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1 Introduction

This paper describes a novel approach to solving multiperiod stochastic progam-
ming models for practical portfolio investment problems, called the iterative
disaggregation algorithm. A well-known complication of using stochastic pro-
gramming models in practice is that only a limited amount, of uncertainty
can be included, due to the numerical optimization methods which have to
be used. An important question is therefore how to choose such a limited
description of the uncertainty. On the one hand, the description should be
representative of the true uncertainty, while on the other hand one would like
to exclude uncertainty which does not affect optimal decisions. Furthermore,
one would like to know how sensitive the optimal solution is to the specific
choice made. The iterative disaggregation algorithm has been developed with
these issues in mind.

The most common method for obtaining an approximate description of the
true uncertainty is to randomly sample scenarios from an underlying distri-
bution. Hiller and Eckstein [14],  Zenios [26]  and Golub et al. [lo]  use sampled
interest-rate scenarios in their models for fixed-income portfolio optimization,
and exploit the structure of the resulting models by using parallel optimiza-
tion methods to obtain solutions. Carino  et al. [6,  71,  Dert [9]  and Mulvey
and Thorlacius [23] ( see also elsewhere in t,his volume) describe scenario gen-
erators for large sets of economic variables, and employ these in multiperiod
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2 P. Klaassen

models for integrated asset and liability management for pension funds and
insurance companies. Cariiio et al. and Dert combine sampling techniques
with event trees to model the uncertainty. Many other papers on stochastic
programming models for dynamic portfolio investment problems focus on the
development of efficient optimization methods, and do not explicitly address
the question of how to obtain an approximate description of the true un-
certainty. Examples are Bradley and Crane [4],  Kusy and Ziemba [22]  and
Mulvey and Vladimirou [24].

Important properties of any description of the uncertainty in future asset
prices and returns are that it is free of arbitrage opportunities and consis-
tent with current market prices. However, these properties often seem to
be neglected when stochastic programming models for portfolio investment
problems are formulated. As is shown in Klaassen [20],  a violation of these
properties may lead to optimal portfolios in stochastic programming models
which are severely biased towards spurious profit opportunities.

Central to the iterative disaggregation algorithm which we will present
are aggregation methods which can be applied to condense a description of
the asset-price uncertainty by combining states and time periods in such a
manner that the condensed description does not contain arbitrage oppor-
tunities or inconsistencies with current market prices if this is true for the
original description. Given a detailed description of the uncertainty which is
arbitrage-free and consistent with market prices, these aggregation methods
can thus be used to arrive at a concise but still arbitrage-free description of
the uncertainty on which a stochastic programming model can be based.

The iterative disaggregation algorithm starts with the solution to a small,
and therefore relatively easy to solve, stochastic programming model with
such an aggregated but arbitrage-free description of the asset-price uncer-
tainty. In each iteration of the algorithm, the description of the uncertainty
in the model is refined by reversing one or more of the aggregations that
were applied to arrive at the initial model (disaggregations),  and the model
re-optimized. To choose which aggregations to reverse in an iteration, an es-
timate is made of what additional uncertainty will have the largest impact on
the optimal solution, where use is made of optimal solutions found in previous
iterations.

In this way, uncertainty is only added to the model in places where it seems
to be relevant for the optimal solution. Moreover! the sequence of optimal
solutions provides direct insight into the sensitivity of the optimal solution
to increases in the level of uncertainty. These are clear advantages over the
usual way of solving a stochastic programming model only once, and with a
description of the uncertainty that one has to decide on ex-ante.

We will describe the type of multiperiod asset/liability management prob-
lems which we will be considering in section 2, and formulate it as a multistage
stochastic program. In section 3 we will discuss why it is both reasonable
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and important to require that the description of the asset-price uncertainty
in this formulation is arbitrage-free, and provide a useful characterization of
arbitrage-free asset prices. The aggregation methods are described in sec-
tion 4, as well as their effect on the stochastic programming formulation.
Section 5 discusses the steps in the iterative disaggregation algorithm in more
detail, and in section 6 we present the results of the application of the algo-
rithm to a small portfolio insurance problem. Section 7 contains conclusions.

2 Problem Formulation

In this section we describe a multiperiod asset/liability management (ALM)
problem, and formulate it as a multistage stochastic programming model.

2.1 Multiperiod Asset/Liability Management

We consider an investor who wants to determine a portfolio investment s-
trategy over time to meet a sequence of liability payments in the future. We
assume that the investor can only rebalance his portfolio at a finite number
of points in time (trading dates) within a planning horizon of fixed length.
Security prices at the initial date are known, but prices and returns at future
trading dates are unknown. We approximate this uncertainty by assuming
that at each future trading date only one of a finite number of states of the
world can occur. We can then depict the uncertainty in future security prices
and returns in the form of an event tree.

As an example, Figure 1 shows a recombining binomial event tree with
six periods. The nodes in the tree represent states of the world, and the
arcs transitions with positive probability. It is a binomial tree because two
states can occur at the end of a period for each given state at the beginning
of a period. It is a recombining tree (also called a lattice) because states in
the inner part of the tree can be visited by multiple paths. This is often
assumed to limit the number of different states at each trading date.’ As the
numerical example in section 6 employs a recombining binomial event tree,
we will use it for illustrative purposes throughout this chapter. However, our
analysis can be extended directly to trees which are not binomial and/or do
not recombine.

The investor faces a trade-off between the initial cost of the trading strategy
which must enable him to meet his liabilities, and the value of the portfolio
which is left at the model horizon (surplzls).  We assume that he can borrow
money at intermediate trading dates, but require that the surplus must be

lit is not possible to use a recombining event tree if securities with path-dependent
payoffs (and thus prices) such as mortgage-backed securities are included in the analysis,
as each state at a trading date can in that case only correspond to one path in the tree up
to that date.
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Figure 1: A recombining binomial event tree with six periods.

nonnegative in all cases. In executing a trading strategy, we furthermore
assume that the investor has to pay transaction costs, is not allowed to short
sell assets, and faces constraints on the amount that he can borrow as well
as a spread between the interest rate for borrowing and (risk-free) lending.

The investor’s optimal portfolio may be composed differently in different
states at a given trading date. Moreover, in the presence of transaction costs,
the optimal portfolio composition in a state at a future trading date does in
general not only depend on the state itself, but also on the composition of
the portfolio that is carried over from the previous period. That is, optimal
trading strategies in the event tree are generally path-dependent. However, the
trading strategies are not allowed to depend on knowledge about the actual
course of events in the future. Thus, when two paths in the event tree share
the same history up to a certain trading date t, the optimal trading strategy
up to time t must be identical on both paths. The trading strategies are then
said to be non-anticipative.

2.2 Notation

The trading dates are denoted by the index t. The initial date is t = 0, the
terminal date t = T, and intermediate trading dates are t = 1, . . . , T - 1.
States of the world are referred to by the index n. Given a state n a,t  trading
date t < T, each state which can occur with positive probability at time t + 1
is called a successor of state n, and will as such be referred to by the index n+.
For any state n at trading date t > 0, there is at least one state at time t - 1
which has state n as its successor. Such a state is called a predecessor of
state n, and will be referred to by the index n-.  In the recombining binomial
tree of Figure 1, each state at time t < T has two successors, every state in the
interior of the tree has two predecessors, while each state on the boundary has
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one predecessor. The (subjective) conditional probability of a transition from
state n at time t to its successor state n+  at time t + 1 is denoted by r$$~,
and the corresponding probability measure on the event tree by 7.

All data in the problem are assumed to be functions of the nodes in the
event tree. LF  denotes the liability which is due at the end of period t if
state n occurs, D$  the dividend payment on security i at the end of period t
if state n occurs, and Sz$  its ex-dividend price in state n at time t. Let I be
the total number of securities that is considered by the investor.

The riskless  one-period interest rate (continuously compounded and an-
nualized) in state n at time t is T:, and the corresponding discount factor
Pp G exp(-rrn), where n is the length of a time period in the event tree.
PF can be interpreted as the price in state n at time t of a riskless  one-period
zero-coupon bond that pays one dollar at time t + 1. The interest-rate spread
(continuously compounded and annualized) between the investor’s one-period
borrowing rate and rr is assumed to be constant through time and denoted
by K.  The upper bound on one-period borrowing for the investor in state n
at time t < T is written as 2:.

