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1 Introduction

This paper describes a novel gpproach to solving multiperiod stochadtic progam-
ming modes for practicd portfolio investment problems, cdled the iterdtive
dissggregation dgorithm. A well-known complication of using dochadtic pro-
granming modes in practice is tha only a limited amount, of uncertainty
can be incduded, due to the numericd optimization methods which have to
be used. An important question is therefore how to choose such a limited
description of the uncertainty. On the one hand, the description should be
representetive of the true uncertainty, while on the other hand one would like
to exclude uncetainty which does not affect optima decisons. Furthermore,
one would like to know how sengtive the optima solution is to the specific

choice made. The iterative disaggregation dgorithm has been developed with
these issues in mind.

The most common method for obtaining an gpproximate description of the
true uncertainty is to randomly sample scenarios from an underlying didtri-
bution. Hiller and Eckstein [14], Zenios [26] and Golub et al. [10] use sampled
interest-rate scenarios in ther models for fixed-income portfolio optimization,
and exploit the dructure of the resulting modds by usng padld optimiza
tion methods to obtan solutions. Carino et al. [6, 7], Dert [9] and Mulvey
and Thorlacius [23] (see dso elsawhere in this volume) describe scenario gen-
erators for large sets of economic varidbles, and employ these in multiperiod
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2 P. Klaassen

models for integrated assst and liability management for penson funds and
insurance companies. Cariiio et d. and Det combine sampling techniques
with event trees to modd the uncertainty. Many other papers on stochestic
progranming models for dynamic portfolio investment problems focus on the
devdopment of efficient optimization methods, and do not explicitly address
the question of how to obtan an approximate description of the true un-
certainty. Examples are Bradley and Crane [4], Kusy and Ziemba [22] and
Mulvey and Vladimirou [24].

Important properties of any description of the uncertainty in future asset
prices and returns are that it is free of arbitrage opportunities and conds
tent with current market pricess However, these properties often seem to
be neglected when gochadtic programming models for portfolio invesment
problems are formulated. As is shown in Klaassen [20], a violaion of these
properties may lead to optima portfolios in stochagtic programming modeds
which are severdy biased towards spurious profit opportunities.

Centrd to the iterative disaggregation agorithm which we will present
are aggregation methods which can be applied to condense a description of
the asset-price uncertainty by combining states and time periods in such a
manner that the condensed description does not contain arbitrage oppor-
tunities or inconggencies with current market prices if this is true for the
origind description. Given a detalled description of the uncertainty which is
arbitrage-free and consstent with market prices, these aggregation methods
can thus be used to arive a a concise but ill arbitrage-free description of
the uncertainty on which a gochastic programming modd can be based.

The iterative disaggregetion dgorithm dats with the solution to a amdl,
and therefore rdaively easy to solve, dochastic programming modd  with
such an aggregated but arbitrage-free description of the asset-price uncer-
tanty. In each iteration of the dgorithm, the description of the uncertainty
in the model is refined by reversng one or more of the aggregaions tha
were applied to arive a the initid modd (disaggregations), and the mode
re-optimized. To choose which aggregetions to reverse in an iterdtion, an es-
timate is made of what additiond uncertainty will have the largest impact on
the optima solution, where use is made of optima solutions found in previous
iterations.

In this way, uncertainty is only added to the modd in places where it seems
to be rdevat for the optima solution. Moreover! the sequence of optima
solutions  provides direct indght into the sengtivity of the optimad solution
to increases in the level of uncertainty. These are clear advantages over the
usud way of solving a dochedic programming modd only once, and with a
description of the uncertainty that one has to decide on ex-ante.

We will describe the type of multiperiod asset/liability management prob-
lems which we will be consdering in section 2, and formulate it as a multigage
dochastic  program. In section 3 we will discuss why it is both reasonable
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and important to require that the description of the asset-price uncertainty
in this formulation is arbitragefree, and provide a useful characterization of
arbitrage-free asset prices. The aggregation methods are described in sec-
tion 4, as wel as thar effect on the dochagtic programming formulation.
Section 5 discusses the deps in the iterative disaggregation dgorithm in more
detail, and in section 6 we present the results of the application of the ago-
rithm to a smdl portfolio insurance problem. Section 7 contains conclusons.

2 Problem Formulation

In this section we describe a multiperiod asset/liability management (ALM)
problem, and formulate it as a multisage sochastic programming modd.

2.1 Multiperiod Asset/Liability Management

We condder an investor who wants to determine a portfolio investment s
trategy over time to meet a sequence of liability payments in the future We
assume that the investor can only rebdance his portfolio a a finite number
of points in time (trading daes) within a planning horizon of fixed length.
Security prices a the initid date are known, but prices and returns a future
trading dates are unknown. We gpproximate this uncertainty by assuming
that & each future trading date only one of a finite number of states of the
world can occur. We can then depict the uncertainty in future security prices
and returns in the form of an event tree.

As an example, Figure 1 shows a recombining binomid event tree with
Sx periods. The nodes in the tree represent states of the world, and the
arcs trandtions with pogtive probability. It is a binomid tree because two
dates can occur & the end of a period for each given date a the beginning
of a period. It is a recombining tree (dso cdled a lattice) because sates in
the inner pat of the tree can be visted by multiple paths. This is often
assumed to limit the number of different dates a each trading date’ As the
numericad example in section 6 employs a recombining binomia event tree
we will use it for illudrative purposes throughout this chepter. However, our
andyss can be extended directly to trees which are not binomid and/or do
not recombine.

The investor faces a trade-off between the initid cost of the trading Strategy
which mugt endble him to meet his liabilities and the vadue of the portfolio
which is left a the modd horizon (surplus). We assume that he can borrow
money at intermediate trading dates, but require that the surplus must be

¢ is not possible to use a recombining event tree if securities with path-dependent
payoffs (and thus prices) such as mortgage-backed securities are included in the analysis,
as each state at a trading date can in that case only correspond to one path in the tree up
to that date.
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Figure 1. A recombining binomid event tree with Sx periods

nonnegetive in dl cases. In executing a trading drategy, we furthermore
assume that the investor has to pay transaction codts, is not alowed to short
sl assts, and faces condraints on the amount that he can borrow as well
as a spread between the interest rate for borrowing and (risk-free) lending.

The invegtor's optima portfolio may be composed differently in different
dates at a given trading date. Moreover, in the presence of transaction costs,
the optima portfolio compostion in a dae a a future trading date does in
generd not only depend on the date itsdf, but dso on the compogtion of
the portfolio that is carried over from the previous period. That is, optimd
trading drategies in the event tree are generdly path-dependent. However, the
trading strategies are not alowed to depend on knowledge about the actua
course of events in the future. Thus, when two pahs in the event tree share
the same higory up to a cetan trading date t, the optimd trading Srategy
up to time ¢ must be identicadl on both paths. The trading Strategies are then
said to be non-anticipative.

2.2 Notation

The trading dates are denoted by the index t. The initid date is t = O, the

teemind date t = T, and intermediate trading dates aet = 1, . . . , T - 1.

States of the world are referred to by the index n. Given a date n at trading
date t < 7T, each dae which can occur with postive probability a time t + 1
is called a successor of state n, and will as such be referred to by the index nt.
For any dtate n a trading date ¢ > O, there is a least one date a time t — 1

which has dae n as its successor. Such a dae is cdled a predecessor of
gsate n, and will be referred to by the index n~. In the recombining binomid
tree of Figure 1, each date at time t < T has two successors, every date in the
interior of the tree has two predecessors, while each state on the boundary has
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one predecessor. The (subjective) conditional probability of a trandtion from

. . . . +
state n & time t to its successor state n* & time ¢t + 1 is denoted by 771?//):7-:-1’
and the corresponding probability measure on the event tree by 7.

All data in the problem are assumed to be functions of the nodes in the
event tree. L} denotes the liability which is due & the end of period t if
state n occurs, D, the dividend payment on security i at the end of period t
if stete n occurs, and ST, its ex-dividend price in sate n & time t. Let [ be
the totd number of securities that is consdered by the invedtor.

The riskless one-period interest rate (continuoudy compounded and an-
nudized) in date n a time t is r{', and the corresponding discount factor
" = exp(—riA), where A is the length of a time period in the event tree
P can be interpreted as the price in Sate n a time t of a riskless one-period
zero-coupon bond that pays one dollar a time t + 1. The interest-rate spread
(continuousy compounded and annudized) between the investor's one-period
borrowing rate and r? is assumed to be congant through time and denoted
by x. The upper bound on one-period borrowing for the investor in date n
a timet < T is written as Z7".

