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Abstract

Objective. This study evaluates the effects of lifting an unexpectedly heavy object on low-back loading and loss of balance.

Background. 1t is often suggested that lifting an unexpectedly heavy object may be a major risk factor for low-back pain. This
may lead to an increase in muscle activation, stretch of ligaments and posterior disc, and loss of balance.

Methods. Nine healthy male subjects were asked to pick up and lift a box as quickly as possible. The weight of the box was
unexpectedly increased by 5 or 10 kg. Kinematics and force data were recorded throughout the experiment.

Results. Lifting of an unexpectedly heavy box led to a decrease in maximum torque of the low back compared to lifting the same
box mass with correct expectation. The maximum lumbar angle did not increase compared to the light box condition. Only the

threat to balance appeared to be somewhat increased.

Conclusions. The lifting of an unexpectedly heavier box appeared not to lead to an increased balance loss or a clearly increased
stress of the structures of the low back, although a burst of abdominal muscle activity was found in one condition. These results do
not fully clarify the assumed relation between lifting unexpectedly heavy objects and low-back injury.

Relevance

A commonly cited cause of low-back pain is the lifting of an unexpectedly heavy object. A study of the responses to such
perturbation is important to an understanding of spine mechanics and the etiology of low-back injury. © 2000 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

From epidemiological research it can be concluded
that sudden, unexpected load on the back is related to a
high incidence of low-back pain [1,2]. In addition, the
development of low-back pain is believed to be related
to the act of lifting [3]. From these statements it is often
concluded that the lifting of an object with incorrect
mass knowledge may lead to low-back pain. Lifting an
unexpectedly lighter object leads to an increased me-
chanical loading on the lumbar spine and to an in-
creased risk of losing balance [4]. The effect of lifting an
unexpectedly heavy object on low-back loading or losing
balance, however, has not been studied so far.

* Corresponding author.
E-mail address: p_van_der_burg@fbw.vu.nl (J.C.E. van der Burg).

With the lifting of an unexpectedly heavy object,
several factors can be expected to cause a high low-back
load and therefore an increased risk of injury. The first
factor is the low muscle activity in relation to the mass of
the object that the subjects are lifting. Lifting an unex-
pectedly heavy object entails an underestimation of the
load mass, because the information about the actual
mass of the object can only be obtained after the subjects
have exerted a force on the object [5]. Due to the un-
derestimation of the load mass, the subjects will apply a
muscle moment smaller than required to actually lift the
object. Insufficient activation of the trunk extensor
muscle fibers can lead to an increased trunk flexion un-
der the influence of gravity acting on the load and upper
body. This increased trunk flexion may coincide with
eccentric muscle actions (lengthening of active muscles),
which are more likely to cause disruption or injury to
muscle tissue than concentric actions [6]. Moreover, due

0268-0033/00/$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved.
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to the increased trunk flexion passive tissues such as
ligaments and the posterior disc may be unduly strained,
which in extreme cases can cause ruptures [7].

A second factor is the reaction of the subject after the
perturbation. In experiments in which subjects had to
withstand an unexpectedly applied flexion moment
during stance, an increased activity of the trunk muscles
was found [8-10]. An increased activity of the trunk
muscles increases the mechanical load on the back by
increasing the compression force on the spine.

The final factor that may increase the risk of injury to
the spine when lifting an unexpectedly heavy object is
loss of balance. Falls that occur while lifting an object
are associated with low-back injuries [11]. It had been
shown that subjects tend to lose balance, that is, they
had to make serious efforts to prevent falling, in 92% of
all lifting trials in which the mass of a box was overes-
timated [4]. An underestimation of the object mass may
also cause a threat to balance, since the addition of the
extra mass will shift the center of mass (CoM) forwards.
This may increase the horizontal velocity of the CoM,
which may cause the CoM to cross the stability
boundary with respect to the base of support [12].

