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Chapter 1

1. General introduction

Body and soul - separated or unified?
Intensive research into neural networks, both in animals and artificial models, has

created the beginnings of understanding of the biological brain machinery- an

understanding of how you and everyone like you works. This idea may be found

threatening, as if your innermost secrets were about to be made public. But, as

Churchland (1995) states in his recent book The Engine ofReason, the Seat of the Soul,

"you should rest assured, your physical brain is far too complex and mercurial for its

behaviour to be predicted in any but the broadest outlines or for any but the shortest

distances into the future. Faced with the extraordinary dynamic features of a functioning

brain, no device constructible in this universe could ever predict your behaviour, or

unravel your thoughts, with anything more than merely statistical success".

From the earliest speculations on the nature of man until the present day, one strongly

has held the view that the body and the mind are separate, distinct entities. The prototype

example of a dualist hypothesis body separated from soul (or mind) comes from

Descartes who in 1664 in his Treatise ofMan postulated the existence of the pineal gland

as a site in the brain responsible for the interaction between the soul and the physical

body, allowing the soul to exert control over the body. This separation of the soul/mind

from the body freed the scientists of the time to work on the mechanical body without

violating the "religious" soul.

As always happens in the old paths of epistemology, an opposite monist alternative

has also been proposed. As early as 400 BC, the ancient Greek Democritus spoke in

terms of psychic atoms responsible for thought and behaviour. Extreme versions of

monist philosophy have denied either the existence of mind or its importance, stating that

the "mind-type" aspects of brain functions are a by-product of the mechanistic brain.

Presently, in the era of compromise, moderate versions of monist theories which can

be broadly termed as "identity" theories prevail. The Portuguese neurologist Antonio

Damasio (1994) writes on his recent book Descartes' Error - "This is Descartes' error: the

abyssal separation between body and mind, between the sizeable, dimensioned,

mechanically operated, infinitely divisible body stuff, on one hand and the unsizable,

undimensioned, un-pushpullable, nondivisable mind stuff; the suggestion that reasoning

and moral judgement and the suffering that comes from physical pain or emotional

upheaval might exist separately from the body."
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This is a position also shared by Strange (1994) in his book Brain Biochemistry and

Brain Disorders. This modem approach to body/mind dialectics states that mind-type

aspects of brain function are the result of the total activity of the complex network of

cells. In this way, mechanistic and mind-type descriptions of the brain describe the same

neural activity but at different levels. It becomes obvious from the present state of the

knowledge of the human brain, that there is a major gap between the understanding of the

mind-type properties and its mechanistic aspects. In fact, it is this gap that will always

promote dualist hypotheses. The role of the "identitist" (being him/her a scientist and/or a

philosopher) is to attempt to bridge this gap with theories and experimental evidences that

show how the total activity of brain cells can give rise to the mind-type aspects of the

human brain. In fact, modem approaches to brain disorders have shown that treatments

for these malfunctions may be based on drug and psychological therapies. These kinds of

treatment may be effective for, e.g., anxiety and affective disorders, where it seems likely

that both therapeutic approaches are ultimately affecting the same or closely related brain

systems.

Churchland prophecies on the ultimate success in predicting human behaviours and

thoughts being of merely statistical nature are further supported by Penrose (1989) who

proposed that quantum mechanical (probabilistic) principles need to be applied to the

functions of the overall neural network in the brain in order to understand the mental

functions of the brain. For example, if a neuron receives hundreds or even thousands of

synaptic inputs, it seems reasonable that the functional output states of that neuron may

be achieved by more than a single input configuration. This probabilistic approach can

also be applied to interpret and predict the actions of neuromodulators such as histamine.

This biogenic amine is the least studied of all the known bioamines and its actions in the

CNS will be the focus of this dissertation.

1.1 Anatomical aspects of the eNS

Neuron and synapse

The stereotypical image of a neuron is that of a stellate cell body (soma or perikaryon)

with broad dendrites and a fine axon emerging from one pole (Raine, 1994). However,

this morphology does not hold true for many neurons. The neuron is the most

polymorphic cell in the body and defies formal classification on the basis of shape,

location, function, fine structure, or transmitter substance. Nerve cells range from the

small globular cerebellar granule cells, with a perikaryal diameter of approximately 6 to 8

J.lm, to the pear-shaped Purkinje cells and star-shaped anterior hom cells, both of which

may reach diameters of 60 to 80 J.lm in humans. Perikaryal size is generally a poor index
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of total cell volume, however, it is a general rule in neuroanatomy that neurites occupy a

greater percentage of the cell surface area than the soma (Raine, 1994).

The extent of branching displayed by the dendrites is a useful index of their functional

importance. Dendritic trees represent the expression of the receptive fields and large fields

can receive inputs from multiple origins. A cell with a less developed dendritic

ramification (e.g. the cerebellar granule cell) synapses with a more homogenous

population of afferent sources (Raine, 1994).

Astrocyte end foot

f.<,;,--- Astrocyte

Node of Ranvier
.~.

Capillary

Dendrites

Neuron

Meningeal cell--:;~=2:.. :::::=~~=~=:::~r

Figure 1.1 Schematic representation of the interactions between
astrocytes, capillaries, and neurons in the mammalian brain.

The axon emerges from a neuron as a slender thread and usually does not branch until

it nears its target. In contrast to the dendrite and the soma (with very few exceptions), the

axon is frequently myelinated, thus increasing its efficiency as a conducting unit. Myelin,

a spirally wrapped membrane, is laid down in segments (internodes) by oligodendrocytes

in the eNS and by Schwann cells in the PNS. The naked regions of axon between

adjacent myelin internodes are known as nodes of Ranvier (Figure 1.1). When the

membane at the node is excited, the local circuit generated cannot flow through the high

resistance sheath and, therefore, flows out through and depolarises the membrane at the

next node which might be one rom or farther away. Active excitation of the axonal

membrane jumps from node to node (Morell et al., 1994).

Mammalian brain anatomy

The internal structures of the human brain are shown in figures 1.2 A and 1.2 B. The

mid-sagittal section (fig. 1.2 A) shows more detail of infoldings of the cerebral cortex

and of the cerebellum. The entry of the brain stem into the brain and the components of
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the brain stem (medulla, pons and midbrain) are visible as well as their linkage to the

diencephalon (a collective name for the thalamus and hypothalamus).

One can also see in this section the corpus callosum, a set of nerve fiber tracts linking

the two hemispheres, and a ventricle, a fluid-filled space within the brain.

In the coronal section, (fig. 1.2.B) the symmetry of the two hemispheres is emphasised.

cerebdlum

B

Figure 1.2 Overall

structure of the human brain

at the neuroanatomicallevel;

(A) coronal section and (B)

sagittal section. (C)

Schematic diagram of the

three major excitatory

pathways in the

hippocampus: 1, from the

entorhinal area to dentate

granular cells via the

perforant path; 2, from

dentate granular cells to CA3

pyramidal cells via mossy

fibres; 3, from CA3

pyramidal cells to CAl

pyramidal cells via the

Schaffer collateral.

Commissural fibres project

from the contralateral

hippocampus to CAl

pyramidal cells (Nicoll et al.,

1988).

c

A

substantia nigra

lateral ventricle

~-c;::;:.---,.i,l!- caudate mEleus

putamen

thalamus

globus pallidus

hypothalamus

hypothalamus

pituimry glaol
midbrain

P~ulla

white matter
grey matter

third ventricle

subthalamic nucleus
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Further internal structure is now visible and the interrelationships of the thalamus,

hypothalamus and the ventricles is clearer. Structmes that appear now visible are the

corpus striatum (composed of the caudate nucleus, globus pallidus, and putamen) and

part of a system called the basal ganglia. An important nucleus which is not shown in

these figures is the hippocampus, a subcortical bean-shaped structme present towards the

caudal part of the brain, which plays a role in memory and control of behaviour (fig.

1.2.C).

Some areas of the cerebral cortex have been connected with certain aspects of the

peripheral activities, e.g., motor cortex for muscle control, somatosensory cortex for

sensory input, visual cortex for visual input, etc. There are also large areas of the brain

which cannot be identified with specific functions and which presumably perform more

complex syntheses of information; such centres are highly developed in man compared to

other species. Brain functions can, therefore, be seen to be due to co-operative

performance of the whole organ rather than to the isolated actions of individuals parts.

1.2 Brain neuropathology

For several brain disorders it was found that certain parts of the diseased brain are

being degenerated, or in some way disrupted. Some of these brain disorders are briefly

discussed in this section.

Parkinson's disease

The pathological hallmark of Parkinson's disease is now felt to be Lewy body induced

degeneration of pigmented and other brainstem nuclei (substantia nigra compacta, locus

caeruleus, dorsal nuclei of the vagus, nucleus accumbens, and nucleus basalis of

Meynert). The Lewy body is an eosinophilic inclusion with a characteristic halo found in

the degenerating neurons. It is made up of neurofilaments and has immunoreactivity for

ubiquitin. Loss of cells by, presumably, oxidative stress from the substantia nigra in

Parkinson's disease results in profound dopamine depletion in the striatum, ventrolateral

projections to putamen are more affected than dorsomedial projections to head of caudate.

Loss of locus caeruleus and nucleus basalis of Meynert cells leads to reduced levels of

striatal and cortical noradrenaline and acetylcholine, respectively (Brooks, 1995).

Schizophrenia

While the underlying cause of Parkinson's disease is hypothesized to be 'oxidative

stress' (Singer et al., 1995), the underlying cause of schizophrenia is a structurally

abnormal cerebral cortex (Weinberger & Lipska, 1995). The association of schizophrenia

with cortical maldevelopment, has been supported by the discovery of 'hypofrontality' in

some patients: blood flow in the dorsolateral prefrontal cortex is abnormally low upon
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challenge with relevant cognitive tasks (Weinberger et al., 1992). In addition, it has been

reported that there are reduced numbers of neurons in parts of the prefrontal cortex

(Benes et aI., 1986; 1991), and abnormalities in the distribution of nitric oxide synthase

(NOS)-containing neurons in frontal white matter in postmortem tissue from

schizophrenics (Akbarian, 1993a). Several irregularities have also been reported in the

temporal lobes: for example, changes in the distribution of NOS-containing neurons

(Akbarian, 1993b), and alterations in the cytoarchitecture and volume of the hippocampus

and entorhinal cortex see (Winn, 1994) for further references). It has been proposed that

changes in the location, but not the number, of these NOS-containing neurons in brains

of schizophrenics reflects abnormal neuronal migration during development, which

presumably would be followed by the establishment of unusual patterns of synaptic

connectivity (Bloom, 1993).

Alzheimer's disease

The primary causes of Alzheimer's disease have not been elucidated, yet. The disorder

was first described at the beginning of this century in a demented woman by Alois

Alzheimer. Two major brain lesions were observed, which later became diagnostic for

Alzheimer's disease and which are generally termed senile plaques (SPs) and

neurofibrillary tangles (NFTs). Today, Alzheimer's disease is diagnosed clinically on the

basis of neurological examination and neuropsychological testing indicating progressive

impairment of memory and intellectual functioning. Also, brain imaging techniques show

severe brain atrophy due to extensive neuronal cell loss. However, the diagnosis of

Alzheimer's disease is only reliable if a histopathological examination at brain autopsy

shows high numbers of SPs and NFfs particularly in the hippocampus and the cerebral

cortex. Apart from the SPs and NFfs, the Alzheimer's disease brain pathology also

includes congophilic angiopathy of the cerebral blood vessels (Van Broeckhoven, 1995).

The SPs are extracellular deposits in the brain parenchyma made up of a core, consisting

of fibrils of a protein termed ~-amyloid, surrounded by dystrophic neurites (DNs). The

DNs are most likely the result of a neurodegenerative response to the ~-amyloid

deposition since parenchymal deposits of ~-amyloid in the absence of DNs are also

abundantly present. The ~-amyloid is also found in the walls of the small vasculature of

the leptomeninges and the cerebral cortex where it is responsible for the congophilic

angiopathy. The NFTs are intraneuronal inclusions composed of paired helical filaments

of the microtubuli-associated protein tau, although in an abnormally phosphorylated

form. Postmortem immunohistochemical studies have suggested that the appearance of

the ~-amyloid deposits in the parenchyma, the cerebral blood vessels is the earliest

structural sign of Alzheimer's disease (Van Broeckhoven, 1995).
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Epilepsy

Epileptic patients experience severe convulsions in certain brain areas. The underlying

neuronal abnormality in epilepsy is poorly understood. It has been shown that local

cortical damage results in a type of focal epilepsy. The characteristic event is the seizure,

which is often associated with convulsions, but may occur in many other forms. The

seizure is caused by an abnormal high frequency discharge of a group of neurons,

starting locally and spreading to a varying extent to affect other parts of the brain.

Seizures may be partial or generalised depending on the location and spread of the

abnormal neuronal discharge. The attack mainly involves motor, sensory or behavioural

phenomena. Unconsciousness occurs when the reticular formation is involved. Partial

seizures are often associated with damage to the brain, whereas generalised seizures

occur without obvious cause. A large variety of affections are called epilepsy. Two

common forms of generalised epilepsy are the tonic-cronic fit (grand mal) and the

absence seizure (petit mal). The neurochemical basis of the abnormal discharge may be

associated with enhanced excitatory amino acid transmission, impaired inhibitory

transmission, or abnormal electrical properties of the affected cells (Rang & Dale, 1995).

1.3 The- histaminergic central neuronal system; a brief review

Histamine receptors

The early history of histamine is largely associated with allergies. The major actions of

histamine were described at the beginning of this century by Sir Henry Dale and his

colleagues after its isolation from ergot extracts (Dale & Laidlaw, 1910). Histamine's

potent contractile effects on smooth muscles and the induced capillary dilation, which

mimic some initial manifestations of the anaphylactic shock, were found by these

scientists. They also detected the presence of the amine in various tissues, but it was

another German scientist, Feldberg, who clearly demonstrated that histamine was

released from the lung during the anaphylactic shock and that it induced a marked

bronchoconstriction (Feldberg, 1927; Feldberg, 1941).

The idea that histamine exerts its various biological effects via interaction with

several distinct receptor subtypes progressively arose with the design of subtype-selective

antagonists. It was first observed that the "antihistamines" (now known as HI-receptor

antagonists), the first of which were designed by Bovet & Staub (1937), did not block

uniformly all actions of histamine, leaving, for instance, gastric acid secretion unaffected.

Based on this knowledge, as well as on the differential action of histamine and histamine

agonists, Ash and Schild (1966) postulated the existence of a second receptor subtype.

The existence of the H2 receptor was definitively established with the design of

burimamide, a selective H2 (non Hi) antagonist, and with the development of several

relatively selective agonists (Black et al., 1972).
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By the mid 70s, although HI and H2 receptors Were shown to mediate central

histaminergic neurotransmission (Garbarg et aI., 1974), the histaminergic neuronal

system in brain had remained largely unexplored in drug design. Only the traditional

brain-penetrating drugs used for the effects mediated by HI-receptors and available as

over-the-counter sleeping pills, are drugs known to interfere with histaminergic

transmission in the CNS. This fact contrasts with the emergence, during the last decade,

of a detailed knowledge of the histaminergic systems revealing that it shares many

biological and functional properties with other aminergic systems.

In 1983, Arrang et aI. proposed the existence of a third receptor subtype, an

autoreceptor, i.e. presynaptically localised on histaminergic nerve terminals, and

modulating the release of histamine in neurons. The existence of this H3 receptor subtype

was fully established in 1987 by the same researchers when it was shown to be involved

in the regulation of histamine synthesis as well (see section 2). It was initially shown in

brain slices or synaptosomes after labelling the endogenous pool of histamine using

tritiated histidine (Arrang et aI., 1987). Exogenous histamine decreases the

depolarisation-induced release and formation of [3H]histamine, and analysis of these

responses led to the pharmacological definition of H3 receptors. Its localisation in the

brain and periphery was then revealed with the design of highly potent and selective

agonists, such as R-(ex)-methylhistamine, and antagonists, such as thioperamide.

Autoregulation was found in various brain regions known to contain histaminergic nerve

endings, suggesting that all histaminergic terminals are endowed with H3 autoreceptors

(Schwartz et aI., 1995). Regulation of histamine synthesis was also observed in the

posterior hypothalamus, possibly indicating the existence of autoreceptors at the level of

histaminergic perikarya or dendrites (Arrang et aI., 1992).

Metabolic synthesis ofhistamine

The biosynthesis and metabolism of histamine has been extensively reviewed in the

last couple of years. The information presented in this section represents a summary of

these reviews (Onodera et aI., 1994; Schwartz et aI., 1991). Histamine itself poorly

penetrates the blood-brain-barrier (BBB) and must, therefore, be formed locally.

Histamine is synthesised in a single step by the highly specific enzyme L-histidine

decarboxylase (HDC, EC 4.1.1.22, figure 1.3.), and HOC inhibitors are, thus

potentially useful tools to investigate the role of histamine. S(ex)-fluoromethylhistidine

potently inhibits in a stereoselective, time-dependent, and concentration-dependent
manner cerebral HDC with an inhibitor constant [Ki] of _10-5 M, whereas related

decarboxylases such as dopa or glutamate decarboxylase are not significantly affected

(Garbarg et ai., 1980). Indeed, ex-FMH is a suicide substrate that remains bound to the

enzyme after being decarboxylated. S(ex)-fluoromethylhistidine, administered

systematically in rather low dosages, rapidly, completely, and in a long-lasting manner

8
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inactivates HDC in brain and peripheral organs (for references see Schwartz, 1991a).

Restoration of the activity occurs progressively, presumably as a result of neosynthesis

of HDC molecules, and in brain the process is first detected in the hypothalamus in which

histamine perikarya are located (Garbarg et ai., 1980). Because a-FMH efficiently

depletes histamine stores in cerebral neurons (Garbarg et ai., 1980; Maeyama et ai.,

1982), the compound is a useful tool for investigating the amine turnover and functions

therein.

It was shown by Sakai et ai. (1992) that the H3-receptor antagonist thioperamide

significantly increased HDC activity in the brain of various strains of mice (figure 1.3.).

It could not be demonstrated, however, that the H3 agonist R(a)-MeHA decreases HDC

activity (Oishi et ai., 1989).

Histamine present in the brain is stored in neurons and mast cells. It is being released

from the neurons upon depolarisation. Obviously, mast cells do not depolarise because

mast cells do not posses voltage-dependent Ca2+ channels in their plasma membrane.

The brain mast cells are, therefore, considered as slow-turnover pools and are with

difficultly depleted in contrast with the neuronal storage. The function of brain mast cells

is unknown and the existence of additional non-neuronal pools was postulated (Schwartz
~

et ai., 1991).

~I~JIJ:-fJ:istamine release from histaminergic neurons· is not only inhibiteg by

stimulation of histamine autoreceptors but also by, e.g., a2-adrenoreceptors, Ml

muscarinic receptors, and lC-opioid receptors (Schwartz et ai., 1991). Since these

regulations are also observed with synaptosomes (Schwartz et ai., 1990), all these

receptors presumably represent true presynaptic heteroreceptors. In contrast, histamine

release is enhanced by stimulation of nicotinic receptors in rat hypothalamus and by fl

opioid receptors in mouse cerebral cortex (Schwartz et ai., 1991). Neither the opposite

effects of the lC- and fl-opioid receptors, nor their physiological functioning, are well

understood. Also, the physiological function of the localisation of the nicotinic receptors

on the histaminergic nerve terminals remains unclear.

Inactivation ofhistamine

Histamine neurons seem to be almost unique among monoaminergic neurons in that

they lack a high-affinity reuptake system. The only way to deactivate the histamine

released is by catabolism (Schwartz et ai., 1991). This catabolism occurs along two

alternative pathways, Le. transmethylation into teie-methylhistamine (t-MeHA) catalysed

by histamine N-methyltransferase (HMT, EC 2.1.1.8), and oxidative deamination into

imidazolacetic acid (IAA), catalysed by diamine oxydase (histaminase, EC 1.4.3.6)

(figure 1.3). Under normal physiological conditions, only the former pathway operates in

mammalian brain; it must be noted, however, that if this route is inhibited by an HMT

9
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inhibitor such as metoprine (Thomas & Prell, 1995), thc:-Iatter pathway forming the IAA

metabolite becomes important (see figure 1.3).

NH2

N~OH
L-Histidine

I Histidine Decarboxylase (HDC)

• NH2 'znhibitor

~ a-FMH
metoprine 1\.

\i N~NH
\nhibitor Histamine

N-methyltransferase (HM1 ~
. ( diamine-oxydase (DAO,histaminase)

negatIve

feedback ~NH2 _

H3C- NV N NrQ
tele-Methylhistamine ~.I.MA "imidazol-4-acetaldehyde"

, "'"O-B (suspected intermediate)

~ ~aldehYde oxidase
H3C-NVN 0

"l-methyl-imidazol-4-acetaldehyde"
(suspected intermediate) ~OH

laldehYde-OXYdase N'-\ II
, ~NH 0

KYOH
Imidazolacetic acid

H3c-NV NH 0

tele-Methylimidazolacetic acid (t-MIAA)

Figure 1.3 Synthesis and metabolism of histamine

The HMT activity is not only inhibited by compounds like metoprine, but also by its

own reaction product t-MeHA, which causes an increase in histamine levels in the brain,

implying a possible regulatory role (Schwartz et al., 1973). Hence, another possible way

to increase the level of histamine by influencing its metabolic pathway, is by inhibiting

MAO-B with, e.g., pargyline which causes an increase in t-MeHA levels and, thus,

indirectly causes increasing histamine levels as well (Schwartz et al., 1991).
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Cell bodies

The central histaminergic neuron system in rat brain was identified by

immunohistochemical studies with antibodies against histidine decarboxylase (HDC)

(Panula et at., 1989; Watanabe et at., 1984) or conjugated histamine as markers, and

recently, by in situ hybridisation studies using oligonucleotides corresponding to HDC

cDNA (Bayliss et ai., 1990; Panula et at., 1990). Cell bodies of the histaminergic

neuronal system are located exclusively in the tuberomammillary nucleus of the posterior

hypothalamus in five cell clusters known as E1-E5.

Histaminergic neurons are relatively large (25-35 /lM in diameter), and have 2-4 well

developed dendrites with a few dendritic spines. Some of the cell bodies are located in the

ventral surface of the brain and the dendrites seem to be in contact with the cerebrospinal

fluid (CSF) (Hayashi et at., 1984; Watanabe et ai., 1984). The membrane properties of

the neurons have been studied electrophysiologically in vitro, using explants of rat

hypothalamus (Haas & Reiner, 1988). The neurons are spontaneously active, firing at

about 2 Hz; their action potentials are followed by marked after-hyperpolarizations. These

morphological and electrophysiological features of the cell bodies are similar to those of

other monoaminergic neurons, such as noradrenergic, serotonergic and cholinergic large

neurons lOCated elsewhere in the neuronal system (Onodera et ai., 1994).

The histaminergic neurons are characterised by the presence of an unusually large

variety of markers for other neurotransmitter systems: glutamic acid decarboxylase, the

gamma-aminobutyric acid (GABA)-synthesizing enzyme; adenosine deaminase, a

cytoplasmic enzyme involved in adenosine inactivation; galanin, a peptide co-localised

with all other monoamines; (Met5)-enkephalyl-Arg6Phe7
, a product of the proenkephalin

A gene; and other neuropeptides, such as substance P, thyroliberin, or brain natuiretic

peptide (Schwartz et at., 1995). The functions of the putative co-transmitters remains to

be established, but their presence indicates that the histaminergic system is indeed

involved in whole-brain activity, and can have implications in pathophysiological

conditions such as pain, anxiety, and, more generally, regulation of the overall state of

neuronal and glial activity.

Afferentfibre connections

Afferent fibre connections to the histaminergic neurons from the prefrontal cortex,

medial preoptic nucleus, and septum-diagonal band complex have been demonstrated by

Ericson et at., (1989; 1991). The details of the origin of the neuronal inputs to the

tuberomammillary nucleus of the posterior hypothalamus were determined using

comprehensive retrograde and anterograde tracing techniques. Their results indicated that

the main afferent fibres originated from some limbic forebrain regions, such as the

infralimbic cortex, septum and preoptic region. The areas associated with primary

sensory or motor functions did not innervate the tuberomammillary nucleus (Onodera et
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ai., 1994). The histaminergic neurons receive synaptic contacts from varicose fibres

containing neuropeptide Y, substance P and y-aminobutyric acid (GABA). Adrenergic,

noradrenergic and serotonergic afferents, are also reported to innervate the

tuberomammillary nucleus of the posterior hypothalamus (Ericson et ai., 1989).

Distribution ofefferentfibres

Efferent fibres of the histaminergic system are distributed in almost all regions of the

brain from the olfactory bulb to the spinal cord in rats. The density of these fibres is

highest in the hypothalamic nuclei, medial septum and diagonal band, moderate in the

cerebral cortex, basal ganglia and amygdaloid complex, and low in the olfactory bulb,

hippocampus, caudate-putamen, brain stem, cerebellum, spinal cord and posterior

hypophysis. No fibres innervate the retina or the intermediate and anterior lobes of the

hypophysis (Onodera et ai., 1994) (see figure 1.4).

Phyiogeny ofthe histaminergic neuronal system

All vertebrate brains so far studied contain a significant amount of histamine possibly

of neuronal origin (Mild et ai., 1992). Besides the rat brain, the histaminergic system has

been- demonstrated immunohistochemically in guinea pig (Airaksinen & Panula, 1988),

tree shrew (Airaksinen et ai., 1989) and human brains (Panula et ai., 1990) and in the

brains of nonmammalian vertebrates, such as the turtle (Inagaki et ai., 1990), frog

(Airaksinen & Panula, 1990), teleost (Inagaki et al., 1990), and lamprey (Brodin et ai.,

1990). In these animals, the basic organisation of the system is the same; i.e., the cell

bodies are located in the posterior part of the ventral hypothalamus and have extensive

fibre projections to almost all areas of the brain. The only exception observed so far is the

lamprey, which has a second group of histamine-immunoreactive neurons in the

hindbrain (Brodin et ai., 1990).

PI
Figure 1.4. A sagittal diagram of the histaminergic system in the rat brain. Arrows indicate the

fibre projection from the cell bodies (asterisk). Abbreviations: Cb, cerebellum; CC, cerebral

cortex; Hi, hippocampus; Hy, hypothalamus; IC, inferior colliculus; MO, medulla oblongata;

OB, olfactory bulb; Pi, pituitary; SC, superior colliculus; Sp, spinal cord; St, striatum; Th,

thalamus; TM, tuberomammillary nucleus (Wada et at., 1991).
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These cells may correspond to the cell bodies that appear transiently in the lower brain

stem of the rat embryo during ontogenesis (Auvinen & Panula, 1988). In general, the

principal morphological features of the histaminergic neuron system appear to be well

conserved among vertebrates.

Ontogeny ofthe histaminergic neuronal system

The ontogeny of immunoreactive histamine (irHA) (Auvinen & Panula, 1988) and

immuno-reactive histidine decarboxylase (irHDC) neurons (Reiner & McGeer, 1987)

was studied in rat brain. The first irHA perikarya were seen on embryonic day 13 in the

border of metencephalon and mesencephalon and on day 15, in the ventral

mesencephalon, metencephalon, and myelencephalon. From these scattered cells a

transient ascending and descending fibre system starts to develop on embryonic day 15

but has completely disappeared on day 20. In contrast, in the basolateral hypothalamus,

irHA (Reiner & McGeer, 1987) and irHDC cells (Reiner & McGeer, 1987) were first

detected on embryonic day 16 when they had stopped their mitotic division. The

differentiation of immunoreactive neurons in the various subgroups of the caudolateral

part of the tuberomammillary nucleus seems largely achieved by embryonic day 20,

whereas the appearance of the dorsal subgroup in the medial part of the nucleus only

occurs during the last prenatal days.

The development of most irHA fibres takes place during the first two postnatal weeks

(Auvinen & Panula, 1988), which coincides with the developmental pattern of HDC

activity taken as a selective marker of histamine neuronal pool (Martres et al., 1975).

In contrast, irHA mast cells are most numerous on postnatal day 4 (when they are mostly

located in the hippocampal area), and after that, their number gradually decreases

(Auvinen & Panula, 1988), a pattern that explains a decrease in histamine levels after day

4, as proposed by Martres et al. (1975).

2. The histamine H3 receptor

The histamine H3 receptor was discovered as an autoreceptor, i.e. presynaptically

localised on histaminergic nerve terminals, and controlling the synthesis and release of

histamine in cerebral neurons (Arrang et al., 1983; Arrang et al., 1987). It was observed

that, after potassium depolarisation, eH]-histamine is released from rat brain cortex slices

preloaded with eH]-histidine. Exogenous histamine decreases the release and formation

of eH]-histamine and the analysis of these responses led to the pharmacological

definition of the H3 receptor (Arrang et ai., 1983; Arrang et al., 1987). Using

microdialysis, push-pull canula superfusion or ex vivo histamine determination, several

authors (Arrang et at., 1987, Koss & Hey, 1992; Prast et al., 1994; Taylor et al., 1992)
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were, subsequently, able to show in vivo effects of the stimulation of the H3 receptor.

The autoregulation was found in various brain regions known to contain histaminergic

nerve endings, suggesting that all terminals possess H3 autoreceptors (Koss & Hey,

1992; Prast et aI., 1994; Taylor et aI., 1992).

More recently it was found that the H3 receptor also acts as a heteroreceptor,

regulating the release of other neurotransmitters such as acetylcholine (Clapham &

Kilpatrick, 1992) serotonine, noradrenaline, and dopamine both in the CNS (Schlicker et

aI., 1988; Schlicker et aI., 1993; Schlicker et al., 1989; Schlicker et aI., 1994) and in

peripheral tissues such as the GI tract (Bertaccini et aI., 1991). Based on these findings,

the H3 receptor should be considered a potentially important regulatory centre which

modulates a variety of brain (section 3) and peripheral functions.

2.1.1 Pharmacological characterisation

As the molecular structure of the H3 receptor remains to be established, the

information on this receptor has to be based on its pharmacological and physiological

properties. Fortunately, the H3 receptor has been the target for successful development of

selective agonists and antagonists (Leurs et aI., 1995). Histamine, itself, is a quite potent

H3 agonist (e.g. Arrang et aI., 1983; Cumming et aI., 1991; Leurs et aI., 1995). As

might be expected, most potent H3 agonists are obtained from modifications of the

histamine molecule (Table 1). Nevertheless, substituents on the imidazole ring result in a

marked decrease in agonistic activity and affInity (Leurs & Timmermann, 1992), as has

been found for the other histamine receptors. In contrast with the HI and HZ receptors,

selective and highly potent H3 agonists have been synthesised (Leurs & Timmermann,

1992). Substitution of the side chain of histamine has resulted in the high affinity H3

agonist (R)-a-methylhistamine (Arrang et al., 1987; Arrang et aI., 1985), whereas

replacement of the amino group with a basic isothiourea group resulted in the potent

agonist imetit (Ganellin et aI., 1992; Garbarg et aI., 1992; Howson et aI., 1992; Leurs et

aI., 1995; Van der Goot et aI., 1992). The most potent H3 agonist known so far is the

compound SKF 91606 (pDz 9.0) which showed that the sulphur atom in the isothiorea

group is not essential (Howson et al., 1992). The alkyl chain separating the imidazole

ring and the amine group can be longer than an ethylene as proved by the potent agonist

immepip (pDz 8.0) (Vollinga et al., 1994). It must be noted, however, that only a cyclic

lengthened side-chain is allowed for agonistic activity. Otherwise, extension of the side

chain leads to potent histamine H3 antagonists, such as impentamine (pAz 8.4 in the

guinea pig jejunum) (Leurs et aI., 1995).

The best known H3 antagonists can be divided into four main groups. The first

comprises histamine and imetit analogues, which result from an elongation of the side

chain between the imidazole group and the cationic nitrogen. This group of compounds
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contains two of the most potent H3 antagonist clobenpropit and impentamine (Table 1,

Leurs et ai., 1995a). The second group of antagonists is formed by burimamide

analogues (Vollinga et ai., 1994) in which thioperamide, the fIrst potent H3 antagonist

described (Arrang et at., 1987), has been included. Although thioperamide is a

burimamide analogue, structure-activity relationships have questioned the analogy

between the way of interaction with the H3 receptor of thioperamide and other

burimamide analogues. Therefore, thioperamide and its derivatives (e.g., GT-2016, a

non-isothiourea derivative as described by Tedford et at., 1995) should be included in a

third group of compounds.

Table 1 Some of the most potent histamine H3 rceptor ligands

H3-receptor Agonists H3 receceptor antagonists

~NH2 r<c/~D
N.H~N HsC H

HN~N

(R).(X.methylhistamine

Thioperamide

,.=("-'Sy NH2 NH
)l

NHvN NH
r==("'/"s NVNH...".N H.&' CI

Imetit (VUF 8325)
Clobenpropit (VUF 9153)

NC:ONH

~o~
NHVN

Immepip (VUF 4708) Iodoproxyfan

~NH2 ~NH2
NHVN NH

NH~N

SKF91606
Impentamine (VUF 4702)

Finally there is the group of compounds that show H3 antagonism, but their chemical

structure does not fall into any of the above categories and their functional group is not

protonated like iodoproxyfan (Ligneau et ai., 1994). It should be noted, however, that

agonistic activity has been described for this compound (Schlicker et at., 1995) making it

the fIrst H3 agonist lacking an amine function. Apparently, a lipophilic moiety separated

from the imidazole ring by an alkyl spacer is sufficient for H3 antagonistic activity (Leurs
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et al., 1995a). Recently clozapine, a non-imidazolic tricyclic compound, has been shown

to be an H3 antagonist (Alves Rodrigues et al., 1995; Kathmann et al., 1994), and

preliminary studies on the structure affinity relationships have been determined for a

series of clozapine analogues (Alves-Rodrigues et al., 1996).

2.1.2 Biochemical aspects of the H3 receptor

Second messenger

Due to the relatively low abundance of histamine H3 receptors in various tissues and

because highly sensitive radioligands have only recently become available, the

biochemical investigations of the H3 receptor are limited. Using eH]-histamine as

radioligand, the solubilisation of the bovine H3 receptor from brain tissue was reported

(Zweig et a/., 1992). The apparent weight of the solubilised receptor suggested a possible

co-solubilisation with a G-protein. It appeared that the eH]histamine binding to bovine

membranes could be inhibited by guanine nucleotides (Zweig et al., 1992), conflrming

the results of (West et al., 1990) on the coupling of the H3 receptor to a G-protein.