A scenaio s & time t is a path in the event tree between time O and
time t, and the set of dl possble scenarios a time t is denoted by &;. In the
recombining binomid tree of Figure 1, the s&t S, conssts of 2! scenarios. The
unconditiona probability of scenario s a time t as implied by the probability
measure 7 is denoted by 7).

A scenaio s € & vidts one node in the event tree a each trading date
between time O and time t, and such a node will be referred to by the in-
dex n(s). For each scenario s a time t there is exactly one scenario a each
time 7 < t which follows the same path in the event tree between time 0
and time 7. This scenario is cdled the predecessor & time 7 of scenario s a
time t, and will as such be denoted by s~. Furthermore, each scenario s a
time t is the predecessor of one or more scenarios a time t + 1, which are
cdled successors of scenario s They will be referred to by the index st.

Let 7;, denote the current holding of security i in the portfolio of the
investor (a known number). The vaiables zb{, and s, denote the units
of security i that are bought and sold, r&pectiv’ely, in scenario s a time t,
and 20}, the holding of security i in scenario s a time t after portfolio re-
bdancing (i.e, the portfolio holdings during period t + 1). The holding in
the riskless one-period security during period t 4+ 1 if scenario s € S; occurs
is denoted by the separate varidble y;, while y3 denotes the portfolio surplus
in scenario s € Sp. 2 represents the amount which has to be repaid by the
invesor a time t + 1 due to borrowing in scenario s a time t.

Transaction costs are assumed to be a fraction ¢ of the dollar value traded

and goply to both purchases and sadles of securities, but not to investment in
the risk-free security or borrowing.
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2.3 Stochastic Programming Formulation

We capture the investor's trade-off between the initid invesment and the
vdue of the portfolio surplus in the objective function: the initid portfolio
invesment is minimized, but any pogtive find portfolio vaue is credited
to the objective usng a concave utility function U(-). To be able to make a
sensble trade-off, the utility of a surplus must be measured in units of current
invessment. We assume that the utility function saisfies the expected utility
property (see Varian (25, chapter 11]).

The asst/lisbility management problem can now be formulated as the
following multisage <tochadtic program (each dage corresponds to a time

period) :

minimize
I I
(1+¢)Y Sipthio— (1—=1¢) D Siomsip+ Poyo— e Pz Y. miU(Y)
i=1 i=1 seST
subject to
280 + Wi = Mig = —Tip Vi=1,...,1 (2.1)

;;_1 -z, 4+ abl,—ah,=0Vi=1,., LseSt=1,.T-1 (22

I I I
Z ngs)ﬂhf,tq +yi =21+ (1=0 Z SZ§S)ﬁf,t ~(1+0) Z SZlES)be,t
1=1 1=1 =1

Py w e AP s = 1) yse S t=1...,T=1 (23)

I

> (ngf; + Sff'}s)) it Yo - A =y =LY VseS  (2.4)
i=1

s, by, ki, >0 Vi=1l,.,1,s€8,t=0,...,T=1 (25
y; 2 0 Vse§,t=0,...,T (2.6)
0< 2 <7 Vse8, t=0,...,T-1 (27

The firg four terms in the objective function represent the net cost of
additiond investments a time 0. These additiond invesments condst of
asset purchases (including transaction costs) and investment in the riskless
one-period security, while revenues from the sde of assets (net of transaction
costs) and borrowing are subtracted. The last term in the objective is the
expected utility of a find portfolio surplus.

There ae three types of condraints in the modd: portfolio-baance con-
draints, cash-balance congraints and borrowing condraints. The portfolio-
baance condrants link portfolio holdings between successve periods (i.e,
before and after rebaancing) for each scenario and each asset. The portfolio-
balance condraints are given by (2.1) for dl assets a time O, and by (2.2)
for dl assets in each scenario after time 0.
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The cash-badance condraints meke sure that sufficient cash is generated
to meet the liability payment in each scenario a each trading date. For
each scenario a time ¢t < T, this condraint is given by (23). At the end
of a period, the investor receives dividend payments on his asset holdings
and the return on his invesment in the one-period riskless security, but has
to repay the amount borrowed in the previous period plus interes. This
Is what the firg three terms on the left-hand sde of (2.3) represent. The
next two terms reflect rebaancing of the portfolio: revenues are generated by
sling assts, and money can be invested by buying assets, where both are
adjusted for transaction cods. The find two terms on the left-hand sde are
the invetment in the riskless one-period security and the amount borrowed,
respectively, during the next period.

The cash-badance condrants (2.4) define the portfolio surplus in each s
cenario a the terminad dae T. The firsd three terms on the left-hand sde
determine the find portfolio vadue before meeting the ligbility: the portfolio
holdings are converted a the appropriate market prices, the return on the
investment in the riskless one-period security is added, and the amount due
because of borrowing is subtracted. The difference between this portfolio va-
ue and the ligbility payment in a scenario s € Sy is the portfolio surplus 5.

The nonnegetivity redrictions on zhf, and y5 preclude short sdes of assets
and a negative surplus, respectively, while equation (2.7) limits the amounts
which can be borrowed.

3 Arbitrage-free Asset Prices

The formulation of the ALM problem as a stochastic program was based on
a destription of the uncertainty about future asset prices and returns in the
form of an event tree. In this section we discuss why it is both reasonable
and important that asset prices in such a description are arbitrage-free, and
indicate how it may be condructed usng financid asset-pricing models.

3.1 Arbitrage Opportunities and Arbitrage-Free Asset
Prices

We spesk of an arbitrage opportunity if it is possble to condruct a self-
financing trading drategy (a trading draegy is Hf-financing if no  invest-
ments are required after time 0) with payoffs that are nonnegative everywhere
and drictly podtive in a least one date in the event tree, and for which the
initia investment is nonpodtive. With such a trading drategy it is thus pos
gble to creste something from nothing, and many investors will try to teke
advantage of that. In fact, there is a large group of investors in today’s fi-
nancid markets, cdled arbitrageurs, whose man objective is to look for and
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exploit arbitrage opportunities. This will influence the prices of the securities
involved and lead to the dimination of the arbitrage opportunity. When no
arbitrage opportunities exist, asset prices are sad to be arbitrage-free.?

Although arbitrage opportunities may occasondly exis in redity, they ae
usudly short-lived due to the presence of arbitrageurs. Moreover, even if one
is adle to detect and exploit arbitrage opportunities today, it is preposterous
to assume that anyone would be able to foresee their occurrence a future
points in time As the primay objective in asst/lidbility management is to
determine a portfolio invesment drategy which forms a robust hedge againg
the future uncertainty, it furthermore seems imprudent to base such a drategy
on the presence of arbitrage opportunities.

In the financid literature, abitrage opportunities are usudly defined for
a frictionless world (i.e, a world without transaction costs and taxes, and
in which securities are infinitdy divisble, interes rates for borrowing and
lending are the same, and short sdes of assets with full use of proceeds are
dlowed). In redity, an invetor may not be able to exploit such arbitrage
opportunities directly because of market impefections and trading restric-
tions. Nonetheless, Klaassen [20] illudtrates that their presence in a portfolio
optimization modd with redidic maket impefections and trading restric-
tions may dill dgnificantly bias its optima solution in unredigic ways. We
therefore require in the sequel that security prices in our ALM modd are such
that they do not admit arbitrage opportunities in a world without frictions.

Harrison and Kreps [1 1] have deived an important characterization of
arbitrage-free security prices in an event tree under the assumption of a fric-
tionless world, which is contained in the following theorem.

Theorem 1 (Harrison and Kreps) Security prices in an event tree are
arbitrage-free if and only if there exists a positive probability measure on the
event tree such that in each given state the expected one-period return with
respect to this probability measure is identical for all assets.

The theorem dates that there are no arbitrage opportunities in the event tree
if and only if there exigs a probability messure 7 such that

+
S (St + D) S (St + D)
n+

n+ —
n n
St Sit

J

(3.8)

for dl as=tsi, 7 and in every state n a each trading date ¢t = 0,. . ., T =1
in the event tree. The summations in (3.8) are over al successor states n+ of
date n.

2A concept related to arbitrage opportunities is that of “locks” in racetrack betting; see
Hausch and Ziemba [12].
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Because we have assumed thet a riskless one-period security exidts in every
date in the event tree, this characterization can be restated as

n n n/nt nt n
Si,t = Pt Z 7Tt/t+1 (Si,t+1 + Di,:-{—l) (39)
nt
for al assets | in every state n a each trading date t = 0, ..., T = 1. This

equation dtates that the price of each security ¢ in date n a time ¢ can, under
the risk-neutral probability measure 7, be written as the expected vaue of
its payoffs a time ¢t + 1, discounted by the riskless interest rae.