A scenario s at time t is a path in the event tree between time 0 and
time t, and the set of all possible scenarios at time t is denoted by St. In the
recombining binomial tree of Figure 1, the set St  consists of 2t scenarios. The
unconditional probability of scenario s at time t as implied by the probability
measure q is denoted by r$.

A scenario s E St visits one node in the event tree at each trading date
between time 0 and time t, and such a node will be referred to by the in-
dex n(s). For each scenario s at time t there is exactly one scenario at each
time r < t which follows the same path in the event tree between time 0
and time r. This scenario is called the predecessor at time 7 of scenario s at
time t, and will as such be denoted by s-. Furthermore, each scenario s at
time t is the predecessor of one or more scenarios at time t + 1, which are
called successors  of scenario s. They will be referred to by the index ss.

Let z~,O  denote the current holding of security i in the portfolio of the
investor (a known number). The variables x+$  and ZB~S,~,~  denote the units
of security i that are bought and sold, respectively, in scenario s at time t,
and && the holding of security i in scenario s at time t after  portfolio re-
balancing (i.e., the portfolio holdings during period t + 1). The holding in
the riskless  one-period security during period t + 1 if scenario s E St occurs
is denoted by the separate variable y,“,  while y&  denotes the portfolio surplus
in scenario s E ST.  .z: represents the amount which has to be repaid by the
investor at time t + 1 due to borrowing in scenario s at time t.

Transaction costs are assumed to be a fraction c of the dollar value traded
and apply to both purchases and sales of securities, but not to investment in
the risk-free security or borrowing.
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2.3 Stochastic Programming Formulation

We capture the investor’s trade-off between the initial investment and the
value of the portfolio surplus in the objective function: the initial portfolio
investment is minimized, but any positive final portfolio value is credited
to the objective using a concave utility function U(e).  To be able to make a
sensible trade-off, the utility of a surplus must be measured in units of current
investment. We assume that the utility function satisfies the expected utility
property (see Varian [25,  chapter 111).

The asset/liability management problem can now be formulated as the
following multistage stochastic program (each stage corresponds to a time
period) :

minimize

(1 + c>  6 Si,0di,0  -  (1 -  c>  $  S,O~,O  + POYO  - emKApOzO  - ,gT v$~(Y$)
i=l

subject to
-z&,0 + di,O  - &,o  = -zi,o Vi=&...,1  (2 .1 )

dL;,;-, - mSq,t+L7bnbq,t-nh;,t=0  Vii-1  )..)  I,sES~,t=l)..)  T - l (2.2)

Ii D~~%fo, + y& - z,sI1  + (1 - c) k s~t’s)LE~,t  -  (1 + c) 6 S~t(%~,$
i=l i=l i=l

-P,“‘“‘yi  + e-KAPp(s)zi  = Lo V  s E  &t  = 1,. . . ,T - 1 (2.3)

5 (DE?’  + S$‘)  dz&, + y&l1  - &I - y+ = $s) V  s E  ST (2.4)
i=l

JS:,t 7 qt , qt 2 0 vi= I , . . . , I, s E St, t = 0,. . . ,T - 1 (2.5)

Yt”  2 0 V  s E  St,  t = 0,. . . ,T (2.6)

0 5  zt” 5  p VSE&,  t=O  ,..., T - l (2.7)

The first four terms in the objective function represent the net cost of
additional investments at time 0. These additional investments consist of
asset purchases (including transaction costs) and investment in the riskless
one-period security, while revenues from the sale of assets (net of transaction
costs) and borrowing are subtracted. The last term in the objective is the
expected utility of a final portfolio surplus.

There are three types of constraints in the model: portfolio-balance con-
straints, cash-balance constraints and borrowing constraints. The portfolio-
balance constraints link portfolio holdings between successive periods (i.e.,
before and after rebalancing) for each scenario and each asset. The portfolio-
balance constraints are given by (2.1) for all assets at time 0, and by (2.2)
for all assets in each scenario after time 0.
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The cash-balance constraints make sure that sufficient cash is generated
to meet the liability payment in each scenario at each trading date. For
each scenario at time t < T, this constraint is given by (2.3). At the end
of a period, the investor receives dividend payments on his asset holdings
and the return on his investment in the one-period riskless  security, but has
to repay the amount borrowed in the previous period plus interest. This
is what the first three terms on the left-hand side of (2.3) represent. The
next two terms reflect rebalancing of the portfolio: revenues are generated by
selling assets, and money can be invested by buying assets, where both are
adjusted for transaction costs. The final two terms on the left-hand side are
the investment in the riskless  one-period security and the amount borrowed,
respectively, during the next period.

The cash-balance constraints (2.4) d efine the portfolio surplus in each s-
cenario at the terminal date T. The first three terms on the left-hand side
determine the final portfolio value before meeting the liability: the portfolio
holdings are converted at the appropriate market prices, the return on the
investment in the riskless  one-period security is added, and the amount due
because of borrowing is subtracted. The difference between this portfolio val-
ue and the liability payment in a scenario s E ST  is the portfolio surplus y$.

The nonnegativity restrictions on JJLf,t  and y&  preclude short sales of assets
and a negative surplus, respectively, while equation (2.7) limits the amounts
which can be borrowed.

3 Arbitrage-free Asset Prices

The formulation of the ALM problem as a stochastic program was based on
a description of the uncertainty about future asset prices and returns in the
form of an event tree. In this section we discuss why it is both reasonable
and important that asset prices in such a description are arbitrage-free, and
indicate how it may be constructed using financial asset-pricing models.

3.1 Arbitrage Opportunities and Arbitrage-Free Asset
Prices

We speak of an arbitrage opportunity if it is possible to construct a self-
financing trading strategy (a trading strategy is self-financing if no invest-
ments are required after time 0) with payoffs that are nonnegative everywhere
and strictly positive in at least one state in the event tree, and for which the
initial investment is nonpositive. With such a trading strategy it is thus pos-
sible to create something from nothing, and many investors will try to take
advantage of that. In fact, there is a large group of investors in today’s fi-
nancial markets, called arbitrageurs, whose main objective is to look for and
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exploit arbitrage opportunities. This will influence the prices of the securities
involved and lead to the elimination of the arbitrage opportunity. When no
arbitrage opportunities exist, asset prices are said to be arbitruge-free.2

Although arbitrage opportunities may occasionally exist in reality, they are
usually short-lived due to the presence of arbitrageurs. Moreover, even if one
is able to detect and exploit arbitrage opportunities today, it is preposterous
to assume that anyone would be able to foresee their occurrence at future
points in time. As the primary objective in asset/liability management is to
determine a portfolio investment strategy which forms a robust hedge against
the future uncertainty, it furthermore seems imprudent to base such a strategy
on the presence of arbitrage opportunities.

In the financial literature, arbitrage opportunities are usually defined for
a frictionless world (i.e., a world without transaction costs and taxes, and
in which securities are infinitely divisible, interest rates for borrowing and
lending are the same, and short sales of assets with full use of proceeds are
allowed). In reality, an investor may not be able to exploit such arbitrage
opportunities directly because of market imperfections and trading restric-
tions. Nonetheless, Klaassen [20]  illustrates that their presence in a portfolio
optimization model with realistic market imperfections and trading restric-
tions may still significantly bias its optimal solution in unrealistic ways. We
therefore require in the sequel that security prices in our ALM model are such
that they do not admit arbitrage opportunities in a world without frictions.

Harrison and Kreps [l l] have derived an important characterization of
arbitrage-free security prices in an event tree under the assumption of a fric-
tionless world, which is contained in the following theorem.

Theorem 1 (Harrison and Kreps) Security prices in un event tree are
arbitrage-free if and only if there exists a positive probability measure on the
event tree such that in each given state the expected one-period return with
respect to this probability measure is identical for all assets.

The theorem states that there are no arbitrage opportunities in the event tree
if and only if there exists a probability measure 7r  such that

n+ n+=

si’lt S” (3.8)
JJ

for all assets i, j and in every state n at each trading date t = 0,. . . , T - 1
in the event tree. The summations in (3.8) are over all successor states n+ of
state 12.

