22.75
Proportionality constantA2 ~hartree! 0.061 0.061
RangeL ~bohr! 4.0 4.0
Other
Analysis value ofZ, Z` ~bohr! 22.75 22.75
Time interval analysisDtan ~atomic units! 150 160
Tolerance norm elastic grid tolsp 10210 10210

Number of grid points elastic gridNZsp
128 128

Cut-off potential expansionVmax
cut ~eV! 0.6 0.9

Coefficientc in Eq. ~27! 1.4 2.0
Cut-off kinetic energyTcut ~eV! 0.6 0.6
J. Chem. Phys., Vol. 103, Noded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lice
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an asymptotic value~Z`! of the scattering coordinate. To
obtain correct results,Dtan should be much smaller than th
timestep used in the calculations~see Table II for the values
used forDtan andZ`!. As described in Ref. 84, obtaining th
wave function atZ5Z` at intermediate times presents n
problem in case the Chebyshev algorithm is used. At a
intermediate time, the wave function is obtained atZ5Z`

simply by using the Bessel expansion coefficients appro
ate to that time. The procedure used involves no extra Ham
tonian operations,64 and requires little overhead.

The model potential used in the present work is switch
off smoothly in the range 20–22.75 bohr, using the functi
of Eqs.~10! of Ref. 94. In this range, the interaction potenti
is already quite small. The validity of the switching proc
dure was checked by also performing calculations in wh
the model potential acts over an even longer range ofZ.

In the CCWP method, when performing the FFT’s for
given rotational state the wave function is held in an arr
ar(nz,ny,nx), where the first dimension is forZ, etc. The
FFT’s were performed consecutively using the scilib Cr
routine CFFTMLT, vectorizing alongY and X when per-
forming the FFT’s inZ, vectorizing alongZ when perform-
ing FFT’s alongY, and vectorizing alongZ and Y when
performing FFT’s alongX. Care was taken to avoid memor
bank conflicts. The 3D FFT routine CFFT3D is very ineffi
cient for low values ofNx andNy ,

95 but the efficiency of the
algorithm outlined above and using CFFTMLT i
comparable96 to that of a sophisticated algorithm using rot
tions to obtain optimized vector lengths.95

Details in which the CCWP calculations and SAWP ca
culations differ are given in Sec. III.

III. RESULTS AND DISCUSSION

In order to compare the performance of the CCWP a
SAWP methods, first an accurate reference calculation w
performed using the SAWP method. In this calculation, t
potential expansion of Eq.~13! was used. In the potentia
expansion, we included diffraction terms withumu<unu
<nmax

p 53, and rotational terms withj up to 6. In the wave
function expansion@Eq. ~14!#, diffraction terms were in-
cluded such thatumu1unu<Ow59, and rotational terms were
included with j up to 6. No attempt was made to use th
increased sparseness of the potential coupling matrix
longer range in the reference calculation. Tests were p
formed to ensure that the reference calculation converged
probabilities for rotationally and diffractionally inelasti
scattering from thej50 initial rotational state that are large
than 1024 to within less than 0.5%.

The next step was to perform CCWP and SAWP calc
lations, and to investigate to what extent one can take adv
tage of the sparseness of the potential coupling matrix
long range using the methods outlined in Secs. II B and II
In performing these comparative calculations, we dema
that the results agree with those of the reference calcula
to within 1% for all probabilities larger than 1024. The
CCWP results are discussed in Sec. III A, and the SAW
results in Sec. III B. These sections focus on the impro

n.
. 12, 22 September 1995nse¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions
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TABLE III. Probabilities for rotationally and diffractionally inelastic scatteringP(00→ jmjnm) are given for five different calculations. Calculation A is an
accurate reference calculation performed with the SAWPmethod, usingnmax

p 5 3 andOw59. Calculations B and C are CCWP calculations withNx5Ny512.
Calculations D and E are SAWP calculations in whichnmax

p 5 2 andOw58. In calculations C and E, the sparseness of the potential coupling matrix at lon
range was used as outlined in Secs. II B and II C, usingVt53.231023 meV.

j mj n m A~ref! B~CCWP! C~CCWP! D~SAWP! E~SAWP! j mj n m A~ref! B~CCWP! C~CCWP! D~SAWP! E~SAWP!