Furthermore, three different studies have given strong experimental evidences for the

coupiing of H3 receptors to a G-protein including a PTX sensitive stimulation of [35S]_

GTP 'yS binding(Clark & Hill, 1995; Clark & Hill, 1996; Clark et al., 1993).

In a study using the human gastric tumoral cell line, HGT!, Cherifi et a/. (1992) partly

purified the histamine H3 receptor present in these cells as one single 70 kDa protein. A

coupling to intracellular cAMP levels is unlikely, and an inhibition of the basal and

carbachol-induced formation of phosphoinositides was detected (Cherifi et a/., 1992)

suggesting a negative coupling of this H3 receptor to phospholipase C (Cherifi et al.,

1992). The nature of the G-protein involved was not clear. Moreover, it is not known

whether the inhibitory effects on 1P3 production are due to a direct effect on

phospholipase C or can be explained by an inhibition of the influx of extracellular Ca2+. It

has been suggested that histamine can reduce neuronal Ca2+ entry and subsequent

histamine release by inhibiting N-type Ca2+channels via hyperpolarization of the neurons

(Takemura et a/., 1989). This suggestion was supported when Yang & Hatton (1991)

found that the hyperpolarization can be antagonised by the K+- channel blockers 4

aminopyridine and triethylamine, suggesting that the H3 receptor might be directly or

indirectly linked to hyperpolarizing K+-channels. Schlicker and colleagues (1994)

showed a marked Ca2+ dependence of the H3 receptor mediated inhibition of

noradrenaline release which is compatible with coupling of the H3 receptor to a G

protein. The results also suggested no coupling of the H3 receptor to adenylyI cyclase, to

ATP-dependent K+ channels, or to (TEA-sensitive) voltage regulated K+ channels

(Schlicker et al., 1994), in contrast with the suggestions made by Yang & Hatton (1991).
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It can be concluded that no clear data are yet available on the second messenger

involved in transducing signals from the membrane bound H3 receptor to its effector in

the intracellular compartment.

Receptor subtypes

Similarly, due to the limited data available on the biochemical characteristics of the

H3 receptor, the existence of H3 receptor subtypes has been postulated by different

research groups solely based on pharmacological data (Clapham & Kilpatrick, 1992;

Leurs et aI., 1996; Schlicker & Kathmann, 1994; Schlicker et aI., 1996; Schworer et

al., 1994; West et al., 1990). The first indications of H3 heterogeneity were obtained

from receptor binding studies (Cumming & Gjedde, 1994; Jansen et al., 1994; West et

al., 1990) alone. As radioligand binding studies on their own cannot prove the

existence of subtypes, suggestions made in these studies should be treated with caution.

More recently, however, several groups have presented functional evidences for the

possible existence of H3-receptor subtypes. Most of these studies are based on

comparisons of receptor affinities (obtained from binding studies) and functional data

obtained from compounds which exhibit distinct pharmacological behaviours and

profiles in the central nervous system versus the peripheral nervous system (Leurs et

aI., 1996; Schlicker & Kathmann, 1994; Schlicker et aI., 1996; Schworer.et aI., 1994).

Nevertheless, additional studies are necessary to clarify whether the observed

differences are due to differences in efficiency of receptor coupling, species differences,

or H3-receptor subtypes. Detailed information on this field is mandatory as numerous

H3 ligands are currently being investigated for their therapeutic potential in several CNS

pathologies (see section 3.5. for detailed information) such as epilepsy (Yokoyama et

al., 1994), sleep disorders (Lin et aI., 1990) and Alzheimer's disease (Airksinen et al.,

1991; Cacabelos et al., 1992; Femandeznovoa et al., 1994; Mazurkiewicz-Kwilecki &

Nsonwah, 1989; Panula et al., 1995).

2.2 General (patho)physiological and clinical aspects in the
peripheral nervous system

The histamine H3 receptor is involved in various physiological processes. A first

'group' of processes involving the H3 receptor and the "waking amine" histamine is that

correlated with sympathetic actions, Le. arousal, increased locomotor activity and the

suppression of food intake. Highly correlated to those physiological conditions are

antinociception and anxiety, which are also partly mediated via the histamine H3 receptor.

The H3 receptor may be involved in other processes, such as convulsions and leaming.

Besides the histaminergic interactions mediated via the H3 receptor in the central nervous

system, the H3 receptor is involved in some peripheral physiological conditions as well.
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The central (patho)physiological aspects of the histamine H3-receptor will be

comprehensively discussed in the next chapter. We will now focus on studies done in

peripheral tissues.

Heart and cardiovascular

Histamine H3 receptors have been shown to occur on postganglionic sympathetic

neurons supplying blood vessels and the heart (Endou & Levi, 1995; Endou et at., 1994)

(see table 2 for further references). However, this does not appear to be a general

phenomenon since, in the model of the superfused rat vena cava, inhibitory H3 (unlike

e.g., GABAB) receptors could not be found (Schneider et at., 1991).

Table 2 Occurrence of H3 heteroreceptors in the cardiovascular system (Schlicker, 1994).

AuthorsSpecies Tissue

Guinea pig Heart

Rat Heart

Man Saphenous vein

Pig Vasculature of the retina

Guinea pig Mesenteric artery

Rat Resistance vessels

(puder et al., 1990; Luo et al., 1991)

(Malinowska & Schlicker, 1993a)

(Molderings et al., 1992)

(Schlicker et al., 1990)

(Ishikawa & Sperelakis, 1987)

(Malinowska & Schlicker, 1991; Malinowska &

Schlicker, 1993b; Hey et al., 1992b)

Histamine H3 receptors in the cardiovascular system are not restricted to the

sympathetic nerve endings but also occur in the endothelium and mediate vasorelaxation

by releasing nitric oxide and prostacyclin (Ea-Kim et at., 1992). Moreover, evidence for

the existence of central histamine H3 receptors modulating cardiovascular function has

been presented (Imamura et at., 1994; Imamura et at., 1996; Mcleod et at., 1994).

Airways

Histamine H3 receptors have also been detected in lung by binding studies (Arrang et

at., 1987b), and various studies have investigated a functional role for these receptors in

airways.

The H3 agonist (R)-a.-methylhistarnine has no effect on airway smooth muscle tone in

vitro or in vivo. Nor does the H3 antagonist thioperamide influence either basal airway

tone or the airway response to histamine, indicating that H3 receptors are unlikely to be

present on smooth muscle of guinea pig or human airways (Ichinose & Barnes, 1989;

1990; Ichinose et at., 1989). Furthermore, inhaled (R)-a.-methylhistamine has no effect
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on airway function in asthmatic subjects (O'Connor"& Barnes, 1990). There is no

evidence for H3 receptors in human bronchial vessels (Barnes, 1992).

(R)-a.-methylhistamine has an inhibitory effect on vagus nerve-induced contraction of

an innervated guinea pig tracheal tube preparation, but no effect on acetylcholine-induced

contraction, (lchinose et ai., 1989). The inhibitory effect is greater for vagus nerve

stimulation (preganglionic), indicating that modulation occurs both at parasympathetic

ganglia and postganglionically. These effects are blocked by thioperamide, but not by

mepyramine or cimetidine, indicating that H3 receptors are involved and presumably

localised on parasympathetic ganglionic neurones and postganglionic cholinergic nerve

terminals. Histamine, in the presence of HI and H2 antagonists, has a similar inhibitory

action and has no effect at low concentrations. In human bronchi in vitro an inhibitory

effect of (R)-a.-methylhistamine is seen on electrical field stimulation induced contraction,

indicating a similar inhibitory effect on postganglionic cholinergic nerve, which effect is

inhibited by thioperamide (Ichinose & Barnes, 1989). This demonstrates the presence of

inhibitory H3 receptors on postganglionic cholinergic nerves in human airways.

Stimulation of the vagus nerve in" rodents causes bronchoconstriction and airway

microvascular leak which is due to the release of tachykinins, and particularly substance

P, from sensory nerve endings (Barnes, 1987; Lundberg et al., 1983). The release of

tachykinins from airway sensory nerves may be modulated through a number of

prejunctional receptors, including Il-opioid and GABAB receptors (Belvisi et ai., 1989;

Belvisi et ai., 1988; Belvisi et al., 1989). (R)-a.-methylhistamine has an inhibitory effect

on vagus nerve-induced bronchoconstriction and leakage in guinea pig airways, but no

effect on the equivalent degree of bronchoconstriction or leakage induced by substance P

(Ichinose & Barnes, 1989; Ichinose & Barnes, 1990; Ohkubo et al., 1995). This

inhibitory action of (R)-a.-methylhistamine is blocked by thioperamide which indicates

the presence of inhibitory H3 receptors on airway sensory nerves (Ohkubo et ai., 1995).

Since neurogenic inflammation may be important in asthma (Barnes, 1986), this suggest

that H3 agonists could be of therapeutic benefit in asthma and other diseases where

neurogenic inflammation has been implicated (Barnes et ai., 1990). However, inhaled

(R)-a.-methylhistamine was found to have no effect on the bronchoconstriction induced

by inhaled metabisulphite, which is believed to cause bronchoconstriction through

activation of neural pathways (O'Connor & Barnes, 1990).

H3 agonists inhibit the release and synthesis of histamine in central neurons (Arrang et

al., 1987b). It is possible that H3 receptors may similarly inhibit synthesis and release of

histamine from lung mast cells (Arrang et ai., 1987). Allergen induced

bronchoconstriction in sensitised guinea pigs is indeed enhanced by thioperamide, but

unaffected by cimetidine, whereas it is almost completely abolished by mepyramine

(Ichinose & Barnes, 1990a). Since thioperamide has no effect on histamine-induced
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bronchoconstriction, this strongly suggests that histamine released from pulmonary mast

cells by the allergen challenge normally inhibits further release via H3 receptors on mast

cells (Barnes, 1992). Inhibiting of H3 receptors results in increased histamine release.

Gastrointestinal tract
H3 receptors are present in the gastrointestinal tract, intravenous infusion of the H3

agonist (R)-a-methylhistamine, induced a dose-related inhibition of pentagastrin

stimulated gastric acid output in cats (Bado et ai., 1991) and of pentagastrin- and

bombesin-stimulated gastric acid output in dogs (Soldani et ai., 1994). These effects

were completely prevented by thioperamide, suggesting that they are entirely modulated

via histamine H3 receptors. Neither (R)-a-methylhistamine nor thioperamide significantly

modified the increase in plasma gastrin levels induced by bombesin. Histamine H3

receptors may represent an effective mechanism for the negative control of stimulated

gastric acid secretion (Soldani et ai., 1994). It must be mentioned, however, that these

results could not be confirmed in rats and humans (see Coruzzi et al., 1992 for further

references). West et ai. (1990) already reported that different subtypes of histamine H3

receptors (H3A and H3B) exist in the rat brain. Further evidence has been given by Leurs

et al. (1996) based both on [I25I]iodophenpropit and Na-pH]methylhistamine binding

studies in rat brain cortex, and functional studies of the H3 receptor in the guinea pig

jejunum and mouse brain cortex (see section 2.1.2).

In view of the multiple efficient therapies available for the treatment of gastroduodenal

ulcers a role for H3-ligands is rather remote in these pathologies.

Besides modulating the release of gastric acid, histamine H3 receptors are also

involved in the mechanical activity of the small and the large intestine, and release of

serotonin from the intestines. Various authors reported that (R)-a-methylhistamine

inhibited electrically-induced contractions in guinea pig intestine, and that this effect is

completely antagonised by thioperamide (Leurs et ai., 1991; Vollinga et ai., 1992). The

physiological role of this effect might be related to the state of arousal in which the

sympathetic nervous system is being most active. Probably also related to this mode of

regulation is the the reported ability of histamine and (R)-a-methylhistamine to inhibit the

release of serotonin from the porcine small intestine (Schworer et al., 1992). Again, this

effect was antagonised by thioperamide, indicating that the effects are mediated via

histamine H3 receptors, likely to be localised directly on the enterochromaffin cells

(Schworer et al., 1992).

In view of the reported inhibition of the NANC, cholinergic, and serotonergic

transmission (see Leurs et al., 1995 for references) H3-receptor agonists could be seen as

putative anti-diarrhoeal drugs.
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2.3 Studies in human tissues

There is evidence that a histaminergic neuronal system reminiscent of that described in

rodents in present in the human brain (Panula et ai., 1990). Using antisera against

histamine, Panula et al. (1990) revealed a well-organised network of varicose fibres

throughout the frontal and temporal cortex of adult humans. The densest area was seen in

lamina I, where varicose fibres were seen to run parellel to the overlying pia matter.

Hypothalamic samples obtained from autopsy brains of adult humans revealed numerous

histamine-immunoreactive nerve cell bodies in the posterior basal hypothalamus in and

around the tuberomammilary nucleus. Numerous neurofibrillary tangles were found in

Alzheimer's disease hypothamali, concentrated in the tuberomammilary area and only a

minority were histamine immunoreactive (Airksinen et ai., 1991). Histamine levels have

also been reported to change in patients with Alzheimer's disease (Cacabelos et ai., 1992;

Fernandeznovoa et ai., 1994; Mazurkiewicz-Kwilecki & Nsonwah, 1989; Panula et ai.,

1995). Although initially conflicting results were reported, recent data has pointed

towards a decrease in the levels of histamine in several specific brain areas such as the

hypothalamus, temporal cortex, and hippocampus (Mazurkiewicz-Kwilecki & Nsonwah,

1989; Panula et ai., 1995).

In 1988, Arrang et ai., showed that histamine modulates its own release in human

brain via stimulation of receptors with a pharmacological profile similar to that of H3

autoreceptors controling [3H]-histamine release and synthesis in the rat brain (Arrang et

al., 1983, 1987a, b). These findings have opened a window on the investigation of the

physiological and clinical significance of H3-receptors neuromodulatory centers for

several central and peripheral functions.

In a work presented by Ichinose & Barnes (1989) it was shown that H3-receptors are

present in human airways inhibiting cholinergic transmission in the bronchi. The H3

agonist, (R)-a-methylhistamine caused a dose-dependent inhibition of cholinergic

contractile responses to electrical field stimulation in human bronchi without affecting the

basal tone. This effect was prevented by thioperamide and was not affected by either HI

or H2 antagonists (Ichinose & Barnes, 1989).The physiological role of these H3

receptors seems to be mainly one of defence against excess bronchoconstriction. As

cholinergic reflex mechanisms are important in airways diseases, H3-agonists could be

beneficial as therapeutic agents.

Bent et ai. (1991) suggested the existence of H3-receptor dependent autoregulation in

human adenoidal mast cells. Nevertheless, (R)-a-methylhistamine did not reverse the

enhancement of spontaneous histamine release elicited by thioperamide which indicates

the possibility of a non-H3 mediated mechanism.

In a review on the modulation of neurotransmitter release via histamine H3

heteroreceptors Schlicker et ai. (1994) reported an H3-mediated inhibitory effect of
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histamine on the electrically evoked release of [3H]-noreadrenaline release in human

slices of cerebral cortex (Schlicker et at., 1994). Although the maximum effect (25%) in

the human tissue was lower than the values observed in the rat (approx. 30%), and in the

mouse (50%), this effect could be important in particularly in pathological conditions

where cerebral noradrenaline levels are reduced (see section 3.4.1 for further comments).

Presynaptic H3 receptors have also been found in sympathetic nerves of the human

saphenous vein (Molderings et at., 1992) where they inhibit the release of noradrenaline.

This effect could be of relevance for inotropic and chronotropic responses of the heart to

sympathetic nerve stimulation. In fact, Endou et al. (1994) have shown an H3-mediated

reduction of both inotropic and chronotropic responses to field stimulation as well as a

reduction of the associated noradrenaline release in isolated atria of the guinea-pig (Endou

et at., 1994).

3. (Patho)physiological aspects of the histamine
H3 receptor in the eNS; clinical aspects of H3
ligands

3.1 The concept of neuromodulation

Researchers working with the brain are gradually realizing that neurons do not just

transmit short-lasting, specific messages to one another. Instead, much of the signalling

among neurons takes the form of biasing the target neuron, so that it responds in a

different way to an on-off signal that mayor may not be generated at a future stage. This

form of communication, which in itself might not produce dramatic effects but may

change the way in which a cell subsequently reacts, is know as neuromodulation

(Kaczmarek & Levitan, 1987). Neuromodulation gives a neuron a recent history, a

working past; without this all neurons in a certain brain area would respond in an

invariant and predictable way (Fig. 3.1). Hence, we can catch a glimpse of how certain

events in the brain are subtly contingent on previous ones.

The positioning of most biogenic arnines in the brain is exactly what we would expect

if they were working not as classical on-off transmitters but as biasing ones. As

neuromodulators, these amines are in a perfect position to influence large populations of

brain cells rather than transmit highly specific signals across discrete contacts. They all

emanate from relatively small cell groups in the brainstem, yet, project outward into the

front of the brain in a diffuse manner.

There are five distinct biogenic arnines associated with the central ascending pathway

and the states of arousal it generates: serotonine, dopamine, noradrenaline, acetylcholine,

and histamine. The following sections will deal with the neuromodulatory action of the
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presynaptic histamine H3 receptor on the release of the amines mentioned above,

including histamine itself.

(
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Figure 3.1 Schematic representation of presynaptic receptor control of neurotransmitter

release.

3.2 Localization of the histamine H3-receptor in the eNS

Reversible labelling of the H3- receptor was fIrst achieved using the highly selective

agonist eH]-(R)-a-methylhistamine (Arrang et ai., 1987b). The binding of this

radioligand is sensitive to guanyl nucleotides, strongly suggesting that, like the other

histamine receptors, the H3 receptor belongs to the superfamily of receptors coupled to

G-proteins (Arrang et ai., 1990). NU-methylhistamine has also been labelled to study the

H3 receptor (West et ai., 1990). Due to their discriminative characteristics between the

high and low afiinity states of G-protein coupled receptors, binding data using

radiolabelled agonists have been difficult to interpret. Radiolabelled antagonists are

known to allow a more detailed and less ambiguous analysis of receptor binding studies.

•The high specifIc activity of the recently reported iodinated H3 antagonists e25I]_

iodophenpropit (Jansen et ai., 1994) and e25I]-iodoproxyfan (Ligneau et ai., 1994),

makes them leading structures for the development of potent and sensitive photoaffinity

label. Controversy about C25I]-iodoproxyfan has increased, however. Within the

concentration range expected to bind to the H3-receptor, this radioligand is not equally

displaced by H3-agonists and antagonists in the rat brain striatum.

Yanai et ai. (1992; 1994) recently reported on the use of S-eH]-methylthioperamide to

radiolabel the H3 receptor. Unfortunately, this study was not done in detail and questions

such as high labelling of peripheral tissues where the H3 receptors have not been

previously detected remained unanswered. Several of these points were analysed in a

recent report from our group in which binding studies using eH]-thioperamide to label

the H3 receptor (Alves-Rodrigues et ai., 1996) were performed. We showed that at

concentrations known to bind mainly to the H3 receptor, most H3 antagonists share a
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high density, low affinity, non-H3 binding site/s, most-likely due to binding to cerebral

cytochrome P450 isoenzymes. This study also concluded that, among the radiolabelled

antagonists available, e25I]-iodophenpropit seems to be the most suitable compound to

label the H3 receptor, provided that agonists are used to define the nonspecific component

of the binding. This conclusion is based on the observation that iodophenpropit clearly

displays distinct affinities for the H3 receptor and the non-H3 receptor components of the

binding of eHl-thioperamide to rat brain cortex (Alves-Rodrigues et at., 1996).

Extensive autoradiography studies using the potent H3 agonist eH]-(R)-a

methylhistamine (Cumming et at., 1991; Pollard et at., 1993) have shown high

heterogeneity in the distribution of these receptors in the rat brain (see Table 3. for data

on the regional distribution of histaminergic fibres and the histamine H3 receptor in rat

brain). In the cerebral cortex H3 receptors are relatively dense and found in all areas and

layers with higher abundance in rostral areas (Schwartz et at., 1991). In the

hippocampus they show moderate to high density with a clear abundance on the dentate

gyrus (Schwartz, 1991a). The amygdaloid complex is a rich area in H3 receptors in

particular the bed nucleus of the stria terminalis which contains dense histaminergic

innervation (Cumming et at., 1991; Pollard et at., 1993). The basal forebrain is also a

rather enriched area in H3 receptors. In this part of the brain H3 receptors abound in the

anterior olfactory nuclei, nucleus accumbens, and particularly in the dorsomedial part of

the striatum (Schwartz, 1991a). They are less numerous in the globus pallidus and even

less in the septum. In the thalamus and hypothalamus H3 receptors have a moderate

density which contrasts with the high density of histamine axons; they are, however,

detectable at the level of the tuberomammillary nucleus where they may reside on

histaminergic neurons perikarya or dendrites. In the mesencephalon, H3 receptors are

locally concentrated in the pars reticulata of the substantia nigra (Schwartz, 1991a).

In the cerebellum low densities are present in all layers, as in the spinal cord where

low density is seen mainly in the external layers of the dorsal hom. This distribution of

H3 receptors does not strictly parallel that of histaminergic axons, confirming the

observation of the existence of H3 receptors in other than histaminergic neurones firstly

reported by (ScWicker et at., 1988). Localisation of the histamine H3 receptor using the

H3 antagonist e25I]-iodophenpropit (Jansen et at., 1994) showed patterns of

distribution similar to those previously described with [3H]-(R)-a-methylhistamine

(Pollard et at., 1993).
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Table 3 Regional distribution of histaminergic fibres and three histamine receptors in the brain.

Histaminergic

fibres receptors receptors receptors

Olfactory bulb

Cerebral cortex

Rat

++

Guinea

Pig

++

++

Rat

++

Guinea

Pig

++ to +++

Guinea

Pig

ND

++ to

+++

Rat

+++

+++

++ to +++ ++ to +++ + to ++

Oto+ +to+++ ND

Oto+ ++to+++ +to++

Hippocampus

Basal ganglia

Amygdaloid

complex

Septum

Thalamus

++

++

++

++ to +++

++

++

++

+++

++

oto + ++

++ to +++ ++ to +++

+++

ND

+++

+++

ND

+++

++

++ to +++ + to +++ + to ++Hypothalamus

Superior colliculus

Inferior colliculus

+++

++

++

+++

++

++

++

++

++

++

+++

++

++ ++ to +++

+ to +++ + to +++

Tegmentum

Medulla oblongata + to +++

Cerebellum

++

+ to +++

o ++ to +++

Spinal cord + + to ++ ++ ++ to +++ ND ND

Degree of distribution: +, low density; ++, medium density; +++, high density

ND =Not Detected; 0 =Not described (Wada, 1991).

3.3 Regulation of central histamine release

Autoregulatory mechanisms ofthe histaminergic activity

The histamine H3 autoreceptor is localised at the presynaptic nerve terminals of the

histaminergic neurons. Activation of the histamine H3 autoreceptor by either histamine

released from the nerve terminals, or by H3 agonists, such as (R)-a-methylhistamine

(R(a)-MeHA), will decrease the histamine synthesis and its release by the histaminergic

neurons. Under physiological conditions, the H3 receptor exerts a negative feedback on

the histaminergic activity in the brain. For a comprehensive description of the histamine

H3 receptor and its functions the reader is referred to section 2.
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Heteroregulatory mechanisms ofthe histaminergic activity

The regulation of the histaminergic activity, however, is not only dependent on

histamine H3 autoreceptors, but can also be affected by various heteroreceptors localised

on the histaminergic nerve terminals.

The az-adrenoreceptor, when activated by noradrenaline or clonidine, was found to

have an inhibiting influence on the histamine release in rat cerebral cortex (Hill & Straw,

1988) and hypothalamus (Prast et al., 1990). This inhibition was reversed by

phentolamine and the selective az-antagonist yohimbine, indicating a regulatory role in

histamine release by the az-adrenoreceptor.

Stimulation of central muscarinic receptors potently inhibits the histaminergic activity

in the brain (Gulat-Marnay et ai., 1989; Oishi et ai., 1990). Strong stimulation of central

nicotinic receptors can also induce a similar effect (Oishi et ai., 1990). These results were

confirmed by Prast (1994b). The release of endogenous histamine was found to be

inhibited by carbachol, a mixed MI, Mz, M3 agonist, whereas the release of histamine

was enhanced by atropine, a mixed Mlo Mz, M3 antagonist. These observations lead to

the conclusion that acetylcholine, released from the cholinergic neurons, also modulates

the release of histamine via MI and/or M3 heteroreceptors (Prast et al., 1994). The fact

that histamine H3 heteroreceptors modulate acetylcholine release and that muscarinic MI

receptors modulate histamine release, suggests a crosstalk communication between

presynaptic muscarinic and histaminergic receptors. In particular in the hippocampus, this

crosstalk could be of relevance in learning and memory processes.

lC-opioid receptors were also found on presynaptic histaminergic nerve terminals

(Gulat-Marnay et al., 1990). Activation of these hetero lC-opioid receptors attenuates the

histamine release in the brain, which may enhance the sedative actions of lC-opioid

agonists. It must be noted, however, that under basal conditions these K-opioid receptors

are not tonically activated by endogenous dynorphin peptides, and, therefore, do not play

a role under standard physiological conditions.

3.3.1 (Patho)physiological implications
Up to now, no H3-ligands have been introduced in therapy, but intensive research by

several groups has suggested several putative applications. In fact, a new brain

penetrating, non-thiourea H3-antagonist, GT-2016 (see chapter 3.5.) has recently entered

a phase I clinical trial (Tedford et al., 1995).

Sleep / wakefulness
Injection of the selective H3 receptor agonist (R)-a-methylhistamine into the

premammillary area, increased slow-wave sleep and decreased wakefulness and REM

sleep (Monti et al., 1991). When (R)-a-methylhistamine was administered intraperitoneal

(i.p.), no significant changes in sleep variables could be detected. This could be due to
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the fact that systematically (i.p.) administered (R)-a-methylhistamine does not enter the

brain of the rat in concentrations sufficient to produce significant changes of sleep and

wakefulness (Monti et ai., 1991).
Slow-wave sleep induced by (R)-a-methylhistamine given i.c.v. was prevented by

thioperamide, which is consistent with the histamine releasing effect of thioperamide.

Pyrilamine, an HI-receptor antagonist was found to block the effects of thioperamide

(Lin et ai., 1990), suggesting that the arousing effect of the H3 antagonist is related to

activation of central HI receptors what could also explain the sedative effects of HI

receptor antagonists (Rose et aI., 1982; Terlaak et ai., 1994). It must be noted, however,

that inhibition of e.g. serotonin and noradrenaline activity by the H3 agonist (see 3.4.3.

and 3.4.1, respectively) may be partly responsible for the slow-wave sleep increase

(Monti et ai., 1991).

Locomotor activity and anxiety

Thioperamide has been reported to increase locomotor activity of W/WV mice with a

concomitant decrease in their whole-brain histamine content (Sakai et aI., 1991),

suggesting.that thioperamide activates the histaminergic neuronal system and causes

hyperactivity via histamine released from the terminals (Sakai et ai., 1991). The increase

in the locomotor activity by thioperamide was blocked by i.p. pretreatment with (R)-a

methylhistamine, an H3 agonist; pyrilamine, an HI antagonist; or zolantidine, an H2

antagonist (Sakai et aI., 1991); thus, confirming that the increased locomotor activity is

likely mediated via HI/H2 receptors. From these results it is also evident that a

fluoromethylhistamine, a histidine decarboxylase inhibitor, can decrease locomotor

activity. (R)-a-methylhistamine however, was not able to decrease the locomotor activity

by itself but only in combination with a-FMH. The mechanism of this interaction

remains unclear (Sakai et aI., 1993). Concerning the role of thioperamide in locomotor

activity, Clapham & Kilpatrick (1994) reported a role of the histamine H3 receptor in

modulating stimulant-induced locomotor activity in the mouse. Intraperitoneal (i.p.)

administration of thioperamide inhibited, in a dose-dependent manner, the increase in

locomotor activity induced by amphetamine. This inhibitory response evoked by

thioperamide was reversed by the H3 agonist (R)-a-methylhistamine. Clapham &

Kilpatrick reported that neither thioperamide nor (R)-a-methylhistamine affected

spontaneous locomotor activity. These results contrast with those discussed from Sakai et

al. (1991, 1993) but confirm those of Monti (1991).

Another condition closely related to the activated state of arousal, is that of anxiety.

Imaizumi et al. (1993) reported that thioperamide induces the release of endogenous

neuronal histamine, which in tum stimulates both HI and H2 receptors. The stimulation
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of histamine HI receptors may mediate the anxiety, while H2 receptors may playa role in

masking the anxiogenic effect (Imaizumi & Onodera, 1993).

Circadian rhythms

Sakai et ai. (l992a) reported a direct correlation between cerebral histamine content

and locomotor activity. The hypothesis that histamine is a 'waking amine' was supported

by Monti (1993) who reported that the histaminergic activity in rats was significantly

increased during the awake or light periods, while the histamine levels reached a

minimum during the dark periods. It was also shown that administration of thioperamide

increased wakefulness, while (R)-a-methylhistamine, mepyramine and the HDC

inhibitor a-fluoromethylhistidine produce the opposite effects (Monti, 1993). Besides

decreasing wakefulness, a-fluoromethylhistidine also induces food intake, while this

effect is antagonised by thioperamide (Sakata et ai., 1991; Sakata et ai., 1991).

Furthermore, glucodeprivation was found to increase turnover, synthesis and release of

histamine in the hypothalamus (Sakata et ai., 1994), suggesting that the histaminergic

system may playa role in maintaining metabolic energy balance in rats. This observation

might also be the basis for the reported side-effects of weight gain subsequent to HI

antagonist therapy. In rats, the application of thioperamide results in a decrease in food

intake (Doi et ai., 1994; Sakata et ai., 1991; Sakata et ai., 1991), suggesting a putative

application ofH3-receptor antagonists in weight disorders. Mochizuki et at. (1992) found

that neuronal histamine from the anterior hypothalamic area is released in a circadian

fashion, suggesting that the central histaminergic system is related to the circadian rhythm

of rats (Mochizuki et ai., 1992). These results were confirmed by Doi et ai. (1994) who

reported that a sustained infusion of a-fluoromethylhistamine into the rat third cerebral

ventricle disrupted light-dark cycles of feeding, drinking, and ambulatory behaviour.

Overall, it can be concluded from these data that histamine plays a major role in the

control of the circadian rhythm, regulating the overall state of activity in a sympathetic

fashion.

Neuroendocrine regulation

Histamine has been shown to be involved in the central regulation of pituitary

hormone secretion (Knigge & Warberg, 1991). I.c.v. administered histamine stimulates

the secretion of ACTH and j3-endorphin via activation of central histamine HI and H2

receptors (Knigge et ai., 1988). Furthermore, Knigge et at. have shown that blockade of

central HI and H2 receptors attenuated or prevented the release of ACTH or j3-endorphin

to restrain or ether stress (Knigge et ai., 1990), indicating that histaminergic

hypothalamic neurons are involved in the mediation of the stress-induced release of the

pro-opiomelacortin (POMC)-derived peptides. Moreover, in a paper published in 1992

this group showed that the stimulatory effect of histamine and restraint stress on the
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release of POMC-derived peptides from the anterior pituitary involves corticotropin

releasing hormone (CRR) and arginine-vasopressin (AVP). In a more recent work, Kjrer

et at. (1994) reported that dehydration-induced AVP release involves activation of

hypothalamic histaminergic neurons, resulting in the release of histamine, indicating that

histamine serves as a physiological regulator of the AVP release that subsequently is

involved in the regulation of both anterior pituitary hormone secretion and water

metabolism (Kjaer et ai., 1994).

In addition, it was reported that histamine inhibits the basal and stimulated growth

hormone (GH) secretion in the rat (Netti et al., 1991). However, Netti et at. (1991) later

reported that acute systemic administration, of the selective histamine H3 agonist (R)-a

methylhistamine and the H3 antagonist thioperamide at doses known to act on the H3 in

the CNS (Garbarg et ai., 1989), did not significantly affect basal secretion of either

prolactin or GH. The lack of effect of H3 drugs on basal prolactin and GH suggests that

endogenous histamine has only a minor role in the tonic secretion of these hormones

(Netti et al., 1991). This minor role can be shown by an indirect stimulant-induced

hormone secretion. Indeed, thioperamide significantly enhances the morphine-induced

prolactin release, while it inhibits growth hormone release (Netti et al., 1991). The

growth hormone release inhibition was reversed by (R)-a-methylhistamine, and these

results indicate an effect via presynaptic histamine H3 receptors. In contrast to the results

just described, Navarro et at. (1993) reported that (R)-a-methylhistamine, a histamine

H3 agonist, evokes prolactin release by activation of postsynaptic H3 receptors. This

stimulatory effect of postsynaptic histamine H3 heteroreceptors was found when the

agonist was injected into the lateral ventricle of the rat brain. Its stimulatory action was

prevented by thioperamide (Navarro et ai., 1993).

This same effect of stimulatory postsynaptic H3 receptors, was also found earlier by

Schwartz et at. (1991) for enkephalin release in the striatum. These results are illustrative

of the fact that different parts of the brain can be controlled in different ways, depending

on the nature and origin of the modulatory signals.

Cognitive functions

Besides playing a regulatory role in the waking state, the histaminergic system has

also been found to be involved in memory and learning processes. In rodents,

posttraining memory was facilitated by histamine administration (De Almeida &

Izquierdo, 1988; De Almeida & Izquierdo, 1986). Furthermore, it was demonstrated that

endogenous histamine from mast cells is not involved in memory facilitating processes,

but rather histamine released from histaminergic nerve terminals (De Almeida &

Izquierdo, 1988). Although showing sometimes conflicting results, the involvement of

the histaminergic neuronal system in cognitive functions was further supported by Smith

et at. (1994) (Smith et ai., 1994) and Meguro et ai. (1995) by demonstrating that (R)-a-
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methylhistamine and thioperamide are indeed effective iIi modulating cognitive processes

in the brain. Miyazaki et at. (1995a) showed that, via histamine HI receptors, histamine

elicited an ameliorating effect on the scopolamine-induced learning deficit, further

supporting the concept that histamine may play an important role in learning and memory.