The magnitude of the injury risk may be related to the
size of the perturbation. In an experiment in which
subjects had to withstand a forward flexion moment, it
was observed that with increasing perturbations the
trunk muscle co-activation correspondingly increased
[9]. In addition, the injury risk may be related to the
expected object mass to be lifted. In the same experiment
as described above, it was found that pre-activation of
trunk muscles can serve to reduce the flexion displace-
ments caused by rapid loading [9]. The pre-activation of
trunk muscles will be less when the subjects expected to
lift a light object instead of a heavier object [13].

This study was designed to investigate the lifting of an
unexpectedly heavy object in a whole body, bimanual
lifting task. The following questions will be answered:
e What is the effect of the lifting of an unexpectedly

heavy object on low-back loading?

e How is this effect mediated by the expected load mass
and the size of the perturbation?

Low-back load was studied by analyzing the torque
at the L5-S1 joint, co-activation of trunk muscles and
maximum lumbar angle. The same questions were an-
swered with respect to balance loss, which was evaluated
by determining whether subjects were forced to make a
step. In addition, the horizontal and angular momentum
were analyzed to quantify the magnitude of the balance
threat imposed by the lifting task [14,15]. In this study,
conditions were compared where subjects either had
mass knowledge or did not have the correct mass
knowledge prior to lifting a box. The subjects were in-
structed to lift the box as fast as possible to prevent
adaptations in muscle force in the time period between
the grasp of the box and the lift off.

2. Methods
2.1. Subjects

Nine healthy male subjects (age 22.4 yr (SD 1.5 yr),
height 1.80 m (SD 0.07), body mass 72.7 kg (SD 7.9)),
none of whom had a history of back pain, participated
in the experiment. All subjects were informed that they
were to perform a series of lifting tasks, in which a box
had to be lifted. The true purpose of the experiment was
not revealed to the subjects. The subjects all provided
written consent prior to the experiment. All the experi-
mental procedures were undertaken with the approval of
the institute’s ethical committee.

2.2. Experimental procedure

The subjects were asked to bend over from standing
and to pick up and lift a PVC box (0.24 mx0.34
mx0.42 m) that stood 0.25 m in front of their toes and
0.10 m above floor-level. No instructions were given
about the starting posture or lifting technique. However,
the subjects were instructed to lift the box as quickly as
possible, to prevent them from perceiving the actual
load mass in the initial part of the lift. Loads were
placed inside the box, which was covered with a lid to
prevent visual identification of the content. The mass of
the box was 1.6, 6.6, 11.6 or 16.6 kg. The subjects were
instructed to keep their heels on the ground and to re-
strict their movement to the sagittal plane. The subjects
performed practice trials using the 16.6 kg box to
familiarize themselves with the experimental task.

The experiment consisted of five bouts of lifting
movements, of which the sequence was varied between
the subjects. Two blocks consisted of eight lifting
movements of a constant load (11.6 or 16.6 kg). In three
blocks, the load of the box was unexpectedly increased
by 5 or 10 kg after the subject had performed at least five
lifting movements (see Table 1). Within a block, the
subjects were asked to stand on one leg. During
the standing on one leg, the subjects were secluded from
the environment by headphones with loud music and by
non-transparent glasses, so that it was possible to
change the loads in the box without the subject’s
knowing. The subjects were asked to stand on one leg in
a different order between the blocks (see Table 1), to
make sure that the subjects did not expect the increase in
box mass.