Because dl assts have the same one-period expected return under the
probability measure 7, this measure is often cdled risk neutrd. We empha
Sze tha this risk-neutrd probability measure is only a theoreticad congtruct
(namely, a necessry and sufficient condition for the absence of arbitrage op-
portunities), and that it should not be viewed as representing ether actud
probabilities or subjective probability beliefs of an investor. In other words,
whether asset prices in an event tree are arbitrage-free is independent of the
probabilities assigned to the dates in the tree Thus an investor may very
well believe that the expected return on one asset is higher than that on other
assets, which will be reflected by the fact that he assgns probabilities to dates
(and therefore scenarios) in the tree which differ from risk-neutrd probabili-
ties. However, as long as a risk-neutral probability measure can be found he
will not able to condruct a portfolio which yidds a riskless return in excess of
the risk-free rate. For more background on the theory of arbitrage-free asset
prices, see Huang and Litzenberger [16] and Hull [17].

3.2 Using Financial Asset-Pricing Models

The presence of arbitrage opportunities in portfolio optimization models may
gem from severd sources. One possble source is that the description of the
uncertainty in the modd is incondgent with current market prices, which
are usudly taken as the prices a which the investor can trade at the initid
date. As current market prices of securities are based on expectations of
market participants about future prices and cashflows, these expectations
should be properly reflected in the event tree which is used as description of
the uncetainty in a portfolio optimization modd. Another possble source
is that prices in the event tree itsdf are not arbitrage-free. This will be the
case, for example, if randomly sampled scenarios from a larger (and possbly
arbitrage-free) model are used to condruct the event tree.

To condruct an event tree in which security prices are ahbitrage-free and
conggent with market prices, a naturd garting point is one of the arbitrage-
free asst-pricing modes in discrete time which have been proposed in the
financid literature. These modds ae primarily used to cdculate prices of
derivative securities, and they do so by assuming that arbitrage opportunities
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do not exig in financid makets Examples are the binomia sock-price
modd of Cox, Ross and Rubinstein [8] and the term-structure models of
Black, Derman and Toy (3], Brennan and Schwartz [5], Hesth, Jarrow and
Morton [13], Ho and Lee [15] and Hull and White [18].

These assat-pricing modds, or discretized versons thereof, describe the un-
cetanty in the undelying variable(s) in the form of a discretetime, discrete-
date event tree. The arbitrage-free vaue of a derivative security is computed
in a recursve manner, dating from the maturity date on which the cash
flows (as a function of the vdueg(s) of the underlying varidble(s)) are known,
and proceeding backwards through time in the tree until the arbitragefree
vdue a time O is found (this recurson employs reation (3.9)). In this way,
the security’s abitrage-free value is cdculated for every date in the event
tree a or before its maturity date.

Although prices of securities in the event tree are therefore arbitrage-free
when cdculated in this way, there is no guarantee tha ther arbitrage-free
vaue a time O equa current market prices. To accomplish this (at least ap-
proximately), one typicaly sdects a set of benchmark securities, and chooses
vaues for the parameters in the modd (representing, for example, the volatil-
ity of the undelying vaiable(s)) so that the caculated modd prices match
the market prices as closdly as possble. These parameter vaues can vary Sg-
nificantly with the number of time seps in the event tree, but they converge
to certan limit vaues when the number of time steps increases.

However, the number of time steps which is necessary to obtain saisfac-
tory convergence is usudly much larger than the 10 or a most 20 Stages
(corresponding to time periods of possbly different lengths) which can be in-
cluded in a stochastic program®. If the number of time steps in the event tree
would be redricted to such a smdl number, the obtained parameter vaues
are typicdly very sendtive to an increase or decrease in the number of time
deps. This implies that the dochegtic nature of the underlying variable(s)
will not be modelled correctly. Furthermore, the cdculated modd price of a
security which is not induded in the benchmarkk st may vary dgnificatly as
a function of the chosen number of Seps.

Thus, an event tree that is derived from a financid asset-pricing modd in
which security prices are abitragefree and consgent with current market
pices, and which captures the stochadtic nature of the underlying uncertainties
in a satisfactory way, is typicdly much too large to include fully in a stochadtic
program. In the next section we describe aggregation methods which endble a
reduction in the sze of the event tree without sacrificing its desired properties.

)

3With 10 securities and a binomial event tree with 10 time periods, the ALM model
would aready have 33,740 variables and 12,266 constraints, and these numbers would
approximately double with each additional time period.
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4 Aggregation of the Uncertainty

We will combine both states and time periods in a large event tree to reduce its
sze, and refer to this as state aggregation and time aggregation, respectively.
To illudrate the mechanics of date and time aggregation, we condder the
two-period binomia tree of Figure 2a. The vectors a each node in the tree
represent the price of a one-period discount bond with a face vdue of one
dollar (Pf), the dividend payment on security ¢ (D7;) and the ex-dividend
price of security i (S7,). We assume that the prices in the tree are arbitrage-
free so that a risk-neutra probability messure 7 exists on the tree. Let #}
denote the conditiona risk-neutra probability of an upward trangtion in the
tree from date n a time ¢. These conditiond probabilities are written next
to the arcs in Figure 2a We will reduce this two-period binomia tree through
the application of dae and time aggregation to a binomid “treg” with only
one period. See Klaassen [21] for a complete discusson of the aggregation
methods.

4.1 State Aggregation

We will say tha state aggregation is perfformed in state n a time ¢ if dl
successor dates of date n in the event tree are combined into one date, the
aggregate successor.  Obvioudy, the conditional probability of this aggregate
successor dtate is one. Figure 2b shows the resulting event tree when date
aggregation is performed in both dates a time 1 in the event tree of Figure 2a

The dividends and ex-dividend prices in the aggregate successor dates are
defined as follows (n = 0,1) :

Dy = miDi3t + (1 = w}) D}y (4.10)
Sty = mpSpFt + (1 - a1)Sh (4.11)
P} = nfPyt + (1 - a))Py. (4.12)

Usng the no-arbitrage reaion (3.9), it follows tha
Sro= PRap(Dpft+ SpE )+ (1 = ) (D2, + ST)]
= Pr (D}, +51) (4.13)

which shows that the prices in the aggregated tree of Figure 2b are arbitrage-
free.

To obtain Figure 2¢ from 2b, we perform state aggregation at { = 0. Define:

DY) =mDi, + (1 - m)DY, (4.14)
Sy = mSi + (1 = m)SH, (4.15)
P} = mP} + (1 = m)P? (4.16)
T = (WOPll) /P (4.17)
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Usng again the no-arbitrage relation (3.9) yidds

Sio = PO (D, + 5%) (4.18)

8 = PR (Dly+ Sly) + (1 =) (DY, + 50,)] . (4.19)
This shows that prices in the aggregated tree of Figure 2¢ are arbitrage-free,
with 79 acting as risk-neutrd probability.

Although date aggregations thus preserve arbitragefree prices in an even-

t tree, we note that certain redaionships between securities with nonlinear
payoffs in the origind event tree may be violated in an aggregated event tree.
For example, suppose the event tree modes the evolution of a stock price,
and consder a cdl option on the stock. At its maturity date the option pays
the difference between the stock price and its exercise price, if pogtive, and
nothing othewise.  Although this rdation will hold exactly in the origind
event tree, it may be violated in some nodes in an aggregated tree due to the
nonlinearity of the option payoff as function of the stock price. Such devia
tions are unavoidable to maintain abitrage-free prices for generd assats in
an aggregated event tree as well as congstency between each asset’'s payoffs
in the tree and its market price.

4.2 Time Aggregation

Time aggregation involves the merging of successve time geps in the event
tree. Specificdly, time aggregation is peformed in date n a time ¢ in an
event tree if we replace the trandtions from this State to its successors by
direct trangtions to the successors of its successors. Figure 2d depicts the
change in event tree when time aggregation is peaformed a time O in the
event tree of Figure 2c.

Time aggregation in Fgure 2d diminates trading date ¢+ = 1 from the
event tree. This affects the definition of a riskless one-period security in the
tree as wdl as the dividend payments. Obvioudy, dividends which ae pad
on the trading date that is diminated cannot be ignored. We will take them
into account by assuming tha ther abitrage-free vaue is prepad a the last
trading date in the event tree before the true payment date, i.e, at t = O.
The abitragefree vdue (at time 0) of al dividends tha are pad on security
i between time 0 and time 2, not including the dividends a time O and time 2
itsdlf, is denoted by D;q,,. Furthermore, the riskless one-period security at
time O in the event tree is redefined as a security which pays one dollar a
time 2, and nothing a other times. Its price is denoted as Py_,s.