2A concept related to arbitrage opportunities is that of “locks” in racetrack betting; see
Hausch  and Ziemba [12].
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Because we have assumed that a riskless  one-period security exists in every
state in the event tree, this characterization can be restated as

for all assets i in every state n at each trading date t = 0, . . . , T - 1. This
equation states that the price of each security i in state n at time t can, under
the risk-neutral probability measure r, be written as the expected value of
its payoffs at time t + 1, discounted by the riskless  interest rate.

Because all assets have the same one-period expected return under the
probability measure 7r,  this measure is often called risk neutral. We empha-
size that this risk-neutral probability measure is only a theoretical construct
(namely, a necessary and sufficient condition for the absence of arbitrage op-
portunities), and that it should not be viewed as representing either actual
probabilities or subjective probability beliefs of an investor. In other words,
whether asset prices in an event tree are arbitrage-free is independent of the
probabilities assigned to the states in the tree. Thus, an investor may very
well believe that the expected return on one asset is higher than that on other
assets, which will be reflected by the fact that he assigns probabilities to states
(and therefore scenarios) in the tree which differ from risk-neutral probabili-
ties. However, as long as a risk-neutral probability measure can be found he
will not able to construct a portfolio which yields a riskless  return in excess of
the risk-free rate. For more background on the theory of arbitrage-free asset
prices, see Huang and Litzenberger [16]  and Hull [17].

3.2 Using Financial Asset-Pricing Models

The presence of arbitrage opportunities in portfolio optimization models may
stem from several sources. One possible source is that the description of the
uncertainty in the model is inconsistent with current market prices, which
are usually taken as the prices at which the investor can trade at the initial
date. As current market prices of securities are based on expectations of
market participants about future prices and cashflows, these expectations
should be properly reflected in the event tree which is used as description of
the uncertainty in a portfolio optimization model. Another possible source
is that prices in the event tree itself are not arbitrage-free. This will be the
case, for example, if randomly sampled scenarios from a larger (and possibly
arbitrage-free) model are used to construct the event tree.

To construct an event tree in which security prices are arbitrage-free and
consistent with market prices, a natural starting point is one of the arbitrage-
free asset-pricing models in discrete time which have been proposed in the
financial literature. These models are primarily used to calculate prices of
derivative securities, and they do so by assuming that arbitrage opportunities
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do not exist in financial markets. Examples are the binomial stock-price
model of Cox, Ross and Rubinstein [8]  and the term-structure models of
Black, Derman and Toy [3], B rennan and Schwartz [5],  Heath, Jarrow  and
Morton [13],  Ho and Lee [15]  and Hull and White [18].

These asset-pricing models, or discretized versions thereof, describe the un-
certainty in the underlying variable(s) in the form of a discrete-time, discrete-
state event tree. The arbitrage-free value of a derivative security is computed
in a recursive manner, starting from the maturity date on which the cash
flows (as a function of the value(s) of the underlying variable(s)) are known,
and proceeding backwards through time in the tree until the arbitrage-free
value at time 0 is found (this recursion employs relation (3.9)). In this way,
the security’s arbitrage-free value is calculated for every state in the event
tree at or before its maturity date.

Although prices of securities in the event tree are therefore arbitrage-free
when calculated in this way, there is no guarantee that their arbitrage-free
value at time 0 equal current market prices. To accomplish this (at least ap-
proximately), one typically selects a set of benchmark securities, and chooses
values for the parameters in the model (representing, for example, the volatil-
ity of the underlying variable(s)) so that the calculated model prices match
the market prices as closely as possible. These parameter values can vary sig-
nificantly with the number of time steps in the event tree, but they converge
to certain limit values when the number of time steps increases.

However, the number of time steps which is necessary to obtain satisfac-
tory convergence is usually much larger than the 10 or at most 20 stages
(corresponding to time periods of possibly different lengths) which can be in-
cluded in a stochastic program3. If the number of time steps in the event tree
would be restricted to such a small number, the obtained parameter values
are typically very sensitive to an increase or decrease in the number of time
steps. This implies that the stochastic nature of the underlying variable(s)
will not be modelled  correctly. Furthermore, the calculated model price of a
security which is not included in the benchmark set may vary significantly as
a function of the chosen number of steps.

Thus, an event tree that is derived from a financial asset,pricing  model in
which security prices are arbitrage-free and consistent with current market
pices, and which captures the stochastic nature of the underlying uncertainties
in a satisfactory way, is typically much too large to include fully in a stochastic
program. In the next section we describe aggregation methods which enable a
reduction in the size of the event tree without sacrificing its desired properties.

3With  10 securities and a binomial event tree with 10 time periods, the ALM model
would already have 33,740 variables and 12,266 constraints, and these numbers would
approximately double with each additional time period.
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4 Aggregation of the Uncertainty

We will combine both states and time periods in a large event tree to reduce its
size, and refer to this as state aggregation and time aggregation, respectively.
To illustrate the mechanics of state and time aggregation, we consider the
two-period binomial tree of Figure 2a. The vectors at each node in the tree
represent the price of a one-period discount bond with a face value of one
dollar (PF), the dividend payment on security i (O$)  and the ex-dividend
price of security i (St&. We assume that the prices in the tree are arbitrage-
free so that a risk-neutral probability measure O T T  exists on the tree. Let $’
denote the conditional risk-neutral probability of an upward transition in the
tree from state n at time t. These conditional probabilities are written next
to the arcs in Figure 2a. We will reduce this two-period binomial tree through
the application of state and time aggregation to a binomial “tree” with only
one period. See Klaassen [21]  for a complete discussion of the aggregation
methods.

4.1 State Aggregation

We will say that state aggregation is performed in state n at time t if all
successor states of state n in the event tree are combined into one state, the
aggregate successor. Obviously, the conditional probability of this aggregate
successor state is one. Figure 2b shows the resulting event tree when state
aggregation is performed in both states at time 1 in the event tree of Figure 2a.
The dividends and ex-dividend prices in the aggregate successor states are
defined as follows (n = 0,l)  :

ot2 E 7r;qy  +  (1  - 7r;)D;, (4.10)
szy2  E 7r;Iq  +  (1  - 7q)SZ$ (4.11)

P2”  E 7qP,“-t1  +  ( 1  - 7rY)Pz”. (4.12)

Using the no-arbitrage relation (3.9), it follows that

ST1 = Pl” [7r;  (L$l + s;:‘)  + (1 - 7q) (q2  + s;J]

ZZZ Pl”  (i-q, -t  qz) (4.13)

which shows that the prices in the aggregated tree of Figure 2b are arbitrage-
free.

To obtain Figure 2c  from 2b,  we perform state aggregation at t = 0. Define:

DE1 = 7r&, + (1 - “(J)@, (4.14)

s2ql  =  7r&J  + ( 1  - 7r&S,q, (4.15)
Pf cz  7r&  +  ( 1  - 7ro)Pf (4.16)

57; E (TOP:)  /q. (4.17)
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(a) The original tree:

t=o t=1

(b) After state aggregation in the nodes at t = 1:

t=o

e@,2  7 SF,,2 1
t=2

(c) After state aggregation at t = 0:

(b) After time aggregation at t = 0:

PO-+2Si,o  - Di,o+2

t=o
Figure 2: Illustration of state and time aggregation.
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Using again the no-arbitrage relation (3.9) yields

S&O = PO (@, + S&) (4.18)

q1  = ijl” [R-y  (q,  + g2) ) + (1 - ?i:>  (D$  + q)]  . (4.19)

This shows that prices in the aggregated tree of Figure 2c  are arbitrage-free,
with 7iy acting as risk-neutral probability.

Although state aggregations thus preserve arbitrage-free prices in an even-
t tree, we note that certain relationships between securities with nonlinear
payoffs in the original event tree may be violated in an aggregated event tree.
For example, suppose the event tree models the evolution of a stock price,
and consider a call option on the stock. At its maturity date the option pays
the difference between the stock price and its exercise price, if positive, and
nothing otherwise. Although this relation will hold exactly in the original
event tree, it may be violated in some nodes in an aggregated tree due to the
nonlinearity of the option payoff as function of the stock price. Such devia-
tions are unavoidable to maintain arbitrage-free prices for general assets in
an aggregated event tree as well as consistency between each asset’s payoffs
in the tree and its market price.

4.2 Time Aggregation

Time aggregation involves the merging of successive time steps in the event
tree. Specifically, time aggregation is performed in state n at time t in an
event tree if we replace the transitions from this state to its successors by
direct transitions to the successors of its successors. Figure 2d depicts the
change in event tree when time aggregation is performed at time 0 in the
event tree of Figure 2c.