The mechanism underlying this effect is not quite clear. It was suggested that

thioperamide induces the release of neuronal histamine, which, in turn, stimulates both

histarnine HI and H2 receptors. Especially, stimulation of central histamine HI receptors

leads to the ameliorating effect on memory loss, while central histamine H2 receptors may

counteract this effect (Miyazaki et at., 1995).

In correlation to these cognitive functions, it was found that brain histamine and

histidine levels in Alzheimer's patients are significantly decreased in certain brain areas,

suggesting a disturbed brain histamine regulation in this disease (Mazurkiewicz-Kwilecki

& Nsonwah, 1989; Panula et at., 1995).

Depression

In a recent study, antidepressant-like effects were reported for substances which

enhance histamine brain levels in mice. The H3-receptor antagonist thioperamide reduced

the dUration of immobility in a Porsolt forced swim test. This effect was reversed by (R)

a-methylhistamine which, by itself, did not have any effect (Lamberti et at., 1996) on the

test. Metoprine and L-histidine mimicked the effect of thioperamide further supporting the

role of the histaminergic neuronal system in the control of depressive states.

Schizophrenia

An opposite type of disturbed brain histamine regulation is found in patients with

chronic schizophrenia. In these patients the histaminergic activity has been significantly

increased as shown by an increased amount of histamine metabolites in their

cerebrospinal fluid (Prell et aI., 1995). It is possible that the histaminergic system does

not control these pathologies, but instead is being controlled by them. Reports by

different groups on the histamine H2-receptor antagonist famotidine induced reduction of

negative symptoms in schizophrenic patients (Deutsch et at., 1993; Kaminsky et at.,
1990) further supports a possible role of this amine in this psychotic disease. Restoration

of the original histaminergic activity using H3-agonists might contribute to a therapeutic

approach of these diseases.

Epilepsy

A possible role of histamine in epilepic seizures has often been suggested. Tuomisto

and coworkers (1987) found a general anticonvulsant effect provoked by metropine

induced increase in brain histamine. Moreover, mice treated with a histamine synthesis

inhibitor (a-fluoromethylhistidine) showed a higher susceptibility to seizures induced by
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electroshock. Supporting this hypothesis are the abormal1y low levels of histamine found

in the brain stem of genetically epilepsy-prone rats when compared with resistant control

rats (Onodera et ai., 1992). In epileptic patients higher HI-densities in the electrical focal

of the temporal neocortex were found when using the PET probe [lIC]-doxepin (Iinuma

et al., 1993). This points to a functional upregulation of HI-receptors to counteract the

low levels of histamine in epileptic brains. Recent studies have also shown that the H3

receptor antagonists thioperamide, clobenpropit, or i.c.v. administered histamine

significantly decreased the duration of electrically induced convulsions through activation

of the HI receptor (Yokoyama et ai., 1993; Yokoyama et aI., 1993; Yokoyama et a!.,

1994) while this effect could be antagonised by (R)-a-methylhistamine. When applied

centrally, clobenpropit is approximately lO-fold more potent than thioperamide, which

makes it a promising research tool to investigate these type of neuropathologies. A

contrasting study was presented by Sturman et ai. (1994); in this study the H3

antagonists thioperamide and burimamide potentiated the severity of clonic convulsions

induced by picrotoxin. It should be noticed, however, that thioperamide was

subcutaneously administered, which makes uncertain the amount of compouI).d that

actually reached the eNS. Burlmamide effects could be due to H2-receptor antagonism.

Taken together the main stream of results indicate a protective role for neuronal

histamine in seizures.

Motion sickness and vertigo

Another indication for the usage of an H3 antagonist is related to motion-sickness and

vertigo. Betahistine, a mixed HI agonist I H3 antagonist of moderate potency (Arrang et

aI., 1985), is currently prescribed for the symptomatic treatment of vestibular-related

syndromes, and it is suggested that H3 antagonists, such as thioperamide, are powerful

tools for symptomatic treatment of peripheral vertigo and central vestibular disorders

(Yabe et ai., 1993).

Antinociception and sedation

To some extent antinociception can be considered as a sympathetic physiological

reaction. Thioperamide, at a dose increasing the histaminergic turnover, also elicites an

antinociceptive effect (Malmberg-Aiello et a!., 1994). This antinociceptive effect can be

completely prevented by pretreatment with (R)-a-methylhistamine, which in its own has

a hyperalgesic effect. The antinociceptive effect was also induced by i.p. administration

of L-histidine, and i.p. or i.c.v. administration of metoprine (Malmberg-Aiello et al.,

1994). These reults indicate that the antinociceptive activation of histamine may take place

on a postsynaptic site, and that its hyperalgesic effect occurs with low doses acting on the

presynaptic receptor. Furthermore, it has been shown by Barke & Hough (1994) that

morphine acts on histaminergic nerve terminals, to increase extracellular histamine release
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in the rat periaqueductal gray (PAG). It is suggested that the histaminergic nerve

terminals in the PAG are under tonic GABAergic inhibition and are thus indirectly excited

by morphine. Since thioperamide has the same ability to increase the histamine release in

the rat PAG, it is suggested that thioperamide might be a potential analgesic agent (Barke

& Hough, 1994).

Migraine

Already in the 60's parenteral infusion of histamine has been found to cause pulsatile

headache in both normal subjects and migraine patients (Sicuteri, 1963). In general, the

latter group reacts to lower concentrations of histamine. On the other hand, infusion of

either serotonin or noradrenaline brings relief to migraine pain (Anthony, 1981). As

antihistamines (HI-receptor antagonists) are also known to inhibit the reuptake of

serotonin and noradrenaline in rat brain synaptosomes (Young et al., 1988), one could

speculate that administration of HI receptor antagonists and/or reduction of brain

histamine levels using H3 receptor agonists could be beneficial in attenuating migraine

pains. Although clinical responses to HI antagonists therapy alone have been rather

disappointing in ameliorating vascular headaches (Mansfield, 1990), Matsubara et al.
(1992) (Matsubara et al., 1992) showed that Lv. administration of (R)-a.

methylhistamine inhibited electrically stimulated non-adrenergic, non-cholinergic (as well

as capsaicin induced) neurogenic plasma extravasion in the rat dura mater. The similarity

between this effect and that of the previously reported 5-HTIB/5-HTm agonists,

commonly used in the treatment of acute migraine (Buzzi et al., 1992), raised the

possibility of the use of H3-receptor agonists in the treatment of migraine.

Food intake and satiety

Bombesin (BN) and its mammalian homologue, gastrin-releasing peptide (GRP), are

potent satiety agents and have been shown to be involved in the physiological regulation

of food-intake. There are indications for interaction with the histaminergic system, and it

has been suggested that BN may mediate its satiety effects through activation of the

histaminergic system. Merali and Banks (1994) reported that BN reduced food-intake by

> 50% relative to the control condition; this suppression was blocked by prior treatment

with the histamine H3 receptor agonist (R)-a.-methylhistamine. When (R)-a.

methylhistamine was administered alone, it failed to significantly affect food intake. The

specificity of this effect was further supported by the demonstration that another H3

agonist, imetit, was also able to block the feeding-suppressant effects of BN.

Furthermore, thioperamide blocked the effect of imetit (Merali & Banks, 1994).
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3.4 The histamine H3 heteroreceptor

Central H3 heteroreceptors have been shown to be present on various types of

neurons, particularly on monoaminergic neurons (see Table 4). It has been suggested by

Schlicker et ai. (1992; 1994) that the <I2-adrenoreceptors and the H3 heteroreceptors at

the noradrenergic nerve endings in the brain of rat and mouse interact with each other.

These same suggestions were made for the interaction of H3 heteroreceptors and

dopamine autoreceptors on the dopaminergic nerve endings in the mouse striatum

(Schlicker et ai., 1993). The physiological role of this wide-spread ocurrence of the

histamine H3 heteroreceptor remains unclear, but does support earlier suggestions that the

histaminergic neuronal system might be a regulatory centre for whole-brain activity. In

order to analyse this 'overall function', we will examine to what extent histamine

modulates the release of the various monoaminergic neurotransmitters, and what the

clinical interests of these effects may be.

It should be noticed that most of the studies concerning the role of histamine H3

heteroreceptors in regulating the release of other neurotransmitters were performed in

rodents. To assess the relevance of these effects as clinical and therapeutic targets, it is

crucial to investigate their ocurrence in human brain.

Table 4 Occurrence of H3 heteroreceptors in the central nervous system. The presynaptic location of the

H3 receptors has been proven for the serotonergic and noradrenergic neurones of the rat and mouse brain

cortex and the dopaminergic neurones of the mouse striatum (Schlickeretal., 1994).

Type ofneuron Species Brain regitm Authors

Noradrenergic Man, rabbit, guinea pig Cerebral cortex Schlicker et al. (1994)

Rat Cerebral cortex Schlicker et al. (1989),

Smits (1991)

Hypothalamus Smits & Mulder (1991),

Mouse Cerebral cortex Schlicker et al. (1992)

Dopaminergic Mouse Striatum Schlicker et al. (1993)

Serotonergic Rat Cerebral cortex Schlicker et al.(1988),

Fink et al. (1990), Smits

& Mulder (1991)

Striatum, Hypothalamus Smits & Mulder (1991)

Cholinergic Rat Entorhinal cortex Clapham & Kilpatrick (1992)

Ventral striatum Prast et al. (1993)
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3.4.1 Regulation of noradrenaline release

Histamine was found to have an inhibitory effect on the release of noradrenaline in the

rat brain cortex (Schlicker et at., 1989; Smits & a.h., 1991), and the mouse brain cortex

(Schlicker et at., 1992). It has been confirmed that presynaptic histamine H3

heteroreceptors are involved, and that these heteroreceptors are indeed localised on the

noradrenergic nerve terminals (Fink et at., 1994). Whether these receptors are activated

by released endogenous histamin , under physiological conditions, and playa role in

interneuronal communication remains unclear. The relatively high affinity of histamine

for the H3 receptor, however, strongly points to a tonic action at these heteroreceptors.

As noted above, Cl2-autoreceptors and the H3-heteroreceptors at the noradrenergic nerve

endings in the brain of the mouse and the rat interact with each other (Schlicker et at.,
1992). The underlying mechanism of this crosstalk, however, remains unclear.

Activation of the Cl2-autoreceptors decreases, whereas blockade of the activated (but not

of the non-activated) Cl2-autoreceptors increases the inhibitory effect of histamine

(Schlicker et aI., 1994). Ifassumed that the physiological role ofheteroreceptors is minor

when the level of endogenous noradrenaline in the biophase is high, but increases under

pathological conditions when noradrenaline release from the axon terminals·(Schlicker et

aI., 1992) decreases, it can be speculated that interactions between the presynaptic Cl2

autoreceptor and the presynaptic H3 heteroreceptor on the noradrenergic nerve terminals

possess (patho)physiological significance.

Furthermore, stimulatory NMDA receptors were also found to be located

presynaptically on the noradrenergic terminals in the rat brain cortex (Fink et at., 1989;

Fink et at., 1990), and the NMDA-evoked noradrenaline release in the cerebral cortex can

also be modulated by inhibitory H3 receptors. The functional interaction between H3 and

NMDA receptors may be involved in an inhibitory histaminergic influence on NMDA

receptor-mediated responses (see chapter 3.4.4). Therefore, the histaminergic neuronal

system in the rat cerebral cortex may modulate physiological functions in which the

NMDA receptor system is involved, such as modulation of noradrenaline release (Fink et

at., 1994).

Schizophrenia

Noradrenaline interacts with dopaminergic systems in various regions of the brain.

Tassin (1992) reviewed the evidence for this interaction in the cortex and pointed out that

a reciprocal control exists between dopaminergic Dl receptors and adrenoreceptors. Many

antipsychotic drugs are antagonists at adrenoreceptors, although the Cll blockade shared

by several of these drugs (Richelson & Nelson, 1984) is considered to be responsible for

some of the unpleasant side effects. However, Tassin (1992) concludes that Cll blockade,

by disinhibiting dopaminergic transmission via Dl receptors, may playa role in the
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antipsychotic response, particularly in diminishing positive symptoms in schizophrenia

(Tassin, 1992). Direct clinical evidence in support of such an aI-mediated antipsychotic

action is lacking, however.

Clozapine, alone among antipsychotics, possesses an effective a2 antagonism

(Richelson & Nelson, 1984), which is probably responsible for its ability to increase

plasma noradrenaline. A recent study has shown that treatment of schizophrenia with a

typical antipsychotic drug, fluphenazine, and with the a2 antagonist, idazoxan, leads to

an improvement on both positive and negative schizophrenic symptoms (Litman et aI.,

1993). The improvement was similar to the response induced by clozapine in these

patients, implying that a2 antagonism may well contribute to the clinical efficacy of this

drug. Litman et at. (1993) suggest that this effect may be related to an enhancement of

noradrenergic transmission resulting from blockade of presynaptic a2 autoreceptors.

Depression

Concerning the involvement of noradrenaline in the treatment of depression, it was

found that under depressive conditions, the activity of the noradrenergic system was

reduced (Blier & de Montigny, 1994). It was also reported, however, that depletion of

noradrenaiine in healthy individuals does not induce clinically significant depressive

symptomatology (Blier & de Montigny, 1994). This result suggests that this monoamine

neurotransmitter is not essential to maintain normal mood (Blier & de Montigny, 1994).

An involvement of the noradrenergic system with other systems such as the dopaminergic

and serotonergic systems, is known to be present in depression (Blier & de Montigny,

1994).

Sleep

A completely different pathology in which noradrenaline has been suggested to playa

role, is that of sleep and wakefulness. It has been shown that the noradrenergic system

plays a role in the waking EEG (see for references Monti et aI., 1991). Inhibiting the

release of noradrenaline by (R)-a-methylhistamine, acting on the histamine H3

heteroreceptors at the noradrenergic nerve endings, has been suggested to be partly

responsible for the slow-wave sleep increase in the rat (Monti et aI., 1991).

Cognitive jUnctions

Little is known about the relationshipp between catecholamines (CA) and cognitive

performances. Significant cell loss in locus coeruleus, the major source of cortical and

hippocampal noradrenaline, occurs with advancing age in brain from humans and mice

(see McEntee & Crook (1990) for references). Impaired regulation of brain adrenergic

receptors may occur as a consequence of ageing and age-related decreases in the density

of catecholamines receptors are described in human and animal brains (McEntee &
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Crook, 1990). Arnsten & Goldman-Rakic (1985) tested a. number of drugs that affect CA

activity for their influence on spatial memory in aged rats. The most effective of these

drugs was clonidine which strikingly improved performance in all the animals tested

(Arnsten & Goldman-Rakic, 1985). These studies also showed that the greater the loss of

noradrenaline by toxin-induced depletion, the lower the amount of drug required for

optimal mnemonic improvement. Taken together, these findings prompted Arnsten &

Goldman-Rakic to hypothesize that the beneficial effect of clonidine on memory in aged

monkeys are due to denervation supersensitivity of prefrontal and hippocampal 0.2

receptors. This view receives added support from recent studies using other 0.2 agonists

such as guanfacine (Arnsten et ai., 1988).

In a simple mechanistic fashion, it can be suggested that H3-receptor agonists,

decreasing the noradrenaline release, could be clinically interesting in the treatment of

psychotic disorders or as sleep and memory enhancers, whereas H3 antagonists,

enhancing noradrenaline release, could be useful as antidepressant agents.

3.4.2 Regulation of dopamine release

Histamine was found to have an inhibitory effect on the release of dopamine in the

mouse striatum (Schlicker et at., 1993). This inhibition was shown to be mediated

through presynaptic histamine H3 receptors. Schlicker et at. (1993) also suggest that the

H3 heteroreceptors and the dopamine autoreceptors on the dopaminergic nerve terminals

are functionally coupled (at the level of the receptors themselves or at the stage of the

post-receptor transduction mechanism). This finding is comparable to the coupling

between the H3 hetero- and the 0.2 autoreceptors on the noradrenergic nerve terminals of

the rat and mouse brain cortex (Schlicker et at., 1992). Histamine may have a marked

inhibitory influence on dopamine release when the activity of histaminergic neurons is

high and, simultaneously, that of dopaminergic neurons is rather low, leading to a

relatively low level of autoreceptor activation by endogenous dopamine (Schlicker et at.,
1993).

The dopaminergic neuron system in the brain is found to be involved in two major

pathologies. In psychotic disorders, e.g. schizophrenia, the dopaminergic system is

found to be hyperactive (Reynolds & Czudek, 1995), while in Parkinson's disease the

dopaminergic neuronal system in the substantia nigra is degenerated, so that the

dopamine levels in the brain are too low. In Parkinsonism, the dopamine levels have lost

their natural balance with acetylcholine levels; this imbalance leads to an overstimulation

of the extrapyrimidal system which causes tremor, bradykinesia, rigidity, and postural

instability (Cutson et ai., 1995). Dopamine is not independently involved in these two
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pathologies, in schizophrenia therapy dopamine antagonists, may, as side effects, lead to

Parkinson's disease-like symptoms.

Schizophrenia

Clozapine, the first of the so-called atypical antipsychotic drugs developed, is a

tricyclic dibenzodiazepine (Figure 3.1). This drug is particularly useful in the treatment of

neuroleptic-resistant schizophrenia and has been shown to significantly improve both

positive and negative symptoms in patients (Kurz et ai., 1995).

Figure 3.1 The chemical structure of clozapine

Although clozapine also demonstrates antagonism at the dopamine 02 receptor, its

affinity for this receptor is relatively weak compared with the classical antipsychotic

agents (Brucke et ai., 1992), and its in vivo and therapeutic levels of occupancy of the

receptor in humans is in the range of 20 to 67% (Farde et al., 1994; Nordstrom et al.,

1993). This finding may account for the low incidence of extrapyramidal symptoms

associated with clozapine in contrast to other neuroleptics (Farde et al., 1994). In

contrast, clozapine appears to have a relatively high dopamine 01 receptor occupancy (33

to 59%) (Farde et al., 1994) compared with other antipsychotic agents (thioridazine 30%;

flupenthixol16 to 44%; haloperidol 3%; sulpiride 0%) (Van Tol et al., 1991), and a high

affinity for the dopamine 0 4 receptor (about 10 fold higher than that for the

pharmacologically similar 02 and 03 receptors) (Van Tol et al., 1991). Clozapine also

binds to dopamine 05 receptors (Sunahara et al., 1991).

The atypical aspects of clozapine activity may also be associated with its affinity for

several other neurotransmitter receptors. The relative lack of extrapyramidal symptoms

associated with clozapine may, in part, be explained by its antimuscarinic effect

(Wagstaff & Bryson, 1995).

As has been found for sulpiride, the neostriatum dopaminergic system is relatively

unaffected by clozapine (Brucke et al., 1992). Catalepsy is not induced by clozapine in

rodents, and amphetamine- or apomorphine-induced stereotypy is unaffected by the drug.
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Instead, amphetamine- or apomorphine-induced locomotion is inhibited by acute

administration of clozapine, and long term administration supersensitises those behaviors

mediated via mesolimbic dopaminergic pathways (dopamine-induced locomotion) but not

those mediated via neostriatal systems (dopamine-induced stereotypy) (Fitton & A.c.,
1990). It was also found that, in the rat, this amphetamine-induced locomotion can be

attenuated by thioperamide possibly via an interaction with presynaptic histamine H3

heteroreceptors located at the nerve terminals of the dopaminergic neuronal system

(Clapham & Kilpatrick, 1994). Interestingly, clozapine was also found to act as an

antagonist at histamine H3 receptors, blocking the H3 receptor-mediated inhibition of

electrically evoked release of serotonin (Alves Rodrigues et al., 1995) and noradrenaline

(Kathmann et al., 1994) in the rat cerebral cortex. Recent findings show that if binding to

the H3 receptor does account for the clinical efficacy of clozapine, then it is not through

its major metabolites clozapine-N-oxide and desmethylclozapine, as both compounds

showed significantly lower affinity for the H3 receptor than clozapine (Alves-Rodrigues

et al., 1996). These observations might support the concept of an increase in histamine

levels during neuroleptic therapy and, therefore, changes in histamine levels are probably

not a cause but a consequence of the development of psychotic disorders such as

schizophrenia.

Parkinson's disease

Parkinson's disease is primarily characterised by disorders of movement resulting

from a deficiency of dopamine in motor control pathways of the central nervous system.

There is a degeneration of neurons in the substantia nigra that produce dopamine. The

lack of the neurotransmitter dopamine in the basal ganglia results in Parkinson's disease.

It has been shown that 6-0H-dopamine-induced denervation of dopaminergic neurons

results in a marked increase in the density of histamine H3 receptors in the striatum and

substantia nigra of the rat (Ryu et al., 1994). These results suggest that H3 receptors in

these areas are under tonic dopaminergic influence. Since this dopaminergic influence is

diminished in Parkinson's disease, administration of histamine H3-agonists, to mimick

the dopaminergic influence, could be helpful in ameliorating Parkinsonian symptoms.

Anticholinergic drugs also attenuate the symptoms of Parkinson's disease by

rectifying the imbalance between dopamine and acetylcholine in the striatum.

Anticholinergics were the first drugs used to treat patients with Parkinson's disease, and

the symptom most improved by these agents is tremor (see (Cutson et al., 1995) for

references). Administration of H3 agonists could also be useful via inhibition of

acetylcholine release in striatal areas. Nonetheless, the effect could only be advantageous

when dopaminergic transmission is compensated by other therapeutic agents.

Another way to comprise the increase of the available dopamine levels in the brain is

the administration of a selective MAO-B inhibitor, such as selegiline, which is one of the
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enzymes that catabolise dopamine in the brain. In this situation histamine release is also

inhibited by activation of H3 autoreceptors due to accumulation of histamine (see figure

1.3).

If the H3 receptor modulation of the dopaminergic activity is also found in humans,

reducing the H3 mediated inhibition of dopamine release by using H3-antagonists could

be therapeutic benefits in Parkinson's disease while the opposite could help schizophrenic

patients.

3.4.3 Regulation of serotonin release

In 1988 Schlicker et al. demonstrated that the electrically evoked release of serotonin

(5-hydroxytryptamine, 5-HT) from serotonergic nerve terminals in the rat brain cortex is

inhibited by histamine via histamine H3 heteroreceptors. These results were later

confrrmed by Smits & Mulder (1991) (Smits, 1991) in slices of rat brain cortex. It was

also found that this action was mimicked by the histamine H3 receptor agonists (R)-a.

methylhistamine and N<X..methylhistamine, while this inhibitory effect on serotonin release

was reversed by the H3 receptor antagonist thioperamide (Fink et al., 1990; Schlicker et

al., 1991). These results provide evidence that endogenous histamine inhibits serotonin

release in the rat brain cortex via presynaptic histamine H3 heteroreceptors.

Like other monoaminergic transmitter systems, the serotonergic neuronal system is

involved in various processes in the brain. An involvement in psychotic disorders is

suggested, as well as a role in anxiety and depression (Blier & de Montigny, 1994).

Modulation of the serotonergic activity via histamine H3 heteroreceptors could be a

helpful complementary therapeutic approach in these disorders.

Schizophrenia

Along with its relatively lower blockade of dopamine D2 receptors, blockade of 5-HT2

receptors by clozapine may be associated, with the decreased incidence of extrapyramidal

symptoms (see Wagstaff & Bryson, 1995 for references) and with the improvement of

negative symptoms in schizophrenia. High 5-HT2 receptor occupancy was also recently

found in patients treated with the 5-HT2 blocker risperidone. It is still unclear whether the

high 5-HT2 occupancy contributes to the efficacy of atypical antipsychotics. All such

drugs still have significant affinity for dopamine D2 receptors (Sedvall & Farde, 1995).

Learning and memory

Unfortunately, animal data clearly show that the 5-HTIA receptor partial agonist

buspirone also disrupts acquisition avoidance learning and retention, leading to the

question of a link between anxiety, memory, and learning. Indeed, in contrast with

anxiolytics, anxiogenic drugs, notably ~-carbolines, promote leaming capacity in rats. As
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the same limbic structures (amygdala, hippocampus and septum) are implicated in both

anxiety and memory, it is probably illusory to expect to find anxiolytics with no

(negative) effects on cognition in humans (see Hamon, 1994 for references). Since

thioperamide has an anxiogenic effect, as has been shown by Imaizumi & Onodera

(1993), it is possible that the leaming promoting characteristics ofthioperamide may be

related to its increase on serotonin release or vice-versa.

Depression

Since most successful antidepressants are serotonin reuptake inhibitors (e.g. Prozac;

(Blier & de Montigny, 1994), it seems likey that the most important appliance of H3

ligands in relation to the H3 receptor modulation of serotonin release is in this field.

Histamine H3-receptor antagonists may playa similar role in the treatment of depression

by enhancing serotonin release and, consequently, increasing serotonin levels at the

synaptic cleft.

3.4.4 Regulation of acetylcholine release. Implications in cognitive

functions

In 1992 Clapham & Kilpatrick established that the release of acetylcholine (ACh)

from the cholinergic neuron system in the rat enthorinal cortex is modulated via histamine

H3 heteroreceptors. The inhibitory effect of (R)-a-methylhistamine on this release was

antagonised by thioperamide (Clapham & Kilpatrick, 1992). These observations were

supported by Mochizuki et al. (1994) in the rat hippocampus, but the effects were weak

and relatively short-lasting compared to direct histamine stimulation (Itoh et ai., 1992;

Mochizuki et ai., 1991). It is proposed that participation of presynaptic H3 receptors in

the tonic regulation of acetylcholine release may be minor, at least in the hippocampus in

vivo, where the histaminergic innervation is at a low level (Mochizuki et ai., 1994).

Nevertheless, the importance of this action may dramaticaly increase in

(patho)physiological conditions where acetylcholine levels in the hippocampus are

reduced such as in senile dementia of the Alzheimer type (SDAT) (Amenta et ai., 1995).

Prast and colleagues (1994) reported that the release of acetylcholine in the ventral

striatum is also enhanced by thioperamide and the histamine HI agonist 2-thiazolyl

ethylamine, while (R)-a-methylhistamine remained ineffective. The authors suggest that

histamine exerts modulatory influences on striatal cholinergic neurons by stimulation of

HI receptors, and thioperamide might enhance the release of endogenous histamine

which in tum modulates acetylcholine release via HI receptors (Prast et ai., 1994).

Furthermore, in vivo modulation of cerebral cortical ACh release by the H3 receptor was

recently described (Blandina et ai., 1996). It was also reported in this work that this

process was not mediated by presynaptically H3-receptors located on cholinergic
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terminals. The antagonistic effect of the GABA antagonist, bicuculline, suggests an

indirect effect of the H3 receptor on cortical ACh release through activation of GABA

release.

Hippocampal memoryformation

Biochemical and pharmacological lines of evidence indicate that cholinergic dysfunction

plays an important role in age-related memory disturbances in humans and in animals. A

number of neurotransmitter and neuropeptide systems in both cortical and subcortical

brain regions are compromised in Alzheimer-type dementia (Cacabelos, 1996; Maelicke

& Albuquerque, 1996; Panula et aI., 1995; Roberts & Lazareno, 1989). In most cases of

Alzheimer's disease, the cholinergic innervation of the cerebral cortex is degenerated, and

in some cases, the noradrenergic and serotonergic innervations are also reduced (Meguro

et aI., 1995). The H3 antagonist thioperamide, and the histamine precursor histidine,

could be of therapeutic importance in this pathophysiological condition since they both

have been shown to have ameliorating effects on learning and memory deficits induced

by scopolamine (Miyazaki et aI., 1995; Miyazaki et al., 1995).

A recent upregulation of the H3 receptor in the hippocampus of aged rats was observed

(Alves-Rodrigues et ai., in preparation). In the same study, no differences were observed

in the number of receptors present in the striatum, and a small downregulation was seen

in the cortex. These findings support the hypothesis of possible involvement of H3

receptors in (patho)physiological conditions associated with hippocampal cognitive

functions. These new observations would explain the beneficial effect of thioperamide as

a memory and learning enhancer under pathological conditions in rodents where

cholinergic transmission is deficient (Miyazaki et aI., 1995; Miyazaki et at., 1995), while

under normal cholinergic transmission thioperamide does not seem to significantly affect

cognitive functions (Miyazaki et al., 1995).

3.4.5 Regulation of glutamate NMDA-currents. Implications in cognitive

functions.

Because the "laying down" of memories may be an important component of

attentiveness and because the hippocampus participates in the formation of memory, the

question arises as to whether histamine might affect hippocampal function. It has been

shown that histamine reduces a calcium-dependent K+ conductance in pyramidal neurons

in areas CAl and CA3 (Haas & Konnerth, 1983), (see figure 1.2.C). Bekkers reported

additional kinds of neuromodulation by histamine in the hippocampus. Not only did

histamine increase the amplitude of the NMDA autaptic current, it also accelerated its rate

of decay (Bekkers, 1993; Haas et al., 1995). The histamine-enhanced current was

blocked by D-APV, indicating that the enhanced current was probably regulated by the
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glutamate NMDA channels. The histamine enhancement was rapidly reversible. HI and

H2 receptors were not involved because the histamine enhancement was unaffected by the

HI antagonists mepyramine and promethazine or by the H2 antagonist cimetidine.

Furthermore, the HI agonist 2-thiazolylethyl-amine and the H2 agonists impromidine and

dimaprit produced no enhancement of the autaptic current. On the other hand, the H3

antagonist (and H2 agonist) impromidine blocked the histamine enhancement but also

reduced the size of the NMDA current to about half. In addition, the H3 agonist (R)-a

methylhistamine mimicked the enhancing effect of histamine. These results suggest that

H3 receptors might mediate this effect. Surprisingly, however, the more selective H3

antagonist, thioperamide, was unable to block the histamine enhancement of NMDA

currents in the same cells in which impromidine was effective (Bekkers, 1993).

Moreover, it was found that enhanced currents due to exogenous histamine, differed

qualitively from that due to increased release of neurotransmitter, which may mean that

histamine does not modulate the release process.

It is also possible that histamine acts by altering the binding of glycine to its site on the

NMDA receptor, althought Bekkers (1993) suggests that histamine enhancement of

NMDA-currents and glycine modulation act by separate mechanisms. Histamine current

enhancement probably resides mainly in a postsynaptic modification of NMDA channels.

Bekkers' results show that histamine potently modulates the gating of NMDA

channels, increasing the amplitude and rate of decay of the NMDA component of synaptic

transmission. In view of the lack of blockade by the H3 antagonist thioperamide, a

binding site different from the known histamine receptors seems to be involved (Bekkers,

1993; Bekkers et ai., 1996). Other amines have been shown to exert a similar potentiating

effect on NMDA currents. In the light of the known affinity of histamine to a polyamine

recognition site this site could be the locus of action, as well.

By selectively enhancing the NMDA component of neurotransmission, histamine

should enhance processes in which NMDA currents participate, such as the triggering of

long-term potentiation (LTP) (see Bekkers, 1993 for further references). Conversely,

pathological conditions that deplete histamine in the brain might lead to a reduced ability

to trigger LTP and, thus, to memory loss. There is increasing evidence for the

involvemnt of NMDA receptors in other forms of computation in the central nervous

system. It is therefore conceivable that histamine participates in such high-level functions

as the control of arousal and attentiveness through its action on the NMDA channel

(Bekkers, 1993). These features could have significant clinical interest in diseases such

as attention deficit disorder (ADD) and sleep disorders.

Enhancing NMDA currents in the hippocampus through an increase in histamine

release by administration of H3 receptor antagonists or blocking the H3 mediated

inhibition of acetylcholine release by the same compounds could have important effects in
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improving cognitive perfonnances particularly in conditions where cognitive impairments

occur such as ageing or Alzheimer's disease.

3.4.6 Regulation of the release of other neuromodulators

Besides the regulation of the release of the monoaminergic neurotransmitters, there is

also a number of peptide transmitters in which the histaminergic system plays a

modulatory role.

Enkephalin-YGG

In the striatum, a region containing abundant enkephalinergic neurons and

histaminergic nerve terminals, (R)-a-methylhistamine and thioperamide exerted opposite

effects on the levels of the tripeptide Tyr-Gly-Gly (YGG). YGG represents a

characteristic extracellular metabolite of enkephalin (Llorens-Cortes et ai., 1986) and a

reliable index of enkephalin release. The increase in YGG levels elicited by (R)-a

methylhistamine was not mimicked by HI and H2 receptor antagonists, rendering

unlikely an indirect effect due to a reduction of histamine level at the vicinity of

enkephalinergic neurons (Schwartz et ai., 1991). Supporting this hypothesis was the lack

of reversion of the effect of thioperamide by the brain penetrating H2 receptor antagonist

zolantidine. In fact, zolantidine alone elicited also a decrease in YGG levels, suggesting

that H2 receptors together with H3 receptors might participate in the modulation of

enkephalinergic neurotransmission. In contrast to the inhibitory effects of histamine

previously described to be mediated by H3 heteroreceptors, these H3 receptors mediate a

stimulatory effect on enkephalinergic neurons and this effect seems exerted under

physiological conditions (Schwartz et ai., 1991). These findings may indicate the

involvement of histamine on the enkephalinergic-induced feeling of pleasure and satiety.

Somatostatin

A recent report published by Puebla & Arilla (1996), showed that the histamine H3

receptor antagonist thioperamide increases the number of somatostatin (SS) receptors in

the frontoparietal cortical membranes and the content of somatostatin like

immunoreativity. These effects were prevented by the H3 agonist (R)-a-methylhistamine.

The exact physiological significance of this observations cannot be stated at this time.

However, as both histamine and and SS exert similar effects on cognitive processes,

arousal behaviour, locomotor activity, and seizure susceptibility (see Puebla & Arilla

(1996), for references), these findings indicate that neuronal histamine may (partly)

modulate the above mentioned behaviours through interaction with the somatostatinergic

system in the prefrontal cortex, a brain region rich in both SS (Puebla & Arilla, 1996)

and H3 receptors (see section 3.2).
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3.5 Compounds with therapeutic potential in the eNS

From a therapeutic point of view, both H3 agonists and antagonists are interesting.

Besides acting on the histamine H3 autoreceptor and thus modulating the histaminergic

activity, these agents can also interact with histamine H3 heteroreceptors, which will lead

to the modulation of the release of other neurotransmitters. From the neurophysiological

point of view, potential therapeutically relevant H3-ligands fall into two categories. H3

agonists: those compounds which will decrease synthesis and release of histamine and

will decrease the overall histaminergic activity when acting on histamine H3

autoreceptors, and, concomitantly may decrease the release of other neurotransmitters via

histamine H3 heteroreceptors; and H3-antagonists: compounds which will increase the

histaminergic activity when acting on the histamine H3 autoreceptors, and may increase

release of other neurotransmitters via histamine H3 heteroreceptors.