0 0 0 0 0.8532~22! 0.8526~22! 0.8526~22! 0.8536~22! 0.8526~22! 2 1 1 0 0.1457~22! 0.1457~22! 0.1456~22! 0.1455~22! 0.1454~22!

1 0 0.1756~21! 0.1756~21! 0.1756~21! 0.1757~21! 0.1758~21! 2 0 0.1606~22! 0.1605~22! 0.1605~22! 0.1607~22! 0.1606~22!

2 0 0.4982~22! 0.4986~22! 0.4986~22! 0.4989~22! 0.4994~22! 1 1 0.1551~22! 0.1551~22! 0.1551~22! 0.1458~22! 0.1546~22!

1 1 0.1281~21! 0.1281~21! 0.1281~21! 0.1281~21! 0.1281~21! 3 0 0.4642~23! 0.4655~23! 0.4654~23! 0.4648~23! 0.4643~23!

3 0 0.2084~22! 0.2080~22! 0.2079~22! 0.2084~22! 0.2083~22! 2 1 0.2492~22! 0.2491~22! 0.2491~22! 0.2492~22! 0.2492~22!

2 1 0.2516~21! 0.2516~21! 0.2516~21! 0.2516~21! 0.2516~21! 2 21 0.2399~22! 0.2398~22! 0.2399~22! 0.2400~22! 0.2401~22!

4 0 0.3715~23! 0.3723~23! 0.3722~23! 0.3727~23! 0.3725~23! 3 1 0.1044~22! 0.1045~22! 0.1044~22! 0.1044~22! 0.1043~22!

3 1 0.9240~22! 0.9233~22! 0.9233~22! 0.9242~22! 0.9239~22! 3 21 0.6177~23! 0.6190~23! 0.6192~23! 0.6192~23! 0.6188~23!

2 2 0.3881~21! 0.3882~21! 0.3882~21! 0.3879~21! 0.3879~21! 2 2 0.1062~22! 0.1062~22! 0.1062~22! 0.1061~22! 0.1061~22!

4 1 0.9751~23! 0.9792~23! 0.9791~23! 0.9764~23! 0.9757~23! 3 2 0.2853~23! 0.2853~23! 0.2853~23! 0.2859~23! 0.2855~23!

3 2 0.1142~21! 0.1141~21! 0.1141~21! 0.1140~21! 0.1140~21! 3 22 0.2251~23! 0.2258~23! 0.2259~23! 0.2252~23! 0.2250~23!

4 2 0.1001~22! 0.1002~22! 0.1001~22! 0.1005~22! 0.1004~22! 2 2 1 0 0.2732~22! 0.2732~22! 0.2732~22! 0.2737~22! 0.2736~22!

3 3 0.2884~22! 0.2881~22! 0.2881~22! 0.2889~22! 0.2887~22! 2 0 0.1687~22! 0.1687~22! 0.1686~22! 0.1688~22! 0.1688~22!

4 3 0.2026~23! 0.2021~23! 0.2021~23! 0.2014~23! 0.2013~23! 1 1 0.2135~23! 0.2135~23! 0.2134~22! 0.2135~23! 0.2135~23!

2 0 0 0 0.7331~22! 0.7334~22! 0.7336~22! 0.7334~22! 0.7333~22! 3 0 0.2126~23! 0.2127~23! 0.2126~23! 0.2123~23! 0.2124~23!

1 0 0.1887~23! 0.1885~23! 0.1886~23! 0.1889~23! 0.1887~23! 2 1 0.4563~22! 0.4563~22! 0.4563~22! 0.4561~22! 0.4562~22!

2 0 0.3729~23! 0.3735~23! 0.3734~23! 0.3741~23! 0.3739~23! 2 21 0.5923~23! 0.5923~23! 0.5922~23! 0.5922~23! 0.5924~23!

1 1 0.8804~22! 0.8804~22! 0.8803~22! 0.8803~23! 0.8804~22! 3 1 0.1888~22! 0.1886~22! 0.1886~22! 0.1887~22! 0.1886~22!