Time aggregation in Figure 2d eliminates trading date t = 1 from the
event tree. This affects the definition of a riskless  one-period security in the
tree as well as the dividend payments. Obviously, dividends which are paid
on the trading date that is eliminated cannot be ignored. We will take them
into account by assuming that their arbitrage-free value is prepaid at the last
trading date in the event tree before the true payment date, i.e., ,at t = 0.
The arbitrage-free value (at time 0) of all dividends that are paid on security
i between time 0 and time 2, not including the dividends at time 0 and time 2
itself, is denoted by Di,+,z. Furthermore, the riskless  one-period security at
time 0 in the event tree is redefined as a security which pays one dollar at
time 2, and nothing at other times. Its price is denoted as Po+z.

Define

Di,o+2 G Po”z”,l

PO+2 G POP,”
-0

To-+2 = Tl

(4.20)

(4.21)
(4.22)
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and combine this with equations (4.18) and (4.19) to get

Si,o = Q,o+2  + Pot2  [~0+2  (D:,,  + $,2)  + (1  - ~04 (@,2 + s,;2)] . (4.23)

This relation shows that the price of security i at time 0 can be written
as the sum of the present (arbitrage-free) value of its dividend at time 1
and the expected present value of dividend plus ex-dividend price at time 2.
As the discounting is performed using the riskless  interest rate (PO,,),  the
probability that is used to take the expected value (‘1~0~2)  is a risk-neutral
probability. Because 7r0,2  is independent of i, the prices in the aggregated
event tree of Figure 2d are arbitrage-free.

4.3 The Aggregated ALM model

In the formulation of the ALM model we assumed that in between trading
dates no dividends were paid on securities and no liabilities were due. Clear-
ly, we can not assume this any longer if we perform time aggregations in the
underlying event tree. We will therefore indicate the changes which have to
be made to the formulation in order to take prepayment of the arbitrage-
free value of intermediate dividends as well as liabilities into account. This
adjusted formulation, which results after performing state and time aggrega-
tions in the event tree which underlies the original ALM model, will be called
the aggregated ALM model. For its exact mathematical formulation and the
precise definition of all aggregated quantities, see Klaassen [al].

Let the trading dates in the aggregated event tree be to,  ti, . . . , tT, with
to = 0 and tT = T. The period between two successive trading dates in
the aggregated tree thus comprises one or more periods in the original tree.
In the aggregated ALM model, an extra term is subtracted from the objec-
tive function which represents the prepayment of the arbitrage-free value of
dividends which are in reality paid between the trading dates to and tl, not
including the dividends on these trading dates itself. These dividends are
prepaid over the portfolio holdings of the investor between dates to and ti,
i.e., after  rebalancing the initial portfolio at time to.  Furthermore, an extra
term is added to the objective function, which represents the arbitrage-free
value of the liability payments which are due at dates in between times to

and tl.

The cash-balance constraint for each scenario at times tj  E {tl,  t2,  . . . , tT-l}
is modified as follows. To the left-hand side of the constraint an extra ter-
m is added which represents the prepayment of the arbitrage-free value of
dividends which are in reality paid between the trading dates tj  and tj+l,
conditional on the specific scenario at time tj.  This arbitrage-free value does
not include the dividends on the trading dates tj  and $+I.  These intermedi-
ate dividends are prepaid over the portfolio holdings of the investor between
dates tj  and tj+l in the specific scenario under consideration, i.e., after rebal-
ancing at time tj.  To the liability on the right-hand side of the cash-balance
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constraint is added the arbitrage-free value of the liability payments which
are due at dates in between times tj  and tj+l, conditional on the scenario at
time tj.

An important property of the aggregated ALM model is that it is neither a
restriction nor a relaxation of the original ALM model. This property follows
from the fact that the constraint set of the ALM model after an aggregation
can be obtained from the constraint set of the model before the aggregation
by performing both elementary row and column operations. We will list the
sequence of these operations for both state and time aggregation below. A
proof of these results can be found in Klaassen [19].

The fact that the aggregated ALM model is neither a restriction nor a
relaxation of the original model indicates that the state and time aggregation
methods do not discard part of the uncertainty in the original event tree, but
instead condense its description. This contrasts with stochastic programming
models in which only a (sampled) subset of scenarios from a large event tree
is used as description of the uncertainty.

4.3.1 State Aggregation as Row and Column Operations in the
ALM Model

We consider state aggregation in state n at trading date tj  in the event tree.
This state aggregation corresponds to the following row and column opera-
tions in the ALM model for each scenario s at trading date tj  which visits
state 72:

l For each successor scenario s+  at trading date tj+l, multiply its cash-
balance constraint, the portfolio-balance constraint of each asset, and
the borrowing constraint with the conditional risk-neutral probabili-

n(s)Ms+)ty Ttjltj+l  * Subsequently, sum the cash-balance constraints of all
successor scenarios s+  at time tj+l, and do the same for the borrowing
constraints and each of the portfolio-balance constraints.

l Add the columns which correspond to the portfolio sales variables x$‘~
over all successor scenarios s+  at trading date tj+l  (that is, sum the
column coefficients of c$~?+~ over all ss in each constraint). Repeat this
for the variables &$:, , the variables &iJ++l,  the variables ~z~?~,  and the
variables z$:~.

When t.J+i = tT only those row and column aggregations are performed which
are applicable, as there are no portfolio-balance and borrowing constraints in
the model for scenarios at time tT, nor are there variables x$,,  ti& ““1&
and .z&,.

Aggregation of the columns which correspond to variables VJ$  when tj+l =
tT affects the evaluation of the surplus in the objective function. If the proba-
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bilities @ in the objective function are equal to the risk-neutral probabilities,
and if the utility function U has the form

(4.24)

with X  5  1 a scalar, then this aggregation is uniquely defined. In this case the
expected utility of a surplus is equal to its expected present value, weighted
by the scalar X,  with discounting taking place against the one-period interest
rates along the scenario path, and the expectation being calculated under the
risk-neutral probability measure. This is also the case that will be considered
in the numerical example of section 6, and we will therefore focus our discus-
sion on this case. In other cases, however, one must decide how to define the
utility of an aggregated surplus in the objective function (see Klaassen [21]).

If the underlying event tree is recombining, then some scenarios which
are distinguishable before the state aggregation may become duplicates of
each other after the aggregation. This will be the case for scenarios which
visit node n at time tj, and follow the same path through the tree before
the aggregation except for the node at trading date tj+i. Obviously, one can
combine such duplicate scenarios in the ALM model after the aggregation,
and sum their respective probabilities. (This is equivalent to multiplying the
duplicated constraints of these scenarios by their relative risk-neutral proba-
bilities, summing the corresponding constraints, and adding the columns of
corresponding duplicated variables.)

4.3.2 Time Aggregation as Row and Column Operations in the
ALM Model

Consider now time aggregation in state n at trading date tj. We assume
that this state has only one successor state at the next trading date tj+l

(compare with Figures 2c  and d). Otherwise, we can always first perform a
state aggregation in this state to obtain this situation. The following row and
column operations are performed in the ALM model for each scenario s in
state n at trading date tj:

l The time aggregation implies that no securities can be bought and sold
in the successor scenario sf at time tj+l,
constraints .TS$+~

and thus we essentially add the
= 0, ti$+, = 0 and “J”$+l = &$, for all assets i.

Instead of adding them, however, we use these constraints to remove
the variables B$+~,  nt)~,~j+l  and @lj+, from the ALM model. This
renders the portfolio-balance constraints for the successor scenario S+  at
time tj+l vacuous, and they are therefore removed from the formulation.

l Multiply the cash-balance constraint of the successor scenario s+  at
trading date tj+l by the one-period discount bond price PC++  in
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state n at time tj. If tj  = 0, add this constraint to the objective
function. Otherwise, add it to the cash-balance constraint of scenario s
at time tj.

l If the borrowing-lending spread K,  is positive, multiply the column that
corresponds to the borrowing variable ,z&  by (e-n(tj+2-t3+l)~~j~~+2)
and add it to the column that corresponds to the borrowing vari-
able ,~t”:+~.