In 1991, Arrang and collaborators reported on preliminary clinical studies performed

using the H3-agonist (R)-a-methylhistarnine. In human volunteers receiving 175 mg (R)

a-methylhistamine p.o., the plasma levels of the dmg reached a maximum at about 2 h

and decayed with an apparent half-life of 1 hour; up to 6-8 hours. Dmg plasma levels

were high enough to be consistent with a persisting stimulation of H3 receptors (Arrang

et ai., 1991). Phase I clinical studies showed (R)-a-methylhistamine to be extremely well

tolerated at dosages of several hundred milligrams per day during several days. In the

eNS, the slow-wave sleep promoting activity of (R)-a-methylhistamine in cats (Lin et

ai., 1990) was not observed in rodents (Monti, 1993). In humans, the dmg did not elicit

hypnotic activity even at high dosage reducing the interest in H3- agonists as potential

sleep enhancers.

In view of the latest fmdings involving the H3 receptor with cognitive functions (see

sections 3.3.1 and 3.4.4., for detailed information), H3-antagonists are the most

promising compounds concerning potential therapeutics. Unfortunately, the standard H3

antagonist thioperamide and the newer H3 -antagonist clobenpropit (which shows a 10

fold higher in vitro affinity for the H3 receptor than thioperamide) are a thiourea

containing imidazoles. Earlier thiourea-containing dmgs (e.g., Hz antagonists) were

found to be associated with unacceptable side effects (Brimblecombe et al., 1973; Forrest

et al., 1975). Introduction of these ligands for clinical use is, therefore, unlikely. In

contrast, development of non-thiourea Hz histaminergic agents provide safe effective

therapies (e.g., cimetidine), and non-thiourea-containing H3 antagonists may, therefore,

be good clinical candidates. Tedford et al. (1995) recently developed a new histamine H3

antagonist, GT-2016, in which the thiourea moiety has been replaced by an amide group

(see figure 3.2.). GT-2016 was shown to maintain a high degree of selectivity for the

histamine H3 receptor vs. the HI and Hz subtypes. Furthermore, GT-2016 was absorbed

orally and subsequently distributed to the brain. Receptor proflles revealed no appreciable
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affinity for a wide variety of neurotransmitter, neufopeptide or second-messenger

systems. Cross reactivity was not seen with GT-2016 for either histamine or t

methylhistamine. Using a microdyalisis study it was possible to measure increasing

levels of histamine after GT-2016 in the rat cerebral cortex. Although this compound has

entered phase I of clinical tests, future research has to confirm the advantages of this

compound over the 'classical' H3 antagonist thioperamide.

GT·2016

r=TO fI -0- -C-NH

Thioperamide NH N

~

Figure 3.2. Structure of GT·ZOI6 and thioperamide (Tedford et aI., 1995).

Within the last year several new H3-antagonists have been introduced in the literature.

Schlicker and colleagues (1996) studied the potencies of antagonists chemically related to

iodoproxyfan. Curiously, in view of the previous study published by Ligneau et at.
(1994) showing only antagonistic properties for iodoproxyfan, Schlicker and co-workers

observed partial agonistic activities for this compound both in the mouse brain and the

guinea-pig ileum. In their study, this group also showed that although none of the newly

synthesised iodoproxyfan analogues had a higher affinity at the H3 receptor than

iodoproxyfan, these ligands, particularly the ethers, are H3 antagonists of high or

moderate affinity. The therapeutic potential of these compounds remains unstudied.

Furthermore, Leurs et at. (1996), recently reported on impentamine (Leurs et at., 1996).

This compound is one of the highly potent H3-antagonists which appears to discriminate

between central and peripheral H3-receptors. Structurally, impentamine is a histamine

homologue that does not possess the (iso)thiourea moiety of thioperamide and

clobenpropit, which makes it an attractive compound for future therapeutic development.

4. Concluding remarks
Neuronal histamine is involved in several physiological conditions, such as arousal,

locomotor activity, food intake, and learning and memory processes. Thioperamide, an

H3 receptor antagonist, enhances neuronal histamine release and, therefore, activates, via

stimulation of postsynaptic histamine HI and Hz receptors, the histaminergic neuronal

system. The opposite effects are accomplished by administration of histamine H3
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agonists, such as (R)-a.-methylhistamine. Equally interesting was the discovery of

histamine H3 heteroreceptors that playa similar regulatory role as the autoreceptors, but

now on the release of other neurotransmitters. Histamine H3 heteroreceptors have been

identified on various monoaminergic, nerve terminals, such as the noradrenergic,

dopaminergic, serotonergic, and cholinergic.

Adjustment of noradrenaline release, via histamine H3 heteroreceptors, can lead to

therapeutic benefits. H3 receptor agonists, decreasing the noradrenaline release, could be

clinically interesting in the treatment of psychotic disorders, or as sleep enhancers,

whereas histamine H3 antagonists enhancing noradrenaline release could be useful as

antidepressant agents. The existance of such a central noradrenaline release modulated by

H3-receptor has been observed in humans.

The dopaminergic neuronal system is known to be involved in two major pathologies.

In schizophrenia, the dopaminergic system is found to be hyperactive and can be directly

attenuated with dopamine antagonists, or indirectly using histamine H3 receptor agonists

via inhibition of dopamine release. Yet, clozapine, a drug unique in its efficiency on the

treatment of neuroleptic resistant schizophrenia, shows a complex pharmacological

profile binding with moderate to high affinity to several monoaminergic receptors

(including antagonism at the histamine HI and H3 receptors). This is one more example,

among numerous others, of a complex multi-transmitter and multi-loci process

underlying the development and onset of brain disorders where monoaminergic systems

are known to be involved. In Parkinson's disease, on the other hand, the dopaminergic

neuronal system in the substantia nigra is degenerated, and dopamine levels in the brain

are abnormaly low; administration of H3-antagonists, to increase dopamine release, could

be helpful in attenuating Parkinsonian symptoms.

Modulating serotonin release could also have some therapeutic approaches. Since

most succesful antidepressants are serotonin reuptake inhibitors (e.g. fluoxamine), it is

suggested that histamine H3 antagonists could potentially play a similar role in the

treatment of depression by enhancing serotonin release.

Presumably the most important clinical aspect related to H3-receptors, is its

involvement in cognitive functions. Histamine was found to have a stimulating effect on

the NMDA receptor. By enhancing the NMDA component of neurotransmission,

histamine should enhance processes in which NMDA currents participate, such as the

triggering of long-term potentiation (LTP). Conversely, pathological conditions that

deplete histamine in the brain might lead to a reduced ability to trigger LTP and, thus, to

memory loss. Moreover, acetylcholine levels in the hippocampal formation can be

increased by H3-antagonists, which is of particular interest for improvement of memory

loss processes that occur under pathological conditions in which a defect cholinergic

neuronal system is present.
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Sofar, no H3-ligand has yet been introduced inlherapeutics, nevertheless, the

development of the non-thiourea, brain penetrating H3 antagonists such as GT-2016, is a

promising step towards clinical appliance of H3 ligands.

5. Scope of this thesis

As can be understood from what has been described in this introductory chapter, the

histamine H3 receptor is an important modulatory centre of general brain activity. Its

actions include regulation of the histaminergic neuronal system (in which it acts as an

autoreceptor) as well as several other neuronal systems such as noradrenergic,

serotonergic, cholinergic, and dopaminergic (Arrang et ai., 1983; Schlicker et ai., 1994).

The histamine H3 receptor has not been cloned, yet. Therefore, studies on this receptor

can only be based on the pharmacological data obtained from ligands that bind to the H3

receptor with high affinity and selectivity. Fortunately, numerous of these ligands have

been synthesised and made available over the last decade (Leurs et ai., 1996; Leurs et ai.,

1995; Schlicker et ai., 1996). In view of several recent reports published on cognitive

enhancing properties of H3 receptor antagonists, interest on H3 ligands as potential

therapeutical agents has dramatically increased.

It has been shown that histaminergic activity is altered in several brain disorders such

as Schizophrenia (Prell et ai., 1995) and Alzheimer's disease (Cacabelos et ai., 1989;

Femandeznovoa et ai., 1994; Mazurkiewicz-Kwilecki & Nsonwah, 1989; Panula et ai.,

1995). Nevertheless, the SAR of neuroleptics used in therapeutics of those pathologies

have not been characterised for the H3 receptor. In our study we used several typical and

atypical neuroleptics and assessed them for their affinity and functionality on the H3

receptor (Chapter 2). In view of a high to moderate affinity observed for clozapine, and

in order to understand SAR requirements for the binding of non-imidazole compounds to

the H3 receptor, we studied the structure affinity requirements of a series of 20 clozapine

analogues (including the two major clozapine metabolites) for binding to the H3 receptor

(Chapter 2).

Following up investigations on the possible existence of H3 receptor subtypes (Leurs

et ai., 1996; Clapham & Kilpatrick, 1992; Schworer et ai., 1994; West et ai., 1990) and

considering the therapeutical interest of developing H3-receptor ligands with

discriminative properties between H3 receptor subtypes, we (in Chapter 3) characterised

the binding and functional properties of two homologues of the potent H3-receptor

agonist immepip in two different binding assays and two distinct functional systems.

Albeit thioperamide was the first ligand shown to have high affinity and high

selectivity for the H3 receptor (Arrang et ai., 1987) and is still used as the classical H3-
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receptor antagonist, in this study the radiolabeIling synthesis and the characterisation of

[3Hl-thioperamide as a radioligand is firstly described (Chapter 4).

In view of the recent reports involving H3 receptor antagonism with enhancement of

hippocampal memory formation (De Almeida & Izquierdo, 1986; Meguro et ai., 1995;

Miyazaki et al., 1995; Miyazaki et al., 1995), we pharmacologically characterised the

histamine H3 receptor in the rat hippocampus using receptor binding studies and the H3

receptor modulation of noradrenaline release (Chapter 5). Once established the

pharmacological characteristics of the hippocampal H3 receptor, we investigated, in

Chapter 6, age-related changes in the density and functionality of the histamine H3

receptor in several areas of the rat brain. Histamine levels were measured in nine brain

regions of both young and old rats. The (patho)physiological implications of age-related

changes on the histamine H3 receptor were discussed in Chapter 6.
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INTERACTION OF CLOZAPINE AND OTHER NEUROLEPTICS WITH
THE HISTAMINE H3 RECEPTOR. STRUCTURE AFFINITY

RELATIONSHIPS FOR THE BINDING OF CLOZAPINE METABOLITES
AND ANALOGUES TO THE HISTAMINE H3 RECEPTOR

A. Alves-Rodrigues, R. Leurs, E. Willems, G. D. Prell*, and H. Timmerman

Summary

There is evidence that histaminergic activity in the brain is altered in several mental

disorders including schizophrenia (Deutsch et al., 1993; Kaminsky et al., 1990;

Martinez-Mir et al., 1993; Prell et al., 1995). We examined possible interactions between

several neuroleptics, such as the atypical agent clozapine, and the histamine H3 receptor.

In competition binding assays using the H3 antagonist [1251]-iodophenpropit, we

observed a moderate to high affinity of clozapine for the H3 receptor. The dissociation

constant obtained for clozapine was 236 ± 87 nM. Functionally, clozapine acted as an

antagonisfagainst the inhibition of electrically stimulated release of [3H]-5-HT mediated

by histamine H3 receptors. The KB value obtained for clozapine was 80 nM.

We also tested the affinity of several clozapine metabolites and analogues for the

histamine H3 receptor. Qualitative structure affinity relationships were derived for the

tested compounds. In the clozapine molecule structurally different moieties were

considered. In comparision with the affmity for the H3 receptor shown by clozapine, the

following main conclusions can be drawn: the 4-piperazinyl region does not allow

substituents longer than a CH3 or electronegative atoms such as an 0; substitutions at the

5-diazepine position do not drastically alter the affinity for the H3 receptor, although a

basic nitrogen is favoured over CH2, 0, or S; the 8 position in phenyl ring I is an

important modulatory site for H3 affmity, electronegative substituents such as chioro and

fluoro in this aromatic group increase the affinity. When these substituents are present at

the phenyl group IT, these substituents totally disable binding to the H3 receptor.

If the Ki value for clozapine at the H3 receptor is similar in rat and man, than brain

clozapine concentrations might be high enough for a functional interaction with the H3

receptor under clinical conditions. The two major clozapine metabolites (c1ozapine-N

oxide, and N-desmethylclozapine) will not be responsible for a possible contribution of

the H3 receptor antagonism to the clinical profIle of clozapine.

*Department of Pharmacology
Mount Sinai School of Medicine, New York
N.Y. 10029, U.S.A.
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Introduction

The histamine H3 receptor was fIrst described by Arrang et aI. (1983) as a presynaptic

regulatory system for the release of histamine in rat brain. In recent years it was found

that H3 receptors are also present on nerve terminals of other monoaminergic neurons

(such as serotonine, noradrenaline, and dopamine) where it acts as an heteroreceptor

modulating the release of these neurotransmitters (for review see Schlicker et ai., 1994).

These findings have opened new perspectives in the design of selective H3 compounds

as potential drugs (Leurs & Timmermann, 1992; Leurs et aI., 1995; Schwartz et aI.,

1990).

Clozapine is a so called atypical antipsychotic agent of the tricyclic dibenzodiazepine

class, whose clinical effIcacy in the treatment of drug resistant schizophrenia is thought

to be associated with both dopaminergic and serotonergic systems (O'Dell et aI., 1990).

Compared with classical neuroleptics, the affinity of clozapine for the dopamine D2

receptor is low (Brucke et aI., 1992; Karbe et aI., 1991). On the other hand, clozapine's

affInity for dopamine Dl and D4 receptors is relatively high, and it binds preferentially to

mesolimbic rather than neostriatal dopaminergic neurons (Farde et aI., 1994; Pehek &

Yamamoto, 1994; Van Tol et aI., 1991). Clozapine also has high affinity for the
histamine HI receptor, the CXl- adrenergic receptor, and a moderate affInity for the CX2-

and ~-adrenergic receptors (Baldessarini et ai., 1992).

Recent studies suggest that the neurotransmitter histamine may be involved in

schizophrenia (Kaminsky et aI., 1990; Deutsch et aI., 1993; Prell et aI., 1995). In

treatment resistent schizophrenic patients, the mean level oftele-methylhistamine (t-MH)

in cerebrospinal fluid, an index of histaminergic activity, was 2.6 fold higher than in

controls (Prell et ai., 1995). Among schizophrenic patients, cerebrospinal fluid levels of

t-MH correlated positively with those of other neurotransmitters metabolites, and

correlated positively with severity of schizophrenic symptoms (Prell et aI., 1995).

Consonant with increased histaminergic activity is a reduction in the density of HI

receptors in postmortem frontal cortex of schizophrenic patients (Nakai et aI, 1991) and

the reported therapeutic actions of famotidine, an H2 antagonist in schizophrenic

inpatients (Kaminsky et aI., 1990; Deutsch et aI, 1993). Evidence for elevated

histaminergic activity suggests possible functional anomalies in H3 receptors. Therefore,

we examined the affinity of clozapine, and several other neuroleptics, for the H3

receptor.
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Methods

Preparation ofmembranesfrom rat cerebral cortex

Male Wistar rats (200-220 g) were decapitated and the brains were rapidly removed.

The cortices were dissected and homogenised in 10 volumes (v:w) of ice-cold 50 roM

Tris-HCI buffer (with 5 roM MgCI2, 145 roM NaCI, pH 7.4 at 4°C) using a Ultra-Turrax

blender and a Potter-Elvhjem homogeneizer. This homogenate was centrifuged at 800 g

for 10 min. The pellet was discarded and the supernatant centrifuged at 40,000 g for 40

min. The resulting pellet was rinsed twice under the same conditions. The final pellet

was resuspended in 1.5 volumes of the Tris-HCI buffer and stored at -80°C until the day

of the experiment, when it was diluted 5 times (v:w) in the same solution (pH 7.4,

37°C).

Competition binding assays

Binding assays were based on the procedure described by Jansen et al. (1994). The

experiments were performed in a final volume of 500 III using polyethylene tubes. The

incubation at (37°C, 60 min) was started by addition of 100 III of membrane suspension

(40-120 Ilg) and stopped by rapid filtration through Whatman GF/C filters pretreated

with 0.3 % polyethyleneimine using a Brandel harvester. The filters were washed twice

with 3 ml of ice-cold Tris-HC1 buffer (with 5 roM MgC12, 145 roM NaC1, pH 7.4 at

4°C). Competition experiments were done using 0.25 nM r125I]-iodophenpropit

(specific activity 1950 Cilmmol). The radioactivity bound to the filters was measured in a

LKB gamma counter.

Non-specific binding was defined with 0.3 JlM thioperarnide as in Jansen et al.
(1994). Ki values were calculated from the respective IC50 values by applying the

Cheng-Prusoff (1973) equation: Ki=IC5ot((1+[LD/Kd) (Cheng & Prusoff, 1973) where

Ki represents the dissociation constant of the unlabeled ligand calculated from

competition binding experiments, IC50 is the concentration of unlabeld ligand that

displaces 50% of the specific binding, [L] is the concentration (in mollliter) of the

labelled radioligand used in the competition experiments, and Kd the dissociation

constant of the labelled ligand as determined from saturation binding assays.

Competition binding experiments were evaluated on a Macintosh computer using the

non-linear curve fitting programme LIGAND (Munson & Rodbard, 1980). With the aid

of this programme binding curves were, respectively, fitted (unweighted) to a one and

two independent sites models. The improvement of the fit for the model with additional

parameters was evaluated based on the 'extra sum of squares' principal (Draper & Smith,

1966) taking p<O.05 to be significant.
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Functional assays

Based on Van der Werf et al. (1987), neocortex slices (O.3mm x 0.3mm) from male

Wistar rats were incubated for 15 min in 2 rn1 Krebs-Ringer buffer (in roM: NaC1118,

KCI3, MgS04 1.2, CaCl2 1.2, NaH2P04 1.4, NaHC03 25, glucose 10, pH 7.4 at 370

C when gassed with 02/C02 (95%15%), containing 5 ~Ci [3H]-5-hydroxytryptamine

(llCilmmol). After washing 4 times with 10 rn1 KRB, the slices were perfused for 60

min at 0.3 rnlImin under constant gassing (95% 02,5% C02). Subsequentely, five 10

min fractions were collected, tritium overflow was evoked by electrical stimulation

(rectangular pulses of 30 rnA and 2rns, 1Hz) during the whole second fraction. The

antagonists and the agonist were added one hour and 30 minutes before stimulation,

respectively. Finally, the slices were perfused for 10 min with O.lN HCI to extract the

remaining content of tritium in the tissue. 3rn1liquid scintillation cocktail was added to

each tube. Radioactivity was counted in a Packard beta counter.

EC50 values were determined according to the equation E=100-(l00-Emax)

1(1+(EC50/[A]) where E represents the effect observed at any agonist concentration of

[A], EC50 represents the agonist concentration that produces half-maximal effect, and

Emax the maximal effect. The dissociation constant (KB) was calculated from the

equation [A']/[A]=l+[B]/KB, where [A] is the concentration of the agonist that produces

half maximal effect, [A'] is the concentration of the agonist that produces half maximal

effect in the presence of the antagonist concentration [B].

Chemicals

[1251]-iodophenpropit was labelled to a specific activity of 1950 Cilmmol as described

by Menge et al., (1992). [3H]-5-hydroxytryptamine (llCilmmol) was purchased from

Amersham. Thioperamide maleate was synthesised at the Department of

Pharmacochemistry (Vrije Universiteit, Amsterdam), polyethyleneimine was purchased

from Aldrich-Chemie, compounds 6, 9,17, and 18, were purchased from RBI.

Compounds 15 and 16 were generously provided by Prof. Dr. Hakan Wikstrom (RU,

Groningen). All other clozapine analogues were kindly provided by Sandoz,

Netherlands. The other neuroleptics tested were purchased from RBI.

Results

According to results previously reported by our research group (Jansen et ai., 1994),

the dissociation constant of [1251]-iodophenpropit for the histamine H3 receptor in rat

brain cortex is 0.57 nM. In competition binding experiments described in this report,

0.25 nM [1251]-iodophenpropit was used to label the histamine H3 receptor. Non

specific binding represented 50-60% of total binding at this concentration of [1251]_
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iodophenpropit. Displacement of 0.25 nM [l25I]-iodophenpropit binding by clozapine

(Figure lA) fitted best to a one site model (P<0.05) using the non-linear curve fitting

program LIGAND. The Ki value obtained for clozapine was 236 ± 87 nM (n=6, mean ±

s.e.mean). The Ki values of other neuroleptics tested for their affinity for the H3 receptor

are shown on Table 1.

Table 1 Affinity of H3 receptor agonists and antagonists and of several neuroleptics for [12511_
iodophenpropit binding sites to rat cortex compared with their functional potency (apparent values of KB

and Ki are shown assuming competitive antagonism). For the binding studies data shown are

mean±S.e.mean. The values between parenthesis represent the number of independent experiments.

Functional data represent the value obtained from the fitting of mean data (3-4 experiments).

Ligand Inhibition of

[3 Hj.5.HT release

[1251-iodophenpropit

binding

Histamine

(R)-a-methylhistamine

Thioperamide

Impromidine

Clozapine

Chlorpromazine

Haloperidol

Spiperone

Seroquel

Olanzapine

N.D.: Not determined

a) Jansen et aI, 1994

ECs0=48 nM (3)

ECSO=6.0 nM (4)

KB=l.l nM (3)

KB=20nM (3)

KB=80nM (4)

N.D.
N.D.
N.D.
N.D.
N.D.

KiH=38±1O nM (4)a)

KiH=3.S±1.2nM(4)a)

Ki=4.3±1.6 nM (7)a)

Ki=SI±9 nM (3)a)

Ki=236±87 (6)

Ki>20J.lM (2)

Ki>20J.lM (2)

Ki>20J.lM (2)

Ki>2011M (3)

Ki>2011M (3)
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Figure 1 (A) Inhibition of [125I]-iodophenpropit binding (0.25 nM) by the H3 receptor

antagonist thioperamide (filled squares) and clozapine (filled circles). Data are expressed as %

specific binding determined with 0.3 JlM thioperamide, which represented 50%-60% of the total

binding.The curves show one site fittings of a single representative experiment (n=6) with

triplicate determinations. (B) Inhibition of the electrical stimulated release of [3H]-5-HT from rat

brain neocortex slices by (R)-a-methylhistamine in the absence (filled circles) and in the presence

of I fJM clozapine (open circles). Each point represents mean ± SEM of three or four different

experiments performed in duplicate.

Qualitative structure affinity relationships ofclozapine analogues
Following the observation that clozapine interacts with the H3 receptor, the affinities

of twenty clozapine analogues for the histamine H3 receptor were detennined (Table 2).

Two of these compounds, clozapine-N-oxide (compound 19, Table 2), and N

desmethylclozapine (compound 6, Table 2) represent two major metabolites that are

formed in vivo after clozapine administration (Figure 2). Modifications on the clozapine

molecule are seen in five regions (see structure on Table 2): 4-piperazinyl region (XI), 5

diazepine region (X2), 8-phenyl region (X3), 2-phenyl (X4) and lO-diazepine (X5).

When clozapine is demethylated at position Xl, one of the two possible pathways of

the metabolism of this drug in humans (Wagstaff & Bryson, 1995), the resulting N

desmethylclozapine (compound 6, Figure 2) displayed an affinity 50 fold lower (Ki=

10±2.4 J..lM, Figure 3A) than clozapine. For compound 19, Clozapine N-oxide, the

second major metabolite of clozapine (Figure 2) the affinity for H3 is almost completed

lost after oxidation at position Xl (Figure 3A). The introduction of an hydroxyl group in

the alkyl substituent in position Xl decreased the affinity, although a propanol group (4,

Ki=6.7±O.01 J..lM) seems to be better accepted in this position than an ethanol substituent

(3, Ki>20 J..lM). Compound 5, clozapine methylated at position X2, showed a

considerable affinity for the histamine H3 receptor (Ki= O.4±O.l J..lM), comparable with

the value observed for clozapine (Ki= 0.2±O.1 J..lM). In compound 1 (Ki=7.7±3.0 J..lM)

and 2 (Ki=10±4.1 J..lM) electronegative groups (oxygen and sulphur, respectively) are

present in position X2 instead of a basic amine as in clozapine.
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Figure 2 The main metabolites (human liver) of clozapine (Wagstaff & Bryson, 1995).
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Figure 3 Inhibition of [1 25I]-iodophenpropit binding (0.25 nM) by (A) clozapine (filled

circles); and clozapine metabolites: N-desmethylclozapine (open circles), and clozapine-N

oxide (filled squares). (B) clozapine (filled circles), compound 1 (open circles), compound 9

(filled squares). The curves show one site fittings of a single representative experiment

(n~3) in triplicate.
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Table 1 Affinity of clozapine analogues for the histamine H3 receptor.

4X

=-
~ h

r-\ X2

"---! f ~ ~
~

X3

compo Xl X2 X3 X4 Xs Ki (J.lM)
no

clozapine CH3 NH CI H -N 0.2±0.1
1 CH3 ° CI H -N 7.7±3.0
2 CH3 S a H -N 10.0 ± 4.1
3 (CH2)20H NH a H -N >20
4 (CH2)3OH NH CI H -N 6.7 ± 0.0
:; CH3 NCH3 CI H -N 0.4±0.1
6 H NH CI H -N 10.0 ± 2.4
7 CH3 CH2 F H -N 5.7±1.1
8 CH3 S H CI -N >20
9 CH3 ° H CI -N >20
10 H CH2 H H -CH >20
11 CH3 CH2 H H -N >20
12 CH3 NH H H -N >20
13 CH3 NH CH3 H -N >20
14 CH3 NH OS02CF3 H -N >20
15 CH3 NH H OS02CF3 -N >20
16 CH3 ° H OS02CF3 -N >20
17 CH3 S H Cl -N >20
18 H ° H CI -CH >20
19 CH3, N-oxide NH a H -N >20
20 (CH2)20(CH2)20H S H H -N >20

(* mean±SEM, ~3 independent experiments)

These derivatives show an approximately 50 fold decrease in the H3 receptor affinity in

comparision with clozapine. From compounds 12, 13, and 14 we conclude that
substituting the chloro at position X3 for an hydrogen (12), a methyl group (13), or a

OS02CF3 (14) result in a profound decrease on the affinity for the H3 receptor (all Ki

values above 20 J.lM). A similar finding is observed from comparison of the affinities of

compounds 1 (Ki=7.7±3.0 J.lM) and 9 (Ki>20 J.lM). Moving the chloro atom from

position X3 to position X4 significantly reduced the affinity of compound 9 (Figure 3B)
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relatively to compound 1 (Figure 3B). The same is observed for compounds 2

(Ki=10±4.1 J.LM) and 8 (Ki>20 J.LM). In position X4, electronegative groups such as a

chloro atom or OS02CF3 are not favourable for binding to the histamine H3 receptor.

Functional studies

The electrically evoked tritium overflow was inhibited in a concentration dependent

manner by histamine and the H3 agonist (R)-a.-methylhistamine (Table 1, Figure 1B).

H3-antagonists inhibited the (R)-a.-methyhistamine effect with potencies comparable to

their affinity for the [125I]-iodophenpropit binding sites (Table 1). Clozapine (1 J.LM)

shifted the (R)-a.-methylhistamine concentration response curve to the right yielding an

apparent KB value of 80 nM. Clozapine (1 J.LM) by itself, did not affect the stimulated

(104 ± 1%; n=3, mean ± SEM) or the basal release of [3H]-5-HT (100±2 %; n=3, mean

±SEM.

Discussion

In the present work, we observed an intringuing interaction of the non-imidazole

clozapine with the histamine H3 receptor, as measured by radioligand binding and

neurotransmitter release, where clozapine acts as an H3 antagonist. Other neuroleptics

tested in the binding assay had much lower affinities for the H3 receptor. Similar results

were reported by Kathmann et al. (1994).

Typical plasma concentrations of clozapine associated with clinical responses in man

are approximately 0.6-1.2 J.LM (Baldessarini & Frankenburg, 1991). In rat, with doses

higher than 5 mg/kg and within the therapeutic range in humans, clozapine levels in the

brain averaged 29 times higher than the corresponding plasma drug level (Balderassini et

aI, 1993). Assuming total plasma levels of 0.9 J.LM and 95% protein bound, total brain

levels of 1.3 J.LM can be obtained. If the Ki value for clozapine at the human H3 receptor

is similar to the value obtained for its rat counterpart, brain clozapine concentrations

might be high enough for a functional interaction with the H3 receptor under clinical

conditions.

Probably due to the high affinity and selectivity demonstrated by several of the early

introduced imidazole containing compounds such as thioperamide and (R)-a.

methylhistamine for the H3 receptor, the interest in non-imidazole compounds has been

limited. Recently, with the discovery of the involvement of the histamine H3 receptor in

a variety of brain functions (Onodera et al., 1994; Schwartz et al., 1991), this receptor

has become a target for development of selective ligands as potential therapeutic agents.

As no structural information is available for this receptor yet, an approach based on

comparison of the affmities/activities of structurally related compounds is the only way to
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study ligand-binding characteristics. According to Leurs et ai., (1995) H3 antagonists

can be generally classified into four distinct groups: 1) elongated imetit and histamine

analogues, 2) burimamide analogues, 3) thioperamide analogues, and 4) other (0

functionalized 4(5)-alkyl imidazoles. Lipophilicity is thought to play an important role in

the binding of most antagonists to the H3 receptor. Structural requirements for the

binding of compounds which do not contain an imidazole to the H3 receptor are not

known. Therefore, we analysed the structural requirements for binding of various

clozapine analogues and metabolites to the H3 receptor.

Taking the available compounds, we considered distinct regions in the clozapine

molecule for structural variations. From the data obtained, several conclusions can be

drawn regarding affinity of analogues of clozapine for binding to the histamine H3

receptor. None of the screened compounds showed higher affinity for the H3 receptor

than clozapine. In man, extensive clozapine metabolism occurs in the liver and yields

several metabolites (mainly clozapine-N-oxide and N-desmethylclozapine, Figure 2),

(Wagstaff & Bryson, 1995). After 4 weeks of treatment with a mean dosage of 350

mg/day, plasma ratios of N-desmethylclozapine (6) and clozapine N-oxide (19)

concentrations over clozapine concentations are in the range of 0.6 to 1.0 and 0.2 to 0.3,

respectively (Volpicelli et al., 1993). Both these compounds displayed considerably

lower affinity for the H3 receptor than clozapine. Therefore we conclude that, if the H3

receptor antagonistic properties of clozapine contribute to the clinical efficacy of this

drug, the two major metabolites (N-desmethylclozapine and clozapine N-oxide) will not

be responsible for such an effect. For H3 receptor affinity the most favourable

substituent in position Xl is a methyl group and replacement by larger groups

(compounds 3, and 19) drasticly reduces the affinity for the H3 receptor. In position

X2, substituents such as NH or NCH3 are preferred to more electronegative atoms such

as S (2) or °(1). Compound 7 supports the observation that basic nitrogens are indeed

the best substituents at position X2. The affinity for the H3 receptor seems to drop when

a CH2 is replacing the NH of clozapine in position X2. This conclusion is, however,

based on the fluoro analogue of clozapine and its CH2 derivative. X3 behaves as an

important site of modulation of binding to the H3 receptor. When other substituents than

chloro or fluoro atoms are present in this position the H3 receptor affinity disappears.

This holds true for the replacement of the halogen by either a H (12), a OS02CF3 (14)

or a CH3 (13). Electronic influences seem to be important at this position but when the

group is too large (14) steric hindrance may occur and reduce the affinity for the H3

receptor. The importance of the chlorine substituent may be attributed to its lipophilicity,

which appears to playa relevant role in the binding of compounds to the H3 receptor,

regardless of the presence of imidazole structures. Similarly Van der Goot et ai. (1992)

noted that the introduction of a chloro substituent in the para position of a benzyl

substitutent of an imetit analogue (clobenpropit) increased the H3 antagonistic activity by
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more than 10 fold. It should be pointed out, though, that lipophilicity is not enough for

binding to the H3 receptor. Position )4, e.g., seems to prefer an hydrogen over large

electronegative groups such as chloro atoms, or OS02CF3 groups. No conclusions

could be drawn from position X5.

In summary, we report the affinity of clozapine, clozapine analogues, and other

neuroleptics for binding to the histamine H3 receptor. Emphasis is placed on the

observation that, due to the low affinity showed for the H3 receptor by the two major

clozapine metabolites (N-desmethylclozapine and clozapine N-oxide), they will not

account for the possible clinical relevance of the interaction of clozapine with the H3

receptor. The work presented in this chapter is also one of the first efforts to study

structural requirements for H3 receptor binding by compounds that do not derive from

histamine itself. For further understanding of the SAR of non-imidazole compounds for

the H3 receptor, systematic design and testing of novel compounds in studies similar to

the ones previously done for the numerous available imidazole containing H3 ligands

(Leurs et al., 1995; Lipp et al., 1992) are required. In our study, we could only use

compounds commercially available or generously provided to us by colleagues.
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PHARMACOLOGICAL ANALYSIS OF IMMEPIP HOMOLOGUES.
FURTHER EVIDENCE FOR H3 RECEPTOR HETEROGENEITY?

A. Alves-Rodrigues, R. Leurs, W. M.P.B. Menge, C. Tedford*, S. L. Yates*, O. P.

Zuiderveld, and H. Timmerman

Summary

Following a previous report by our research group (Leurs et ai., 1996) on

discriminative properties of a series of aliphatic histamine homologues, we now studied

immepip and its lower (VUF 4735) and higher (VUF 4929) homologues as ligands for

the histamine H3 receptor in two binding assays (using [125I]-iodophenpropit and [3H]

Na-methylhistamine, as radiolabelled ligands) in rat cerebral cortex membranes, and two

functional H3 receptor models (inhibition of the neurogenic contraction of the guinea-pig

jejunum and inhibition of [3H]-noradrenaline release in rat cerebral cortex slices).

Immepip showed high affinity for the binding of [3H]-NAMHA (pKi=8.7) which was

comparable to the high affinity component of the binding of [125I]-iodophenpropit

(pKi(high)=8.5). VUF 4735 also showed similar affinities in both binding assays

(pKi=6.1). The binding data obtained for VUF 4929, however, showed major

discrepancies between the two assays.