Define

i

Di,0—>2 Pngl (4.20)
Py_s PP (4.21)

o2 = 7?{) (422)

i
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and combine this with equations (4.18) and (4.19) to get

Sio = Digoa+ Posa[mona(Dly+ S1) + (1= mos) (D25 + S%)] . (4.23)

This relation shows that the price of security ¢ a time O can be written
as the sum of the present (arbitragefree) vaue of its dividend a time 1
and the expected present value of dividend plus ex-dividend price a time 2.
As the discounting is performed usng the riskless interest rate (Pp_.), the
probability that is used to teke the expected vaue (mo—») IS a risk-neutrd
probability. Because m,_,, IS independent of i, the prices in the aggregated
event tree of Figure 2d are arbitrage-free.

4.3 The Aggregated ALM model

In the formulation of the ALM modd we assumed that in between trading
dates no dividends were paid on securities and no liabilities were due. Clear-
ly, we can not assume this any longer if we peform time aggregations in the
underlying event tree. We will therefore indicate the changes which have to
be made to the formulation in order to teke prepayment of the arbitrage-
free vdue of intermediate dividends as wdl as liabilities into account. This
adjused formulation, which results after peforming date and time aggrege
tions in the event tree which underlies the origind ALM modd, will be cdled
the aggregated ALM modd. For its exact mathematicd formulation and the
precise definition of al aggregated cquantities, see Klaassen [21].

Let the trading dates in the aggregated event tree be %o, t;, . . . , tp, with
to = 0 and ¢t = T. The period between two successve trading dates in
the aggregated tree thus comprises one or more periods in the origind tree.
In the aggregated ALM modd, an extra term is subtracted from the objec-
tive function which represents the prepayment of the arbitrage-free value of
dividends which ae in redity pad between the trading dates ¢, and t;, not
including the dividends on these trading daes itsdf. These dividends ae
prepaid over the portfolio holdings of the investor between dates ¢, and i,
i.e, after rebdancing the initid portfoio a& time t¢,. Furthermore, an extra
teem is added to the objective function, which represents the arbitrage-free
vaue of the ligbility payments which are due & daes in between times ¢,
and t,.

The cash-balance congtraint for each scenario a times ¢; € {t1, tz, . . ., ty_;}
is modified as follows. To the left-hand sSde of the condraint an extra ter-
m is added which represents the prepayment of the arbitragefree vaue of
dividends which are in redity pad between the trading dates ¢; and t;,,
conditiona on the specific scenario a time ¢;. This arbitrage-free value does
not include the dividends on the trading dates ¢; and t;,,. These intermedi-
ate dividends are prepad over the portfolio holdings of the investor between
dates ¢; and ¢4, in the specific scenario under congderation, i.e, after rebd-
acing & time ¢;. To the liability on the right-hand sde of the cash-baance
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condrant is added the abitragefree vaue of the liability payments which
are due a dates in between times ¢; and ¢;,,, conditiond on the scenario at
time t]'.

An important property of the aggregated ALM modd is tha it is nether a
redriction nor a relaxation of the origind ALM modd. This property follows
from the fact that the condrant set of the ALM modd after an aggregation
can be obtained from the condraint st of the mode before the aggregation
by peforming both edementary row and column operations We will lig the
sequence of these operations for both state and time aggregation below. A
proof of these results can be found in Klaassen [19].

The fact that the aggregated ALM modd is neither a redriction nor a
relaxation of the origind modd indicates that the dtate and time aggregation
methods do not discard pat of the uncertainty in the origind event tree, but
indead condense its description. This contrasts with stochastic  programming
modds in which only a (sampled) subset of scenarios from a large event tree
iS used as description of the uncertainty.

4.3.1 State Aggregation as Row and Column Operations in the
ALM Model

We congder date aggregation in state n at trading date ¢; in the event tree.
This date aggregation corresponds to the following row and column opera
tions in the ALM modd for each scenario s a trading date ¢; which vists
date n:

o For each successor scenario s* a trading date t;,,, mutiply its cash-
baance condraint, the portfolio-baance condraint of each asset, and
the borrowing condraint with the conditiond risk-neutrd probabili-
ty w’ifjifﬁﬁs+) Subsequently, sum the cash-baance congraints of dl
successor scenarios st a time ¢;,,, and do the same for the borrowing
condraints and esch of the portfolio-badance congrants.

e Add the columns which correspond to the portfolio sdes variables “f;l
over al successor scenarios st & trading date t;.; (that is sum the
column coeffidients of zs;’ over dl s* in each congtraint). Repeat this

for the varisbles abS” , the variebles zh:" | the variebles yi* | and the
. ¥ j+1 j+1 3 +1
varidbles zj' .

When tj41 = tr only those row and column aggregetions are performed which
are goplicable, as there are no portfolio-baance and borrowing condraints in
the model for scenarios & time tr, nor are there variables zs; , b} , 7h] ,
and z{ .

Aggregation of the columns which correspond to varigbles yéf when ¢, =
tr dfects the evauation of the surplus in the objective function. If the proba-
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bilites n5 in the objective function are equa to the risk-neutrd probabilities,
and if the utility function ¢/ has the form

)=\ (H pre” ) (4.24)

with A < 1 a scdar, then this aggregation is uniquely defined. In this case the
expected utility of a surplus is equa to its expected present vaue, weighted
by the scdar A, with discounting taking place againgt the one-period interest
rates dong the scenario path, and the expectation being caculated under the
risk-neutra  probability messure. This is dso the case that will be consdered
in the numericd example of section 6, and we will therefore focus our discus
son on this case. In other cases, however, one must decide how to define the
utility of an aggregated surplus in the objective function (see Klasssen [21]).

If the underlying event tree is recombining, then some scenarios which
ae didinguishable before the date aggregation may become duplicates of
each other after the aggregation. This will be the case for scenarios which
vist node n & time t;, and follow the same path through the tree before
the aggregation except for the node a trading date ¢,.,. Obvioudy, one can
combine such duplicate scenarios in the ALM modd after the aggregation,
and sum ther regpective probabilities. (This is equivdent to multiplying the
duplicated congraints of these scenarios by their rdative risk-neutrd proba
bilities, summing the corresponding condraints, and adding the columns of
corresponding  duplicated  variables)

4.3.2 Time Aggregation as Row and Column Operations in the
ALM Model

Consder now time aggregation in dae n a trading date ¢;. We assume
that this state has only one successor dtate & the next trading date ¢,
(compare with Figures 2¢ and d). Otherwise, we can aways firg peform a
date aggregetion in this sate to obtan this dStuation. The following row and
column operations are peformed in the ALM mode for each scenario s in
date n a trading date )

o The time aggregation implies tha no securities can be bought and sold
in the succ&esor scenario st a time ¢;,, ad thus we essentidly add the
constraints gs$y = 0, abfy = 0and ahf, = ahi, for Al assdts .
Instead of addl ng them, however we use these condrants to remove
the variables as{; ., abf, . and zhf,  from the ALM model. This
renders the portfolio-balance congraints for the successor scenario ¢t at
time ¢,,, vacuous, and they are therefore removed from the formulation.

o Multiply the cashrbaance condraint of the successor scenario s at
trading date t¢;;; by the one-period discount bond price Pt" in

=41
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state n at time ¢;. If ¢; = 0, add this congrant to the objective
function. Otherwise, add it to the cash-bdance congraint of scenario s
a time t;.

o If the borrowing-lending spread ~ is podtive, multiply the column that
corresponds to the borrowing variable 2§ by (enltre= ti+1) prsT) )

+1tj42
and add it to the column that corr&sponds to the borrowfng vari-
able zfil

5 The Iterative Disaggregation Algorithm

We now dexcribe the iterative disaggregetion agorithm in more detal. As
sume that a the sart of the dgorithm one has an event tree as description of
the uncertainty in asset prices and returns which is arbitrage-free and conds
tent with current market prices, for example by usng abitrage-free financid
asset-pricing models. Such an event tree will mogt likdy be much too large
to include in a dochadic programming modd for ALM problems. The ag-
gregation methods from the previous section can then be used to reduce the
gze of the event tree without introducing arbitrage opportunities or losng
congstency with current market prices. In this manner one can obtan a smal
aggregated ALM mode which can be solved rddively eedly.