5 The Iterative Disaggregation Algorithm

We now describe the iterative disaggregation algorithm in more detail. As-
sume that at the start of the algorithm one has an event tree as description of
the uncertainty in asset prices and returns which is arbitrage-free and consis-
tent with current market prices, for example by using arbitrage-free financial
asset-pricing models. Such an event tree will most likely be much too large
to include in a stochastic programming model for ALM problems. The ag-
gregation methods from the previous section can then be used to reduce the
size of the event tree without introducing arbitrage opportunities or losing
consistency with current market prices. In this manner one can obtain a small
aggregated ALM model which can be solved relatively easily.

In the extreme, one could continue to perform state and time aggregations
in the event tree until nothing more than one “expected-value” scenario re-
mains. Obviously, this is not what one wants. In contrast, it is important
to include in the ALM model as much of the relevant uncertainty as possible
so that its optimal solution is a good approximation to the optimal solution
that would result if one were able to incorporate all uncertainty in the model.
By starting with a relatively coarse approximation of the true uncertainty
in the ALM model, and iteratively refining this approximation based on the
information one gathers from the sequence of solutions, this is exactly what
the iterative disaggregation algorithm aims to accomplish.

Each iteration of the iterative disaggregation algorithm consists of the
following steps:

1. Disaggregate in the aggregated event tree; i.e., reverse one or more
aggregations.

2. Find a feasible solution to the disaggregated ALM model, based on
the optimal solution from the previous iteration, and re-optimize the
disaggregated model.

We will discuss both steps in the remainder of this section.
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5.1 Construction of a Feasible Solution after a Disag-
gregat  ion

From the analysis in section 4 it should be clear that the ALM model af-
ter a disaggregation is performed in the underlying event tree will contain
both more variables and more constraints than the ALM model before the
disaggregation. Hence, the ALM model after a disaggregation is not just a
relaxation of the model before the disaggregation, which implies that the op-
timal solution to the ALM model before the disaggregation may not define a
feasible solution in the ALM model after the disaggregation. Here we will be
concerned with the question how to construct a feasible solution for the ALM
model after a disaggregation, given an optimal solution to the ALM model
before the disaggregation. This analysis will be useful when we consider the
question in the next subsection how to decide where to disaggregate in the
event tree.

Our starting point for the derivation of a feasible solution is the jixed-
weight solution that is defined by Zipkin  [27,  281  in the context of row and
column (dis)aggregations in linear programs, and extended by Birge [l] to
stochastic linear programs. This fixed-weight solution is defined for both the
primal variables (i.e., corresponding to sales and purchases of assets, port-
folio holdings, borrowing and lending) and dual variables (shadow prices on
the cash-balance, portfolio-balance and borrowing constraints), and relates
directly to the column, respectively row, operations of the corresponding ag-
gregation in the ALM model. We will summarize the results for state and
time disaggregation in turn. More details can be found in Klaassen [19].

5.1.1 Fixed-Weight State Disaggregation

We consider the reversal of the state aggregation which was described in sec-
tion 4.3.1. The fixed-weight solution after the state disaggregation in state n
at trading date tj  is defined as follows for each scenario s in this state:

l Primal variables:

The optimal values for the single successor scenario at trading date tj+i
before the disaggregation are taken as initial values for each of the
successor scenarios at trading date tj+l after the disaggregation. If the
original event tree was not recombining, then no scenarios and thus
variables are added at other places in the event tree.

If the original event tree did recombine, however, single scenarios at
trading dates beyond tj+l in the event tree before the disaggregation
may have to be splitted  into multiple scenarios after the disaggregation
(see the discussion in section 4.3.1). Initial values for the variables of
these new scenarios are set equal to the optimal values of the variables
of the single scenario from which they originate.
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l Dual variables:

Initial values for the shadow prices of the constraints for each of the
successor scenarios at trading date tj+i after the disaggregation are set
equal to the optimal shadow prices for the single successor before the
disaggregation, multiplied by the conditional risk-neutral probability of
the corresponding state. When the original event tree was a recombining
one, and the state disaggregation leads to the splitting of scenarios at
later trading dates in the tree, the shadow prices of the constraints for
these new scenarios are initialized at the optimal shadow prices of the
constraints for the scenario from which they originate, multiplied by
their relative risk-neutral probabilities.

The fixed-weight solution for the primal variables will satisfy all portfolio-
balance constraints, but it may violate the cash-balance and borrowing con-
straints in some scenarios. However, the violated constraints are satisfied on
average. Moreover, if the upper bound on borrowing is state-independent,
the borrowing constraints will be satisfied by the fixed-weight primal solution
in all scenarios.

5.1.2 Fixed-Weight Time Disaggregation

We consider the reversal of the time aggregation in state n at trading date tj

which was described in section 4.3.2. For each scenario s in this state, the
fixed-weight solution after the time disaggregation is defined as follows:

l Primal variables:

The variables Jf”$+,  , &,  and .z&~ for the new successor scenario s+  at
trading date tj+l are initialized at the optimal values of these variables
for scenario s at trading date tj.  Furthermore, the variables ZZ$+~  and

dP,lJ  +1 are initialized at zero. The optimal values of the lending and
borrowing variables for scenario s at trading date tj are modified as
follows:

zt”, = (
e -n(tj+l-tj)pn

tj+tj+l >
";f,

where ljs  and .Zi are the optimal values of the one-period lending and
borrowing variables before the disaggregation.

l Dual variables:

Initial values for the shadow prices of the cash-balance and portfolio-
balance constraints for the new successor scenario at trading date tj+l

are set equal to the optimal shadow prices for scenario s at trad-
ing date tj  before the disaggregation, multiplied by the discount bond
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price P&tj+l. For scenario s at trading date tj itself, the initial shadow
prices of these constraints are set equal to the optimal shadow prices
before the disaggregation.

For the borrowing constraints of these scenarios, the initial shadow
prices < are chosen as follows:

rfi =
is, zz:+tj+l

e-K(tj+*--tj+l)pncs+)
if Zcttj+z  =

$+1+$+2
e-K(tj+2-tJ+l)pncS+)

t,+1+t,+z

0 otherwise
-n(s+)

e
S+

t3+1
=

iii if zF;+tj+z = ztj+143+2

0 otherwise

where ,$fJ  is the optimal shadow price on the borrowing constraint of
scenario s at trading date tj  before the disaggregation.

The only constraints which may be violated by the fixed-weight primal solu-
tion are the cash-balance constraints of each scenario s in state n at trading
date tj  and its successor scenario sf at the added trading date tj+l.  (The
upper bounds on one-period borrowing in an aggregated ALM model are de-
fined in such a way that fixed-weight time disaggregation will never result in
a violation of the borrowing constraint.) Furthermore, it is easy to see that
these cash-balance constraints can only be violated if prepayment of divi-
dends and/or liabilities occurs in state n at trading date tj  before the time
disaggregation.

5.1.3 Modifying Fixed-Weight Solutions to Obtain Feasibility

We have indicated that fixed-weight disaggregation may result in violations
of the cash-balance constraints for some scenarios in the ALM model, and
also of the borrowing constraints if state disaggregation is performed. If the
cash-balance constraint for a scenario s at time t is violated after a fixed-
weight disaggregation, an obvious way to make it feasible is by increasing the
amount of short-term lending in case of a cash surplus, and the amount of
short-term borrowing in case of a cash deficit. In the last case, however, this
may lead to a violation of the borrowing constraint in the scenario. Further-
more, additional short-term lending or borrowing in scenario s at time t also
increases the amounts of short-term lending, respectively borrowing, in its de-
scendant scenarios if we correct for violations in the cash-balance constraints
in these scenarios in the same manner. Thus, even if additional borrowing in
scenario s at time t does not violate the borrowing constraint at that time,
it may cause a violation of the borrowing constraint in one of its successors.

The upper bounds on short-term borrowing may therefore hinder the con-
struction of a feasible solution from the fixed-weight solution through ad-
justments of the one-period borrowing and lending amounts. To circumvent
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this problem, we can relax the ALM model by including for all scenarios at
each trading date an additional variable for short-term borrowing on which
no upper bound is imposed. A high borrowing-lending spread will be asso-
ciated with these additional borrowing variables, however. Furthermore, an
extra variable is added for each scenario at the terminal date to take care
of a negative final portfolio value. The expected present value of such a fi-
nal portfolio deficit is added to the objective function, and penalized using a
(large) penalty parameter.