Functionaly, the immepip homologues acted as competitive H3-receptor antagonists in

both testing systems. The potencies (pA2 values) observed at the guinea pig jejunum

were 8.4 and 6.2 for VUF 4929 and VUF 4735, respectively, whereas on the electrically

evoked release of [3H]-noradrenaline from cortical slices the pA2 values were 7.1 and

5.5 for VUF 4929 and VUF 4735, respectively. Moreover, the H3-receptor agonist

immepip, but not the H3-agonist (R)-a-methylhistarnine, showed almost a lO-fold

higher agonistic potency in the rat cerebral cortex than in the guinea-pig jejunum. The

differences in potencies shown by the ligands between the two functional assays are

discussed in relation to receptor effector coupling and H3 receptor heterogeneity.

*Gliatech Inc.
Cleveland, Ohio
U.S.A.
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Introduction

It has been shown that the presynaptic H3 histamine receptor regulates the release of

histamine and other monoamines and can be regarded as a potential target for new

therapeutics (Leurs & Timmermann, 1992; Leurs et ai., 1995; Onodera et ai., 1994;

Schlicker & Kathmann, 1994; Schwartz et ai., 1991). Results from several radioligand

binding studies question the homogeneity of the H3 receptor binding sites. Based on the

biphasic displacement of [3H]-NlX-methylhistamine binding by the H3 antagonists

thioperamide and burimamide West et al. (1990) suggested H3A- and H3B-receptor

subtypes, responsible for H3 receptor mediated inhibition of histamine release and the H3

receptor mediated inhibition of histamine synthesis, respectively (Arrang et ai., 1987;

Arrang et aI., 1987). Yet, for some ligands the affinities for the putative H3A- and H3B

receptor subtypes do not explain the differences in functional potencies (Kathmann et ai.,

1993; West et ai., 1990).

Also in studies with the recently developed radioiabelled antagonist [1251]_

iodophenpropit (Jansen et ai., 1992; Jansen et ai., 1994; Menge et ai., 1992) biphasic

displacement, suggesting two receptor types, by some H3 receptor antagonists was

found (burimamide and dimaprit), but, in contrast to the studies with [3H]-Na_

methylhistamine, for thioperamide monophasic displacement curves were obtained

(Jansen et ai., 1992; Jansen et ai., 1994). These results question the subtype extension

on the basis of [3H]-Na-methylhistamine binding and also reinforce the complexity of

receptor-ligand interactions.

Until recently, only a few potent and selective agonists for the histamine H3 receptor

were described. Methylation of the side chain of histamine resulted in the most known

and used H3 receptor agonist, (R)-a-methylhistamine, (Arrang et ai., 1983, 1987). More

recently, new non-chiral, H3-agonists, imetit and immepip were described (Garbarg et

ai., 1992; Howson et ai., 1992; Van der Goot et ai., 1992; Vollinga et ai., 1994).

Irnmepip resulted from a series of histamine homologues in order to obtain information

about the optimal location of the amino group relative to the imidazole ring (Vollinga et

ai., 1995). In immepip, the alkyl side chain of histamine was extended to a length of four

methylene groups, the amino group being incorporated in a piperidine ring (Table 1).

Since then, and following up studies done with a series of histamine analogues (Leurs et

ai., 1996; Vollinga et ai., 1994), two immepip analogues have been synthesised in which

the alkyl chain between the imidazole ring and the piperidine ring varies (Vollinga et ai.,

1995).

Recently, Leurs et ai. (1996) published on the discriminative properties of the

histamine homologues between two functional histamine H3 receptor assays. In their

study, all histamine homologues studied acted as H3-antagonists in the guinea pig
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jejunum. Intringingly, the propylene, butylene and pentylene homologues could

discriminate between two functional H3-receptor models, the guinea pig jejunum and

mouse brain, showing partial agonism in the brain. These data were discussed in relation

to possible receptor heterogeneity. To further address the issue of H3 receptor

heterogeneity, we performed a similar but more detailed pharmacological study on

immepip and two of its homologues. To assess putative discriminative properties these

compounds were examined in both [3H]-N<l-methylhistamine and [125I]-iodophenpropit

binding assays. Moreover, we compared the functional potencies of these compounds on

the H3 receptor mediated inhibition of neurogenic contractions of the guinea-pig jejunum

and on the H3 receptor mediated inhibition of electrically-stimulated release of [3H]

noradrenaline in rat cerebral cortex slices.

Methods

H3 receptor binding studies

[125I]-Iodophenpropit binding experiments were carried out essentially as described

by Jansen et al., (1994). Briefly, cerebral cortices obtained. from male Wistar rats (200

220 gram) were homogenized in 15 volumes of ice-cold Tris-HCl buffer (50 mM Tris

HCI, 5 mM MgCI2, 145 mM NaCl, pH =7.4 at 4°C) using an Ultra-Turrax homogenizer

(8 s) and a Potter-Elvehjem homogenizer (4 up and down strokes) and centrifuged at

l000g for 10 mins (4°C). The supernatant was centrifuged at 40,000g for 20 mins, the

pellet was resuspended in the same buffer and the last centifugation step was repeated.

The final pellet was resuspended in 1.5 volumes (v/w) of Tris-HCI buffer and frozen at

-80°C. Before each experiment the membranes were resuspended in 7 volumes (v/w) of

the incubation buffer (50 mM Tris-HCl, 5 mM MgCl2, 145 mM NaCI, pH =7.4 at

37°C).

The [125I]-iodophenpropit binding assay was carried out in triplicate at 37°C in Tris

HCI buffer in a total volume of 500 !-Ll, using polyethylene tubes. In the competition

binding experiments 0.25 nM [125I]-iodophenpropit was applied. Non-specific binding

(40-50% of total binding) was determined in the presence of 0.3 !-LM thioperamide. In

some experiments 10 !-LM of the GTP-analogue GTPyS was included in the test tubes.

Incubations were started by the addition of 100 l-l1 membranes (ca 30 !-Lg of protein per

tube) and were terminated after 60 min by rapid dilution with 2 ml ice-cold 50 mM Tris

HCl buffer (pH =7.4 at 4°C) and filtration through polyethyleneimine (O.3%)-pretreated

Whatrnan GF/C filters. The filters were subsequently washed twice with 2 ml of the same

buffer. The radioactivity retained on the filters was determined by an LKB gamma

counter.
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[3H]-N<X-Methylhistamine binding experiments ~ere carried out essentially as

described by Tedford et al. (1995). Briefly, cerebral cortices obtained from male Wistar

rats (200-300 gram) were homogenised in 10 volumes (w/v) of ice-cold Krebs-Ringer

HEPES buffer pH =7.4 and centrifuged at 1000g for 10 min (4°C). The supernatant was

centrifuged at 40 OOOg for 30 mins, the pellet was resuspended to give a final

concentration of 2mg/ml. This suspension was stored at -80°C before use. The assay was

performed in Na+ phosphate buffer (50 mM, pH 7.4, 5 mM EDTA) in a fmal volume of

400 !!l containing ca 150-200 !!g of protein. For competition experiments [3H]-Na

Methylhistamine (80 Cilromol) was used at a concentration of 0.2 nM. The binding test

(25°C) was initiated by the addition of 100 !!l membranes and was terminated after 40

mins by filtration through polyethyleneimine (O.3%)-pretreated Whatman GFIB filters.

The radioactivity of the filters was determined by liquid scintillation counting. Non

specific binding «10 % of the total binding) was determined in the presence of 10 !!M

thioperamide. The radioactivity retained on the filters was determined by liquid

scintillation counting.

Protein determinations were performed according to Bradford (1976).

H3 receptor mediated inhibition ofneurogenic contractions ofthe guinea-pig jejunum

The in vitro histamine H3 receptor activity at the guinea-pig jejunum was determined

as described by Vollinga et al. (1992). Male Dunkin-Hartley guinea-pigs (350-400 gram,

Harlan CPB, Zeist, The Netherlands) were killed by cervical dislocation and the intestine

was rapidly removed and kept in oxygenated (95% 02/5% C02) Krebs buffer

(composition in mM: NaCI 118, KCI 5.6, MgS04 1.18, CaCl2 2.5, NaH2P04 1.28,

NaHC03 25 and glucose 5.5). Whole jejunum segments (ca 2 cm) were mounted

between two platinum electrodes (4 rom apart) in warm (37°C) Krebs buffer under a load

of 1 g. After 60 mins of equilibration the muscle was stimulated maximally (ca 15V) with

a frequency of 0.1 Hz and a duration of 0.5 msec with rectangular wave electrical pulses

(Grass Stimulator S-88, Grass Instruments Co., Quincy, USA). Contractions were

recorded isotonically (Hugo Sachs TL-2/HF-modem, Hugo Sachs Elektronik,

Hugstetten, Germany). Mter 30 mins of stimulation, a cumulative dose response curve

for the H3 receptor agonist (R)-a-methylhistamine was recorded. Antagonists were

preincubated for 15 mins during the stimulation before the preparations were challenged

again with (R)-a-methylhistamine. Maximally four dose response curves were recorded

at one preparation.
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H3 receptor mediated inhibition of[3Hl-noradrenaline releasefrom slices ofrat brain

Based on a combination of the methods described by Schlicker et al. (1989) and Van

der Werf et al. (1987), slices of the rat cerebral neocortex (0.3mm x O.3mm) were

incubated for 30 min in a Krebs-Ringer buffer (KRB, in mM: NaCll18, KC13, MgS04

1.2, CaCl2 1.2, NaH2P04 1.4, NaHC03 25, glucose 10, pH 7.4 at 37° C when gassed

with 02/C02 (95%/5%)) containing 5 /lCi [3H]-noradrenaline (specific activity=38

Cilmmol, NEN). After washing 4 times with 10 ml of KRB, the slices were preperfused

with KRB (containing 1 !!M desipramine and 1 !!M phentolamine), for 60 min at a flow

of 0.3 mlImin under constant gassing (95% 02, 5% C02). Subsequently, seven 10 min

fractions were collected. Tritium overflow was evoked by a 200 seconds long electrical

stimulation (rectangular pulses of 20 rnA, 1ms, 0.3 Hz) during the second fraction (S1)

and the fifth fraction (S2). Agonists were added immediately after the first stimulation

(Sl). Antagonists were present from the beginning of the 60 minutes preperfusion and

throughout the whole experiment. Finally, the slices were perfused for 20 min with O.lN

HCI to determine the total content of tritium.

Data analysis

Results are given as mean±SEM of n experiments in duplicate (functional

experiments) or of n experiments in triplicate (binding experiments). Displacement

experiments were analysed by non-linear regression. The F-test was used to evaluate

whether the displacement of [3H]-NCCmethylhistamine or [125I]-iodophenpropit binding

by the drugs under study was better fitted by a one- or two-site model.

The stimulation-evoked tritium overflow from brain slices was calculated by

substraction of the basal efflux from the total efflux during stimulation and the

subsequent 13 minutes and was expressed as percentage oftissue tritium at the onset of

stimulation. For quantification of the effect of H3-agonists on the electrically evoked

tritium overflow, the ratio of the overflow evoked by S2 over that evoked by Sl was

determined (S2/S1). The apparent pA2 for the H3 antagonists was calculated according to

Furchgott (1972). Data obtained from functional assays were fitted to a sigmoidal curve

using the program KaleidaGraph (Albelbeck Software).

Chemicals

Na.-[methyl-3H]-Methylhistamine dihydrochloride (78.9 Cilmmol, NEN Boston

MA), (-)-[ring-2,5,6-3H] -noradrenaline base (38 Cilmmol, NEN Netherlands); VUF

compounds (all dihydrobromide), clobenpropit dihydrobromide, [125I]-iodophenpropit
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(specific activity 1950 Ci/mmol) (Menge et al., 1992), thioperamide dihydrogen maleate

(synthesized at the Department of Pharmacochemistry, Vrije Universiteit, Amsterdam,

The Netherlands); desipramine hydrochloride (RBI); (R)-a-methylhistamine dihydrogen

maleate (RBI); (S)-a-methylhistamine dihydrogen maleate (RBI); phentolamine

hydrochloride gift from Ciba Geigy, B.V.; guanosine-5'-O-(3-thiotriphosphate)

tetralithium salt (GTPyS, Sigma).

House-designed superfusion apparatus: Upper: Panoramic view, Lower: two of the 4 groups of

8 cells each.
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Results

[125I]-iodophenpropit binding experiments

In a study performed by Jansen et ai. (1994) using [125I]-iodophenpropit, saturation

binding experiments to rat brain cortex membranes yielded a dissociation constant (Kcl)
of 0.57 ± 0.16 nM with a maximum number (Bmax) of binding sites of 268 ± 119

fmol/mg protein for this radiolabelled antagonist. Specific binding of 0.25 nM [1251]_

iodophenpropit to rat brain cortex membranes was monophasically displaced by the two

immepip homologues (Table 1, Fig. 1).

120

100
l?
'5 80
:5
<> 60

Ien 40
<f.

20

10.8 10.6
[ligand]/M

10-4

Figure 1 Inhibition of [125I]_

iodophenpropit binding (0.25 nM)

by the H3 receptor agonist

irnmepip (open circles), VUF 4929

(filled squares) and VUF 4735 (open

squares). Data are expressed as %

specific binding detennined with

0.3 J.l.M thioperamide and

represented 50%-60% of the total

binding.The curves show fittings of

a single representative experiment

with triplicate determinations.

Immepip displaced the [125I]-iodophenpropit binding (Table 1) according to a two site

model. The presence of 10!JM GTPyS produced a steepening of the displacement curve

of immepip and fitted better according to a one site model (Jansen et ai., 1994).

In the present study, both immepip homologues showed a moderate affinity for the

binding of [1251]-iodophenpropit with VUF 4929 showing slightly higher affinity

(pKi=6.5) than VUF 4735 (pKi=6.0).

[3H]-Na-methyihistamine binding experiments

In a study (Tedford et ai., 1995) using [3H]-N<Lmethylhistamine, saturation binding

experiments to rat brain cortex homogenates yielded a Kcl value of 0.36±O.02 nM with a

number of binding sites of 82±3 fmol/mg protein for this radioligand. Binding of 0.2 nM

[3H]-N(X-methylhistamine to rat brain cortex membranes was displaced monophasically
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by the tested immepip homologues (Table 1). Immepip'was the most potent compound

tested followed by VUF 4929 and VUF 4735.

H3 receptor-mediated inhibition ofneurogenic contractions ofthe guinea-pig jejunum

The electrically induced contractions of the guinea-pig jejunum are related to the

release of acetylcholine and can be inhibited by the activation of H3 receptors (see e.g.

Vollinga et al., 1992) It was previously shown that (R)-, (S)-a-methylhistamine and

immepip effectively inhibited the electrically induced contractions with pDz-values of7.8

(Table 1, Vollinga et al., 1994),6.4 and 8.0, respectively (Vollinga et aI, 1994; Leurs et

al., 1996). With none of the tested immepip homologues did we observe any inhibition

of the neurogenic contractions (data not shown).
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Figure 2 Inhibition of the

electrically induced contractions of the

guinea-pig jejunum by (R)-a

methylhistamine in the absence (open

circles) and in the presence of 30 nM

VUF 4929 (filled circles). The graph

represents one typical experiment out

of four independent experiments in

duplicate.
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. In contrast, VUF 4735 (Table 1), and VUF 4929 (Fig. 2), shifted the dose-response

curve of the (R)-a-methy1histamine-induced inhibition of the electrically induced

contractions to the right. VUF 4929 was a potent antagonist in this system showing an

apparent pAZ value of 8.4 (Table 1).

H3 receptor mediated inhibition of[3Hl-noradrenaline release

The electrically evoked tritium overflow from rat brain cortex slices preincubated with

[3H]-noradrenaline represents a quasi-physiological noradrenaline release (Kathmann et
al., 1993). This release is inhibited by the selective H3 receptor agonists, (R) and (S)

a-methylhistamine (Fig.3) with pD2 values of 7.8±0.1 (mean±SEM, n=10) and

6.2±O.1 (mean±SEM, n=3), respectively. The maximum inhibition obtained was 48±3%

(mean±SEM, n=1O). The dose response curve of (R)-a-methylhistamine was rightward

shifted in the presence of 10 nM clobenpropit, yielding an apparent pAZ of 9.4 for this

compound (Fig. 3).
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Figure 3 Inhibition of the electrical stimulated release of tritium from rat brain neocortex

slices by (S)--a-methylhistamine (filled squares), (R)-a-methylhistamine in the absence

(open circles) and in the presence of 10 nM clobenpropit (filled circles). Each point

represents mean ± SEM of 3;5; n ;5;10 experiments performed in duplicate.

In a fIrst series of experiments, the effect of the VUF compounds on the electrically

evoked tritium overflow (expressed as 52/51) was studied. The 52/51 values, which

were about unity in control experiments (not shown), were neither affected by VUF 4735

nor by VUF 4929 (Fig. 4A), thus indicating that the two immepip homologues are

devoid of agonistic activity in this H3 receptor model. In contrast, immepip inhibited the

evoked overflow concentration-dependently (Fig. 4A). The maximum inhibitory effect

obtained with immepip was 35±3 % (mean±5EM, n=3) (Fig. 4A, intrinsic activity

(0.)=0.8, pD2=9.14++0.09). The dose response curve of immepip was rightwards

shifted in the presence of 10 nM c1obenpropit yielding an apparent pA2 value of 9.7 for

clobenpropit (Fig. 4A).

In a second series of experiments the interaction of (R)-a.-methylhistamine with 10

~M VUF 4735 and 3 ~M VUF 4929 was studied. Both VUF compounds produced a

rightward shift of the concentration-response curve of (R)-a.-methylhistamine (Fig.

4B). Apparent pA2 values, based on one concentration of antagonist were determined

and are shown in Table I.
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Table 1 Comparison of the H3 receptor affinities and functional potencies of immepip and the immepip homologues VUF 4929

and VUF 4735.

a) Vollinga et af. (1994); b) high and low affinities as determined by Jansen et af., (1994)

Values shown represent means±s.e.m. of (N) experiments performed in triplicate (binding experiments) or duplicate (functional

experiments).

VUF 4708 (immepip) 1 pDZ=8.0±0.03 (8)a) pD2=9.14±O.09 (3) 8.5±0.1/6.0±0.1 (4)b) 8.7±0.03 (3)

VUF49Z9 Z pAZ=8.4±O.1 (4) pAZ=7.14±O.OZ (3) 6.5±0.1 (4) 7.7±O.1 (3)

VUF4735 0 pAZ=6.Z±0.1 pAZ=5.5±O.05 (3) 6.0±0.Z (4) 6.2±O.1 (3)

Compound
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Figure 4 Inhibition of the electrical stimulated release of tritium from rat brain neocortex

slices by (A) imrnepip (filled circles), imrnepip in the presence of 10 nM clobenpropit

(open circles) VUF 4735 (filled squares) and VUF 4929 (open squares); (B) (R)-a

methylhistamine (filled circles) (R)-a-methylhistarnine in the presence of 10 IJM VUF

4735 (open circles) and (R)-a-methylhistarnine in the presence 3 I.lM VUF 4929 (filled

squares). Each point represents mean ± s.e.m. of 3~ n ~10 experiments performed in

duplicate.

Discussion

In the present study, the H3-receptor agonist immepip and two simple homologues

were evaluated in several H3 receptor assays. These compounds only vary in the length
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of the alkyl chain that separates the imidazole ring fronfthe piperidine ring in which the

basic amino function is incorporated (Table 1). Immepip has a methylene group linking

the two rings, VUF 4929 has an ethylene group in that position whereas in VUF 4735

the imidazole is directly linked to the piperidine ring.

In all the assays immepip exhibited a potent H3-receptor agonistic profile, whereas its

"short" (VUF 4735) and "long" (VUF 4929) homologues behaved as antagonists. These

results indicate the crucial role of the distance between the imidazole ring and the amino

function. When incorporated in a piperidine ring, four carbon atoms between the

imidazole and the basic amino function seem to be the ideal for H3-agonism. Shortening

(VUF 4735) or lengthening (VUF 4929) this chain completely abolishes H3 receptor

activation in both the guinea pig jejunum and the rat cerebral cortex models. This strict

structural demands for H3 receptor agonism makes immepip and its analogues useful

tools for molecular modelling studies.

In the two H3 receptor radioligand binding assays, using rat cerebral cortical

membranes, immepip showed a relatively high affinity for the binding of the H3 agonist

[3H]-NAMH (pKi=8.7). Moreover, the H3 receptor antagonist [125I]IPP was displaced

in a biphasic and GTPyS sensitive manner by immepip. These features are commonly

observed for H3 agonists (Leurs et al., 1996) and in accordance with the H3 agonistic

effects of immepip. VUF 4735 exhibited virtually the same pKi values in both binding

assays (ca. 6.1). More difficult to interpret, however, were the results obtained for VUF

4929. This compound shows a 1.2 log unity higher affinity for the binding of [3H]

NAMH than for [125I]IPP binding. As no such agonist-like behaviour was detected for

VUF 4929, this "discrepancy" remains unclear but confirms previous observations of

pharmacological differences between the two radioligands (Jansen et al., 1994;

Kathmann et aI., 1993; West et al., 1990) and may be explained by the existence of

receptor subtypes.

At the guinea-pig jejunum immepip is a full agonist, yielding a pD2 value of 8.0

(Vollinga et aI., 1994); this value is similar or slightly above the pD2 value of the

classical H3-agonist (R)-a-methylhistamine (pD2=7.8) (Vollinga et al., 1994). In this

test system, both "short" (VUF 4735) and "long" (VUF 4929) immepip analogues

showed antagonistic activity at the H3-receptor, parallely shifting the dose-response

curve of (R)-a-methylhistamine rightwards. Apparent pA2 values of 6.2 for VUF 4735

and 8.4 for VUF 4929 were obtained. This in vitro activity makes VUF 4929 a highly

potent H3-receptor antagonist comparable to thioperamide (pA2=8.9; Vollinga et aI.,

1992) and impentamine (pA2=8.4, Leurs et al., 1996).

Immepip and its two analogues were also tested for H3-receptor activity in the rat

brain. As previously reported by Schlicker et al. (1989), the [3H]-noradrenaline release

from rat cerebral cortex slices can be inhibited by the H3 receptors agonists (R)- and (S)

a-methylhistamine in a stereoselective manner. This activity can be antagonised by
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clobenpropit, yielding a pA2 value of 9.4. This value closely corresponds with the H3

antagonistic activity of clobenpropit in various other H3 receptor models (Kathmann et

al., 1993; Leurs et al., 1996). Immepip partially (a=0.8) inhibited the [3H]

noradrenaline release from rat cerebral cortical slices for ca 35 % with a pD2 value of 9.1,

whereas full agonists like RAMH inhibited the release of [3H]-noradrenaline for ca 50 %

(pD2=7.8). Also the response to immepip could be potently antagonised by clobenpropit

(pA2=9.7). Neither VUF 4735 nor VUF 4929 showed any agonistic activity in the rat

brain. Both compounds antagonised the (R)-a-methylhistamine induced inhibition of

the electrically evoked release of [3H]-noradrenaline. The pA2 values obtained for these

compounds in this test system were 5.5 for VUF 4735 and 7.1 for VUF 4929. These

values differ considerably from the pA2 values obtained at the guinea pig jejunum.

Moreover, a much lower potency was detected for immepip in the guinea pig jejunum

(pD2=8.0) than in the rat brain (pD2=9.1). This last finding could be interpreted as a

more efficient coupling of the central H3 receptor to its effector as compared to the

peripheral system. Nevertheless, virtually no difference was detected for the potency of

RAMH and SAMH in both functional assays making an interpretation based on receptor

coupling efficiency unsatisfactory. Moreover, one would not expect for immepip partial

agonism (a=0.8) in the rat brain and full agonism in the guinea pig jejunum. Species

differences, however, could still account for these differences. Taking into consideration

what is observed with classical H3 receptor ligands like RAMH and thioperamide, and in

view of the increasing experimental evidences reported by other research groups

(Schlicker et al., 1996; Schworer et al., 1994) and by our group (Leurs et al., 1996), one

is, nevertheless, further tempted to accept the existence of H3-receptor subtypes.

The strongest evidence for H3 receptor heterogeneity is, in our opinion, obtained from

the different H3-receptor functional assays. At present, the results from the different

radioligand binding assays are difficult to match. As observed previously (Leurs et aZ.,

1996) for H3-receptor antagonists the affinities obtained from [3H]-NAMH binding

assay match quite well the H3-receptor potency at the guinea pig jejunum. In contrast, the

Ki values calculated from the binding of [125I]IPP show considerable discrepancies

between the ones obtained from the binding of [3H]NAMH.

In conclusion, comparing our results with those published by Leurs et aZ. (1996) a

critical role for the distance between the imidazole ring and the basic amino function in

histamine H3-receptor ligands is again observed. When the amino group is part of a

piperidine ring, as in the immepip molecule, a four carbon chain seems to be the ideal for

H3-agonism, a shorter (VUF 4735) or a longer (VUF 4929) spacer will lead to total loss

of agonistic activity. In contrast, for the aliphatic compounds, possessing a higher

flexibility, less stringent demands for the alkyl spacer between the imidazole and the basic

amino function have been found for H3 agonism in the brain (Leurs et aZ., 1996).
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Evaluation of the immepip homologues in different H3 receptor assay revealed

important differences; such differences would not be expected to occur if the same

receptor subtype was present in the tissues studied. With this study, we have given

further support to the existence of histamine H3-receptor subtypes for which several

ligands show clear discriminative behaviour. Due to the growing interest on H3 ligands

as putative therapeutic agents in several eNS disorders (see chapter 1), detailed

information with respect to H3-receptor heterogeneity is mandatory.

Immepip and its ligands might become attractive compounds for drug development as

they do not possess toxic (iso)thiourea moieties as thioperamide and clobenpropit do

(Van der Goot et ai., 1992) and because they seem to be able to discriminate between

central and peripheral H3-receptors.
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[3H].THIOPERAMIDE AS A RADIOLIGAND FOR THE HISTAMINE

H3 RECEPTOR IN RAT CEREBRAL CORTEX

A. Alves-Rodrigues, R. Leurs, T.S. Wu, C, Foged*, and H. Timmerman

Summary

1 The purpose of the present study was to characterise the binding of the histamine H3

receptor antagonist [3H]-thioperamide to rat cerebral cortical membranes.

2 The bindiug of [3H]-thioperamide to rat cerebral cortical membranes reached

equilibrium after incubation with [3H]-thioperamide after 8-10 hours at 4°C, Equilibrium

was maintained for up to 18 hours of incubation. Addition of 1 IlM (R)-a

methylhistamine rapidly caused dissociation of [3H]-thioperamide from its binding sites.

Based on these kinetic experiments a dissociation constant of 0.3 nM was obtained for

[3H]-thioperamide.

3 Saturation experiments with [3H]-thioperamide using 1 J.l.M (R)-a-methylhistamine to

define non-specific binding were best analysed according to a single site model. A

dissociation constant (KD) of 0.80±0.06 nM (n=3) and a maximal number of binding

sites (Bmax) of 73±20 fmol/mg protein (n=3) were obtained for the binding of [3H]

thioperamide to rat cerebral cortical membranes.

4 Saturation experiments with [3H]-thioperamide using 0.3 IlM iodophenpropit to

define non-specific binding were best analysed according to a two site model. For the

high affinity [3H]-thioperamide site a KD value of l.1±O.3 nM (n=3) and Bmax value

of 162±108 fmol/mg protein (n=3) were obtained whereas KD and Bmax values for the

low affinity site were 96±19 nM and 4346±3092 fmol/mg protein (n=3), respectively.

5 Using 5 nM [3H]-thioperamide, the binding was hardly displaced by H3 agonists

within concentration ranges expected to bind to the histamine H3 receptor. Under these

conditions, [3H]-thioperamide binding was fully displaced by various H3-antagonists.

Yet, most H3 antagonists showed Ki values different from those expected for the

histamine H3 receptor.

* Phannaceuticals Division
Novo Nordisk AlS
2760 Miil!ilV, Denmark
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6 Using 0.3 nM [3H]-thioperamide, 50-60% of the total binding was potently displaced
by the H3 agonists histamine, (R)-a:-methylhistamine, (S)-a:-methylhistamine, imetit
and immepip. Displacement of the binding of 0.3 nM [3H]-thioperamide binding
exhibited clear stereoselectivity for the R and S isomers of a:-methylhistamine.

7 Binding of 0.3 nM [3H]-thioperamide was completely displaced by several H3

antagonists (thioperamide, iodophenpropit, iodoproxyfan, and burimamide) and

biphasic displacement curves were obtained; the Ki values for the high affinity site

corresponded well with the expected values for the H3 receptor. Antagonists fully

displaced the binding of 5 nM [3H]-thioperamide with affinities comparable to the low

affInity site found at 0.3 nM [3H]-thioperamide.

8 Ondansetron and haloperidol did not displace binding of 5 nM [3H]-thioperamide at

concentrations at which the former are known to bind to 5-HT3 or (j receptors,

respectively. On the other hand, nonselective cytochrome P450 inhibitors displaced the

binding of 5 nM [3H]-thioperamide from both rat cerebral cortical membranes and rat

liver microsomes.

9 It is concluded that the histamine H3 antagonist, [3H]-thioperamide, can be used as a

radioligand to study the histamine H3 receptor in rat brain provided that subnanomolar

concentrations are used in displacement studies. Moreover, the specifIc binding should

be defmed with an H3 agonist, since most H3 antagonists share with [3H]-thioperamide

a low affInity, high density, non-H3 receptor binding site(s) in rat brain. The latter is

likely due to binding to cytochrome P450 isoenzymes.

Introduction

The histamine H3 receptor was originally identifIed as a presynaptic receptor that

regulated the synthesis and release of histamine in the CNS (Arrang et ai., 1987; Arrang

et al., 1983; Van der Werf et al., 1987). This receptor is also present as an

heteroreceptor on non-histaminergic neurones and is known to regulate the release of

several other neurotransmitters such as 5-hydroxytryptamine (Alves Rodrigues et al.,

1995; Schlicker et al., 1988), noradrenaline (Schlicker et al., 1989), dopamine

(Schlicker et ai., 1993) and acetylcholine (Clapham & Kilpatrick, 1992) in both the

central and peripheral nervous systems (Barnes et al., 1993; Bertaccini et ai., 1991).

Concomitant with the initial pharmacological defInition of this new histamine receptor

subtype Arrang et al. (1987) described (R)-a:-methylhistamine and thioperamide as the

fIrst selective H3 agonist and antagonist, respectively. Although many other potent and
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selective H3-receptor agonists and antagonists have since been introduced (Leurs et al.,

1995a), the early availibility ofthioperamide made this compound one of the most used

and best characterised H3 antagonists. In H3 receptor binding studies thioperamide

shows an affinity for the H3 receptor in the low nanomolar range (Arrang et ai., 1990;

Jansen et al., 1994). However, interactions with 5-HT3 and cr receptors have been

observed at higher concentrations (Leurs et al., 1995b). Furthermore, thioperamide has

been shown to inhibit steroidogenesis by an interaction with cytochrome P450

isoenzymes (Labella et ai., 1992).

Acting as an H3 antagonist thioperamide has been reported to affect central and

peripheral functions in vivo. In the CNS of laboratory animals thioperamide shows

anxiolytic (Imaizumi & Onodera, 1993) and anticonvulsant (Yokoyama et ai., 1993)

properties; it also increases locomotor activity (Sakai et al., 1991), improves learning

and memory skills (Meguro et al., 1995), increases wakefulness (Monti, 1993), inhibits

amphetamine-induced hyperactivity (Clapham & Kilpatrick, 1994), and decreases food

intake (Oohara et ai., 1994; Sakata et al., 1994). Based on these pharmacological

activities, there has been increasing interest in the development of H3 antagonists as

potential therapeutical tools particularly for CNS disorders.

Despite the early availability and high affinity of thioperamide for the H3 receptor, its

labelling and use as a radioligand for the H3 receptor was reported as unsuccessful

(Yanai et ai., 1994). Yanai et al. (1994) briefly reported on the use of the related (S)

[3H]-methylthioperamide as a radioligand for the histamine H3 receptor. Although early

results regarding its affinity and autoradiographic tissue distribution in the rat brain

appear promising, the pharmacological definition of its binding site(s) is not yet clear.

For example, H3 receptor density observed in the rat forebrain (Yanai et ai., 1994) was

5 fold higher than values reported for [3H]-(R)-a-methylhistamine binding.

In the present study we established experimental conditions under which [3H]

thioperamide (Figure 1) can be used as a radioligand to study the histamine H3 receptor

in vitro. New insights on the definition of H3 receptor specific binding using

radiolabelled H3 antagonists are also presented. Despite its low specific activity, when

compared to most of the labelled H3 antagonists described (Jansen et al., 1994; Ligneau

et ai., 1994; Yanai et al., 1994), [3H]-thioperamide can be used as radioligand to study

the histamine H3 receptor in the rat brain. As such, thioperamide, a brain penetrating

compound, may be of importance for the development of radioligands with short half

lives for use in PET studies in CNS disorders where the histamine H3 receptor is

suspected to be involved (Alves Rodrigues et ai., 1995; Onodera et ai., 1994; Smith et

al., 1994; Yokoyama et ai., 1994).
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Figure 1 Structure of [3H]-thioperamide. Asterisks indicate the positions

labeled with tritium.

Methods

Synthesis of[3Hl-thioperamide

Cyclohexylisothiocyanate (2.5 mg) was dissolved in 250 111 of ethanol. [3H]4-(4

pipeJ.jdyl) imidazole (50 mCi in 0.6 ml ethanol, 6 Ci/mmol) was added to this solution

together with triethylamine (2.2 mg). The mixture was heated in a sealed vial at 55-60°C

for five hours. The mixture was separated on a preparative C-18 HPLC column (Novo

Nordisk AlS, 16 x 250 mm, 7 J!M), using as eluent a mixture of triethylamine (0.2%,

pH 6.0 using phosphoric acid) and acetonitrile 70:30 (v:v). The flow rate was 6.0

ml/min. The collected fractions (Rt=30-35 min) of the product were concentrated and

extracted with dichloromethane. The organic layer was dried (MgS04), filtered, and

solvents were eliminated under vacuum to yield a yellow oil. The final product was

stored at -20°C in methanol.