In the extreme, one could continue to perform date and time aggregations
in the event tree until nothing more than one “expected-value’ scenario re-
mains. Obvioudy, this is not what one wants. In contrast, it is important
to include in the ALM modd as much of the rlevant uncertainty as possble
0 that its optimd solution is a good gpproximaion to the optima solution
that would result if one were able to incorporate al uncertainty in the modd.
By dating with a reatvely coase approximation of the true uncertanty
in the ALM modd, and iterdively refining this gpproximaion based on the
information one gathers from the sequence of solutions, this is exactly what
the iterdive disaggregaion dgorithm ams to accomplish.

Each itedion of the iteraive disaggregation dgorithm consgs of the
folowing geps

1. Disaggregate in the aggregated event tree; i.e, reverse one or more
aggregations.

2. Find a feadble solution to the disaggregated ALM mode, based on
the optima solution from the previous iterdtion, and re-optimize the
disaggregated  model.

We will discuss both geps in the remainder of this section.
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5.1 Construction of a Feasible Solution after a Disag-
gregat ion

From the andyds in section 4 it should be clear that the ALM modd af-
ter a disaggregation is peformed in the undelying event tree will contain
both more variables and more condraints than the ALM mode before the
disaggregetion. Hence, the ALM modd after a disaggregation is not just a
relaxation of the mode before the disaggregetion, which implies that the op-
timad solution to the ALM moded before the disaggregation may not define a
feedble solution in the ALM modd after the disaggregation. Here we will be
concerned with the question how to condruct a feasble solution for the ALM
model after a disaggregation, given an optima solution to the ALM mode
before the disaggregation. This andyss will be ussful when we condder the
question in the next subsection how to decide where to disaggregate in the
event tree.

Our dating point for the derivetion of a feesble solution is the fized-
weight solution that is defined by Zipkin [27, 28] in the context of row and
column (dis)aggregations in linear programs, and extended by Birge [1] to
dochedtic lineer programs. This fixed-weight solution is defined for both the
primal variables (i.e, corresponding to sdes and purchases of assets, port-
folio holdings, borrowing and lending) and dud variables (shadow prices on
the cash-bdance, portfolio-bdance and borrowing congraints), and relates
directly to the column, respectively row, operations of the corresponding ag-
gregation in the ALM modd. We will summarize the results for date and
time disaggregation in turn. More details can be found in Klaassen [19).

5.1.1 Fixed-Weight State Disaggregation

We condder the reversd of the date aggregation which was described in sec-
tion 431 The fixedweght solution after the State disaggregetion in date n
a trading date t; is defined as follows for each scenario s in this Sae:

e Primd variables

The optimd vaues for the single successor scenario & trading date t;.,
before the disaggregetion are teken as initid vaues for each of the
successor scenarios at trading date ¢, after the disaggregation. If the
origind event tree was not recombining, then no scenarios and thus
variables are added a other places in the event tree.

If the origind event tree did recombine, however, sngle scenarios a
trading dates beyond t;,, in the event tree before the disaggregation
may have to be splitted into multiple scenarios after the disaggregation
(see the discusson in section 4.3.1). Initid vdues for the variadles of
these new scenarios are st equa to the optimal vaues of the variables
of the dngle scenario from which they originate.
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e Dud vaiddes

Initid vaues for the shadow prices of the condraints for each of the
successor scenarios at trading date ¢;,, after the disaggregation are set
equa to the optima shadow prices for the single successor before the
disaggregation, multiplied by the conditiona risk-neutra probability of
the corresponding state. When the origind event tree was a recombining
one, and the date disaggregation leads to the splitting of scenarios a
later trading dates in the tree, the shadow prices of the condrants for
these new scenarios are initidized a the optima shadow prices of the
condrants for the scenaio from which they originate, multiplied by
ther reldive risk-neutral probabilities.

The fixedweght solution for the primd vaidbles will saidy dl portfolio-
baance condrants, but it may violate the cash-bdance and borrowing con-
draints in some scenarios. However, the violated condraints are satisfied on
average. Moreover, if the upper bound on borrowing is State-independent,
the borrowing condraints will be satisfied by the fixed-weight prima solution
in dl scenarios.

5.1.2 Fixed-Weight Time Disaggregation

We congder the reversd of the time aggregation in state n a trading date ¢,
which was described in section 4.3.2. For each scenario s in this dae, the
fixedweght solution after the time disaggregation is defined as follows

o Primd varidbles
The varigbles A, . y;' and 2z for the new successor scenario s+ a
trading dae t;,, ae intidized d the optimd vaues of these variables

for scenario s at trading dete t;. Furthermore, the varidbles a:sf:;_H and

abfjm ae initidized & zero. The optimd vadues of the lending and
borrowing varidbles for scenario ¢ a trading date ¢t; are modified as
follows
y;‘,sj = Pt?—')tj+1 gg]
—k(t;1—t; ~
2 = (e Hn t])P{;—'tm)ztsj

where g and z; are the optima velues of the one-period lending and
borrowing variables before the disaggregeation.

e Dud vaiddes

Initiad values for the shadow prices of the cash-badance and portfolio-
balance condraints for the new successor scenario a trading date ¢;.,
ae st equd to the optima shadow prices for scenario s at trad-
ing date t; before the disaggregation, multiplied by the discount bond
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price P}, ,,- For scenario s a trading date t; itsdf, the initid shadow
prices of these condraints are set equa to the optima shadow prices
before the disaggregation.

For the borrowing congraints of these scenarios, the initid shadow
prices ¢ are chosen as follows:

& z
s . Ga) it Z3 i,y = tj—)tjﬂ( )
— —klts —t; n(s 1 42 —xlt; —1. ni{s

& = e—r(tit2 J+1)Pij+l_nj+2 i e—r(tj+2 ]+1)Ptj+l_>tj+2
0 otherwise
2 - 5n(sT)

f+ = gtj if th-—.?tj+2 = th+1‘—>tj+2

s 0 otherwise

where gfj is the optima shadow price on the borrowing congraint of
scenario s a trading date t; before the disaggregetion.

The only condraints which may be violated by the fixed-weight prima solu-
tion are the cash-baance condraints of each scenario s in Sae n a trading
date ¢; and its successor scenaio s* at the added trading date ¢;,,. (The
upper bounds on one-period borrowing in an aggregated ALM mode are de-
fined in such a way that fixed-weght time disaggregetion will never result in
a violaion of the borrowing condraint.) Furthermore, it is easy to see that
these cash-bdance condrants can only be violaed if prepayment of divi-
dends and/or lidbilities occurs in date n a trading date ¢; before the time
disaggregation.

5.1.3 Modifying Fixed-Weight Solutions to Obtain Feasibility

We have indicated that fixed-weight disaggregation may result in violaions
of the cashbaance condraints for some scenarios in the ALM modd, and
dso of the borrowing condrants if date disaggregation is performed. If the
cash-balance congraint for a scenario s a time t is violated after a fixed-
weight disaggregation, an obvious way to make it feasble is by increasng the
amount of short-term lending in case of a cash surplus, and the amount of
short-term borrowing in case of a cash deficit. In the last case, however, this
may lead to a violaion of the borrowing condrant in the scenario. Further-
more, additiond short-term lending or borrowing in scenario s a time { dso
increases the amounts of short-term lending, respectively borrowing, in its de-
scendant scenarios if we correct for violations in the cash-balance condraints
in these scenarios in the same manner. Thus even if additiond borrowing in
scenario s a time t does not violate the borrowing condraint a that time,
it may cause a violation of the borrowing condraint in one of its successors.

The upper bounds on short-term borrowing may therefore hinder the con-
druction of a feasble solution from the fixed-weght solution through ad-
jusments of the oneperiod borrowing and lending amounts. To circumvent
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this problem, we can rdax the ALM mode by including for dl scenarios at
each trading date an additiond variable for short-term borrowing on which
no upper bound is imposed. A high borrowing-lending spread will be asso-
ciaed with these additiond borrowing variables, however. Furthermore, an
extra variable is added for each scenario at the termina date to teke care
of a negative find portfolio vdue. The expected present vdue of such a fi-
nd portfolio deficit is added to the objective function, and pendized usng a
(large) pendty parameter.

As is shown in Klaassen [19, section 4.3], it is possible to derive lower
bounds on the borrowing-lending spread and the pendty parameter so that
the optimd solution will involve nather borrowing nor find portfolio deficits
for any par of vaues above these lower bounds. Thus, for any pair of vaues
above these lower bounds it does not matter whether one solves the true ALM
modd, or its relaxation as just defined. The lower bounds are shown to be
postively correlated to the variability of asst returns, and negdively to the
vdue of A when the utility function is defined according to equation (4.24).
For example, if A = 1 in equation {4.24), no borrowing will teke place in the
optima solution whenever the borrowing-lending spread is podtive.