As is shown in Klaassen [19,  section 4.31,  it is possible to derive lower
bounds on the borrowing-lending spread and the penalty parameter so that
the optimal solution will involve neither borrowing nor final portfolio deficits
for any pair of values above these lower bounds. Thus, for any pair of values
above these lower bounds it does not matter whether one solves the true ALM
model, or its relaxation as just defined. The lower bounds are shown to be
positively correlated to the variability of asset returns, and negatively to the
value of X  when the utility function is defined according to equation (4.24).
For example, if X  = 1 in equation (4.24), no borrowing will take place in the
optimal solution whenever the borrowing-lending spread is positive.

5.2 Choosing Disaggregations

In each iteration of the iterative disaggregation algorithm one has to select
one or more states in the event tree in which to perform state and/or time
disaggregation. The method we will discuss for doing this is based on the
infeasibilities of fixed-weight disaggregation, and estimates the effect of these
infeasibilities on the objective function. This method is used in the imple-
mentation of the iterative disaggregation algorithm in the next section.

Suppose we perform state disaggregation in state n at trading date tj
in the event tree. For each scenario s in this state the fixed-weight primal
solution may violate the cash-balance and the borrowing constraints for its
new successor scenarios ss at trading date tj+i. Let Ut:‘,i  denote the shortfall
in the cash-balance constraint for successor scenario s+  at trading date tj+i,
i.e., the difference (if positive) between the liabilities in state n(s+)  and the
cash flows from the portfolio as implied by the fixed-weight primal solution.
Similarly, let Vt$ denote the amount of one-period borrowing in this scenario
which exceeds its upper bound.

We estimate the effect of these infeasibilities on the objective function4 by
the following quantity E:

(5.25)

4Strictly  speaking, we consider infeasibilities in the formulation of the ALM problem in
which the cash-balance constraints are written as greater-than-or-equal-to constraints, as
we only take shortfalls and not surplusses into account.
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where @J?+l  and ciJ:l denote the shadow prices on the cash-balance and bor-
rowing constraint, respectively, as defined by the fixed-weight dual solution,
while SC  denotes the set of all scenarios which visit state n at trading date tj.

A similar measure can be defined for time disaggregation in state n at
trading date tj.  Fixed-weight time disaggregation may lead to a violation
of the cash-balance constraint for a scenario s in this state as well as for its
successor scenario s+  at the newly added trading date (which we denote as tj+l
for simplicity). With Uf again denoting the shortfall in the cash-balance
constraint for scenario s at trading date t, we estimate the effect on the
objective function of the infeasibilities due to fixed-weight time disaggregation
as:

(5.26)

where ‘ps and $J:~?+~ denote the shadow prices on the cash-balance constraints
as defined by the fixed-weight dual solution.

We can calculate the quantities E and C  for each state in the event tree
in order to decide where to perform a state or time disaggregation. Clearly,
the higher a quantity is in a state, the larger the estimated effect of the
corresponding disaggregation is on the optimal objective value, and thus the
more important this disaggregation is estimated to be.

Another approach to deciding where to perform disaggregations in the
event tree is to calculate bounds on the possible change in the objective func-
tion. Zipkin  [28]  shows how such bounds can be derived for (dis)aggregations
in general linear programs if (generalized) upper bounds on the primal and
dual variables are known. For the ALM problem, Klaassen [19]  shows how
upper bounds on the primal and dual variables can be derived if an upper
bound on the investment at time 0 is known.

The difference between the arbitrage-free value of all liabilities and the
value of the investor’s initial portfolio always forms a lower bound on the
optimum objective value. Furthermore, the fixed-weight solution in the re-
laxation of the ALM model after one or more disaggregations always defines
an upper bound. One hopes that the bounds which follow from Zipkin’s
method will be tighter than these general bounds.

5.3 Termination of the Algorithm

For the decision when to terminate the iterative disaggregation algorithm, we
would like to have a measure of how close the current solution is to the true
optimal solution, i.e., the solution to the ALM model when all uncertainty
is considered. It is not obvious, however, how to construct such a measure.
Furthermore, because an aggregated ALM model is neither a restriction nor
a relaxation of the unaggregated model, it is impossible to tell precisely how
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the optimal solution to an aggregated model relates to the solution in the
unaggregated model.

One possibility would be to calculate the bounds of Zipkin  on the change
in objective value, which were discussed earlier. However, these bounds are
most likely too weak to be meaningful if one would translate the optimal
solution of an aggregated ALM model to a solution for the unaggregated
model by fixed-weight disaggregation, because the unaggregated model is
typically very much larger than the aggregated models that are solved in the
algorithm. Moreover, the sheer size of the unaggregated ALM model may
make it practically impossible to perform this calculation.

A more feasible approach is to base the decision to terminate the algorithm
on the results in past iterations. In practical applications, an investor will
primarily be interested in the optimal portfolio decisions at time 0. One may
therefore decide to terminate the algorithm if these portfolio decisions have
remained sufficiently stable in recent iterations.

6 A Numerical Example

We now present the results from the implementation of the iterative disag-
gregation algorithm for a small asset/liability management problem.

6.1 Problem Statement

Consider an investor with interest-rate exposure in his investment portfolio,
who wants to limit the downside risk. More specifically, we assume that the
investor owns a zero-coupon treasury bond with a maturity of two years from
the current date. Furthermore, he has to make a payment after one year, for
which he will have to sell the bond. As he expects that interest rates will fall
in the coming year, he wants to hold the two-year bond during the first year,
but he also wants to be guaranteed that he can fulfill his obligation after one
year. He could realize this guarantee if he could buy a one-year put option
on the two-year zero-coupon bond.

Assume that all traded options have a maturity of at most four month-
s. The problem therefore becomes to construct a dynamic trading strategy,
involving the traded options, with payoffs that replicate the payoffs of the
desired one-year put option. The liabilities in the ALM formulation are thus
equal to the difference between the scheduled payment and the value of the
discount bond, if positive, and zero otherwise. The investor does not accept
shortfalls at the payment date.

The face value of the two-year zero-coupon bond is $1000. Assume that
the current zero-coupon yield curve is flat with a (continuously compounded)
yield of 8% for all maturities. The current price of the bond is therefore
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$852.14, and the forward price of the bond for delivery after one year is
$923.12. Assume that the scheduled payment equals $932.35 (101% of the
forward price), irrespective of the state of the world. That is, the exercise
price of the one-year put option that he wants to replicate is $932.35.

Assume that traded option contracts on the two-year bond are initiated at
the beginning of every two-month period, and that the options have an initial
maturity of four months. For every option maturity, three call options and
three put options are traded, which differ only in their exercise prices (respec-
tively 99.5%,  100% and 100.5% of the forward bond price on the maturity
date of the options). Thus, at every point in time the investor can trade in
six different put options and six different call options on the two-year bond.

The term-structure model of Ho and Lee [15]  is used to model the interest-
rate uncertainty in the stochastic programming formulation of this problem5.
This term-structure model describes the uncertainty in the future term struc-
ture of interest rates by means of a binomial lattice (see Figure 1). It is
a one-factor model as the evolution of the short-term (one-period) interest
rate completely determines the evolution of the whole term structure. As
input parameters, the Ho and Lee model requires the number of time steps
in the binomial lattice for a horizon of given length (in this case one year),
the volatility of the one-period interest rate, and the conditional risk-neutral
probability of an upward movement in the lattice. This probability is assumed
to be the same in every node in the lattice.

Prices of interest-rate derivative securities (such as bonds and options on
bonds) in the event tree can be calculated in the recursive manner which is
described in section 3.2. For ordinary bonds, the price at the start of the tree
which is derived in this recursive manner is guaranteed to be equal to the
current market price in the Ho and Lee model, irrespective of the values of its
input parameters. For options and other interest-rate derivative securities,
however, this is not the case.