3 0 0.3291~23! 0.3276~23! 0.3276~23! 0.3287~23! 0.3281~23! 3 21 0.3645~23! 0.3636~23! 0.3635~23! 0.3643~23! 0.3645~23!

2 1 0.1364~22! 0.1363~22! 0.1363~22! 0.1364~22! 0.1364~22! 2 2 0.1170~22! 0.1170~22! 0.1170~22! 0.1172~22! 0.1172~22!

2 2 0.7215~23! 0.7209~23! 0.7207~23! 0.7208~23! 0.7211~23! 4 1 0.1481~23! 0.1489~23! 0.1489~23! 0.1482~23! 0.1480~23!

3 2 0.1510~23! 0.1507~23! 0.1507~23! 0.1510~23! 0.1511~23! 3 2 0.9760~23! 0.9756~23! 0.9757~23! 0.9756~23! 0.9751~23!

3 3 0.1025~23! 0.1022~23! 0.1022~23! 0.1025~23! 0.1023~23!

0 0 sum 0.7110~0! 0.7109~0! 0.7109~0! 0.7109~0! 0.7110~0!

2 0 sum 0.6214~21! 0.6214~21! 0.6213~21! 0.6215~21! 0.6215~21!

2 1 sum 0.5367~21! 0.5368~21! 0.5368~21! 0.5366~21! 0.5365~21!

2 2 sum 0.5938~21! 0.5937~21! 0.5937~21! 0.5939~21! 0.5939~21!
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ments obtained using the increased sparseness of the p
tial matrices at longer range.

The performance of the CCWP and SAWP methods
compared in Sec. III C. In this section, we also speculate
the efficiency of a CCWP method using symmetry and
efficiency of using different representations at differe
ranges of the scattering coordinate, using a mixed sche
We will also briefly discuss the potential usefulness of
SAWP method for performing 6D calculations on dissoc
tive chemisorption of H2 on a surface of square lattice sym
metry, like the Cu~100! surface, in the context of such
mixed scheme.

A. CCWP results

To obtain converged results using the CCWP method
was necessary to use 12 grid points alongX and Y
~Nx5Ny512!. This corresponds to using a square diffra
tion basis containing 144 states. In the rotational basis
channels with j up to 6 were required for convergenc
~Nrot528!. The spectral basis effectively used in the CCW
calculations therefore contained 4032 rotation-diffract
states.

In Table III, results of two different CCWP calculation
are compared with the results of an accurate reference ca
lation. In one calculation~CCWP B! we do not attempt to
exploit the sparseness of the potential coupling matrix. T
J. Chem. Phys., Vol. 103, Nded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lice
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potential expansion used in the calculation contained sphe
cal harmonics withj up to 6 ~see also Sec. II E!, and the
resulting potential coupling matrix was full, only 13% of the
matrix elements being zero over the entire range of the sc
tering coordinate. Test calculations showed that in the pote
tial expansion spherical harmonics should be included withj
up to 6 in order to get converged results.

In the other calculation~CCWP C! we did take advan-
tage of the sparseness of the potential coupling matrix.
this calculation, we neglected matrix coupling elements on
their absolute value became larger than a threshold valueVt

at larger values ofZ ~see Sec. II B for the exact method
used! in the matrix–vector multiplications corresponding to
the potential energy operation on the wave function. Tri
calculations in which we increased the threshold valueVt by
a factor 100.5 in subsequent calculations showed that for con
vergenceVt53.231023 meV was required.

The CPU times and central memory requirements of th
CCWP calculations are compared in Table IV. As can b
seen from this table, exploiting the increase in the sparsen
of the potential coupling matrix with increasing scatterin
coordinate leads to a large reduction in the CPU time r
quired for the potential energy operation and the amount
central memory required to hold the potential coupling ma
trix on the grid inX, Y andZ ~by a factor 4.5 in both cases!.
o. 12, 22 September 1995nse¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions
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The total CPU time is reduced by a factor 1.9, and tot
memory usage by a factor 1.8. We expect even larger ga
in efficiency for cases in which more rotational states a
necessary to describe the scattering, like the scattering of2
from LiF.16,59We also expect that our adaption of the CCW
method will make it competitive with the FBWP method o
Lemoine and Corey58,59 mentioned in Sec. I. We hope to
carry out a comparison of the efficiency of the CCWP an
FBWP methods for the present model system and f
N21LiF in the near future.