HPLC analysis of the radiolabelled product was performed using a S5 Phenyl column

(250 x 4.6 rom,S 11m, Phase Sep) using as eluent a mixture of triethylamine (0.2%, pH

6.0 adjusted with phosphoric acid) and acetonitrile 85:15 (v:v). The flow rate was 2.0

mlImin. UV absortion (215 om) and radioactivity (Radiomatic/Canberra Flo-One beta

detector A-200) were monitored.

The radiochemical yield was 45%. The final product had a specific activity of 6.0

Ci/mmol (determined by HPLC with non-labelled thioperamide as a reference standard).

The radiochemical purity was higher than 98%.

Preparation ofmembranes from rat cerebral cortex

Male Wistar rats (200-220 g) were decapitated and the brains were rapidly removed.

Whole cortices were dissected and homogenised in 10 volumes (v:w) of ice-cold 50 roM
Tris-HCl buffer (containing 5 roM MgC12, 145 roM NaCl, pH 7.4 at 4°C) using an
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Ultra-Turrax blender and a Potter-Elvhjem homogeiieizer. This homogenate was

centrifuged at 800 g for 10 min. The pellet was discarded and the supernatant was

centrifuged at 40,000 g for 40 min. The resulting pellet was rinsed twice under the same

conditions. The final pellet was resuspended in 1.5 volumes (v:w) of the Tris-HCI

buffer described above and stored at -80°C until the day of the experiment when it was

diluted 2.5-fold (v:w) in the same solution.

[3H]-thioperamide binding assays

[3H]-thioperarnide binding assays were carried out based on the procedure described

by Jansen et al. (1994) for the binding of [125I]-iodophenpropit. Kinetic (using 0.3 nM
[3H]-thioperarnide, Figure 2), saturation (using either 1 11M R-(a)-methylhistamine,

Figure 3B; or 0.3 J.lM iodophenpropit, Figure 3A) , and displacement experiments

(using both 0.3 nM and 5 nM of [3H]-thioperarnide; Figures 4 and 5) were performed at

4°C in 50 roM Tris-HCI buffer described above in a total incubation volume of 0.25 or

0.5 ml, using polyethylene tubes. Determinations were performed in duplicate. Dmgs

were prepared in the same buffer. Rat cerebral cortical membranes and rat liver

microsomes (Jefcoate, 1978), previously prepared and kept at _80° C, were inCUbated

for 14 hours to reach equilibrium. Incubations were started by the addition of

membranes and were terminated by the addition of 3 ml of ice-cold Tris-HCI buffer

(pH 7.4, at 4°C) followed immediately by ftltration through Whatman GFIB ftlters using

a Brandel filtration apparatus. Filter binding was less than 1% of total radioactivity

added. After ftltration of the membranes ftlters were washed once with 3 ml of ice-cold

Tris-HCI buffer then transferred to vials. Scintillation fluid was added and the

radioactivity bound to the ftlters was measured in a Wallac beta scintillation counter.

Samples were left to equilibrate for 24 hours before counting for 5 minutes per

sample.The standard error of the mean of the dpm counted did not exceed 5% both

when the experiments were performed in triplicate or in duplicate. Counting efficiency

was 60%.

Protein concentrations were determined using the Bio-Rad Protein Assay kit (based

on Bradford, 1976). Bovine semm albumin was used as standard.

Data analysis

Saturation and competition binding experiments were evaluated on a Macintosh

computer using the non-linear curve fitting programme LIGAND (Munson & Rodbard,

1980). With the aid of this programme binding curves were, respectively, fitted

(unweighted) to a one and two independent sites models. The improvement of the fit for
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each model with additional parameters was evaluated based on the 'extra sum of

squares' principal (Draper & Smith, 1966), taking p<0.05 to be significant.

Chemicals

[3H]4-(4-piperidyl) imidazole with a specific activity of 6 Ci/mmol was obtained from

Amersham and used without further purification. Cyclohexylisothiocyanate was

synthesised at Novo Nordisk AlS. All other reagents and solvents used in the synthesis

of [3H]-thioperamide were of analytical grade.

For the binding studies the following drugs were used: thioperamide maleate,

iodophenpropit dihydrobromide, imetit dihydrobromide, immepip dihydrobromide, (all

synthesised at the Department of Pharmacochemistry, Vrije Universiteit, Amsterdam,

The Netherlands); iodoproxyfan, (R)-a-methylhistamine maleate (gifts from Dr. W.

Schunack, Berlin), (S)-a-methylhistamine dihydrobromide (Cookson Chemicals),

burimamide (gift from Smith Kline Beecham), haloperidol (RBI, Natick, U.S.A.),

ondansetron (gift from Solvay Duphar), histamine dihydrochloride (Sigma), imidazole

(Merck), SKF 525A hydrochloride (RBI), metyrapone (Aldrich-Chemie).

Results

Time course ofthe [3HI-thioperamide binding to rat cortical membranes

Our initial binding studies with [3H]-thioperamide were performed at 370 C as

described in the methods of Jansen et al. (1994). However, a very slow association

(>10 hours to reach equilibirium) of 5 nM [3H]-thioperamide to rat brain cortical

membanes was observed. In parallel experiments with 600 Ilg/ml membrane protein we

observed at 5 nM [3H]-thioperamide 2921 ± 152 and 1342 ± 43 dpm total binding

(mean ± s.d., n = 3) at 40 and 370 C, respectively. At 370 C almost no total binding of

0.3 nM [3H]-thioperamide could be detected (100 ± 20 dpm), whereas at 4 °C 1430 ±
50 dpm total binding was found. Therefore, our studies were thereafter performed at 40

C. At this temperature, binding of 0.3 nM [3H]-thioperarnide to rat brain cortical

membranes reached equilibrium after 8-10 hours (Figure 2) resulting in an association

constant (Kon) of 0.2 ± 0.1 109 M-l.min-1 (mean±s.d., n=3). The binding of [3H]

thioperarnide was readily reversible with the addition of 1 11M (R)-a-methylhistamine

which displaced 80-85% of the specific binding with a dissociation constant (Koff) of

0.065 ± 0.056 min- l (mean±s.d., n=3). Based on these kinetic data the Kct value

(KoffJon) of [3H]-thioperamide was calculated to be 0.3 ±0.4 nM (mean ±sd, n = 3).

At 40 C the binding of 0.3 nM (inset Figure 2) and 5 nM [3H]-thioperarnide (data not

shown) to rat cortical membranes increased linearly with increasing concentrations of
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protein up to 400 f.Lg/ml. Based on these characteristics, saturation and displacement

experiments were performed using an incubation period of 14 hours, at 4° C, with 200

400 f.Lg/ml of protein.
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Figure 2 Association and dissociation curves of the [3H]-thioperamide binding to rat brain cortical

membranes. Membranes (50 Ilgltube) were incubated at 4° C with 0.3 nM [3H]-thioperamide in a

final volume of 250 Ill. Non-specific binding was measured in the presence of 1 JlM (R)-a

methylhistamine. The specific binding at equilibrium represented 50-60% of the total binding. For

the dissociation of [3H]-thioperamide binding, (R)-a-methylhistamine (1 JlM) was added, after a 18

hours incubation. One typical experiment of three is shown. Inset shows the binding of 0.3 nM

[3H]-thioperamide at different protein concentrations. A typical experiment performed in triplicate is

shown. Similar data was obtained in two other independent experiments.

[3Hl-thioperamide saturation binding experiments

Incubation of rat cerebral cortical membranes with increasing concentrations of [3R]

thioperamide showed binding to be saturable. When specific binding was determined

using 0.3 f.LM of iodophenpropit, biphasic Scatchard plots were obtained (Figure 3A);

analysis of the [3H]-thioperamide saturation curves (0.03-120 nM) revealed two

populations of binding sites (Table1). When specific binding was determined using 1

f.LM (R)-a-methylhistamine (Figure 3B) a linear Scatchard plot was obtained and [3H]

thioperamide binding (0.03-7 nM) was best fitted according to a single site model (Table

1). Specific binding represented 50 to 55 % of the total binding at [3H]-thioperamide

concentrations below 0.5 nM. Specific binding decreased significantly when the
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concentration of [3H]-thioperamide increased. Non~specific binding was a linear

function regardless of the way it was defined.
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Figure 3 Saturation binding of [3H]-thioperamide to membranes (200 ~g1tube) from rat

cerebral cortex. The insets show the transformation of the data into Scatchard plots. (A)

The non-specific binding was defined in the presence of 0.3 lJM iodophenpropit (B) The

non-specific binding was defined in the presence of 1 lJM (R)-a-methylhistamine. Results

shown are from one representative experiment of three performed in duplicate.
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Table 1 Dissociation constants (KD) and number of specific binding sites (Bmax) for the binding of

[3H]-thioperamide to membranes of rat brain cortex. The radioligand binding studies were performed as

described in Methods. Data represent mean±s.d. of three independent experiments performed in duplicate.

Non-specific Kn Bmax (high) Kn Bmax (low)

binding (high) (fmollmg (low) (fmol/mg

defined with: (nM) protein) (nM) protein)

0.3~ 1.1±0.3 162±10S 96±19 4346± 3092

iodophenpropit

1~ (R)-a- O.S±O.l 73±20 - -
methylhistamine

Displacement curves using H3-antagonists

Total binding of [3H]-thioperamide to rat cerebral cortical membranes was fully

displaced by H3 antagonists. Figure 4 shows displacement of 0.3 and 5 nM [3H]

thioperamide by the two H3 antagonists iodophenpropit (Figure 4A) and iodoproxyfan

(Figure 4B).
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Figure 4 Displacement of the total binding of 0.3 nM (filled circles) and 5 nM (opened circles)

[3H]-thioperamide to rat brain cortical membranes (100 Ilgltube) at 4°C by iodophenpropit (A) or

iodoproxyfan (B). Data represent a typical experiment of at least three independent experiments

performed in duplicate.

When 0.3 nM [3H]-thioperamide was used in competition assays, the H3-receptor

antagonists distinguished between high and low affinity components. Ki values

obtained for the high affinity site were consistent with those reported for the H3-receptor
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(table 2). Using 5 nM [3H]-thioperarnide, the displacement curves were all fitted best to

a single site model. The Ki values obtained, under these conditions, differed from those

expected for the H3 receptor and were mostly comparable to Ki values for the low

affinity site found at 0.3 nM (Table 2).

Table 2 Affinity of different ligands towards [3H)-thioperamide binding sites on rat cerebral cortex

membranes.

Ki high /Ki low

(nM

0.3 nM 0.3 nM 5nM

ligand [125Il-iodophenpropit [3Hl-thioperamide [3Hl-thioperamide

H3-Agonists:

Histamine 38±1O I 2500±600a) I43±29 N.D.

(R)-t:X-methylhistarnine 3.5±l.2 I 1200±30oa) 9±3/ISO±I5 N.D.

(S)-t:X-methylhistamine 230±97/9500±ISoa) 250±156 N.D.

Imetit 2.7±1/40000±12000a) S.1±5.6 N.D.

Immepip 2.7±11 l000±200a) 2.S±O.7 N.D.

H3-antagonists:

Iodophenpropit O.97±O.06a) O.36±O.14 I SO±l9 9.5±l.O

Thioperarnide 4.3±1.6a) O.66±O.64 I 14±9 20±12

Burimamide IS±9/725±392a) 11.4±4.1 I 454±93 I03±13

Iodoproxyfan 2.4±O.2 O.33±O.16 I 6.3±l.O 6±2

a) Determined by Jansen et al. (1994)

The compounds that show high and low affinity Ki values fitted best to a two site model (p<O.05).

Values are given as mean±s.d. of at least three independent experiments performed in duplicate. N.D.;

not determined.

Displacement curves using H3-agonists

Figure 5 shows the displacement of the binding of 5 nM and 0.3 nM [3H]

thioperarnide by (R)-a.-methylhistarnine, histamine, and (S)-a.-methylhistarnine. When

5 nM [3H]-thioperarnide was used, less than 15% of the total binding was displaced by

the tested H3 agonists applying a concentration range expected to bind to the H3

receptor. Yet, even under these conditions it was possible to observe stereoselectivity of
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the (R) and (S) isomers of a-methylhistamine (Figure 5A). Nevertheless, the small

amount of binding displaced did not allow proper fittings of the agonist curves.
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Figure 5 Displacement of the total binding of 5 nM (A) and 0.3 nM (B) [3H]-thioperamide to rat

brain cortical membranes (100 J.Lgltube) at 4°C by (R)-cx-methylhistamine (filled circles), (S)-cx

methylhistainine (filled squares), and histamine (opened circles). Data represent one of at least three

independent experiments performed in duplicate.

On the other hand, when experiments were performed with 0.3 nM [3H]-thioperamide

up to 60% of total binding was displaced by the H3 agonists (Figure 5B). Also in these

experiments, stereoselectivity between the (R) and (S) isomers of a-methylhistamine

was evident up to micromolar concentrations. Ki values obtained for these compounds

and for other well established H3 agonists (imetit and immepip) are shown in table 2.

Biphasic curves were obtained only for the displacement of 0.3 nM [3H]-thioperamide

by (R)-a-methylhistamine. Nevertheless, this displacement was not affected by the

presence of 10 J.lM GTPyS (data not shown). For the other agonists LIGAND was

unable to discriminate two independent sites, although at the higher agonist

concentrations the agonists started to displace a seconde site.

Displacement of[3H]-thioperamide by other ligands

Thioperamide displays high to moderate affInity for 5-HT3 and for (J receptors (Leurs

et al., 1995b). Hence ondansetron, a 5-HT3 selective ligand, and haloperidol, which

shows high affinity for the (J receptor, were tested in displacement assays. Neither

haloperidol (Ki>10 J.lM, n=3) nor ondansetron (Ki=10 J.lM, n=3) displaced the binding

of 5 nM of [3H]-thioperamide at concentrations selective for the (J or 5-HT3-receptors,

respectively.
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Figure 6 Displacement of the total

binding of 5 nM [3H]-thioperamide to rat

brain cortical membranes (100 Ilgltube) at

4°C by imidazole (filled circles),

metyrapone (open circles), and SKF 525A

(filled squares). Data represent one of at

least three independent experiments

performed in duplicate.

Imidazole, metyrapone, and SKF 525A are known to inhibit cytochrome P450

isoenzymes nonselectively (Halpert et ai., 1994). These compounds displaced up to

80% of the total binding of 5 nM [3H]-thioperamide in rat cerebral cortex membranes

(Figure 6) at concentrations known to inhibit binding to cytochrome P450 isoenzymes
(Halpert et al., 1994). The IC50 values obtained for imidazole, metyrapone, and SKF

525A were, respectively: 1l±1 IlM (mean±s.d., n=3), 522±92 /lM (mean±s.d., n=3),

and 481±18 /lM (mean±s.d., n=3).

Finally, we investigated the binding of 5 nM [3H]-thioperamide to rat liver

microsomes. Total binding of 5 nM [3H]-thioperamide to 950 Ilg/ml rat liver

microsomal proteins amounted 61014±431 dpm. This binding was inhibited by

12.l±6.3 %; 88.9±0.4 %; 93.1±0.1 %; 90.5±0.1 % (mean ± sd, n = 2) by

respectively, 1 /lM RAMH, 100 IlM imidazole, 1 mM metyrapone, and 1 mM SKF

525A.

Discussion

Until recently, the highly selective H3 agonists, [3H]-(R)-a.-methylhistamine and

[3H]-N<Lmethylhistamine, were the only tools available to label the H3 receptor and

they have been of great use in the elucidation of the pharmacological characteristics of

the H3 receptor (Arrang et ai., 1988; West et ai., 1990). Nevertheless, the binding

properties of radiolabelled agonists are known to be complex and often difficult to

interpret (West et al., 1990; Clark & Hill, 1995). In an attempt to solve some of the

difficulties related to the use of labelled agonists, new H3 antagonists were synthesised,

radiolabelled and pharmacologically characterised. The first radiolabelled H3 antagonist

was [125I]-iodophenpropit (Menge et al., 1992) an iodinated analogue of clobenpropit,

the most potent H3 antagonist available to date (Leurs et al., 1995a). This radioligand is
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suitable for characterisation histamine H3 receptors in riit cerebral cortex (Jansen et ai.,

1992; Jansen et ai., 1994). Yet, competition experiments with the two H3 antagonists,

burimamide and dimaprit, showed biphasic displacement curves suggesting that this

radioligand interacts with two binding sites (Jansen et ai., 1994). [125I]-iodoproxyfan,

another iodinated H3 antagonist, was used to label H3 receptors in rat striatum (Ligneau

et ai., 1994). However, agonists displaced a maximum of 60% of the total binding

whereas antagonists fully displaced the binding of [125I]-iodoproxyfan. Apparently

[125I]-iodoproxyfan labels an additional binding site with high affinity. The labelling of

this secondary site(s) by [l25I]-iodoproxyfan was potently inhibited by H3 antagonists,

sometimes resulting in complex displacement curves with Hill coefficients significantly

higher than one (Ligneau et ai., 1994).

In the present study we describe the synthesis of the radiolabeled H3 antagonist [3H]

thioperamide as well as the pharmacological characterization of its binding to rat cerebral

cortical membranes. Under the experimental conditions used, [3H]-thioperamide

binding was saturable and reversible. When saturation experiments were performed

(0.01-7 nM [3H]-thioperamide) using the H3-agonist (R)-a-methylhistamine to define

non-specific binding, linear Scatchard plots were obtained consistent with labelling of a

single class of binding sites (Table 1). When competition experiments were performed

using 0.3 nM [3H]-thioperamide, H3 agonists displaced up to 60% of the total binding.

Stereoselectivity for the (R) and (S) isomers of the H3 agonist a-methylhistamine was

observed within the concentration interval expected to bind to the H3 receptor. In

contrast to previous studies with [l25I]-iodophenpropit at 37° C (Jansen et ai., 1994)

agonist displacement of [3H]-thioperamide was not affected by GTPyS at 4°C. Since

recently Clark & Hill (1996) presented conclusive evidence for the interaction of the H3

receptor with pertussis toxin-sensitive G proteins in the rat cerebral cortex, the lack of

GTPyS effect in the present study is likely due to differences in the

thermodynamic/thermokinetic behaviour of G-protein coupled receptors. For example, it
has been shown that for agonist binding to ~2-adrenergic receptors the high affinity

dissociation constant decreases much more with decreasing temperature than the low

affmity constant (Miklavc et ai., 1990).

At higher concentrations of [3H]-thioperamide H3 agonists also displaced the [3H]

thioperamide binding, but stereoselectivity for the isomers of a-methylhistamine was

almost totally lost. We, therefore, consider 60% of the total binding of 0.3 nM [3H]

thioperamide to rat brain cortical membranes to represent the H3 receptor. Displacement

studies with several H3 antagonists confirmed this conclusion. For these ligands

displacement studies with 0.3 nM [3H]-thioperamide resulted in biphasic displacement

curves. The Kj values for the high affinity [3H]-thioperamide binding site

(approximately 50-60% of total binding) corresponded well with the known affinities

for the H3 receptor (Jansen et ai., 1994) for the tested H3 antagonists.
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When 5 nM of [3H]-thioperamide was used only a "small part «15%) of the total

binding was displaced by H3 agonists. Yet, under these conditions, the H3 antagonists

fully displaced [3H]-thioperamide binding monophasically at concentrations which

mostly did not correspond with their observed affinities for the H3 receptor. Our

findings indicate that at 5 nM [3H]-thioperamide binds mostly to a secondary, non-H3,

binding site(s). Furthermore, the H3 antagonists we tested showed moderate to high

affinity for this secondary site(s), albeit at concentrations more than 10 fold higher than

their affinities for the H3 receptor. The relatively high affinity of iodophenpropit for the

secondary [3H]-thioperamide site(s) (Ki=80 nM) appears to account for the observed

curvilinear Scatchard plots of the [3H]-thioperamide saturation curves, when

iodophenpropit was used to define the non-specific binding (Figure 3A). Although the

estimates of the density of the binding obtained were relatively inaccurate for the

secondary site(s) (Table 1), it is evident that this low affinity [3H]-thioperamide binding

site(s) is present in large excess over the H3 receptor binding site.

Previously Leurs et ai., (1995b) extensively characterised the receptor selectivity of

iodophenpropit and thioperamide. In those radioligand binding studies displacement

with thioperarnide showed that the latter had relatively high affinities for the 5-HT3

(120±30 nM) and 0' (180±90 nM) receptors. Present results with the selective 0' ligand

haloperidol and the selective 5-HT3 ligand ondansetron indicated that these two

receptors do not contribute significantly to the total binding of [3H]-thioperamide.

Thioperamide has also been shown to interact with the cytochrome P450 isoenzymes

(Labella et al., 1992). Imidazole, metyrapone, and SKF 525A, all nonselective

inhibitors of cytochrome P450 isoenzymes (Halpert et al., 1994), showed almost full

displacement of the binding of 5 nM [3H]-thioperamide in rat cerebral cortical

membranes strongly indicating that those enzymes may be a major source for the non

H3 receptor component [3H]-thioperamide binding. Since cytochrome P450 enzymes

are present in relatively high amounts in the brain cortex (74 pmol/mg protein)

(Ravindranath, 1995) the binding to cytochrome P450 isoenzymes may explain the high

density of the binding observed at higher concentrations of [3H]-thioperamide (Table 1,

Figure 3). This suggestion is supported by our observation that [3H]-thioperarnide also

binds to rat liver microsomes. Labelling of a cytochrome P450 isoenzyme has also been

reported to complicate histamine HI receptor binding studies with [3H]-mepyrarnine

(Fukui et al., 1995; Leurs et ai., 1989; Leurs et ai., 1990).

Considering the results obtained from this study, the following picture regarding the

available radiolabelled H3 antagonists emerges. [125I]-iodophenpropit (Jansen et ai.,

1994) can be considered a suitable radioligand to label H3 receptors as it markedly

discriminates between high and low affinity binding sites of H3 antagonists in the rat

cerebral cortex (selectivity ratio 222). Yet, it would be advisable to use agonists to

define non-specific binding, in saturation studies in particular where the non-specific
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binding increases markedly with increasing concentrations of radioligand. [1251]_

iodoproxyfan (Ligneau et a1., 1994) should be used with more care when labelling the

H3 receptor. This compound does not discriminate well between high and low affinity

binding sites of H3 antagonists in the rat cerebral cortex (selectivity ratio 19). This

observation is consistent with the finding that only 60% of the total binding of this

ligand to rat striatal membranes is displaced by H3 agonists while several antagonists

fully displace the binding of [1251]-iodoproxyfan (Ligneau et a1., 1994). [3H]-(S)

methylthioperamide (Yanai et a1., 1994) binding was characterised only with (R) and

(S) methylhistamine, and thioperamide. Moreover, non-specific binding was defined

using 10~ of thioperamide. In view of our recent results this procedure appears to be

inadequate for the selective labelling the H3 receptor. Indeed, Yanai et a1. (1994)

reported relatively high densities of (S)-[3H]-methylthioperamide binding in the rat

brain. In various peripheral tissues, such as the liver and the lung, where the H3

receptor is not expected to be present (Korte et a1., 1990) the density of the binding sites

for (S)-[3H]-methylthioperamide was even higher (Yanai et a1., 1994). This can be due

to binding of this radioligand to cytochrome P450 isoenzymes present in high densities

in these tissues (Ravindranath, 1995).

In conclusion, [3H]-thioperamide binds to rat brain cortical membranes in a saturable

and reversible manner showing high and low affinity components. The high affinity site

is likely to represent the histamine H3 receptor as the binding is displaced by (R) and

(S)-a-methylhistamine in a stereoselective manner and by several other H3 ligands with

a pharmacological profile of the H3 receptor. At nanomolar concentrations binding of

[3H]-thioperamide to a low affinity non-H3 receptor binding site(s) increases steeply,

reaching, at saturation, a density 30 fold higher than the number of H3 receptors. Also

other H3 antagonists we tested show high affinity for the non-H3 receptor sites.

Therefore, based on this study, it would be judicious to use H3 agonists rather than H3

antagonists to delineate specific (and non-specific) binding of radioactively labelled H3

antagonists.
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PHARMACOLOGICAL CHARACTERISATION OF THE HISTAMINE H3

RECEPTOR IN THE RAT HIPPOCAMPUS.

A. Alves-Rodrigues, R. Leurs, E. Willems, S. Lemstra, a.p. Zuiderveld, and H.

Timmerman

Summary

Saturation binding experiments with the H3 receptor antagonist [125I]-iodophenpropit

revealed labelling of a single class of binding sites, in rat hippocampus membranes. A

dissociation constant value of 0.33±O.07 nM (mean±SEM, n=3) and a maximal number

of binding sites of 125±25 fmol/mg protein (mean±SEM, n=3) were obtained. [1251]_

iodophenpropit (0.25 nM) binding to rat hippocampal membranes was readily displaced

by histamine H3 receptor agonists and antagonists, with Ki values within the range

expected to bind to the histamine H3 receptor and comparable to the values obtained for

the H3 receptor present in the rat brain cortex. Stereoselectivity between the (R) and (S)

enantiomers of the H3 receptor agonist a-methylhistamine was observed. In the presence

of GTPyS a rightwards shift ocurred for the high affinity site of the binding of (R)-a

methylhistamine. Up to a concentration of 1 JlM, (R)-a-methylhistamine displaced up to

30% of the total binding of [125I]-iodophenpropit whereas H3-antagonists displaced 50

60% of the bound [125I]-iodophenpropit. This observation suggests the presence of an

additional, non-H3 receptor, component of the binding of H3-antagonists in the rat

hippocampus.

Functionally, an H3 receptor mediated inhibition of the [3H]-noradrenaline release

was detected in the rat hippocampus. A maximal inhibition of 42.4±6.3 % (mean±SEM,

n=16) was observed. The pD2 values obtained for (R) and (S)-a-methylhistamine were,

respectively, 7.6±0.1 (mean±SEM, n=7), and 6.5±O.04 (mean±SEM, n=6). For the H3

antagonists thioperamide and burimamide pA2 values of 8.0±0.3 (mean±SEM, n=3) and

7.3±O.2 (mean±SEM, n=6), respectively, were obtained.

Introduction

In the eNS, histaminergic cell bodies are exclusively found in the tuberomammillary

nucleus of the posterior hypothalamus (Panula et ai., 1990). In contrast, histamine

synthesising nerve terminals project throughout the whole brain and to all regions of the

hippocampal formation (Panula et ai., 1990; Schwartz et ai., 1990). This brain structure

is directly involved in synaptic plasticity and cognitive functions (Haas et ai., 1995; Zola-
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Morgan et at., 1986). The involvement of histamine in "memory linked events has long

been suggested (De Almeida & Izquierdo, 1988) but has gradually gained interest only

during the recent years. Already in 1983 Haas et aI. showed that histamine reduces a

calcium-dependent K+ conductance in hippocampal pyramidal cells. This effect was

shown to be mediated by receptors known to stimulate adenylyl cyclase, such as the

histamine H2 receptor (Haas & Konnerth, 1983). In view of the current knowledge, it is

clear that such effects increase depolarisation and calcium entry and, thereby, facilitate

long term potentiation (LTP) induction and maintenance (Haas et al., 1995). Moreover,

independently and almost simultaneously, two research groups reported on the histamine

potentiation of NMDA-mediated synaptic transmission in the hippocampus (Bekkers,

1993; Vorobjev et aI., 1993) via an interaction with a polyamine regulatory binding site

on the NMDA channel. By selectively enhancing NMDA mediated neurotransmission,

histamine potentiates processes in which NMDA currents are involved such as the

triggering of LTP (Bekkers, 1993; Vorobjev et aI., 1993; Zola-Morgan et al., 1986).

Consequently, physiological or pathological conditions that deplete histamine in the brain

might lead to a reduced ability to trigger LTP and, therefore, memory loss (Bekkers,

1993, 1996).

The presynaptic histamine H3 autoreceptor is a regulatory unit for the synthesis and

release of histamine in the CNS (Arrang et al., 1983; Arrang et at., 1987; Van der Werf et

al., 1987). The histamine H3 receptor not only regulates the release of histamine from

histaminergic nerve terminals but is also present on non-histaminergic nerve terminals,

where it acts as a heteroreceptor modulator of the release of other biogenic amines such as

acetylcholine (Arrang et al., 1995; Clapham & Kilpatrick, 1992), serotonin,

noradrenaline, and dopamine in the CNS (Alves Rodrigues et al., 1995; Leurs et al.,

1996; Schlicker et al., 1988; Schlicker et al., 1993; Schlicker et al., 1989; Schlicker et

al., 1994).

The enthorinal cortex is a constitutive portion of the hippocampal formation

responsible for an unidirectional excitatory projection from the cerebral cortex into the

dentate gyrus and from there to all other fields of the hippocampus (Amaral & Witter,

1989). Deterioration of cholinergic transmission in the enthorinal cortex is often linked to

memory loss (Bierer et al., 1995). This observation together with the reported H3

receptor modulation of the release of acetylcholine in the enthorinal cortex (Arrang et al.,

1995; Clapham & Kilpatrick, 1992) strongly support the hypothesis of the involvement

of the histaminergic system, and of the H3 receptor in particular, in hippocampal memory

formation. Furthermore, using behavioural studies in rodents, several authors have

reported on the cognitive enhancing properties of the H3 receptor antagonist

thioperamide, both under normal physiological conditions (Bames et aI., 1993; Miyazaki

et al., 1995) and after scopolamine-induced learning deficits (Shichi et al., 1995) or

accelerated senescence (Meguro et aI., 1995).
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The presence of histamine H3 receptors in the hippocampus of the rodent (Cumming

et al., 1991; Jansen et al., 1994; Pollard et al., 1993; Yanai et al., 1994) and of the

primate (Martinez-Mir et al., 1990) has previously been visualised using autoradiographic

techniques. Nevertheless, a pharmacological characterisation of the hippocampal H3

receptor has, so far, not been described. Following up the previous work by our group in

the rat brain cortex (Jansen et al., 1994) and in view of the increasing evidence for the

involvement of histamine in hippocampal cognitive function, we pharmacologically

characterised the histamine H3 receptor in the rat brain hippocampus.

Methods

Preparation ofrat brain membranes

Male Wistar rats (200-220 g, Harlan C.P.B., Zeist, The Netherlands) were

decapitated and the brains were rapidly removed. The hippocampi were dissected and

homogenised in 10 volumes (v:w) of ice-cold 50 mM Tris-HCl buffer (with 5 mM
MgC12, 145 mM NaCl, pH 7.4 at 4°C) using a Ultra-Turrax blender and a Potter

Elvehjem homogeniser. This homogenate was centrifuged at 800 g for 10 min. The pellet

was discarded and the supernatant centrifuged at 40,000 g during 40 min. The resulting

pellet was rinsed twice under the same conditions. The final pellet was resuspended in

1.5 volumes (v:w) of the above described Tris-HCl buffer and stored at -80°C until the

day of the experiment when it was diluted 2.5 (v:w) times in the same solution.

[125IJ-iodophenpropit binding assays

[125I]-iodophenpropit binding assays were carried out based on the procedure

described by Jansen et al. (1994). Saturation, and competition binding experiments of

[125I]-iodophenpropit (1950 Cilmmol) were performed at 37° C in 50 mM Tris-HCl

buffer containing 5 mM MgC12, 145 mM NaCl (pH 7.4 at 37°C) in a total incubation

volume of 0.5 ml (0.25 ml, in saturation binding experiments), using polyethylene tubes.

Determinations were performed in triplicate. Compounds were diluted in buffer. Rat

brain membranes, previously prepared and kept at -80° C, were incubated for 60 min to

reach equilibrium. In saturation experiments membranes were incubated with [1251]_

iodophenpropit in final concentrations ranging from 0.075 nM to 3 nM. In these assays,

the non-specific binding was defined using 1 ~M of (R)-lX-methylhistamine.

Incubations were started upon addition of 100 ~l (50 ~l, in saturation binding

experiments) membranes (30-80 ~g of protein per tube) and were terminated by the

addition of 3 ml of ice-cold Tris-HCl buffer (pH 7.4, at 4°C) immediately followed by

filtration through Whatrnan GF/C filters using a Brandel filtration apparatus. Filters were
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pretreated for at least 2 hours with 0.3% polyetheleneimine, reducing filter binding to less

than 1% of the total radioactivity added. After filtration of the membranes the filters were

washed twice with 3 ml of ice-cold Tris-HCl buffer. The amount of radioactivity bound

to the membranes was not reduced by repetition of the washing procedure. The

radioactivity bound to the filters was measured by an LKB gamma counter. Protein

concentrations were determined using the Bio-Rad Protein Assay kit (based on Bradford,

1976). Bovine serum albumin was used as standard.

Functional assays

Based on a combination of the methods described by Schlicker et at. (1989) and Van

der Werf et at. (1987) slices of the rat cerebral neocortex or hippocampus (O.3mm x

O.3mm) were incubated for 30 min in a Krebs-Ringer buffer (KRB) (in mM: NaCl 118,

KC13, MgS04 1.2, CaC12 1.2, NaH2P04 1.4, NaHC03 25, glucose 10, pH 7.4 at 370

C when gassed with 02/C02 (95%/5%)) containing 5 flCi [3H]-noradrenaline (specific

activity=38 Ci/mmol, NEN). After washing 4 times with 10 ml of KRB, the slices were

preperfused with KRB (containing 1 flM desipramine and 1 flM phentolamine), for 60

min at a flow of 0.3 ml/min under constant gassing (95% 02, 5% C02). Subsequently,

seven 10 min fractions were collected, tritium overflow was evoked by a 200 seconds

long electrical stimulation (rectangular pulses of 20 rnA, 1ms, 0.3 Hz) during the second

fraction (S1) and the fifth fraction (S2). Agonists were added right after the first

stimulation (S 1). Antagonists were present from the beginning of the 60 minutes

preperfusion and throughout the whole experiment. Finally, the slices were perfused for

20 min with O.lN HCl to determine the total content of tritium.

Data analysis

Saturation and competition binding experiments were evaluated on a Macintosh

computer using the non-linear curve fitting programme LIGAND (Munson & Rodbard,

1980). With the aid of this programme binding curves were, respectively, fitted

(unweighted) to a one and two independent sites models. The improvement of the fit for

each model with additional parameters was evaluated based on the 'extra sum of

squares' principal (Draper & Smith, 1966), taking p<0.05 to be significant.