5.2 Choosing Disaggregations

In each iteration of the iterative disaggregation dgorithm one has to sdect
one or more dates in the event tree in which to peform date and/or time
dissggregation.  The method we will discuss for doing this is based on the
infeesbilities of fixed-weght disaggregation, and edimaes the effect of these
infeedbiliies on the objective function. This method is used in the imple-
mentation of the iteraive disaggregation dgorithm in the next section.

Suppose we peform date disaggregation in state n a trading date t;
in the event tree. For each scenario s in this dae the fixed-weight prima
solution may violate the cash-baance and the borrowing condraints for its
New successor scenarios st at trading date tj41. Let Utsjil denote the shortfdl
in the cash-balance congraint for successor scenario st a trading date ¢4,
i.e, the difference (if postive) between the lidbilities in state n(s™) and the
cash flows from the portfolio as implied by the fixedweight prima solution.
Smilaly, let Ver denote the amount of one-period borrowing in this scenario
which exceeds |ts upper bound.

We edimate the effect of these infeasibilities on the objective functior’ by
the following quentity E:

= > > (&5 Ui, + &L Vi) (5.25)

SES{‘ st

4Strictly speaking, we consider infeasibilities in the formulation of the ALM problem in
which the cash-balance constraints are written as greater-than-or-equal-to constraints, as
we only take shortfalls and not surplusses into account.
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where G;" and £ denote the shedow prices on the cash-balance and bor-
rowing condraint, respectively, as defined by the fixed-weight dud solution,
while S; denotes the set of al scenarios which visit state n a trading date ¢.
A gmilar messure can be defined for time disaggregation in date n a
trading date t;. Fixed-weght time disaggregetion may lead to a violation
of the cash-balance condraint for a scenario s in this dae as wdl as for its
successor scenario st a the newly added trading date (which we denote as tiv1
for simplicity). With U? again denoting the shortfall in the cash-balance
condraint for scenario s a trading date ¢, we edimae the effect on the
objective function of the infeashilities due to fixed-weight time disaggregetion

as.
=2 (e +e,.UsL) (5.26)

3
SES%

where ;. and @g;] denote the shadow prices on the cash-balance congtraints
as defined by the fixedweight dud solution.

We can cdculate the quantities ¢ and ¢ for each dae in the event tree
in order to decide where to peform a date or time disaggregation. Clearly,
the higher a quantity is in a date, the lager the edimated effect of the
corresponding disaggregation is on the optima objective vdue, and thus the
more important this disaggregation is edtimated to be.

Ancther agpproach to deciding where to peform disaggregations in the
event tree is to cdculae bounds on the possble change in the objective func-
tion. Zipkin [28] shows how such bounds can be derived for (dis)aggregations
in generd liner programs if (generdized) upper bounds on the primd and
dua variables are known. For the ALM problem, Klaassen [19] shows how
upper bounds on the primal and dud variables can be derived if an upper
bound on the investment a time O is known.

The difference between the arbitragefree vaue of dl liadilities and the
vdue of the invedor's initid portfolio dways forms a lower bound on the
optimum objective vaue. Furthermore, the fixed-weight solution in the re-
laxation of the ALM moded after one or more disaggregaions adways defines
an upper bound. One hopes that the bounds which follow from Zipkin’s
method will be tighter than these genera bounds.

5.3 Termination of the Algorithm

For the decison when to terminate the iterative disaggregation dgorithm, we
would like to have a measure of how close the current solution is to the true
optimd solution, i.e, the solution to the ALM modd when dl uncertainty
is conddered. It is not obvious, however, how to construct such a measure.
Furthermore, because an aggregated ALM mode is neither a redriction nor
a relaxation of the unaggregated modd, it is impossble to tdl precisdy how
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the optima solution to an aggregated modd redlaes to the solution in the
unaggregated  mode.

One posshility would be to cadculate the bounds of Zipkin on the change
in objective vaue, which were discussed earlier. However, these bounds are
most likdy too week to be meaningful if one would trandate the optimd
solution of an aggregated ALM modd to a solution for the unaggregated
model by fixed-weight disaggregation, because the unaggregated modd is
typicaly very much larger than the aggregated models that are solved in the
dgorithm. Moreover, the sheer sze of the unaggregated ALM modd may
make it practicdly impossble to peform this cdculation.

A more feasble gpproach is to base the decison to terminate the agorithm
on the reaults in past iterations. In practicd agpplications, an investor  will
primarily be interested in the optima portfolio decisons a time 0. One may
therefore decide to terminate the dgorithm if these portfolio decisons have
remaned ufficiently dtable in recent iterations.

6 A Numerical Example

We now present the results from the implementetion of the iterative disag-
gregaion dgorithm for a smdl asst/lidbility management problem.

6.1 Problem Statement

Condder an investor with interest-rete exposure in his investment portfolio,
who wants to limit the downdde risk. More specificaly, we assume tha the
investor owns a zero-coupon treasury bond with a maturity of two years from
the current date. Furthermore, he has to make a payment after one year, for
which he will have to sdl the bond. As he expects tha interest rates will fdl
in the coming year, he wants to hold the two-year bond during the firs year,
but he dso wants to be guaranteed that he can fulfill his obligation after one
year. He could redize this guarantee if he could buy a oneyear put option
on the two-year zero-coupon bond.

Assume that dl traded options have a maturity of a most four month-
s. The problem therefore becomes to construct a dynamic trading strategy,
involving the traded options, with payoffs that replicate the payoffs of the
desred oneyear put option. The liddlities in the ALM formulation ae thus
equa to the difference between the scheduled payment and the vaue of the
discount bond, if podtive, and zero otherwise. The investor does not accept
shortfdls a the payment date.

The face vaue of the two-year zero-coupon bond is $1000. Assume that
the current zero-coupon yield curve is fla with a (continuoudy compounded)
yidd of 8% for dl maiurittes The current price of the bond is therefore



24 P. Klaassen

$852.14, and the forward price of the bond for delivery &fter one year is
$923.12. Assume that the scheduled payment equas $932.35 (101% of the
forward price), irrespective of the date of the world. That is, the exercise
price of the one-year put option that he wants to replicate is $932.35.

Assume that traded option contracts on the two-year bond are initiated a
the beginning of every two-month period, and that the options have an initid
maturity of four months. For every option maturity, three cdl options and
three put options are traded, which differ only in their exercise prices (respec-
tivdy 99.5%, 100% and 100.5% of the forward bond price on the maturity
date of the options). Thus, a every point in time the investor can trade in
gx different put options and six different cal options on the two-year bond.

The term-structure model of Ho and Lee [15] is used to modd the interest-
rae uncertanty in the sochastic programming formulaion of this problem?.
This term-gructure model describes the uncertainty in the future term struc-
ture of interest rates by means of a binomid lattice (see Figure 1). It is
a onefactor modd as the evolution of the short-term (one-period) interest
rae completdy determines the evolution of the whole term dructure. As
input parameters, the Ho and Lee modd requires the number of time seps
in the binomid latice for a horizon of given length (in this case one yedr),
the voldility of the one-period interest rate, and the conditiond risk-neutrd
probability of an upward movement in the latice. This probability is assumed
to be the same in every node in the lattice.

Prices of interest-rate derivative securities (such as bonds and options on
bonds) in the event tree can be caculaed in the recursve manner which is
described in section 3.2. For ordinary bonds, the price at the gart of the tree
which is derived in this recursve manner is guaranteed to be equd to the
current market price in the Ho and Lee modd, irrespective of the vaues of its
input parameters. For options and other interest-rate derivative securities,
however, this is not the case.