B. SAWP results

In performing SAWP calculations, we first checke
whether it is best to use a square diffraction basis in t
calculations@such that, in the wave function expansion o
Eq. ~14!, umu <u nu < nmax

w , wherenmax
w is the maximum

value ofm andn in the basis set# or a diamond shaped basis
set ~such thatumu1unu<Ow , whereOw is the maximum
diffraction order in the basis set!. It was found that the use of
a diamond shaped diffraction basis set was cheaper. For c
verged results, it is necessary to use eitherOw58 ~diamond
shaped basis! or nmax

w 5 6 ~square basis!. Using jmax56 in
the rotational basis, the rotation-diffraction basis set th
contains 534 functions when using the diamond shaped ba
and 618 functions in case the square basis is used.

For the potential expansion the opposite was found to
true. Converged results are obtained in case diffraction ter
are retained in the potential expansion such thatumu
<u nu < nmax

p 5 2. In contrast, a diamond shaped basis f
the potential expansion functions requiredumu1unu<Op54.
Using jmax56 in the potential expansion, the number of sym
metry adapted rotation-diffraction functions is 98 in case t
square basis is used, and 158 in case the diamond sha
basis was used.

In Table III, we compare the results of two differen
SAWP calculations with the results of the reference calcu

TABLE IV. CPU times ~in CPU s! and central memory requirements~in
Mw! are given for four different calculations. Calculations B and C a
CCWP calculations withNx5Ny512. Calculations D and E are SAWP
calculations in whichnmax

p 5 2 andOw58. In calculations C and E, the
sparseness of the potential coupling matrix at longer range was used
outlined in Secs. II B and II C usingVt53.231023 meV. The calculations
were performed on a Cray Y-MP C98.

CCWP~B! CCWP~C! SAWP~D! SAWP~E!

CPU times
Chebyshev algorithm 42.9 43.0 8.8 8.9
K, FFt’s alongZ 102.1 101.8 22.4 22.6
K, FFt’s alongX andY 100.6 101.8 0 0
K, multiplications 6.9 6.8 2.4 2.4
V 459.2 101.9 878.5 146.4
Rest 41.8 42.4 11.8 13.7
Total 753.5 396.1 923.9 194.0
Memory requirements
V, arrays ,0.01 0.06 0.17 4.69
V, matrix elements 9.4 2.1 2.6 1.1
Storage arrays wave
function

4.4 4.4 0.46 0.46

Total 14.5 8.0 4.3 8.1
J. Chem. Phys., Vol. 103, Nded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lice
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tion. The two calculations use the same rotation-diffractio
basis set in the wave function~jmax56,Ow58! and the same
parameters for the potential expansion~jmax56, nmax

p 5 2!.
The resulting symmetry adapted basis set contains 534 sta
whereas a nonsymmetry adapted basis set would con
[Ow

21(Ow11)2]3Nrot54060 states~NA1
/N 5 7.6, which

is close to 8!. In the SAWP D calculation, we do not use th
increased sparseness of the potential coupling matrix
longer range, though we do take advantage of matrix co
pling elements being zero over the entire range ofZ. Of
course, this is the case if the integrals over the states that
coupled and the potential expansion functions are zero for
expansion functions@see Eqs.~13! and ~15!#, and this was
true for approximately 50% of the potential coupling matri
elements. In the SAWPE calculation, in addition the nonze
coupling matrix elements are neglected once at long ran
their absolute value becomes less thanVt , using the proce-
dure described in Sec. II C. Trial calculations similar to th
ones performed before using the CCWP method showed t
for convergence the same value ofVt was required
~3.231023meV!.