2.3. Kinematic data collection and biomechanical model

A dynamic two-dimensional linked segment model
[16] was used to describe the lifting movement and to
calculate the torque at the lumbo-sacral (L5-S1) joint.
This model requires kinematic data, segment anthrop-
ometry and ground reaction forces. During the lifting
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Table 1
The experimental procedure (the number between brackets is the
expected load mass)*

Condition (kg) Number of lifting
movements before

the load change

Lifting movements
after which the
subjects were asked

occurred to stand on one leg
11.6 - Second and sixth
16.6 - Seventh
11.6 (1.6) 6 Second, fourth and
sixth
16.6 (6.6) 7 Second and seventh
11.6 (6.6) 5 First, second, third,

fourth and fifth

#11.6 kg: 11.6 kg box expected; 16.6 kg: 16.6 kg box expected; 11.6
(1.6) kg: the condition in which the subjects expected to lift a 10 kg
lighter box of 1.6 kg; 16.6 (6.6) kg: the condition in which the subjects
expected to lift a 10 kg lighter box of 6.6 kg; 11.6 (6.6) kg: the con-
dition in which the subjects expected to lift a 5 kg lighter box of 6.6 kg.

movement, the positions of 17 LEDs were recorded at
100 Hz using an Optotrak recording system. Ten LEDs
were placed on the skin on the right side of the body to
indicate the location of the following joints: the fifth
metatarsophalangeal joint, the ankle joint (the distal
part of the lateral malleolus), the knee joint (epicondylus
lateralis), the hip joint, the lumbo-sacral joint (as in
[16]), the spinous processes of the first thoracic vertebra,
the caput mandibula (the head), the lateral border of the
acromion, the elbow joint (epicondylus lateralis) and
the wrist joint (ulnar styloid). Two LEDs were placed on
the left side of the body at the position of the greater
throchanter and the L5-S1 joint. This was done to
improve the estimation of the position of both these
joints, which was calculated by taking the mean of the
left and right value. The coordinates of the acromion
marker were used to determine the position of the
shoulder joint. The coordinates of the joint position
defined eight body segments: the foot, lower leg, upper
leg, pelvis, upper trunk plus head, upper arm, fore arm
and hands. Five markers were attached to the box to be
able to infer the saggital plane location of the box center
of mass. Anthropometric data (body mass, length of
segments, standing height) were measured.

Simultaneously with the movement registration, the
ground reaction forces (Fg) were recorded by means of a
strain gauge force platform (1.0 mx 1.0 m). The analog
force signals were amplified, filtered (10 Hz, fourth order
Butterworth filter), sampled (100 Hz) and stored. From
the distribution of the force components, the point of
application of the force vector was calculated in the
anterior—posterior position.

2.4. Electromyography

The electromyography of the prime back and ab-
dominal muscles was measured to obtain an indication

of the contribution of the muscle co-contractions to the
back load. Prior to the experiment surface EMG-elec-
trodes (Ag/AgCl) were attached after cleaning and
gentle abrasion of the skin. The center-to-center elec-
trode distance was 2.5 cm. The EMG-signals were re-
corded from parts of the left medial and lateral lumbar
erector spinae muscles, part of the thoracic erector spi-
nae muscles and the mm.obliques externus and internus.
The electrodes were positioned 3 cm lateral to the
midspine at the level of T9 and L2 and 6 cm lateral to
the midspine at the level of L1. The oblique muscles
were subdivided into two functional sections, a lateral
and an anterior part [17], which were monitored at lo-
cations described by Dieén and Kingma [18]. The EMG
signals were amplified, band-pass filtered (10-200 Hz)
and stored on a disk at a sample frequency of 800 Hz.
The EMG signals were high-pass filtered (digital finite
impulse response filter, 30 Hz) to reduce the influence of
possible movement artefacts and ECG [19], rectified and
low-pass filtered (second order Butterworth filter, 2.5 Hz
[20]). All digital filtering was bi-directional to avoid
phase shifts of the signals.