The stimulation-evoked tritium overflow was calculated by substraction of the basal

efflux from the total efflux during stimulation and the subsequent 13 minutes and was

expressed as percentage of tissue tritium at the onset of stimulation. For quantification of

the effect of H3-agonists on the electrically evoked tritium overflow, the ratio of the

overflow evoked by S2 over that evoked by Sl Was determined (S2/S1). The apparent

pA2 for the H3 antagonists was calculated according to Furchgott (1972). Data obtained
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from functional assays were fitted to a sigmoidal curve-using the program KaleidaGraph

(Albelbeck Software).

Chemicals

[125I]-Iodophenpropit was labelled to a specific activity of 1950 Ci/mmol as

described by Menge et at, (1992). [3H]-Noradrenaline (specific activity=38 Ci/mm01)

was purchased from NEN, Netherlands. Thioperamide maleate, and iodophenpropit

dihydrobromide were synthesised at the Department of Pharmacochemistry, Vrije

Universiteit, Amsterdam, The Netherlands; (R)-o.-methylhistarnine maleate, and (S)-o.

methylhistamine dihydrobromide were purchased from Cookson Chemicals),

burimamide was a gift from Smith Kline Beecham, polyethylenimine was purchased

from A1drich-Chemie, guanosine 5'-0-(3-thio)triphosphate (GTP'yS) from Sigma,

desipramine hydrochloride was purchased from RBI and phentolamine hydrochloride

was a gift from Ciba Geigy. Iodoproxyfan was kindly provided by Dr. W. Schunack

(Berlin).

Results

[125I]-iodophenpropit saturation binding assays

Specific binding (determined in the presence of 1 pM (R)-o.-methylhistamine) of

[125I]-iodophenpropit (0.075-3 nM) to rat hippocampal membranes was saturable

(Figure 1) and yielded linear Scatchard plots (inset Figure 1) revealing binding of the

radioligand to a single class of sites. Computer analysis of the binding curves showed a

dissociation constant (KD) of 0.33±O.07 nM (mean±SEM, n=3) and a maximal number

of binding sites of 125±25 fmol/mg protein for [125I]-iodophenpropit (mean±SEM,

n=3). Non-specific binding increased linearly with the concentration of [1251]_

iodophenpropit. Specific binding represented 30-35% of the total binding of 0.25 nM

[125I]-iodophenpropit, decreasing rapidly with increasing concentrations of [1251]_

iodophenpropit.

Competition binding assays

A stereoselective binding of the (R) and (S) enantiomers of the H3-receptor agonist 0.

methylhistamine was established (Figure 2A, table 1). (R)-o.-methylhistamine showed a

biphasic displacement curve of the binding of [125I]-iodophenpropit; the fitting

programme LIGAND could not clearly distinguish between high and low affinity sites of

the binding of (S)-o.-methylhistarnine. Upon addition of GTPyS (10 J.lM) the competition
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binding curve of (R)-cx-methylhistamine showed a rightward shift, indicating coupling

of the H3-receptor to a G-protein in the hippocampus; this curve fitted best to a one site

fit model (Figure 2A, Table 1).
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Figure 1 Saturation binding of [125I]-iodophenpropit to membranes from rat

hippocampus. The inset shows the transfonnation of the data into a Scatchard plot. The

nonspecific binding was defined in the presence of I J.1M (R)-a-methylhistamine. Results

shown are from one representative experiment of three perfonned in triplicate.

Surprisingly, and in contrast with observations from the rat cerebral cortex (Jansen et

al., 1994), only ca. 30% of the total binding of 0.25 nM [125IJ-iodophenpropit was

displaced by the H3-receptor agonists (R) and (S) cx-methylhistamine within the

concentration range expected to bind to the H3 receptor (Figures 2A, 2C); whereas the

binding of 0.25 nM [125IJ-iodophenpropit displaced by the H3-antagonist thioperamide

represented 50-60% of the total binding (Figure 2C). This ~omponent of the binding was

equally displaced by the other H3-receptor antagonists, burimamide, and iodoproxyfan,

within the concentration range expected to bind to the H3 receptor (Figure 2B). With the

exception of burimamide, all the H3 receptor antagonists tested fitted best to a one site

model (P>0.05). The Ki values obtained for the several H3 receptor antagonists are

shown on table 1.
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Table 1 Affinities (Ki values) of several H3-receptor ligands for [125I]-iodophenpropit binding sites on rat hippocampus and

cerebral cortex membranes. Potencies of H3-agonists (pD2) and antagonists (pA2) from inhibition of the electrically evoked release

of [3H]-noradrenaline.

I
~

Ki (hippocampus) Ki (cortex) pD2/pA2 pD2/pA 2 ~
~

~
(nM) (nM) (cortex) (hippocampus) ;:So

l3
H3-receptor antagonists: ~.

Thioperamide 6.5±1.2 (7) 0.93±0.22 (3)a) 8.0±0.2 (3) 8.0±0.3 (3) ~
~

""
Iodoproxyfan 2.4±0.2 (6) 2.4±0.2 (3) N.D. N.D. $

Ii!
Burimamide 7.7±0.8 /2,103±777 18±91725±138 (8)a) 7.0Sb) 7.3±O.2 (6) ~

~
~
""l

s·
H3_receptor agonists: ~

""::s-
(R)-a-methylhistamine 1.3±O.6 / 270±200 (8) 3.5±O.6/ 1,200±1S0 (4)a) 7.8±O.1 (10) 7.6±O.1 (7)

~.

~

(R)-a-methylhistamine+GTPyS 137±34 (4) 100±50 (4)a) N.D. N.D. ~
'G

(S)-a-methylhistamine 1,270±261 (7) 230±49 / 9,S00±900 (4)a) 6.2±O.1 (3) 6.0±0.1 (6)
~

a) extracted from Jansen et at. (1994); b) extracted from Schlicker et at. (1989)

The compounds that show high and low affinity Ki values fitted best to a two site model (P<0.05). Values are given as

mean±s.e.m. of (N) independent experiments. N.D.; not determined.
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Figure 2 Displacement of the total binding of 0.25 nM [125I]-iodophenpropit by (A) (R)-a

methylhistamine (filled circles), (R)-a-methylhistamine + 101JM GTPyS (open circles), and (S)-a

methylhistamine (filled squares); (B) iodophenpropit (filled squares), iodoproxyfan (open circles) and

burimamide (filled circles); (C) thioperamide (open circles), (R)-a-methylhistamine (filled circles).

Data represent a typical experiment of at least three independent experiments performed in triplicate.
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Functional studies

The electrically evoked tritium overflow was inhibited in a concentration dependent

and in a stereoselective manner by the H3-receptor agonists (R) and (S)-a

methylhistamine both in the cortex (Figure 3A) and in the hippocampus (Figure 3B).
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Figure 3 Effect of (R)-a-methylhistamine (filled circles) and (S)-a-methylhistamine

(open circles) on the electrically stimulated tritium overflow from superfused rat brain slices

preincubated with [3H]-noradrenaline in the (A) Cortex: , (B) hippocampus. Each point

represents mean±SEM of 3-7 experiments performed in duplicate.
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Under control conditions the ratio Sz/Sl accounted O.91±O.02 (mean±SEM, n=3) in the

cerebral cortex and O.89±O.02 (mean±SEM, n=16), in the hippocampus. A maximum

inhibition of 48.3±1.6% (mean±SEM, n=3) and 42.4±2.3% (mean±SEM, n=16) by

(R)-a-methylhistamine was obtained in the rat brain cortex and hippocampus,

respectively. Thioperamide (lO-7M) and burimamide (lO-6M) shifted the (R)-a

methylhistamine concentration response curve to the right in the hippocampus (Figure 4).

It should be mentioned, however, that burimamide displayed a slight non-competitive

behaviour as the maximal inhibition obtained for (R)-a-methylhistamine in the presence

of 1 ~M burimamide was only 37.7%±1.5% (mean±SEM, n=6). Neither thioperamide

(S2/S1=O.97±O.02; mean±SEM, n=3) nor burimamide (S2/S1=O.87±O.1; mean±SEM,

n=6), by themselves, affected the electrically evoked release of [3H]-noradrenaline in the

hippocampus. The pD2 values obtained for (R) and (S) a-methylhistamine and the pA2

values obtained for thioperamide and burimamide are depicted on table 1.
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Figure 4 Effect of (R)-a-methylhistamine (filled circles), (R)·a-methylhistamine in the

presence of 1O-7M thioperamide (open squares) and (R)-a-methylhistamine in the presence

of 1O-6M burimamide (filled squares) on the electrically stimulated tritium overflow from

superfused rat brain slices preincubated with [3Hj-noradrenaline. Each point represents

mean±SEM of 3-7 experiments performed in duplicate.

Discussion

Following up the characterisation of the rat cerebral cortical histamine H3 receptor

using [125I]-iodophenpropit (Jansen et ai., 1994), and in view of the recent results

regarding the possible link between the histamine H3 receptor and memory formation, we

characterised, in the present study, the rat hippocampal histamine H3 receptor. We used
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the H3-receptor antagonist [125I]-iodophenpropit in receptor binding assays, and the H3

receptor modulation of the electrically stimulated release of [3H]-noradrenaline as a

functional assay.

In agreement with the data obtained in the rat cortex by (Jansen et al., 1994),

saturation binding assays using hippocampal membranes revealed labelling of a single

class of high affinity [125I]-iodophenpropit binding sites. The comparison of Bmax

values between the hippocampus and the cerebral cortex, revealed a clear difference. The

receptor density in the hippocampus (Bmax=125 fmol/mg protein) showed a value

approximately two fold lower compared to the value reported by (Jansen et ai., 1994) for

the rat cerebral cortex (Bmax=272 fmol/mg protein). This observation confirms data

previously established from autoradiographic studies in the rat brain in which the density

of the histamine H3 receptor in the hippocampus is lower than that of the cerebral cortex

(Cumming et al., 1991; Ligneau et ai., 1994; Pollard et ai., 1993; Yanai et ai., 1994).

Nevertheless, other factors have accounted for the difference in the density of

receptors detected between this and autoradiographic studies. In the present work, only

approximately 30% of the binding of 0.25 nM [125I]-iodophenpropit was displaced by

the H3 receptor agonists (R) and (S)-a-methylhistamine (Figure 2A) while 50-60% was

displaced by the H3 receptor antagonists studied. The same was seen by Ligneau et ai.,

(1994) who characterised the striatal H3 receptor using [125I]-iodoproxyfan. Moreover,

in a study using quantitative storage phosphor autoradiography, a similar situation was

observed for the binding of [125I]-iodophenpropit in the rat hippocampus by Jansen et

al. (unpublished data). Our interpretation for this apparent discrepancy is the presence of

a high affinity non-H3 receptor component of the binding of H3 receptor antagonists

which is not present in the binding of the H3 receptor agonists. This component seems to

be present in higher densities in the hippocampus relatively to the cortex, since Jansen et

ai., (1994) described an almost equal level of displacement of the binding of 0.25 nM
[125I]-iodophenpropit by (R)-a-methylhistarnine and thioperarnide in the cortex.

Comparable data were obtained in chapter 4 using the labelled H3-antagonist [3H]

thioperamide, for which we observed that 90% of the binding of 5 nM [3H]-thioperamide

to rat cerebral cortical membranes is not to the histamine H3 receptor but to a high density

low affinity site, probably representing cytochrome P450 isoenzymes (Alves-Rodrigues

et ai., 1996). Hence, in view of these results, we recommend that saturation binding

assays with radiolabelled H3 antagonists are performed using 1 I!M (R)-a

methylhistamine to define the non-specific binding.

When competition binding studies in the hippocampus are concerned, both in the

hippocampus and in the cortex of the rat brain a clear stereoselectivity was observed for
the (R) and (S) enantiomers of the H3 receptor agonist a-methylhistamine. GTP..p shifts

for (R)-a-methylhistamine were obtained in both brain areas confirming (Zweig et ai.,

1992) the coupling of histamine H3 receptors to G-proteins. It was rather difficult,
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however, to determine the H3-receptor affinity of antagonists. Similar to what was seen

by Ligneau et al. (1994) in the rat striatum, several H3 antagonists did not show a clear

distinction between the H3 and a non-H3 receptor components of the binding of

radiolabelled H3-antagonists (this study, Alves-Rodrigues et al., 1996; Ligneau et al.,

1994). Although we know that, under our experimental conditions [125I]-iodophenpropit

is labelling more than one site in the hippocampus, the fitting programme LIGAND did

not analyse the displacement curves of the H3-antagonists according to a two-site model.

Only for burimamide a clear distinction between the two sites was found. One would

expect from these observations that the Ki values for the H3-receptor obtained for the

displacement of [125I]-iodophenpropit by H3 antagonists would be underestimated.

Nevertheless, the values calculated from these curves are in agreement with their

functional potency (Table 1), and with the values obtained by Jansen et al. (1994) in the

cerebral cortex, indicating, just by chance, similar affinities of the H3 antagonists studied

for the H3 receptor and the non-H3 receptor component of the binding in the rat

hippocampus.

In the second part of our study we characterised, for the first time, a functionally

active H3-receptor in the rat hippocampus. The H3-receptor mediated inhibition of the

electrically evoked release of [3H]-noradrenaline is comparable with the one observed in

the rat cerebral cortex (Schlicker et al., 1989). No significant differences were detected

between the levels of maximum inhibition of the electrically evoked release of [3H]

noradrenaline or with the control ratio S2/S I between the hippocampus the cerebral

cortex. Both the pD2 values obtained for (R) and (S)-a-methylhistamine, and the pA2

values for thioperamide and burimamide showed similar values in the two cerebral areas

studied (Table 1; Schlicker et al., 1989). Sara (1989) published on a noradrenergic

cholinergic interaction and its possible role in senile dementia associated memory

disfunction. Experimental observations in the hippocampus supported the author's

hypothesis that when there is a reduction in the cholinergic function, a corresponding

decrease in noradrenaline release (by clonidine) reduces the noradrenergic inhibitory

influence on acetylcholine release in terminals of spared cholinergic neurons.

In summary, we report on the characterisation of the histamine H3 receptor in the rat

brain hippocampus. In accordance with autoradiography studies, a lower receptor density

was obtained in the rat hippocampus as compared to the rat brain cortex. There were no

significant differences among the affInities or the potencies of the H3-ligands studied in

the hippocampus and cortex (Jansen et al., 1994). Intriguingly, in the hippocampus, H3

antagonists bind to a a non-H3 receptor component of the binding, which was not

detected in the cerebral cortex (Jansen et al., 1994). In chapter 4, we have suggested that

this component is one or more P450 isoenzymes. The difference between the two brain

areas may be due to the higher abundance of P450 isoenzymes in the hippocampus

compared to the total cerebral cortex (Ravindranath, 1995). This observation should be
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carefully addressed in studies in which receptor densities are of relevant importance.

Bearing this in mind, we have delineated conditions to study the histamine H3 receptor in

the hippocampus and the potential changes in its pharmacological and/or physiological

properties in relation to memory and learning. These studies will be of major importance

for obtaining detailed insight into the potential therapeutic application of H3-receptor

ligands (for review see Leurs et aI., 1995).
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Chapter 6

AGE-RELATED CHANGES IN THE DENSITY AND FUNCTIONALITY
OF HISTAMINE H3-RECEPTORS IN THE RAT BRAIN.

A. Alves-Rodrigues, R. Leurs, S. Lemstra, K. Eriksson*, T. Sallmen*, P. Panula*, and

H. Timmerman

Summary

Age-dependent changes in the histamine H3-receptor density were assessed in rat

brain cortex, striatum, and hippocampus using radioligand binding studies with the H3

receptor antagonist [125I]-iodophenpropit. Brain tissue obtained from Fl rats of 2

months (young) and 28 months (old) of age were examined. A 95% increase in the

density of H3-receptors in the rat hippocampus was observed with ageing. In contrast, a

decrease of 35% ocurred in the cerebral cortex and virtually no changes in the H3-density

were detected in the striatum of old rats. In the three regions examined, no significant

age-related differences were observed for the Kd values of the radiolabelled H3

antagonist [1251]-iodophenpropit.

Using a sensitive HPLC technique with fluorescence detection, we also evaluated the

histamine content of nine discrete brain regions. Histamine levels showed a significant

(23%) increase in the hypothalamus of old rats, whereas no age-dependent changes were

measured in the histamine levels of the other brain regions examined (including the

hippocampus, the striatum and the cortex).

In functional studies, the histamine H3 receptor mediated inhibition of the electrically

evoked release of [3H]-noradrenaline in both the hippocampus and the cortex showed

signifcant age-related decreases in the maximal inhibition. The pD2 value of (R)-a.

methylhistamine was not altered in the rat cortex with ageing, whereas a significant

decrease was seen in the hippocampus indicating an age-related loss in H3 sensitivity.

The observed changes of H3 receptor density in rat brain with age are probably not

due to changes in the levels of histamine and an upregulation of H3 receptors in the

hippocampus might represent a compensatory mechanism for some loss in receptor

* Department of Biology
University of Turku
20520, Turku
Finland
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functionality. The possible (phannaco)therapeutic relevance of the age-related changes on

H3-receptors in the hippocampus in relation to cognitive functions is discussed.

Introduction

Ageing has always both fascinated and terrified mankind. The interest in

understanding and ultimately reversing the negative facets of ageing has been the

incentive for increasing investment of human resources in phannacotherapy to allow man

to live longer and healthier.

The hippocampus is a structure of the brain known to play an important role in

learning and memory formation. Lesions of this cerebral area cause remarkable

impairment of cognitive functions, similar to those observed in senile dementia of the

Alzheimer's type (SDAT) or in age-associated cognitive impairment (Smith et aI., 1988).

Specifically, fibres of the enthorinal cortex represent a major input to the dentate gyrus

molecular layer of the hippocampus (Cotman & Anderson, 1988). In fact, unilateral

ablation of the enthorinal cortex caused 80% degeneration of the cholinergic projection to

the molecular layer of the dentate gyrus (Cotman & Anderson, 1988). This observation

suggests that this circuit is crucially involved in (patho)physiological changes in which

cognitive functions are impaired, such as in Alzheimer's disease and, to a lesser extent,

during the course of ageing. In general, age-related changes in neurotransmitters and

receptors are restrained to certain brain areas in rodents and neurologically normal

humans (Finch, 1993). A key point is that receptor affinity generally does not change

(Finch, 1993). This implies that age changes at the level of synapses are due to altered

relative amounts of particular proteins, rather than to the ichnographic "fundamental

molecular ageing". The cholinergic system is one of the hippocampal neurotransmitter

system best characterised both in physiological and pathological ageing (for review see

Amenta et ai., 1991)). Age-related changes in the status of muscarinic cholinergic

receptors have been well documented in both rodents and human brain (for review see

Decker, 1987)). Consequently, possible strategies for the treatment of age-related

cognitive impairment include the development of muscarinic cholinergic agonists

(Roberts & Lazareno, 1989), or other agents responsible for increasing muscarinic

transmission.

The involvement of histamine in memory-linked events has long been suggested (De

Almeida & Izquierdo, 1986) but only over the recent years has substantial experimental

evidence been gained in rodents (Cacabelos, 1996; Femandeznovoa et ai., 1994; Meguro

et aI., 1995; Miyazaki et ai., 1995; Miyazaki et ai., 1995; Vorobjev et ai., 1993).

Moreover, using immunohistochemical techniques Airksinen et aI. (1991) showed a

significant decrease in histamine immunoreactivity in hypothalamic areas in which

neurofibrillary tangles were found in Alzheimer patients.
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The presynaptic histamine H3 autoreceptor is art· important regulatory unit for

histamine homeostasis in the CNS (Arrang et al., 1983; Arrang et al., 1987; Van der

Werf et aI., 1987). The histamine H3 receptor not only regulates the release of histamine

from histaminergic nerve terminals, but is also present in non-histaminergic nerve

terminals, where it acts as a heteroreceptor modulating the release of other biogenic

amines such as acetylcholine (Arrang et al., 1995; Blandina et al., 1996; Clapham &

Kilpatrick, 1992), serotonine, noradrenaline, and dopamine in the CNS (Alves

Rodrigues et aI., 1995; Leurs et al., 1996; Schlicker et aI., 1988; Schlicker et al., 1993;

Schlicker et aI., 1989; Schlicker et al., 1994). The reported H3 receptor modulation of

the release of acetylcholine in the rat enthorinal cortex (Arrang et aI., 1995; Clapham &

Kilpatrick, 1992) and the observation that histamine facilitates long term potentiation

(LTP) induction and maintenance (Haas et al., 1995), strongly support the hypothesis of

the involvement of the histaminergic system, and the H3 receptor in particular, in

hippocampal memory formation. Moreover, using behavioural studies in rodents, several

authors have reported on the cognitive enhancing properties of the H3 receptor antagonist

thioperamide, both under normal physiological conditions (Barnes et al., 1993; Blandina

et al., 1996; Miyazaki et aI., 1995) and after scopolamine-induced learning deficits

(Shichi et al., 1995) or accelerated senescence (Meguro et al., 1995). The presence of

histamine H3 receptors in the hippocampus of the rodent (Cumming et aI., 1991; Jansen

et al., 1994; Pollard et al., 1993; Yanai et aI., 1994) and of the primate (Martinez-Mir et

al., 1990) has previously been demonstrated using autoradiographic techniques. A

pharmacological characterisation of the hippocampal H3 receptor has been described in

detail for the first time in this dissertation (see chapter 5).

The present study was designed to investigate the influence of age on the density and

physiology of histamine H3-receptor, as well as the levels of histamine in several brain

regions. This study was performed using the first generation (Fl) of hybrids rats (F344 x

Lewis Brown Norway). These rats are of particular utility in gerontopharmacology as

they in general seem to be less prone to develop age-associated pathologies, but still

show clear age-related impairments of learning and memory (Vander Staay & Blokland,

1996).

Methods

Preparation ofrat brain membranes

Male Fl (F344xLBN) rats (Harlan C.P.B., Zeist, The Netherlands) were decapitated

and the brains were rapidly removed. Four independent batches of old rats (27-29

months old) membranes were prepared using 1210 animals per batch, and three distinc

batches of young (2 months of age) rats (10 animalslbatch) membranes were prepared.
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For each batch, several brain areas were dissected and hOmogenised in 10 volumes (v:w)

of ice-cold 50 mM Tris-HCl buffer (with 5 mM MgCI2, 145 mM NaCl, pH 7.4 at 4°C)

using a Ultra-Turrax blender and a Potter-E1vhjem homogeniser. This homogenate was

centrifuged at 800 g for 10 min. The pellet was discarded and the supernatant centrifuged

at 40,000 g during 40 min. The resulting pellet was rinsed twice under the same

conditions. The final pellet was resuspended in 1.5 volumes (v:w) of the above described

Tris-HCl buffer and stored at -80°C until the day of the experiment when it was diluted

2.5 (v:w) times in the same solution.

[125IJ-iodophenpropit binding assays

[1251]-iodophenpropit binding assays were carried out according to the procedure

described by Jansen et al. (1994). Saturation binding experiments of [1251]_

iodophenpropit (1950 Ci/mmol) were performed at 37°C in 50 mM Tris-HCl buffer

containing 5 mM MgCI2, 145 mM NaCl (pH 7.4 at 37°C) in a total incubation volume of

0.25 ml using polyethylene tubes. Determinations were performed in triplicate.

Compounds were diluted in buffer. Rat brain membranes, previously prepared and kept

at -80° C, were incubated for 60 min to reach equilibrium. Membranes were incubated

with [1251]-iodophenpropit in final concentrations ranging from 0.075 nM to 3 nM. In

these assays, the non-specific binding was defined using 1 11M of (R)- 0;

methylhistarnine. Incubations were started upon addition of 50 III membranes (50-80 Ilg

of protein per tube) and were terminated by the addition of 3 ml of ice-cold Tris-HCl

buffer (pH 7.4, at 4°C), immediately followed by filtration through Whatman GF/C

filters using a Brandel ftltration apparatus. Filters were pretreated for at least 2 hours with

0.3% polyetheleneimine, reducing ftlter binding to less than 1% of the total radioactivity

added. After ftltration of the membranes the filters were washed twice with 3 ml of ice

cold Tris-HCl buffer. The amount of radioactivity bound to the membranes was not

reduced by repetition of the washing procedure. The radioactivity bound to the ftlters was

measured by an LKB gamma counter.

Protein concentrations were determined using the Bio-Rad Protein Assay kit (based on

Bradford, 1976). Bovine serum albumin was used as standard.

HPLC determination ofbrain histamine content

10 Young (2 months old) and 10 old (27, 28 months old) male F1 rats were

decapitated and nine (hypothalamus, striatum, cerebellum, cortex, forebrain,

hippocampus, medulla, thalamus, pons) distinct brain regions were isolated quickly,

blotted with filter paper, weighed and promptly homogenised in 10 volumes of 2%

perchloric acid by sonication. Subsequently, the samples were centrifuged at 10,000 g
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for 30 minutes at 4°C and the clear supernatant was -injected directly onto an HPLC

column. The chromatographic apparatus and conditions are described in detailed by

Yamatodani et al. (1985). Histamine levels were expressed as nanomoles per gram of wet

tissue.

Functional assays

Based on a combination of the methods described by Schlicker et al. (1989) and Van

der Werf et al. (1987) slices of the rat cortex and hippocampus (O.3mm x 0.3mm) were

incubated for 30 min in a Krebs-Ringer buffer (KRB) (in mM: NaCI 118, KCI 3,

MgS04 1.2, CaCl2 1.2, NaH2P04 1.4, NaHC03 25, glucose 10, pH 7.4 at 37° C when

gassed with 02/C02 (95%/5%)) containing 5 f..lCi [3H]-noradrenaline (specific

activity=38 Ci/mmol, NEN). After washing 4 times with 10 ml of KRB, the slices were

preperfused with KRB (containing 1·f..lM desipramine and 1 f..lM phentolamine), for 60

min at a flow of 0.3 ml/min under constant gassing (95% 02, 5% C02). Subsequently,

seven 10 min fractions were collected, tritium overflow was evoked by a 200 seconds

long electrical stimulation (rectangular pulses of 20 rnA, Ims, 0.3 Hz) during the second

fraction (S1) and the fifth fraction (S2). RAMH was added right after the first stimulation

(St). Finally, the slices were perfused for 20 min with 0.1 N HCI to determine the total

content of tritium.

Data analysis

Saturation and binding experiments were evaluated on a Macintosh computer using

the non-linear curve fitting programme LIGAND (Munson & Rodbard, 1980). With the

aid of this programme binding curves were, respectively, fitted (unweighted) to a one

and two independent sites models. The improvement of the fit for each model with

additional parameters was evaluated based on the 'extra sum of squares' principal

(Draper & Smith, 1966), taking p<0.05 to be significant.

The stimulation-evoked tritium overflow from brain slices was calculated by

substraction of the basal efflux from the total efflux during stimulation and the

subsequent 13 minutes and was expressed as percentage of tissue tritium at the onset of

stimulation. For quantification of the effect of H3-agonist (R)-a-methylhistamine on the

electrically evoked tritium overflow, the ratio of the overflow evoked by S2 over that

evoked by SI was determined (S2ISl). Data obtained from functional assays were fitted

to a sigmoidal curve using the program Kaleidagraph (Albelbeck Software).

Results were expressed as mean±SEM of the number of independent experiments

indicated. Statistical differences among the two animal groups examined were assessed

by a paired (for the binding experiments and histamine levels measurements) and
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unpaired (for the functional experiments) Student t-tesi analysis, p<0.05 was taken as

significant.

Chemicals

[125IJ-Iodophenpropit was labelled to a specific activity of 1950 Ci/mmol as described

by Menge et ai, (1992). [3HJ-Noradrenaline (specific activity=38 Ci/mmol) was

purchased from NEN, Netherlands. (R)-a-methylhistamine maleate and

polyethylenimine were purchased from Aldrich-Chemie. Perchloric acid and histamine

diphosphate were obtained from Sigma, potassium dihydrogen phosphate, 0

phthalaldehyde, sodium hydroxide and sulphuric acid of super-special grade were

purchased from Baker. Other chemicals were of analytical-reagent grade and were used

without further purification. Glass-distilled water purified further with a Milli-Q system

was used throughout the HPLC separations.

Results

[125lJ-iodophenpropit binding assays

[125I]-iodophenpropit bound specifically to membranes of the three regions of the rat

brain studied. The binding parameters (Bmax and KcI) obtained for the rat brain cortex,

hippocampus and striatum are summarised on table 1. The KcI values for the binding of

[125IJ-iodophenpropit were similar in all the cerebral regions investigated and did not

change with age (table 1).

Table 1 Dissociation constants (KD) and number of specific binding sites (Bmax) for the binding of

[125II-iodophenpropit to membranes of rat brain. The radioligand binding studies were performed as

described in Methods. Data represent mean±SEM of four independent experiments performed in triplicate.

KD Bmax KD Bmax
Brain area (Young) (Young) (Old) (Old)

(nM) fmol/mg prot. (nM) fmol/me: prot.

Hippocampus
O.63±O.15 123±18 O.83±O.13 241±16

Cortex
O.63±O.12 173±18 O.57±O.10 109±64

Striatum
O.60±O.10 236±16 O.90±O.30 256±17
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In the hippocampus, the maximal density of [125I]-iodophenpropit binding sites

drastically increased in aged animals (95%, p<O.Ol, Fig. 1 A) whereas a decrease of

35% (p<o.Ol) was observed in the cerebral cortex (Fig. lB). No difference was detected

in the density of [125I]-iodophenpropit binding sites in the rat striatum (p>O.5, table 1).

No significant age-related differences were detected in the total protein content (per mg of

tissue) of the several brain regions investigated (data not shown).
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Figure 1 Saturation binding of rI25I]-iodophenpropit to membranes from young (filled

squares) and old (filled circles) rat (A) hippocampus and (B) cerebral cortex. The nonspecific

binding was defined in the presence of I JlM (R)-a-methylhistarnine. Results shown are

from one representative experiment of four performed in triplicate. Student's t-test was used

for statistical analysis.
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Histamine levels

From the nine distinct brain regions studied for their histamine content only the

hypothalamus showed a significant increase (p<O.05, 23%) in the total amount of

histamine with age. All the other brain areas showed no age related change in their

histamine levels (p>O.05; Fig.2).
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Figure 2 Regional brain histamine concentrations in young (black columns) and old (grey

columns) rats. The data represent the mean and standard error of ten young rats and ten old

rats. Student's t-test was used for statistical analysis.

Functional H3 receptor assay

On the H3-mediated inhibition of the electrically induced release of [3H]-noradrenaline

no changes were observed on the ratio 82/81 in ageing. Both the levels of basal release

and total content of [3H]-noradrenaline remained unchanged with age and between the

two brain areas (data not shown). In the cerebral cortex, no changes were detected on the

%81 values (data not shown), whereas in the hippocampus a significant age-related

decrease was observed: for young rats %81 values of 11.4±1.7 and for old rats

8.54±1.1 (n=7, p<O.05) were obtained. %82 values showed the same tendecy yielding a

value of 8.42±1.4 in young rats and 6.3±O.9 in old rats (n=7, p<O.05). The level of
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maximum inhibition was obtained using I J.lM (R)-a.-methylhistamine and an age-related

decrease in those levels was observed in both the cerebral cortex: 49±O.7% versus

37±2.6% (p<O.Ol, n=6); and in the hippocampus: 47±1.1 % in young rats and 39±2.0

% (n=7) in old rats (p<O.Ol, n=7). No major changes were noticed in the pD2 values for

(R)-a.-methylhistamine in the cerebral cortex: 7.6±O.1 in young rats versus 7.8±O.1 in

old rats (Figure 3A). In the hippocampus, however, an age-related decrease in the pD2

for (R)-a.-methylhistamine was observed with ageing: 7.7±O.02 in the young rats versus

7.2±O.2 in the old rats (p<O.05; Figure 3 B).
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Figure 3 Concentration response curve of (R)-a.-methylhistamine for the inhibition of the

electrically stimulated tritium overflow from superfused rat brain slices preincubated with

[3m-noradrenaline. Open circles represent data from young rats and filled circles from old

rats; (A) in the cerebral cortex, (B) in the hippocampus. Each point represents mean±SEM

of six or seven experiments performed in duplicate. Student's t-test was used for statistical

analysis.

131



Chapter 6

Discussion

Deterioration of cholinergic transmission in the enthorinal cortex is often linked to

memory loss (Bierer et ai., 1995). This observation together with the reported H3

receptor modulation of the release of acetylcholine in the enthorinal cortex (Arrang et al.,

1995; Clapham & Kilpatrick, 1992) and in the cerebral cortex (Blandina et al., 1996)

supports the hypothesis of the involvement of the histaminergic system, and the H3

receptor in particular, in hippocampal memory formation. Following the characterisation

of the hippocampal H3 receptor (chapter 5) and the recently reported behavioural studies

in rodents on cognitive enhancing properties of the H3 receptor antagonist thioperamide

(Barnes et ai., 1993; Meguro et ai., 1995; Miyazaki et ai., 1995; Shichi et ai., 1995) we

investigated, in this section, possible age-related changes in the density of histamine H3

receptors and function in several brain areas.

Using the H3 receptor antagonist [125I]-iodophenpropit, we performed saturation

binding assays with membranes of different regions of the brain of young (2 months old)

and old (27-29 months old) rats. From these assays we observed no significant

difference in the dissociation constant of the binding of [125I]-iodophenpropit between

the brain regions or changes therein with age. This result confirms the observation of

(Finch, 1993) that most age-related changes in neurotransmitters receptors do not involve

their affInity for specific ligands.

Our findings show, on the other hand, important and large age-associated changes in

the density ofH3 receptors in some of the brain areas studied. No significant alterations

in the number of H3 receptors was observed in the rat striatum, whereas a significant

decrease of 35% in the H3-receptor density was seen in the cerebral cortex. Most

surprisingly, rat hippocampus showed a dramatic, almost two fold, increase in the

number of H3 receptors with ageing. The H3 receptor downregulation observed in the

cerebral cortex and the unchanged density found in the striatum raise the idea of the

involvement of a specific regulatory mechanism for the H3 receptor in different brain

regions. Our data contrast with what is seen in the hippocampus for several other

receptors including the histamine HI receptor (Yanai et al., 1992) and the muscarinic

receptors (Amenta et ai., 1995). Hippocampal M1 receptors were reported to decrease

with ageing whereas no changes in the density of M2 receptors were detected (Amenta et

ai., 1995). M1 downregulation is in accordance with age-related cognitive impairments

often associated with cholinergic transmission deficiencies (Bierer et ai., 1995).