Memory requirements and CPU times are compared
the two SAWP calculations in Table IV. As can be see
employing the increased sparseness of the potential coup
matrix at long range leads to a large reduction of the CP
time spent on performing the potential energy operation~by
a factor of 6!. Because most of the total CPU time in th
SAWP method is spent in performing the potential ener
operation, the total cost of the calculation is also grea
reduced~by a factor of 4.75!. However, the less expensive
calculation now requires more memory. The increase
memory is mostly due to reserving space for an array whi
keeps track of which coupling matrix elements are importa
in the part of the potential matrix multiplication which is
vectorized over states and performed at short range only.

In the SAWPE calculation, the multiplication with the
diagonal potential matrix elements was vectorized overZ. Of
the off-diagonal nonzero matrix elements, roughly 10% a
important for 15 or more grid points inZ ~in the range 3.5–
7.0 bohr and beyond! and, for these matrix elements, th
multiplication was vectorized overZ, the associated compu-
tational cost being roughly 38% of the total time required fo
the potential energy operation. The multiplication with of
diagonal matrix elements which are only important in th
range 3.5–6.75 bohr was done vectorising over states. T
use of the mixed vectorising scheme is essential for obta
ing the large reduction in CPU time for performing the po
tential energy operation: A reduction factor of only 1.8 wou
have been achieved if all multiplications would have bee
performed vectorising overZ, which is to be contrasted to
the factor of 6 achieved using the mixed scheme.

C. Comparison of the methods

To compare the performance of the CCWP and SAW
methods in terms of CPU time usage and memory requi
ments, we again refer to Table IV. In terms of CPU time, th
CCWP method is slightly more efficient than the SAW
method if the sparseness of the potential coupling matrix
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longer range is not used, though it requires much mo
memory. On the other hand the SAWP method is faster th
the CCWP method by a factor of 2 if the increased spars
ness at longer range is used, while requiring roughly t
same amount of memory for this case.

In previous work,63 we compared the efficiency of the
CCWP and SAWP methods for the H21LiF~001! model
problem using the Wolken potential.66 In those calculations,
we found the SAWP method to be faster by a factor of
Given that result, the performance of the SAWP method f
the present model potential is somewhat disappointin
Whether the SAWP method will be more efficient than th
CCWP method and by how much in the end depends on
trade-off: For any particular problem, the SAWPmethod w
be more efficient if gains made by performing the kinet
energy operation are not offset by losses incurred in perfor
ing the potential energy operation less efficiently.

The absolute increase in computational cost of the p
tential energy operation~in going from CCWP to SAWP!
depends on~i! the extent to which the cost associated wit
the potential energy operation dominates the total compu
tional cost in the CCWP method and~ii ! the extent to which
this cost is further increased by switching from the CCW
method to the SAWP method. The relative cost of the pote
tial energy operation depends on the size of the rotatio
basis set~Nrot! and the average number of rotational states
given rotational state is coupled to in the potential couplin
matrix ~Ncoup

rot !. The factor by which the cost of the potentia
energy operation increases is determined by the aver
number of diffraction states a given diffractional state
coupled to in the SAWP method~Ncoup

dif !. Reasons that the
SAWPmethod is more expensive than the CCWPmethod
the present model problem~if no use is made of increased
sparseness of the potential coupling matrix at longer ran!
while the reverse was true63 for the Wolken potential66 are
~i! for the present~f dependent! model potential, the relative
cost of the potential energy operation in the CCWP meth
is much larger~61%! than for the Wolken potential~9%!,
because a larger rotational basis set is required~Nrot528 in-
stead of 6! and because the larger potential expansion
average couples more rotational states with one anot
~Ncoup

rot 524.5 instead of 2.5! and ~ii ! in going to the SAWP
method, the cost of the potential energy operation increa
by a larger factor because the larger potential expansion
average couples more diffractional states with one anot
~upperbounds areNcoup

dif 525 for the model potential, instead
of 5 for the Wolken potential63!.