Assume that the market prices of the traded options are consistent with
a version of the Ho and Lee model which incorporates 120 time steps, in
which the risk-neutral binomial probability is l/2, and the volatility of the
short-term interest rate 0.7% per year. This number of time steps is large
enough so that the calculated option values have converged to at least two-
decimal precision with the given parameter values, and the chosen volatility
level prevents negative interest rates in the model at any point in time. The
theoretical value of the replicated put option at time 0 according to this model
is $8.73. The data for the traded options, including their price at time 0
if applicable, are listed in Table 1. The initiation and expiration dates are
specified in terms of the time steps in the Ho and Lee model. Because options

5Although  the simple Ho and Lee model suffices to illustrate the iterative disaggregation
algorithm in this example, one may want to use a more sophisticated term-structure model
in real-world applications (see the references in section 3.2).
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Option Initiation Expiration Price at time 0:
number date date Strike price Put call

10 20 $859.26 ( 99.5%) $0.40 $4.66
11 20 $863.58 (100.0%) $1.76 $1.76
1 2 20 $867.90 (100.5%) $4.66 $0.40
20 0 40 $870.80 ( 99.5%) $0.76 $5.03
21 0 40 $875.17 (100.0%) $2.28 $2.28
22 0 40 $879.55 (100.5%) $5.03 $0.77
30 20 60 $882.49 ( 99.5%) - -
31 20 60 $886.92 (100.0%) - -
32 20 60 $891.36 (100.5%) - -
40 40 80 $894.33 ( 99.5%) - -
41 40 80 $898.83 (100.0%) - -
42 40 80 $903.32 (100.5%) - -
50 60 1 0 0 $906.34 ( 99.5%) - -
5 1 60 1 0 0 $910.89 (100.0%) - -
52 60 1 0 0 $915.44 (100.5%) - -
60 80 120 $918.50 ( 99.5%) - -
61 80 120 $923.12 (100.0%) - -
62 80 120 $927.73 (100.5%) - -

25

Table 1: Data for traded options on the two-year zero-coupon bond.

10, 11 and 12 were initiated before time 0, no initiation date is specified for
them. The exercise price of each option is both given as absolute number and
as percentage of the forward bond price (between brackets).

6.2 Disaggregation Strategy

To start the iterative disaggregation algorithm, we have aggregated states
and time steps in the Ho and Lee model of the previous section to obtain the
aggregated event tree of iteration 0 in Figure 4. This initial event tree has
only four different scenarios at t = 120, and the corresponding ALM model
is thus small and easy to solve. The interest rate ranges between 8.128% per
year in the lowest state to 7.872% in the highest state, and the corresponding
liability (payoffs on the replicated put option) between $10.55 and $8.38.
Because trading dates are included in this aggregated event tree for all points
in time at which dividends are paid (i.e., options expire) and liabilities are
due (t = 120),  no adjustment for the prepayment of dividends and liabilities
is necessary.

To prevent that only state and no time disaggregations are performed in
this tree, we have slightly modified the use of the sensitivity measures & and <
that were defined in section 5.2. First, we have imposed that a state in an
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Iteration 30: Iteration 3 1:

t=O 20 40 60 80 100 120 t=O  20 40 60 80 100 120

Figure 3: Change in event tree after a state disaggregation on the critical
path.

aggregated event tree can never have more than two successor states, and
that its successor states occur at the same point in time.

Second, we only calculate the sensitivity measure E in states that have
successor states in which liabilities are specified. In this problem these are the
states with successors at t = 120. For each of these states we identify a critical
scenario, which is the scenario with the highest contribution to the sensitivity
measure E in that state. If a state is selected for a state disaggregation based
on its value for E,  then a disaggregation is performed along the path in the
event tree that corresponds to the critical scenario in that state. If possible,
a state disaggregation is performed somewhere along this critical path. If
there are multiple possibilities, then the state disaggregation is performed at
the earliest point in time at which it is possible. If no state disaggregation is
possible, then a time disaggregation is performed in the state at the beginning
of the longest period on the critical path (i.e., comprising the largest number
of time steps of the Ho and Lee model with 120 time steps). If there is more
than one possibility, then the time disaggregation is performed as early as
possible in the tree.

We have also used the critical scenario to define the way in which new states
after a state disaggregation are connected to the existing event tree. After a
state disaggregation is performed in some state along the critical path, then
the state disaggregation is basically pushed forward along the path until all
new states are connected to the existing tree, or the end of the tree is reached.
This is illustrated in Figure 3 for the state disaggregation in iteration 31 of
the iterative disaggregation algorithm. The critical path in the event tree of
iteration 30 is indicated by the fat line. In iteration 31, a state disaggregation
is performed in the state on the path at time 30. The new arcs in the event
tree of iteration 31 after the state disaggregation are indicated in bold, and
the ones that have disappeared from the event tree are drawn as dashed lines.

A time disaggregation in our implementation consists of both the time and
the state disaggregation which were described in sections 5.1.2 and 5.1.1: first
a time disaggregation adds a new trading date and a single successor state,
and then a state disaggregation in the same state splits the single successor
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in two successor states (this corresponds to the change from situation d to
situation b in Figure 2). The new trading date is added in the middle between
two existing trading dates in the tree.

6.3 Computational Results

We have coded the iterative disaggregation algorithm for this problem on a
Sun 10 workstation with 32 MB of internal memory (RAM) in the C program-
ming language. The ALM model has been re-optimized in each iteration as
a large linear program, using the CPLEX callable library, where the optimal
basis from the previous iteration is used to define a starting basis. The opti-
mal basis columns from one iteration typically do not define a full basis for
the model in the next iteration, but CPLEX allows the specification of an in-
complete basis, and will complement it with additional columns to construct
an initial basis.

The utility function of equation (4.24) with X  = 0.9 is used to value a
portfolio surplus in the objective function, and the scenario probabilities are
equal to the risk-neutral probabilities. Assume a transaction cost rate of 1%.
The investor can borrow up to $10 in each state at the riskless  one-period
interest rate plus one basis point (0.01 percent), and he faces a 1% borrowing
spread for any amount in excess of that. Assume that the investor is only
allowed to buy options.

Figure 4 depicts the development of the aggregated event tree in the course
of the algorithm. Time disaggregations are performed in iterations 17, 26, 30
and 38, and state disaggregations in all other iterations. In the event tree
of iteration 40, the interest rate at time 120 decreases from 8.384% at the
bottom of the tree to 7.617% at the top. The corresponding payoffs from the
replicated put option (the liabilities) range from $12.82 to $6.33.

The number of states and scenarios in the event tree increases from 18
and 23, respectively, in iteration 0 to 68 and 342 in iteration 40. The corre-
sponding ALM model has 131 constraints, 485 variables, and 1007 nonzeros
in iteration 0 and 1572 constraints, 5120 variables, and 11770 nonzeros in it-
eration 40. The complete run of 40 iterations only takes a few minutes in real
time. The number of simplex pivots required to re-optimize the ALM model
in each iteration varies between less than ten and a few hundred. We could
not continue the algorithm for many more than 40 iterations before CPLEX
required more memory than was available on our computer to perform the
re-optimizations.

The optimal value of the objective function in the course of the algorithm
is depicted in Figure 5, together with the cost (including transaction costs)
of the optimal portfolio at time 0. Both seem to converge in the course of the
algorithm. The difference between the two lines represents the value of the
portfolio surplus at the terminal date which is credited to the objective. The
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Iteration 0:

t=O 20 40 60 80 100 120

Iter]-

t=O 20 40 60 80 100 120

Iteration 20:

t=O 20 40 60 80 100 120

Iteration 30:

t=O 20 40 60 80 100 120

Iteration 40:

t=O 20 40 60 80 100 120

Figure 4: Changes in the event tree during the iterative disaggregation algo-
rithm.
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average excess in a scenario at time 120 is $0.11 with a standard deviation
of $0.28. The standard deviation is relatively high because surplusses almost
exclusively occur in the upper part of the event tree (corresponding to low
interest rates, and therefore low liabilities).

Figure 6 compares the value of the sensitivity measure with the actual
change in the optimum objective value of the ALM model in each iteration.
Their correlation is high in early iterations, but decreases later on. A study
of the sensitivity measure across different states in each iteration shows that
the number of scenarios in a state (and correspondingly, its probability of
occurrence) is an important determinant of its value. Our disaggregation
strategy thus exhibits a bias towards states in the center of the event tree.
As the variability in the number of scenarios per state increases with the
growth of the event tree, this bias becomes stronger in the course of the
algorithm. This implies that the critical scenario in the state with the largest
value of the sensitivity measure plays an increasingly important role for the
actual disaggregation that is performed in the event tree.

Typically, interest rates along the critical path decrease initially, and in-
crease after a certain point in time. In the event tree, this corresponds to
paths that move upward in the event tree at first, and downward later on.
That is, the critical path is initially favorable for the investor, but turns unfa-
vorable after some time. This explains why a majority of the disaggregations
are performed in the upper half of the event tree.