2.5. Data analysis

The lumbar angle was defined as the angle between
the line through the hip joint and L5-S1 and the line
through L5-S1 and T1. During stance the lumbar angle
was zero, with flexion the lumbar angle increases. The
mass of each segment, as well as the position of
the segmental center of mass (except for the trunk) and
the segmental moment of inertia were calculated
according to Looze et al. [16] and Plagenhoef et al. [21].
The position of the trunk center of mass was calcu-
lated according to an optimization procedure, which
improved the estimation of the trajectory of the body
center of mass [22]. The body center of mass was
calculated from the segments’ masses and center of mass
locations. To study the disturbance of balance, the
instantaneous horizontal and angular momentum of
the CoM of the whole body [14], including the mass of
the box after pick-up, was calculated according to
Toussaint et al. [15].

The lifting movement in which the mass of the box
was unexpectedly changed, as well as the last three and
lifting movements before the mass was unexpectedly
changed, were recorded. In the blocks with constant box
mass the last three lifting movements were recorded. To
permit averaging of trials, each trial was synchronized in
time to the moment the subjects started to lift the box.
During the start of the box grasp, most subjects exerted
a downward force on the box moving the markers on the
box downwards. When the subjects actually started to
liftt the box, the height of the markers increased.
Therefore the start of the box grasp was determined
from the lowest position of the box markers. When the
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subject did not exert a downward force on the box, the
last sample in which the box markers did not move
determined the start of the lifting phase. A total of 1.00 s
(400 ms before and 600 ms after t = 0) was analyzed,
according to the lifting movement that was performed
most quickly. Next, the three recorded movements of
the same mass, and the simultaneously recorded EMG,
were averaged and taken as the mean of that mass
condition.

2.6. Statistical analysis

An analysis of variance with repeated measures
(ANova) was used to test the effects of condition and
time on the instantaneous values of lumbar angle, tor-
que at the L5-S1 joint, angular momentum and the
linear momentum. The maximum values of the lumbar
angle and the torque at the L5-S1 joint were separately
tested. The degrees of freedom were adjusted to the
number of valid observations. Significant interaction
effects were examined with paired -tests (two-sided) to
test which conditions significantly differed from each
other. In view of the intra-individual variance this was
not done for the muscle activity data. Effects were
considered to be significant at P < 0.05.

3. Results

The data of seven subjects were used for the analysis.
Data sets of two subjects were incomplete, and were
hence discarded. The muscle activity of the erector spi-
nae muscles at the level of L1 resembled the activity of

Table 2

the erector spinae muscles at the level of L2 in all
mass conditions. Therefore, these muscles are described
together as lumbar muscles. Not all graphs of muscle
activity against time will be shown, only the most
representative graphs are selected. Prior to the box grasp
no significant differences between the expected (light)
mass condition and the mass change condition were
found in any parameter. Therefore, only the period after
the subject started to lift the box is described here.

3.1. Unexpectedly heavy object

Lifting an unexpectedly 10 kg heavier box (11.6 kg)
did not appear to cause an increase in low-back load, as
was evidenced by the maximum torque at the L5-SI
joint and the maximum lumbar angle. In contrast, the
maximum torque in the mass change condition was
significantly smaller than in the condition in which the
subjects were lifting the 11.6 kg box with correct mass
knowledge (Tables 2 and 3). Only after 300 ms the
torque at the L5-S1 joint in the unexpectedly heavy box
condition was higher than in the 1.6 kg box condition
(Fig. 1). However, the torque did not increase to the
same level as in the first peak. The maximum lumbar
angle in the unexpectedly heavy box condition was the
same as in the 1.6 kg box condition (Tables 2 and 3),
only the extension velocity was decreased compared to
the conditions in which the subjects had correct mass
knowledge (Fig. 2). When the box was heavier than the
subjects expected, one subject dropped the box just after
he had lifted it.