An additional reason for the decreased efficiency of t
SAWP method for the model potential used in the prese
work was discussed in Secs. II D and II E. The inclusion
the electrostatic interaction in the model potential leads to
larger spectral range, the problem being most severe for
SAWP method. As can be seen from Table II, as a res
fewer Hamiltonian operations~by a factor of 1.7! are re-
quired in the CCWP calculations. In the previous calcul
tions on the Wolken potential, roughly the same number
Hamiltonian operations was required in both methods.

The net result is that the potential energy operation b
comes more expensive in the SAWP method than in t
J. Chem. Phys., Vol. 103, Nded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lice
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CCWPmethod. According to the scaling relations and taki
into account the effect of the increased spectral range,
potential energy operation would be expected to beco
more expensive by a factor no larger than 2.8 in changing
the SAWP method. Because the average number of diffr
tion states a given diffraction state will couple to is less tha
the upperboundNcoup

dif , the scaling of the potential energy
operation is not as severe, and the potential energy opera
in the SAWP method is only more expensive by a factor 1
in the calculations not employing sparseness at longer ran
Because the potential energy operations dominate the co
putational cost~61%! also in the CCWPmethod if sparsenes
at longer range is not used, the SAWP method is more
pensive in this case~by a factor 1.2!, though requiring much
less central memory~by a factor 3.4!.

If the increased sparseness of the coupling matrix
longer range is used, the potential energy operations
longer dominate the total computational cost of the CCW
method~only 26%, see Table IV!. As a result, it now be-
comes favorable to change to a method in which the eva
ation of the potential energy operation is more expensive,
the kinetic energy operation is less expensive, the SAW
method now being cheaper by a factor 2. If the sparsenes
longer range is used, the potential energy operations
more expensive by only a factor 1.4 in the SAWP metho
compared to a factor 1.9 if sparseness at longer range is
used. This is probably a result of the potential expansi
coefficients @Eq. ~13!# decreasing fast with increasing
molecule–surface distance for expansion functions which
of high diffraction order.

In the CCWP calculations that we present, symmet
was not used. However, it should be possible to impleme
the use of symmetry also in the CCWP method, by on
expanding the wave function on symmetry needed points
x and y.57,59 For the present example~mj50 initially, the
total wave function hasA1 symmetry! it is only necessary to
use points with 0<x<a/2 and 0<y<x, resulting in 28
symmetry needed points rather than 144 as used here.59 In a
method which we will call the ‘‘SNWP’’ method~SNWP for
symmetry needed close-coupling wave packet method! the
potential energy operation would be performed only on t
symmetry needed points, and likewise for the FFT’s alongZ
required for performing the kinetic energy operation, resu
ing in savings by a factor of 144/28~5.1!. One way to per-
form the transformations to momentum space alongX andY
is to first expand the wave function on the fullx,y grid ~144
points! and then perform FFT’s alongx andy.59 Using this
procedure, there would still be a saving in performing th
transformations alongx andy relative to the cost involved in
the CCWP method~by a factor 1.7 for the present example!,
because the FFT’s alongx need only be performed for
0<y<a/2 and vice versa for the FFT’s alongy.59 The entire
scheme discussed here is completely analogous to
scheme already used successfully by Lemoine in FBWP c
culations on N21LiF using a model potential.59

Estimates of the computational costs of the SNW
method are compared with the costs of the CCWP a
SAWP methods for the case that the increased sparsenes
the potential coupling matrix at longer range is used in Tab
o. 12, 22 September 1995nse¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions
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V. The estimated costs of the operations in the SNW
method have been obtained by dividing the costs of the o
erations of the CCWPmethod by a factor 5.14, except for th
cost of transforming alongx and y ~a factor 1.7! and the
overhead~simply a rough estimate, there should be add
tional costs for expanding the wave function on the full gri
in x andy prior to transforming alongx andy!. As can be
seen from the table, the estimated cost of the SNWP meth
is actually less than that of the SAWP method. Similarly, th
SNWP method would require less memory. Obviously, th
then calls into question the usefulness of the SAWP metho
However, a number of considerations show that the SAW
method may in fact still be quite useful.