The optimal portfolio at time 0 only involves short-term lending and invest-
ments in the put options 10 and 20 in every iteration. The selected options are
the ones that are most out-of-the-money (i.e., with the lowest strike price).
These options provide the investor with the largest relative difference in pay-
off in different states of the world per option bought. Figure 7 depicts both
the optimal amount of short-term lending and the optimal number of options
bought in each iteration of the algorithm. Although the option holdings ap-
pear somewhat volatile, it should be noted that the dollar amount invested
in the options as fraction of the portfolio cost remains fairly constant at a
little below 20%. Comparison with Figure 5 shows that the objective value is
insensitive to shifts in the option holdings, but that they result in a different
trade-off between the initial portfolio cost and the final portfolio value.

6.3.1 Variations in the Transaction Cost Rate

Table 2 shows the optimal portfolio composition at time 0 and the correspond-
ing objective value when the transaction cost rate c varies between 0.1% and
2% (in each case after 40 iterations in the iterative disaggregation algorith-
m). With higher transaction costs, more of the initial portfolio is invested
in short-term lending (which involves no transaction costs) and less in the
options. A consequence of this change in portfolio composition is that the
liabilities are matched less precisely when transaction costs incease.
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Portfolio Expected Portfolio composition
c = Objective cost time 0 final surplus put 10 put 20 lending

0.1% $8.74 $8.74 $0.00 0.872 1.713 $7.08
1.0% $8.81 $8.89 $0.11 0.450 1.718 $7.39
2.0% $8.85 $9.18 $0.40 0.118 1 . 7 1 1 $7.80

Table 2: Optimal solution for different transaction cost rates.

The transaction cost rate has a significant impact on portfolio rebalancing
after time 0. If the transaction cost rate is l.O%,  additional investments
in (out-of-the-money) put options are made after every upward move in the
event tree. In contrast, when the transaction cost rate is 2.0%,  investments in
new options are only made at the expiration date of options in the portfolio,
and then only in some of the states of the world.

6.3.2 Variations in the Final-Portfolio Weight

Table 3 displays the optimization results when the final portfolio weight X
varies between 0.8 and 0.98, each time with a transaction cost rate of 1%.
When X  increases, it becomes less important to match the liabilities exactly.
As a consequence, the transaction cost rate increases in relative importance,
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and less portfolio rebalancing takes place. This results in an increase in short-
term lending in the initial portfolio, and a significantly higher expected value
of the portfolio surplus.

Portfolio Expected Portfolio composition
X  = Objective cost time 0 final surplus put 10 put 20 lending
0.80 $ 8 . 8 1 $ 8 . 8 1 $0.00 0.000 2.423 $6.94
0.90 $8.81 $8.89 $ 0 . 1 1 0.450 1.718 $7.39
0.98 $8.77 $10.25 $1.64 0.000 0.084 $10.19

Table 3: Optimal solution for different values of the final-portfolio weight.

7 Conclusions

There are at least two advantages of using the iterative disaggregation algo-
rithm as described in this paper for the solution of stochastic programming
models for asset/liability management problems. First, it is based on state
and time aggregation methods which can be used to condense a description
of the uncertainty in asset prices and returns to any desired level, while being
guaranteed that asset prices in this condensed description are arbitrage-free
and consistent with current market prices if this was true for the original
description. We have discussed why it is both reasonable and important that
this description in stochastic programming models satisfies these properties,
and indicated how financial asset-pricing models may be employed to con-
struct one.

Second, the algorithm relieves one of the task of having to specify all rel-
evant uncertainty in a stochastic programming model ex-ante. Instead, one
can start to solve a formulation with a very coarse description of the uncer-
tainty - in the extreme, one expected-value scenario - and iteratively refine
this description based on information that one obtains from solutions in the
course of the algorithm. Besides, this sequence of solutions also provides
useful insight in the sensitivity of the optimal solution to additional uncer-
tainty in the model. We have illustrated these advantages of the iterative
disaggregation algorithm in the numerical example of section 6.

Our description and analysis of the iterative disaggregation algorithm is
based on a (arbitrage-free) description of the uncertainty about future asset
prices and liabilities in the form of an event tree, but does not depend on
assumptions about the nature of the assets or the specific economic factors
which influence asset prices and liabilities. In practical applications, however,
one usually writes asset returns and liabilities as a function of the develop-
ment in a set of economic variables. One therefore first needs a description
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of the uncertainty in the relevant economic variables before one is able to
derive a sensible description of the uncertainty in asset prices and liabilities.
This process was illustrated in section 6 with interest rates as the only e-
conomic variables and interest-rate derivative securities as the only possible
investments. In a real-world setting, more variables will need to be considered
(e.g., inflation) so that more asset classes can be included (eg,  inflation-linked
bonds and stocks). An important area of research is therefore how a prop-
er and practical description of the joint uncertainty in all relevant economic
variables can be obtained, and how a usable, arbitrage-free description of
the uncertainty in asset prices and liabilities can be derived from it. Car-
iiio et al. [6,  71,  Dert [9] and Mulvey and Thorlacius [23]  describe different
approaches to this problem.

Several other directions for future research remain. In the implementation
of the iterative disaggregation algorithm in section 6, we imposed several re-
strictions on the disaggregation strategy, concerning for example the number
of successor states per state and the trade-off between state and time disag-
gregations. Furthermore, our disaggregation strategy exhibited a preference
for disaggregations in states with a high probability of occurrence, whereas in
some situations one may be especially interested in hedging against extreme
and unlikely events. Experimentation with different disaggregation strate-
gies, and application to a variety of problems, should provide more insight in
the sensitivity of the results to the choice of disaggregation strategy.

In the example of section 6 we re-optimized the ALM model in each it-
eration as a large linear program, using optimal basis information from the
previous iteration. Although this re-optimization was fast, we encountered
memory problems due to the size of the stochastic program after a certain
number of iterations. This suggests the use of decomposition methods for
the re-optimizations. A widely used and generally efficient decomposition
method for stochastic programs is Benders’ decomposition (see Birge [a]).
However, direct application of this decomposition method in the iterative
disaggregation algorithm is not very attractive as cuts which are generated in
one iteration of the algorithm may not be feasible in the next iteration, due
to the fact that the ALM model after a disaggregation is neither a relaxation
nor a restriction of the model before the disaggregation (see section 5). Thus,
Benders’ decomposition is not able to exploit solution information from one
iteration to the next. Another decomposition method which does have the a-
bility to exploit such information is the prirr  -!-dual decomposition method as
described in Klaassen [19].  A drawback of this method is, however, that each
subproblem must be solved to full optimality, whereas primal-dual methods
are known to converge quite slowly to the optimum in general.

The description of the iterative disaggregation algorithm in this paper is
based on the formulation of the general ALM problem in section 2, which only
includes cash-balance, portfolio-balance and borrowing constraints. In prac-
tical applications, one often needs to include additional constraints which
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reflect policy or regulatory restrictions. The analysis in sections 4.3 and 5
must then be extended to include these additional constraints. For example,
to obtain a feasible solution after a disaggregation when additional constraints
are present, one may need to introduce extra slack variables for these con-
straints and penalize non-zero values of these variables in the objective func-
tion, similar to what was done for the borrowing constraints in section 5.1.3.
Depending on the specific problem instance, one may also be able to prove
that the slack variables are always zero in optimum solutions if the penalties
are chosen large enough.

Another area of research is to consider more general utility functions in
the formulation of the ALM model to evaluate the portfolio surplus in the
objective function. One can preserve linearity of the model by approximating
a nonlinear utility function with a piecewise linear function. Alternatively, a
generalization of the iterative disaggregation algorithm to convex stochastic
programming models must be developed.

The idea of iterative disaggregation of the uncertainty in stochastic pro-
grams may be an attractive solution approach for application areas other
than asset/liability management as well. In other areas, the restriction of no-
arbitrage may not be applicable, which can provide more freedom in how to
perform (dis)aggregations.  Furthermore, if the stochasticity in the stochastic
program is restricted to the right-hand-side vector, Benders’ decomposition
method can be used efficiently to perform the re-optimizations in the course
of the algorithm, as the Benders’ cuts from one iteration remain valid for the
next iteration.
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