Assume that the market prices of the traded options are consstent with
a verson of the Ho and Lee mode which incorporates 120 time steps, in
which the risk-neutrd binomia probability is 1/2, and the voldility of the
short-term interest rate 0.7% per year. This number of time deps is lage
enough s0 that the cadculated option vaues have converged to a least two-
decimd precison with the given parameter values and the chosen voldility
level prevents negative interest rates in the modd a any point in time. The
theoretical value of the replicated put option a time O according to this mode
is $8.73. The daa for the traded options, including their price a time O
if goplicable, are liged in Table 1. The initiation and expirdion dates are
specified in terms of the time steps in the Ho and Lee modd. Because options

5Although the simple Ho and Lee model suffices to illustrate the iterative disaggregation
algorithm in this example, one may want to use a more sophisticated term-structure model
in real-world applications (see the references in section 3.2).
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Option | Initiation | Expiration Price @ time O:
number date date Strike price put cdl
10 20 $859.26  ( 99.5%) [ $0.40 | $4.66
11 20 $863.58  (100.0%) | $1.76 | $1.76
12 20 $867.90  (100.5%) | $4.66 | $0.40
20 0 40 $870.80  ( 99.5%) || $0.76 | $5.03
21 0 40 $875.17  (100.0%) | $2.28 | $2.28
22 0 40 $879.55  (100.5%) || $5.03 | $0.77
30 20 60 $882.49  ( 99.5%) . .
31 20 60 $886.92  (100.0%)
32 20 60 $891.36  (100.5%)
40 40 80 $894.33  ( 99.5%)
41 40 80 $898.83  (100.0%)
42 40 80 $903.32  (100.5%)
50 60 100 $906.34  ( 99.5%) .
51 60 100 $910.89  (100.0%) -
52 60 100 $915.44  (100.5%) .
60 80 120 $918.50  ( 99.5%) -
61 80 120 $923.12  (100.0%) -
62 80 120 $927.73  (100.5%) .

Table 1. Data for traded options on the two-year zero-coupon bond.

10, 11 and 12 were initited before time O, no initiation date is specified for
them. The exercise price of each option is both given as absolute humber and
as percentage of the forward bond price (between brackets).

6.2 Disaggregation Strategy

To dat the iterative disaggregation dgorithm, we have aggregated dSates
and time geps in the Ho and Lee modd of the previous section to obtain the
aggregated event tree of iteration O in Figure 4. This initid event tree has
only four different scenarios a ¢ = 120, and the corresponding ALM  model
is thus smal and easy to solve. The interest rate ranges between 8.128% per
year in the lowest State to 7.872% in the highest dtate, and the corresponding
liability (payoffs on the replicated put option) between $1055 and $8.38.
Because trading dates are included in this aggregated event tree for dl points
in time a which dividends are pad (i.e, options expire) and liabilities are
due (t = 120), no adjusment for the prepayment of dividends and liabilities
IS necessay.

To prevent that only sate and no time disaggregations are performed in
this tree, we have dightly modified the use of the sendtivity measures ¢ and (
that were defined in section 5.2. Fird, we have imposed that a date in an
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[teration  30: Iteration 3 1:

t=0 20 40 60 80 100 120 t=0 20 40 60 80 100 120

Figure 3. Change in event tree dfter a date disaggregation on the criticd
path.

aggregated event tree can never have more than two sSuccessor dates, and
that its successor dates occur a the same point in time.

Second, we only cdculate the sendtivity measure ¢ in dates that have
successor gates in which liabilities are specified. In this problem these are the
states with successors a ¢ = 120. For each of these states we identify a critical
scenario, which is the scenario with the highest contribution to the sengtivity
measure ¢ in that date. If a date is sdected for a sate disaggregation based
on its vaue for ¢, then a disaggregetion is performed dong the path in the
event tree that corresponds to the critical scenario in that date. If possble,
a date disaggregation is performed somewhere dong this criticd path. |If
there are multiple posshilities, then the date disaggregation is peformed at
the earliest point in time a which it is possble If no date disaggregation is
possble, then a time disaggregation is performed in the Sae a the beginning
of the longest period on the criticd path (i.e, comprisng the largest number
of time geps of the Ho and Lee modd with 120 time geps). If there is more
than one posshility, then the time disaggregation is peformed as ealy as
possble in the tree.

We have dso used the criticd scenario to define the way in which new dates
after a date disaggregation are connected to the existing event tree. After a
date disaggregation is peformed in some Sae dong the criticad path, then
the sate disaggregation is basicdly pushed forward dong the path until dl
new dates are connected to the existing tree, or the end of the tree is reached.
This is illusrated in Figure 3 for the dae disaggregation in iteration 31 of
the iterdive disaggregation dgorithm. The criticd path in the event tree of
iteration 30 is indicated by the fa line In iteration 31, a date disaggregeation
is performed in the date on the path a time 30. The new acs in the event
tree of iteration 31 after the date disaggregation are indicated in bold, and
the ones that have disappeared from the event tree are drawn as dashed lines.

A time disaggregation in our implementation conssts of both the time and
the date disaggregation which were described in sections 5.1.2 and 5.1.1: firg
a time disaggregetion adds a new trading date and a single successor dHate,
and then a dae disaggregetion in the same date plits the single successor
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in two successor dates (this corresponds to the change from Stuation d to
dtuaion b in Figure 2). The new trading date is added in the middle between
two exiding trading dates in the tree

6.3 Computational Results

We have coded the iterdive disaggregation dgorithm for this problem on a
Sun 10 workgation with 32 MB of internd memory (RAM) in the C program-
ming language. The ALM modd has been re-optimized in each iterdtion as
a large liner program, usng the CPLEX cdlable library, where the optima
bass from the previous iteration is used to define a dating bass. The opti-
md bass columns from one iteration typicdly do not define a full bass for
the modd in the next iteration, but CPLEX dlows the specification of an in-
complete bass, and will complement it with additionad columns to construct
an initid bass

The utility function of equaion (424) with A = 09 is used to vadue a
portfolio surplus in the objective function, and the scenario probabilities are
equa to the risk-neutra probabilities. Assume a transaction cost rate of 1%.
The investor can borrow up to $10 in each dae a the riskless one-period
interest rate plus one basis point (0.01 percent), and he faces a 1% borrowing
soread for any amount in excess of that. Assume that the investor is only
dlowed to buy options.

Figure 4 depicts the development of the aggregated event tree in the course
of the dgorithm. Time disaggregations are peformed in iterations 17, 26, 30
and 38, and date disaggregaions in dl other iterations. In the event tree
of iteration 40, the interest rate a time 120 decresses from 8.384% at the
bottom of the tree to 7.617% at the top. The corresponding payoffs from the
replicated put option (the liabilities) range from $12.82 to $6.33.

The number of dates and scenarios in the event tree incresses from 18
and 23, respectively, in iteration O to 68 and 342 in iteration 40. The corre-
goonding ALM mode has 131 condraints, 485 variables, and 1007 nonzeros
in iteration 0 and 1572 congdraints, 5120 variables, and 11770 nonzercs in it-
eration 40. The complete run of 40 iterations only tekes a few minutes in red
time. The number of Implex pivots required to re-optimize the ALM modd
in each iteration varies between less than ten and a few hundred. We could
not continue the adgorithm for many more than 40 iterations before CPLEX
required more memory than was avalable on our computer to perform the
re-optimizations.

The optima vaue of the objective function in the course of the agorithm
is depicted in Fgure 5, together with the cost (including transaction costs)
of the optima portfolio a time 0. Both seem to converge in the course of the
dgorithm. The difference between the two lines represents the vadue of the
portfolio surplus a the termina date which is credited to the objective. The
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Iteration O:

—=

t=0 20 40 60 80 100 120

Iteration 10:

t=0 20 40 60 80 100 120
Iteration 20:

t=0 20 40 60 80 100 120

Iteration 30: e

t=0 20 40 60 80 100 120
Iteration 40:

=0 20 40 60 80 100 120

Figure 4. Changes in the event tree during the iteraive disaggregation ago-
rithm.
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average excess in a scenario at time 120 is $0.11 with a standard deviation
of $0.28. The sandard devidtion is reatively high because surplusses dmost
exclusvely occur in the upper pat of the event tree (corresponding to low
interest rates, and therefore low liabilities).