For one thing, it is not clear whether the savings pre
dicted for the SNWP method would actually be achieved
calculations on machines with vector processing capabilitie
For instance, the vector length that would be achieved
performing the potential energy operation using the schem
discussed in Sec. II B would be less optimal~28! than in the
CCWPmethod~144, the optimal vector length on the Cray is
64 or ‘‘a lot more’’!. We still have to establish how well the
SNWP method would work in practice for the model prob
lem presently under consideration, which we hope to do
the near future.

Second, it may still be favorable to combine the SAW
method ~used at long range! with the CCWP or FBWP
method~used at short range and employing symmetry!. Pres-
ently, most of the CPU time spent in performing the potenti
energy operation in the SAWP method goes to performin
this operation at short range~62%, forZ,7a0!. It may there-
fore well be favorable to use a scheme in which a symmet
adapted full close-coupling representation is used at lar
molecule–surface distances and a hybrid~CCWP! or full
FBR ~FBWP! representation is used for thex, y, u, andf
coordinates close to the surface. Using such a scheme, lar
time steps can be taken than in the SAWP only schem
because it is easier to place an upper bound onV close to the

TABLE V. CPU times ~in CPU s! and central memory requirements~in
Mw! are given for four different calculations. The first two calculations ar
the CCWP~C! and SAWP~E! calculations of Table IV. Under ‘‘SNWP,’’ we
give the estimated cost of a CCWP calculation that would employ symme
by only propagating symmetry-needed diffraction states. Under ‘‘mixed
we give the estimated cost of a calculation using a mixed approach~see also
the text!. The ~estimated! costs are for a Cray Y-MP C98.

CCWP~C! SAWP~E! SNWP Mixed

CPU times
Chebyshev algorithm 43.0 8.9 8.3 5.3
K, FFt’s alongZ 101.8 22.6 19.9 13.3
K, FFt’s alongX andY 101.8 0 59.2 15.3
K, multiplications 6.8 2.4 1.4 1.4
V 101.9 146.4 19.8 47.8
Rest 42.4 13.7 20.0 12.0
Total 396.1 194.0 128.6 95.1
Memory requirements
V, arrays 0.06 4.69 0.06 0.1
V, matrix elements 2.1 1.1 0.41 0.6
Storage arrays wave function 4.4 0.46 0.9 0.6
Total 8.0 8.1 1.4 1.3
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surface using the hybrid representation, and much easie
do so in the FBWP method, in which the potential energ
operation is performed in coordinate space.

The estimated cost of a mixed~SNWP at short range,
SAWP at long range! scheme is also given in Table V, and
compared to that of the SAWP only~actual costs! and SNWP
only ~estimated costs! schemes. In the mixed scheme, th
momentum representation is used as the primary represe
tion for thex, y, u, andf degrees of freedom. The potentia
energy operation is performed by matrix multiplications fo
Z>7a0 ~SAWP! and by performing transforms alongx and
y and~smaller! matrix multiplications at smaller values ofZ
~SNWP!. The time-step used is that used in the SNWP
CCWP scheme. As can be seen from Table V, the mix
scheme is expected to be cheaper. However, the same ca
applies as that given before in discussing the SNWP e
mates: It is not clear beforehand whether optimal vect
lengths can be achieved in the mixed scheme and, theref
what the actual performance of such a scheme will be on
machine like the one presently used~a Cray Y-MP C98!.

As mentioned in Sec. I, the use of symmetry is releva
to performing high dimensionality calculations on reactiv
scattering of molecules at surfaces. Many dissociative che
sorption problems~in particular, the H21Cu benchmark sys-
tem! obey normal energy scaling, meaning that to a go
approximation the dissociation probability only depends o
the kinetic energy normal to the surface. This means that
multidimensional DFT~density functional theory! potential
energy surfaces now being developed for H21low index cop-
per surfaces80–82 can in principle be tested by performing
wave packet calculations for normal incidence only, idea
modeling all molecular degrees of freedom. Compared to
five-dimensional~5D! inelastic scattering problem discusse
here, one more degree of freedom~r , the H–H distance!
would need to be added, resulting in a six-dimensional~6D!
problem.