So far in vitro functionality of the hippocampal H3 receptor has only been described

on the inhibition of noradrenaline release (chapter 5). The changes observed on the

functional H3 receptor assay showed an age-related decrease in the capacity in

hippocampal neurons to respond to electrical stimulated release of [3H]-noradrenaline,
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whereas basal release and total levels of [3H]-noradrenaIine uptake remained unaltered.

In the cortex, however, no significant changes were detected in either the stimulated or

the basal and total content of [3H]-noradrenaline. Furthermore, an important decrease of

H3 receptor functionality in the hippocampus was detected whereas minor changes were

observed in the cerebral cortex of old rats. This is the first report on decrease of H3

receptor function with age. Previously (Schlicker et al., 1991) observed no impairment of

H3 receptor inhibition of serotonin release in the rat cortex.

Based on previous studies on the cognitive enhancing properties of the <X2 agonist

clonidine (Arnsten & Goldman-Rakic, 1984; Sara et al., 1987), Sara (1989) published an

interesting report on noradrenergic-cholinergic interaction and its possible role in senile

dementia associated memory disfunction (Sara, 1989). Using cognitive behavioural

studies in rats which hippocampal cholinergic activity was reduced by specific neuronal

lesions, they showed that lesioned rats treated with clonidine had a performance

indistinguishable from the non-Iesioned rats while rats which had suffered cholinergic

damage performed poorly. This observation supported the author's hypothesis that when

there is a reduction in the cholinergic function, a corresponding decrease in noradrenaline

release (by clonidine) reduces the noradrenergic inhibitory influence on acetylcholine

release in terminals of spared cholinergic neurons. Furthermore, this explains the

previous experimental observation by Arnsten et al. (1984) that clonidine only affected

the performance of monkeys in which the cholinergic system was impaired either by

lesions or by ageing (Amsten & Goldman-Rakic, 1984) and had no effect on young

undamaged brains. If a fme tuning between noradrenergic and cholinergic transmission is

important to assure cognitive performance in senile brains, decreases in the H3 receptor

mediated inhibition of the noradrenergic system in the hippocampus like the ones

observed in our study can account for important noradrenaline mediated cholinergic

inhibition, and consequently cognitive dysfunction. Such a mechanism can, however, not

explain the observed cognitive enhancing properties of H3 receptor antagonists. On the

other hand, as no changes were detected in the histamine levels of aged rats, direct

inhibition by histamine, acting on the H3 receptor present on cholinergic nerve terminals,

of the cholinergic system could also play an important role. This mechanism would

explain the described cognitive enhancing properties of the H3 receptor antagonist

thioperamide and clobenpropit under conditions in which cognitive functions are impaired

(Blandina et al., 1996; Shichi et al., 1995). This hypothesis could be of relevance for the

development of non-toxic, brain penetrating H3 receptor antagonists (e.g. as the ones

described in chapter 3) as potential ameliorating agents in conditions in which cognitive

functions are affected such as Alzheimer's disease, SDAT, or attention deficit disorder.

Functional studies on the H3-modulation of hippocampal release of acetylcholine in old

and young rats would be of great interest and are currently under investigation. These
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studies might provide the mechanistic basis of the··observed cognitive enhancing

properties of H3 receptor antagonist

Taken together, these data indicate that a drastic H3-receptor upregulation in the

hippocampus and the moderate cortical downregulation in old rats are unlikely to be

consequences of changes in the histamine levels in those parts of the brain but might be

the result of a re-adaptive mechanism of the brain to the age-associated changes in the

functionality of the H3 receptor. Namely, in the hippocampus a pronounced decrease in

neuronal response to electrical stimulus as well as a decrease in H3 receptor functionality

were observed whereas in the cortex only the H3 receptor functionality seemed to be

slightly altered in ageing. Taking into account that in the hippocampus the average

number of H3 receptors is almost doubled in aged rats and yet significant impairments are

observed in their functional properties, further support is given for the involvement of the

H3 receptor in age (or pathology) associated decreases in cognitive performances.

Although this study on the age-dependent changes of the histamine H3 receptor is

preliminary, some light has been shed on the involvement of the H3 receptor in age

related impairment of cognitive functions.
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Chapter 7

SUMMARY AND FINAL DISCUSSION

Neuronal histamine is involved in several physiological conditions, such as arousal,

locomotor activity, food intake, and learning and memory processes. H3 receptor

antagonists enhance neuronal histamine release and, therefore, activate via stimulation of

post synaptic histamine HI and H2 receptors, the histaminergic neuronal system. The

opposite effects are accomplished by administration of histamine H3 agonists. Equally

interesting was the discovery of histamine H3 heteroreceptors that play a similar role in

the release of other neurotransmitters. Histamine H3 heteroreceptors have been identified

on various monoaminergic nerve terminals, such as the noradrenergic, dopaminergic,

serotonergic, and cholinergic.

A comprehensive description of the neuronal histaminergic system and, in particular,

of the pharmacological and (patho)physiological roles of the histamine H3 receptor in the

eNS is given in chapter 1. In this chapter, potential applications of H3 receptor ligands

as therapeutical agents are discussed in relation to both their modulatory effect on the

release of neurotransmitters and the (neuro)pathologies associated with each of the

neurotransmitters discussed. Emphasis is put on recent evidence obtained by several

research groups on the involvement of histamine in memory formation.

Clozapine as a drug acting on the H3 receptor

In view of recent studies suggesting the involvement of histamine with mental disorders

such as schizophrenia, Parkinson's Disease and Alzheimer's Disease we investigated in

chapter 2 the affinity of clozapine and other neuroleptics for the H3 receptor. Using the

radiolabelled H3 antagonist [125IJ-iodophenpropit in competition binding assays and H3

modulation of the release of serotonin, we observed an interaction of clozapine with the

H3 receptor in the high nanomolar range and an antagonistic effect on the H3 receptor.

Other neuroleptics tested showed much lower affInities for the H3 receptor. We conclude

that if the Ki value for clozapine at the human H3 receptor is similar to the value obtained

for its rat counterpart, brain clozapine concentrations might be high enough for a

functional interaction with the H3 receptor under clinical conditions. From the low H3

receptor affInity· displayed by the two major clozapine metabolites (clozapine-N-oxide and

N-desmethylclozapine) it can also be concluded that the two metabolites will not

contribute to the H3 receptor antagonism in the clinical proflle of clozapine.
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Qualitative SARfor binding ofclozapine and immepip analogues to the H3 receptor

As no structural infonnation is yet available for the H3 receptor an approach based on

comparison of affinities/activities of structurally related compounds is the only way to

study its ligand-binding characteristics. In view of the unexpectedly high affinity for

the H3 receptor observed for clozapine, we tested (chapter 2) the affinity of several

clozapine metabolites and analogues for the histamine H3 receptor. Qualitative

structure affinity relationships were derived for the tested compounds. In the

clozapine molecule four structurally different moieties were considered. In

comparison with the affinity for the H3 receptor shown by clozapine, the following

main conclusions can be drawn: the 4-piperazinyl region does not allow substituents

longer than a CH3 or electronegative atoms such as an 0; substitutions at the 5

diazepine position do not drastically alter the affinity for the H3 receptor, although a

basic nitrogen is favoured over CH2, 0, or S; the 8 position in phenyl ring I is an

important modulatory site for H3 affinity, electronegative substituents such as chloro

and fluoro in this aromatic group increase the affinity. When these substituents are

present at the phenyl group n, these substituents totally disable binding to the H3

receptor.

From an extensive characterisation of the pharmacology of the H3 receptor agonist,

immepip, and its short (VUF 4735) and long (VUF 4929) analogues (chapter 3) we

concluded that when the amino group is part of a piperidine ring, a 4-carbon chain

between the imidazole ring of the molecule of histamine and the amino function seem to

be the ideal for H3 agonism. Extending or shortening this distance leads to complete loss

of agonistic activity.

H3 receptor subtypes

Following a previous report by our research group on discriminative properties of a

series of aliphatic histamine homologues, we studied, in chapter 3 immepip and its

lower (VUF 4735) and higher (VUF 4929) homologues as ligands for the histamine H3

receptor in two binding assays (using [125I]-iodophenpropit and [3H]-N<X.

methylhistamine, as radiolabelled ligands) in rat cerebral cortex membranes, and two

functional H3 receptor models (inhibition of the neurogenic contraction in the guinea-pig

jejunum and inhibition of [3H]-noradrenaline release in rat cerebral cortex slices).

Immepip showed high affmity for the binding of [3H]-N<x'-methylhistamine (pKi=8.7)

which was comparable to the high affinity component of the binding of [1251]_

iodophenpropit (pKi(high)=8.5). VUF 4735 also showed similar affinities in both

binding assays (pKi=6.1). The binding data obtained for VUF 4929, however, showed

major discrepancies between the two assays.

Functionally, the immepip homologues acted as competitive H3-receptor antagonists in

both systems. The potencies (pAZ values) observed at the guinea pig jejunum were 8.4
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and 6.2 for VUF 4929 and VUF 4735, respectively, whereas on the electrically evoked

release of [3H]-noradrenaline from cortical slices the pA2 values were 7.1 and 5.5 for

VUF 4929 and VUF 4735, respectively. Moreover, the H3-receptor agonist immepip,

but not the H3-agonist (R)-a-methylhistamine, showed almost a lO-fold higher

agonistic potency in the rat cerebral cortex than in the guinea-pig jejunum.

We concluded from this study that immepip homologues revealed important differences

in different H3 receptor assays; such differences would not be expected to occur if the

same receptor subtype was present in the tissues studied. With this study we have given

further support to the existence of histamine H3-receptor subtypes for which several

ligands show clear discriminative behaviour. Due to the growing interest in H3 ligands as

putative therapeutic agents in several eNS disorders, detailed information with respect to

H3-receptor heterogeneity is mandatory. Moreover, immepip and its ligands might

become attractive compounds for drug development as they do not possess the toxic

(iso)thiourea moieties of thioperamide and clobenpropit and because they seem to be able

to discriminate between central and peripheral H3-receptors.

Selectivity ofH3 receptor radiolabelled antagonists

In chapter 4 we characterise the binding of the histamine H3 receptor antagonist [3H]

thioperamide to rat cerebral cortical membranes. From this study we could draw

important conclusions regarding the selectivity of the binding of H3 receptor agonists

and antagonists. Summarising, [3H]-thioperamide bound to rat brain cortical

membranes in a saturable and reversible manner showing high and low affinity

components. The high affinity site is likely to represent the histamine H3 receptor as the

binding is displaced by (R) and (S)-a-methylhistamine in a stereoselective manner and

by several other H3 ligands with a pharmacological profile of the H3 receptor. At

nanomolar concentrations binding of [3H]-thioperamide to a low affinity non-H3

receptor binding site(s) increases steeply, reaching, at saturation, a density 30 fold

higher than the number of H3 receptors. Also other H3 antagonists we tested show high

affinity for the non-H3 receptor sites. Since thioperamide was previously reported to

bind to cytochrome P450 enzymes and this enzymatic complex is present in relatively

high amounts in the brain cortex the binding to cytochrome P450 isoenzymes may

explain the high density of the binding observed at higher concentrations of [3H]_

thioperamide. In fact, three non-selective P450 inhibitors, metyrapon, SKF 525 A, and

imidazole competitively inhibited the binding of nanomolar concentrations of [3H]

thioperamide to rat cortical membranes. Moreover, similar results were obtained with

the P450 inhibitors when rat liver microssomes (an organ not known to contain

histamine H3 receptors) were used in [3H]-thioperamide binding assays. Therefore,

based on this study, we state that it would be judicious to use H3 agonists rather than

H3 antagonists to delineate specific (and non-specific) binding of radioactively labelled

141



Summary andfinal discussion

H3 antagonists. We also conclude in chapter 4 that from the four H3 receptor

antagonists used to the displace the [3H]-thioperamide binding, iodophenpropit was the

one which best discriminated between H3 and non-H3 binding sites.

This results was further confirmed when, in chapter 5, we characterised the histamine

H3 receptor in the rat brain hippocampus using the H3 receptor antagonist [1251]_

iodophenpropit. Up to a concentration of I pM, the H3 receptor agonist (R)-a

methylhistamine displaced 30% of the total binding of [1251]-iodophenpropit whereas

H3-antagonists displaced 50-60% of the bound [1251]-iodophenpropit, giving further

evidence for the binding of H3-receptor antagonists to a non-H3 receptor site(s). This

was not so obvious in the rat cerebral cortex in other studies using the same radioligand,

and taking into account a higher abundance of P450 isoenzymes in the hippocampus in

relation to the cortex, we strongly suspect this other secondary non-H3 receptor site(s) to

be cytochrome P450 isoenzymes. We again emphasise that due attention should be given

to these observations in studies for which receptor densities are of relevant importance.

In an attempt, previous to the studies above mentioned, to characterise the histamine H3

receptor in human brains of healthy and schizophrenic patients (A. Alves-Rodrigues,

unpublished data) we could displace the binding of 0.25 nM [125I]-iodophenpropit by

H3 antagonists such as thioperamide but barely any binding could be displaced by the H3

receptor agonist (R)-a-methylhistamine (Figure I).
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Figure 1 Competition by R-cx-methylhistamine (open circles) and thioperamide (filled circles)

for the binding of 0.25 nM [1251]-iodophenpropit to membranes of human brain. Data are from

one representative experiment out of 6 performed in triplicate.
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In light of what we describe in chapters 4 and 5 it is likely that a much higher density

of P450 isoenzymes compared to the number of H3 receptors in the human brain is the

cause of the absence of displacement of [125I]-iodophenpropit by H3 receptor agonists.

It can be seen, as well, that a rather shallow thioperamide displacement curve is obtained

in human tissue, indicating binding to more than one population of sites similar to what

happens with [3H]-thioperamide in the rat cerebral cortex. To extend this study,

competition binding assays in the presence of a non-selective P450 isoenzyme inhibitor

could elucidate whether the dense non-H3 component of the binding of H3 antagonists to

human brain membranes are indeed P450 isoenzymes and, this way, allow the use of

radiolabelled H3 receptor antagonists in binding studies where P450 isoenzymes are in

abundance in relation to H3 receptors. Preliminary studies showed that clozapine, a non

imidazole compound, was the only H3 receptor antagonist tested (out of 8 different

compounds) which failed to displace any of the binding of [125I]-iodophenpropit.

The histamine H3 receptor in the hippocampus. Possible involvement in hippocampal

memory fonnation

The characterisation of the histamine H3 receptor in the rat hippocampus in chapter 5

revealed labelling of a single class of binding sites with a density lower than the one

previously reported for the rat cerebral cortex. [125I]-iodophenpropit binding to rat

hippocampal membranes was readily displaced by histamine H3 receptor agonists and

antagonists, with Ki values within the range expected for binding to the histamine H3

receptor and comparable to the values obtained for the H3 receptor present in the rat brain

cortex. Stereoselectivity between the (R) and (S) enantiomers of the H3 receptor agonist

a-methylhistamine was observed. In the presence of GTPyS a rightwards shift occurred

for the high afftnity site of the binding of (R)-a-methylhistamine. In chapter 5 we also

showed the functionality of the H3 receptor in the rat hippocampus; electrically stimulated

[3H]-noradrenaline release from hippocampal slices could be effectively reduced by H3

receptor stimulation. No significant differences were detected between the levels of

maximum inhibition of the electrically evoked release of [3H]-noradrenaline or with the

control ratio S2/S 1 between the hippocampus and the cerebral cortex. Both the pD2

values obtained for (R) and (S)-a-methylhistamine, and the pA2 values for thioperamide

and burimamide showed similar values in the two cerebral areas studied. In chapter 5
we delineated conditions to study the histamine H3 receptor in the hippocampus and the

potential changes in its pharmacological and/or physiological properties.

Following the characterisation of the H3 receptor in the rat hippocampus we then

proceeded in chapter 6 with the study of age-related changes in the density and function

of the histamine H3 receptor in the rat hippocampus. Additionally, using HPLC

techniques, we measured the levels of histamine in nine different regions of the rat brain.

An H3 receptor upregulation of 95% was observed in the hippocampus whereas the
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cerebral cortex revealed a decrease of 35% in the number of H3 receptors and no age

related changes were detected in the striatum. Histamine levels showed an increase of

23% in the hypothalamus and no significant changes in the other brain areas studied

including the hippocampus, cortex and striatum. In functional studies on histamine H3

receptor inhibition of the electrically evoked release of [3H]-noradrenaline, a lower

stimulation (81 and 82) was obtained in the hippocampus whereas no changes occured in

the rat cortex. Both the hippocampus and the cortex showed significant age-related

decreases in the maximal level of inhibition. The pD2 value of (R)-a-methylhistamine

showed no change in the rat cortex with ageing, whereas a significant decrease was seen

in the hippocampus indicating an age-related loss in H3 sensitivity.

Taken together, chapter 6 indicates that a drastic H3-receptor upregulation in the

hippocampus and a moderate cortical downregulation in old rats iss not due to changes in

the histamine levels in those parts of the brain but might be the result of are-adaptive

mechanism of the brain to the age-associated changes in the functionality of the H3

receptor. One can speculate that, in the hippocampus, an increase in the number of

receptors can, to some extend, compensate for a less efficient H3 receptor in aged rats. In

both brain areas a decrease on the maximal inhibition produced by the H3 agonist (R)-a

methylhistamine was seen in ageing.

The studies described in this dissertation have contributed to a better understanding of the

pharmacology and physiological changes the histamine H3 receptor. Development of H3

receptor ligands that do not bind with high affinity to the non-H3 receptor site(s) detected

by current H3 receptor antagonists could be of most utility. Good candidates for these

ligands are non-imidazole compounds such as the ones described in chapter 2, although

higher affinities are prefered to improve receptor selectivity. The existence of H3 receptor

subtypes and ligands that show discriminative affmities for the central and peripheral H3

receptors, like the immepip analogues studied in chapter 3, would be of interest in

therapy. Drug design of H3 ligands that penetrate the blood brain barrier has shown

several difficulties, probably due to metabolism of the compounds in organs in which

cytochrome P450 enzymes exist in high densities. Finally, better H3 receptor ligands, as

drugs or as radiolabelled compounds for brain imaging studies such as PET, would

certainly help to further elucidate the rather promising role of the histamine H3 receptor in

brain functions such as learning and memory.
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Samenvatting en afsluitende discussie

Behorende bij het proefschrift "De histamine H3 receptor in de hersenen van de rat.

Fannacologische en (patho)fysiologische aspecten"

(Vertaald door Sylvia Lemstra en Ingrid van den Nieuwenhof)

In het centrale zenuwstelsel is histamine betrokken bij diverse fysiologische processen,

zoals opwinding, locomotie, voedselopname, leer- en geheugenprocessen. H3 receptor

antagonisten bevorderen de neuronale histamineafgifte en op deze manier activeren ze,

via stimulatie van postsynaptische histamine HI en H2 receptoren, het histaminerge

neuronale systeem. De tegenovergestelde effecten worden veroorzaakt door histamine

H3 receptor agonisten. Van groot belang was de ontdekking dat histamine H3

heteroreceptoren ook de afgifte van andere neurotransmitters reguleren. Deze histamine

H3 heteroreceptoren zijn ondekt op de uiteinden van verschillende monoaminerge

zenuwen; zoals de noradrenerge, dopaminerge, serotonerge, and cholinerge zenuwen.

Een algemene beschrijving van het neuronale histaminerge systeem en in het bijzonder

van de fannacologische en (patho)fysiologische rol van de histamine H3 receptor in het

centraal zenuwstelsel is beschreven in hoofdstuk 1. In dit hoofdstuk worden

bovendien mogelijke therapeutische toepassingen van H3 receptor liganden beschreven.

Hierbij wordt getracht een relatie met het modulerend effect op de afgifte van de

verschillende neurotransmitters te vinden. Speciale aandacht is besteed aan recent

verkregen bewijzen omtrent de betrokkenheid van histamine in geheugenvorming.

Clozapine als een geneesmiddel werkend op de H3 receptor

Op basis van recente studies, die de betrokkenheid van histamine bij schizophrenie, de

ziekte van Parkinson en de ziekte van Alzheimer doen vermoeden, hebben wij in

hoofdstuk 2 de affiniteit van clozapine en andere neuroleptica voor de H3 receptor

onderzocht. Gebruik makend van de radioactief gelabelde H3 antagonist [1251]_

iodophenpropit en de H3 receptor gemedieerde afgifte van serotonine uit hersenslices,

werd een interactie van clozapine met de H3 receptor in nanomolair concentraties en een

antagonistisch effect op de H3 receptor waargenomen. Andere geteste neuroleptica

vertoonden een veellagere affiniteit voor de H3 receptor. Wij concluderen dat als de

affiniteit van clozapine voor de humane H3 receptor gelijk is aan de waarde verkregen

voor de H3 receptor van de rat, de clozapine concentratie in de hersenen mogelijk hoog

genoeg is voor een functionele interactie met de H3 receptor onder klinische condities.
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Door de lage H3 receptor affmiteit van de twee belaIignjkste clozapine metabolieten

(clozapine-N-oxide en N-desmethylclozapine) kan er geconcludeerd worden dat de

twee metabolieten niet verantwoordelijk zijn voor een mogelijke bijdrage van H3

receptor antagonisme tot het klinische profiel van clozapine.

Kwalitatieve SAR voor binding van clozapine en immepip analoga aan de H3 receptor

Omdat er nog geen informatie beschikbaar is over de H3 receptor structuur is een

vergelijking van affmiteitenlactiviteiten van structureel verwante verbindingen de enige

manier om de ligand-bindingskarakteristieken te bestuderen. Op basis van de

onverwacht hoge affiniteit van clozapine voor de H3 receptor werd de affiniteit van

diverse clozapine metabolieten en analoga voor de histamine H3 receptor getest

(hoofdstuk 2). Kwalitatieve structuur-affiniteit-relatie's werden afgeleid voor de

geteste verbindingen. In het clozapine molecuul werden vier verschillende

structuurelementen onderscheiden. Voor een goede H3 receptor affiniteit dienen

clozapine-analoga aan de volgende eisen te voldoen: de 4-piperazinyl ring staat geen

substituenten toe die groter zijn dan een CH3 noch electronegatieve atomen zoals een 0;

substituties op de 5-diazepine positie veranderen de affiniteit voor de H3 receptor niet

drastisch, hoewel een basische stikstof de voorkeur heeft ten opzichte van CH2, 0, of

S; de 8 positie in fenyl ring I is een belangrijke modulatie plaats voor H3 affiniteit,

electronegatieve substituenten als chloor en fluor geven een toename van de affmiteit.

Als deze substituenten aanwezig zijn op de fenyl groep II, zijn de verbindingen niet in

staat te binden aan de H3 receptor.

Na een uitgebreide farmacologische karakterisering van de H3 receptor agonist,

immepip, de "verkorte" (VUF 4735) en de "verlengde" (VUF 4929) immepip analoga

(hoofdstuk 3), konden we concluderen dat, wanneer de amino groep onderdeel is

van een piperidine ring, 4 koolstof atomen tussen de imidazol-ring en de amino functie

optimaal is voor H3 agonisme. Verlenging of inkorting van deze afstand leid tot

compleet verlies van de agonistische activiteit.

H3 receptor subtypes

Aan de hand van een eerder verschenen artikel van onze onderzoeksgroep over een

serie alifatische histamine homologen, onderzochten we, in hoofdstuk 3 immepip en

zijn lagere (VUF 4735) en hogere (VUF 4929) homologen als liganden voor de

histamine H3 receptor in twee bindingsassays ([1251]-iodophenpropit en [3H]-Nex_

methylhistamine) en in twee functionele H3 receptor modellen (remming van de

neurogene contractie van het jejunum van de cavia en de remming van [3H]

noradrenaline afgifte in slices van de cerebrale cortex van de rat).
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Immepip vertoonde hoge affiniteit voor de binding van [3H]-NlX-methylhistamine

(pKi=8.7) wat vergelijkbaar was met de hoge affmiteitscomponent voor de binding van

[125I]-iodophenpropit (pKi(high)=8.5). VUF 4735 gaf vergelijkbare affiniteiten in

beide assays (pKi=6.1). De verkregen waarden voor VUF 4929 vertoonden echter

grote verschillen tussen de twee assays.

Functioneel gedroegen de immepip homologen zich als competitieve H3 receptor

antagonisten in beide systemen. De potenties (pA2 waarden) gemeten in het jejunum

van de cavia waren 8.4 en 6.2 voor VUF 4929 en VUF 4735, respectievelijk, terwijl in

de hersenen van de rat de pA2 waarden 7.1 and 5.5 waren, voor VUF 4929 en VUF

4735 respectievelijk. In tegenstelling tot de H3 agonist (R)-a-methylhistamine, was de

H3 receptor agonist immepip, bijna 10 maal potenter in de cerebrale cortex van de rat,

dan in het jejunum van de cavia. We concluderen op basis van deze studie dat immepip

homologen belangrijke verschillen onthullen in beide H3 receptor assays; deze

verschillen zou men niet verwachten als hetzelfde receptor subtype aanwezig is in de

bestudeerde weefsels. Met deze studie hebben we opnieuw aanwijzingen gevonden dat

er histamine H3 receptor subtypes bestaan. Als gevolg van de groeiende interesse in H3

ligandenvoor therapeutische toepassingen in diverse stoomissen van het centrale

zenuwstelsel, is verdere informatie met betrekking tot de heterogeniteit van de H3

receptor noodzakelijk. Immepip en zijn analoga zouden mogelijk goede verbindingen

zijn voor de ontwikkeling van geneesmiddelen; deze verbindingen bevatten geen

toxische (iso)thioureumgroep, zoals thioperamide en clobenpropit. Bovendien lijken

deze stoffen onderscheid te maken tussen centrale en perifere H3-receptoren.

Selectiviteit van radioactiefgelabelde H3 receptor antagonisten

In hoofdstuk 4 wordt de binding van de histamine H3 receptor antagonist [3H]

thioperamide aan de membranen van de cerebrale cortex van de rat beschreven. Op

basis van deze studie konden belangrijke conclusies getrokken worden met betrekking

tot de selectiviteit van de binding van H3 receptor agonisten en antagonisten. [3H]

thioperamide bind aan cerebrale cortex membranen op een verzadigbare en reversibele

manier aan twee bindingsplaatsen. De hoge affiniteit bindingsplaats is

hoogstwaarschijnlijk de histamine H3 receptor. De binding aan deze bindingsplaats

wordt stereoselectief verdrongen door (R) en (S)-a-methylhistamine en door

verschillende andere H3 liganden met het farmacologisch profiel van de H3 receptor. In

nanomolair concentraties bind [3H]-thioperamide ook aan een lage affiniteits, niet-H3

receptor-bindingsplaats. De dichtheid van deze bindingsplaats is 30 keer hoger dan de

H3 receptordichtheid.

Ook andere geteste H3 antagonisten vertoonden een redelijke affiniteit voor de niet-H3

receptor bindingsplaatsen. Omdat al eerder gepubliceerd was dat thioperamide kan
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binden aan cytochroom P450 en dit enzymatische-complex ook in relatief hoge

hoeveelheden aanwezig is in de hersenen, kan de binding aan cytochroom P450

isoenzymen de hoge dichtheid van de lage affiniteits [3H]-thioperamide bindingsplaats

verklaren. Drie aselectieve cytochroom P450 remmers, metyrapon, SKF 525A en

imidazol, remden ook de binding van nanomolair concentraties [3H]-thioperamide.

Vergelijkbare resultaten werden verkregen met de cytochroom P450 remmers in [3H]

thioperamide bindingsexperimenten in lever microsomen van de rat (een orgaan dat,

zover bekend, geen histamine H3 receptoren bevat). Op basis van deze resultaten,

stellen we voor dat het verstandig is om H3 agonisten in plaats van H3 antagonisten te

gebruiken om de specifieke (en niet specifieke) binding van radioactief gelabelde H3

antagonisten te beschrijven. Ook werd er in hoofdstuk 4 geconcludeerd dat van de

vier gebruikte H3 receptor antagonisten, iodophenpropit het beste onderscheid maakt

tussen H3- en niet-H3 receptor bindingsplaatsen in de [3H]-thioperamide

verdringingsstudies.

Deze resultaten werden bevestigd in hoofdstuk 5, waarin de histamine H3 receptor,

gebruikmakende van de H3 receptor antagonist [l25I]-iodophenpropit werd

gekarakteriseerd in de hippocampus van de rat. Tot een concentratie van 1 ~M,

verdrong de H3 receptor agonist (R)-a.-methylhistamine 30% van de totale binding van

[125I]-iodophenpropit, terwijl H3-antagonisten 50-60% van de gebonden [1251]_

iodophenpropit verdrongen. Deze gegevens leveren opnieuw bewijs voor de binding

van H3-receptor antagonisten aan een niet-H3 receptor bindingsplaats(en).

In een poging, voorafgaande aan de bovengenoemde studies, de histamine H3 receptor

in humane hersenen van gezonde en schizophrenie patienten te karakteriseren (A.

Alves-Rodrigues, ongepubliceerde data), was het mogelijk om de binding van 0.25 nM

[125I]-iodophenpropit te verdringen door H3 antagonisten zoals thioperamide, maar

slechts een klein gedeelte van de binding kon verdrongen worden door de H3 receptor

agonist (R)-a.-methylhistamine (figuur 1).

Op basis van de gegevens van hoofdstuk 4 en 5 is het aannemelijk dat een veel

hogere dichtheid van cytochroom P450 isoenzymen ten opzichte van het aantal H3

receptoren in de humane hersenen de reden is voor de afwezigheid van verdringing van

[125I]-iodophenpropit door H3 receptor agonisten. De verdringingscurve van

thioperamide verkregen in humaan weefsel, duidt op binding aan meer dan een

bindingsplaats, zoals ook werd waargenomen voor [3H]-thioperamide in de cerebrale

cortex van de rat. Voorlopige studies lieten zien dat clozapine, een non-imidazol

verbinding, de enige H3 receptor antagonist is (van 8 verschillende verbindingen), die

de [125I]-iodophenpropit binding niet kon verdringen. Het gebruik van een aselectieve

cytochroom P450 remmer zou de binding aan de niet-H3 receptor bindingsplaats in

humane hersen membranen misschien kunnen verhinderen en het gebruik van
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radioactief gelabelde H3 receptor antagonisten in bindirigsstudies met humane hersenen

mogelijk maken.
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Figuur 1 Competitie door (R)-a-methylhistamine (open cirkels) en thioperamide (dichte

cirkels) van de binding van 0.25 nM [125I]-iodophenpropit in membranen van humane

hersenen. Data van een represenatief experiment zijn weergegeven in triple.

De histamine H3 receptor in de hippocampus.

De karakterisering van de histamine H3 receptor in de hippocampus van de rat in

hoofdstuk 5 toont de labelling van een enkele bindingsplaats door [1251]_

iodophenpropit. De binding van [125I]-iodophenpropit aan hippocampus membranen

werd verdrongen door histamine H3 receptor agonisten en antagonisten met affmiteiten,

die vergelijkbaar waren met waarden gevonden voor de H3 receptor in de cortex van de

rat. Zoals verwacht werd de [125I]-iodophenpropit binding strereoselectief verdrongen

door de (R) en (S) enantiomeren van de H3 receptor agonist cx-methylhistamine. In

hoofdstuk 5 werd ook de functionaliteit van de H3 receptor in de hippocampus van

de rat aangetoond; de electrisch gestimuleerde [3H]-noradrenaline afgifte uit

hippocampus slices kon effectief verlaagd worden door stimulatie van de H3 receptor.

Er werden geen significante verschillen tussen de hippocampus en de cerebrale cortex

gevonden voor de niveaus van maximale remming van electrisch gestimuleerde [3H]

noradrenaline afgifte, alsmede tussen de S2/S1 ratio. Zowel de pD2 waarden voor (R)

and (S)-cx-methylhistamine, als de pA2 waarden voor thioperamide en burimamide

waren vergelijkbaar in beide cerebrale regio's.
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Na de karakterisering van de H3 receptor in de hippocampus van de rat werd in

hoofdstuk 6 gestart met studies naar de veranderingen in de dichtheid en functie van

de histamine H3 receptor in de hippocampus van de rat bij veroudering. In twee jaar

oude ratten werd een H3 receptor upregulatie van 95% waargenomen in de

hippocampus, terwijl een afname van 35% van het aantal H3 receptoren in de cerebrale

cortex werd waargenomen. In het striatum werden geen verschillen in H3 receptor

dichtheid waargenomen.

De histamine niveaus in de hypothalamus vertoonden een toename van 23% en geen

significante verschillen in de andere geteste hersengebieden. In functionele studies werd

een lagere electrisch gestimuleerde afgifte van [3H]-noradrenaline (S1 en S2) verkregen

in de hippocampus. Zowel in de hippocampus als de cortex werd een significante

afname van het maximale niveau van de H3 receptor gemedieerde remming van de

[3H]-noradrenaline release gevonden in de oude ratten. Bovendien werd in de

hippocampus, een significante afname van de pD2 waarde voor (R)-a.-methylhistamine

waargenomen. In oude ratten is de H3 receptor functionaliteit in de hippocampus dus

duidelijk verminderd. Speculatief, kan met zeggen dat in de hippocampus een toename

van het aantal receptoren, tot op zekere hoogte, een minder efficiente H3 receptor in

oude ratten probeert te compenseren.

De in dit proefschrift beschreven studies hebben bijgedragen tot een beter begrip van de

farmacologie en fysiologische veranderingen in expressie van de H3 receptor. De

ontwikkeling van H3 receptor liganden, die niet binden aan de beschreven niet-H3

receptor bindingspaats(en) is van groot belang. Goede kandidaten voor dit soort

liganden kunnen afgeleid worden van de verbindingen, zoals beschreven in hoofdstuk

2 en 3. Het bestaan van H3 receptor subtypen en liganden met verschillende affmiteiten

voor eventuele centrale en perifere H3 receptoren, zoals de immepip analoga in

hoofdstuk 3, zijn interessant in verband met eventuele therapeutische therapeutische

toepassingen van H3 liganden. Design van H3 antagonisten die de bloed-hersen

barriere goed penetreren blijkt tot nu toe moeilijk. Dit komt waarschijnlijk door binding

(en metabolisme ?) van de verbindingen aan cytochroom P450. Betere H3 receptor

liganden, als radioactief gelabelde verbindingen voor by. PET studies, zullen zeker

bijdragen tot de opheldering van de veelbelovende rol van de histamine H3 receptor in

hersenfuncties.
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