Figure 6 compares the vaue of the sengtivity messure with the actud
change in the optimum objective vdue of the ALM modd in each iteration.
Their corrdation is high in early iterations, but decresses later on. A sudy
of the sengtivity measure across different dates in each iteration shows that
the number of scenarios in a date (and correspondingly, its probability of
occurrence) is an important determinant of its vaue Our disaggregation
drategy thus exhibits a bias towards dates in the center of the event tree.
As the vaiadility in the number of scenarios per dae incresses with the
growth of the event tree, this bias becomes dronger in the course of the
dgorithm. This implies tha the criticd scenario in the date with the largest
vaue of the sendtivity measure plays an increesingly important role for the
actud disaggregation that is performed in the event tree

Typicdly, interest rates dong the criticd path decresse initidly, and in-
crease dter a cetan point in time. In the event tree, this corresponds to
paths that move upward in the event tree a firs, and downward later on.
That is the citicd pah is initidly favorable for the investor, but turns unfa
vorable after some time. This explans why a mgority of the disaggregations
are paformed in the upper haf of the event tree

The optimd portfolio & time O only involves short-term lending and invest-
ments in the put options 10 and 20 in every iteration. The sdected options are
the ones that are most out-of-theemoney (i.e, with the lowest dtrike price).
These options provide the investor with the largest relative difference in pay-
off in different gates of the world per option bought. Figure 7 depicts both
the optima amount of short-term lending and the optima number of options
bought in each iteration of the dgorithm. Although the option holdings ap-
pear somewhat volatile, it should be noted that the dollar amount invested
in the options as fraction of the portfolio cost remains farly condant a a
little bedlow 20%. Comparison with Figure 5 shows that the objective vaue is
insendtive to shifts in the option holdings, but that they result in a different
trade-off between the initid portfolio cost and the fina portfolio vaue

6.3.1 Variations in the Transaction Cost Rate

Table 2 shows the optima portfolio compostion at time 0 and the correspond-
ing objective vdue when the transaction cost rate ¢ varies between 0.1% and
2% (in eech case dfter 40 iterations in the iterative disaggregeation agorith-
m). With higher transaction cogts, more of the initid portfolio is invested
in short-term lending (which involves no transaction costs) and less in the
options. A consequence of this change in portfolio compodtion is tha the
ligbilities are maiched less precisdly when transaction codts incease.
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algorithm.

Portfolio Expected Portfolio  composition
c= | Objective | cog time O find surplus || put 10{ put 20 [lending
0.1% $8.74 $8.74 $0.00 0.872 1.713 $7.08
1.0% $8.81 $8.89 $0.11 0.450 | 1.718 $7.39
2.0% $8.85 $9.18 $0.40 0.118 | 1.711 $7.80

Table 22 Optimd solution for different transaction cost rates.

The transaction codt rate has a ggnificant impact on portfolio rebaancing
after time 0. If the transaction cost rate is 1.0%, additional investments
in (out-of-the-money) put options are made after every upward move in the
event tree. In contrast, when the transaction cost rate is 2.0%, investments in
new options are only made a the expiration date of options in the portfolio,
and then only in some of the daes of the world.

6.3.2 Variations in the Final-Portfolio Weight

Table 3 displays the optimization results when the find portfolio weight A
varies between 0.8 and 0.98, each time with a transaction cost rate of 1%.
When )\ increases, it becomes less important to maich the liabilities exactly.
As a conseguence, the transaction cost rate increases in relative importance,
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and less portfolio rebaancing takes place. This results in an increase in short-
teem lending in the initid portfolio, and a ggnificantly higher expected vdue

of the portfalio surplus.

P. Klaassen

Portfolio Expected Portfolio  compostion
)\ = [Objective | cost time O | find surplus || put 10 put 20[ Tending
0.80 $8.81 $8.81 $0.00 0.000 | 2.423 $6.94
0.90 $8.81 $8.89 $0.11 0.450 | 1.718 $7.39
0.98 $8.77 $10.25 $1.64 0.000 | o0.084 | $10.19

Table 3 Optima <olution for different vdues of the find-portfolio weight.

7 Conclusions

There ae a least two advantages of usng the iterative disaggregation ago-
rithm as described in this pgper for the solution of sochastic programming
models for asset/ligbility management problems. Fird, it is based on date
and time aggregation methods which can be used to condense a description
of the uncertainty in asset prices and returns to any dedred leve, while being
guaranteed that asset prices in this condensed description are arbitrage-free
and conggent with current market prices if this was true for the origind
description. We have discussed why it is both reasonable and important that
this description in sochastic programming models sdisfies these properties,
and indicated how financid asset-pricing models may be employed to con-
struct one.

Second, the dgorithm relieves one of the task of having to specify dl rd-
evant uncertainty in a dochagtic programming modd ex-ante. Instead, one
can dat to solve a formulation with a very coarse description of the uncer-
tainty in the extreme, one expected-vadue scenario  and iteraivey refine
this description based on information that one obtains from solutions in the
course of the dgorithm. Besdes, this sequence of solutions aso provides
useful indght in the sengtivity of the optimd solution to additiond uncer-
tanty in the modd. We have illudrated these advantages of the iterdtive
dissggregation dgorithm in the numerica example of section 6.

Our description and andyds of the iterative disaggregation dgorithm is
based on a (arbitrage-free) description of the uncertainty about future asset
prices and liabilities in the form of an event tree, but does not depend on
assumptions about the nature of the assats or the specific economic factors
which influence asset prices and ligbilities In practicd gpplications, however,
one usudly writes asst returns and ligbilities as a function of the deveop-
ment in a st of economic varigbles. One therefore firs needs a description
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of the uncertainty in the relevant economic variables before one is able to
derive a sendble description of the uncertainty in asset prices and lidbilities.
This process was illusrated in section 6 with interest rates as the only e
conomic variables and interest-rate derivative securities as the only posshble
invesments. In a red-world setting, more variables will need to be consdered
(eg., inflation) so that more asset classes can be included (e.g, inflation-linked
bonds and stocks). An important area of research is therefore how a prop-
e and practicd description of the joint uncertainty in al relevant economic
vaiables can be obtaned, and how a usable arbitragefree description of
the uncertainty in asset prices and liabilities can be derived from it. Car-
ino e d. [6, 7], Dert [9) and Mulvey and Thorlacius [23] describe different
gpproaches to this problem.

Severd other directions for future research remain. In the implementation
of the iterative disaggregation agorithm in section 6, we imposed severd re-
drictions on the disaggregation drategy, concerning for example the number
of successor dtates per state and the trade-off between state and time disag-
gregations. Furthermore, our disaggregation drategy exhibited a preference
for disaggregetions in daes with a high probability of occurrence, whereas in
some dStudtions one may be especidly interested in hedging againgt extreme
and unlikdy events. Experimentation with different disaggregation  drate-
gies, and application to a variety of problems, should provide more ingght in
the sengtivity of the results to the choice of disaggregetion Srategy.

In the example of section 6 we re-optimized the ALM modd in each it-
grdion as a lage liner program, usng optima bads information from the
previous iteration. Although this re-optimization was fast, we encountered
memory problems due to the sSze of the Stochestic program &fter a certan
number of iterations. This suggests the use of decompostion methods for
the reoptimizations A widdy used and genedly efficient decompostion
method for stochadtic programs is Benders decompostion (see Birge [2]).
However, direct application of this decompodtion method in the iterative
disaggregation agorithm is not very atractive as cuts which are generated in
one iterdtion of the dgorithm may not be feasble in the next iteration, due
to the fact that the ALM modd &fter a disaggregation is neither a relaxation
nor a redriction of the modd before the disaggregeation (see section 5). Thus,
Benders decompostion is not aie to exploit solution information from one
iteration to the next. Another decomposition method which does have the a
bility to exploit such informeation is the prir~ -!-dua decomposition method as
described in Klaassen [19]. A drawback of this method is, however, that each
subproblem must be solved to full optimdity, whereas prima-duad methods
are known to converge quite dowly to the optimum in generd.

The dexription of the iteraive disaggregatiion dgorithm in this paper is
based on the formulation of the generad ALM problem in section 2, which only
includes cash-balance, portfolio-baance and borrowing condraints. In  prac-
ticd agpplicaions, one often needs to include additiona condraints which
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reflect policy or regulatory redrictions. The andyss in sections 4.3 and 5
must then be extended to include these additional condgraints. For example,
to obtan a feadble solution after a disaggregation when additional condraints
ae present, one may need to introduce extra dack variables for these con-
draints and pendlize non-zero vaues of these variables in the objective func-
tion, smilar to what was done for the borrowing congraints in section 5.1.3.
Depending on the specific problem ingtance, one may aso be able to prove
that the dack varidbles are dways zero in optimum solutions if the pendties
are chosen large enough.

Another area of research is to condder more generd utility functions in
the formulation of the ALM modd to evauate the portfolio surplus in the
objective function. One can preserve linearity of the modd by approximating
a nonlinear utility function with a piecewise linear function. Alterndively, a
genadization of the iteraive disaggregation dgorithm to convex dochedic
programming modes must be developed.

The idea of iteraive disaggregation of the uncertainty in Stochastic pro-
grans may be an dtractive solution approach for application aeas other
than asst/liability management as wel. In other aress the redtriction of no-
arbitrage may not be gpplicable, which can provide more freedom in how to
perform (dis)aggregations. Furthermore, if the stochadticity in the stochadtic
program is resricted to the right-hand-sde vector, Benders decomposition
method can be used efficiently to perform the re-optimizations in the course
of the dgorithm, as the Benders cuts from one iteration remain vdid for the
next iteraion.
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