A complication that should occur in 6D calculations i
that many rotational states should have to be included in
basis set, because the rotational constant of the molec
decreases as it dissociates. As a result, the calculati
should be quite expensive and require much central memo
and 6D wave packet calculations on dissociative chemiso
tion have not yet been reported. Employing symmetry
calculations on normal incidence would reduce both CP
time and central memory requirements. In this context, w
expect the SAWP method discussed here to be useful, p
vided it is used in a mixed scheme. Problems with imposi
a maximum on the potential coupling matrix using a clos
coupling representation should be especially severe for d
sociative reactive scattering for some combinations ofZ and
r , especially in caseZ is small andr is large where, in
perpendicular orientations, the molecule will point one of i
atoms into the surface. It is anticipated that using the FBW
representation for such combinations ofZ andr should help
much to increase the efficiency of a mixed scheme.

IV. CONCLUSIONS

We have used the H21LiF~001! system to test the per-
formance of two wave packet methods on a molecule

ry
’’
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surface system of fairly high corrugation. A new
f-dependent model potential was used. The potential u
yields a good description of the most important aspects
the system under investigation, like the increased anisotr
and corrugation close to the surface and the anisotropy a
ciated with the long range interaction. The comparison e
tends previous work which was done using af-independent
model potential due to Wolken, which contains only a fe
anisotropic and corrugation expansion terms.

In both wave packet methods investigated, a clo
coupling or variational basis set representation~VBR! was
used for some or all degrees of freedom other than the s
tering coordinate. In the close-coupling wave pack
~CCWP! method, a grid representation is used for the diffra
tive degrees of freedom, while the VBR is used for the ro
tional degrees of freedom. In the other method~SAWP for
symmetry adapted full close-coupling wave packet metho!,
a full close-coupling representation is employed for thex, y,
u, andf degrees of freedom, also taking advantage of
special symmetry relations that exist for normal incidenc
Both methods were tested for a collision energy of 0.2
with H2 at normal incidence in the initialj50 rotational
state.

We have shown that for both methods large savings
CPU time can be achieved by taking advantage of the
creased sparseness of the potential coupling matrix at la
values of the scattering coordinate. The schemes introdu
here reduced the cost of the potential energy operation b
factor of 4.5 in the CCWPmethod, and by a factor of 6 in t
SAWP method. Increasing sparseness of the potential c
pling matrix at longer range should be a general feature
scattering problems. Therefore, schemes like those in
duced here should be effective also in bringing down the c
of wave packet methods that deal with other scattering pr
lems, but also employ a close-coupling representation fo
least some degrees of freedom.

For the model problem under investigation, the SAW
method was faster than the CCWP method by a factor o
provided that the increased sparseness of the potential
pling matrix at longer range was employed. On the oth
hand, the SAWP method is expected to be less efficient t
a symmetry adapted version of the CCWP method in wh
only symmetry-needed diffraction states are propagat
Nevertheless, we expect the SAWP method to be useful
mixed scheme which would employ different representatio
over different ranges of the scattering coordinate. A sche
which we expect to be optimal employs a finite-basis rep
sentation~FBR! or a hybrid representation at short range~the
FBWP or finite basis wave packet method of Lemoine a
Corey, or the CCWPmethod! while employing the full close-
coupling representation at longer range, using symmetry
both cases. This scheme would combine the advantages
FBR of hybrid method~smaller spectral range, potential en
ergy operation is less expensive at short range where
potential coupling matrix would be full for a method em
ploying a full close-coupling representation! with the advan-
tages of the SAWP method~transforms alongx, y, u, andf
can be avoided, and the potential energy operation is effic
at long range because the potential matrix is sparse at l
J. Chem. Phys., Vol. 103, Nded¬15¬Mar¬2011¬to¬130.37.129.78.¬Redistribution¬subject¬to¬AIP¬lice
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range!. We expect that such a scheme would be highly usef
in performing six-dimensional~6D! wave packet calculations
on the benchmark problem of dissociative chemisorption
H2 on low index copper surfaces, for which normal energ
scaling is observed. Such calculations would constitute im
portant tests of the multidimensional potential energy su
faces that are now being developed for the H21Cu system
using density functional theory.
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