Approximately 100 ms after the subjects grasped the
unexpectedly heavy 11.6 kg box a burst of muscle ac-

The averaged maximum values of the torque at the L5-S1 joint and the averaged maximum lumbar angle of all subjects for the different mass

conditions (standard error of mean)*

1.6 kg 6.6 kg 11.6 kg 16.6 kg 11.6(1.6)kg  11.6(6.6)kg  16.6(6.6) ke
Torque at L5-S1-joint (in Nm)  294.08 287.46 316.31 323.74 302.09 294.55 300.47

(16.5) (17.2) (20.7) (13.6) (11.5) (15.8) (18.4)
Lumbar angle (in deg.) 7226.3) 739 (6.3) 762 6.3) 779 (6.9) 73.9 (5.7) 72.8 (5.2) 73.3 (6.9)

#1.6 kg: 1.6 kg box expected; 6.6 kg: 6.6 kg box expected; 11.6: 11.6 kg box expected; 16.6: 16.6 kg box expected; 11.6 (1.6) kg: the condition in which
the subjects expected to lift a 10 kg lighter box of 1.6 kg; 16.6 (6.6) kg: the condition in which the subjects expected to lift a 10 kg lighter box of 6.6 kg;
11.6 (6.6) kg: the condition in which the subjects expected to lift a 5 kg lighter box of 6.6 kg.

Table 3
The results of the paired z-test, which was used to test if the maximum values of the conditions were significantly different from each other®
6.6-1.6 1.6-11.6 6.6-16.6 11.6 (6.6)— 11.6 (1.6)— 16.6 (6.6)— 11.6 (1.6)— 11.6 (1.6)—-
(6.6) kg (1.6) kg (6.6) kg 11.6 kg 11.6 kg 16.6 kg 11.6 (6.6) kg 16.6 (6.6) kg
Torque at L5-S1 joint n.s. n.s. n.s. P < 0.05 P <0.05 n.s. n.s. n.s.
Lumbar angle n.s. n.s. n.s. n.s. P <0.01 n.s. n.s. n.s.

1.6 kg: 1.6 kg box expected; 6.6 kg: 6.6 kg box expected; 11.6: 11.6 kg box expected; 16.6: 16.6 kg box expected; 11.6 (1.6) kg: the condition in which
the subjects expected to lift a 10 kg lighter box of 1.6 kg; 11.6 (6.6) kg: the condition in which the subjects expected to lift a 5 kg lighter box of 6.6 kg;
16.6 (6.6) kg: the condition in which the subjects expected to lift a 10 kg lighter box of 6.6 kg.
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error of the mean. At time zero the box is grasped.
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mean. At time zero the box is grasped.

tivity which reached a peak after approximately 200 ms,
was seen in all abdominal muscles (Fig. 3). During this
peak, the maximum level of abdominal muscle activa-
tion was higher than the maximum activation observed
in the 11.6 kg box condition with the correct mass
knowledge. Back muscle activity was higher than the
1.6 kg box condition 200 ms after the subjects had
grasped the unexpectedly heavy box (Fig. 3). The
maximum level of activation of the lumbar back muscles
was reached in this second burst of activation. This was
not true for the thoracic muscles, for which the second
peak in activity was less than the first peak.

The lifting of an unexpectedly 10 kg heavier box (11.6
kg) did not lead to loss of balance. None of the subjects
had to make a step to regain balance. The risk of bal-
ance loss was increased, since the angular momentum
was significantly less than in the correct mass knowledge
conditions after the box grasp. Up to 400 ms after the

box grasp the angular momentum was below or about
zero (Fig. 4). The linear momentum was not signifi-
cantly different from the 1.6 kg box condition, although
it tended to be more positive immediately after the box

grasp (Fig. 4).
3.2. Influence of the expected load mass to be lifted

Comparing the two 10 kg mass change conditions, it
appeared that the maximum torque at the L5-S1 joint
and the maximum low-back angle were not related to
the expected load mass (Tables 2 and 3). In general, it
can be said that the deviation from the planned move-
ment was less marked when the subjects were expecting
a 6.6 kg box than when the subjects were expecting a
1.6 kg box (Figs. 1 and 2).

The muscle activity during the lifting of an unex-
pectedly heavy box appeared to be related to the
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expected load mass. When the subjects expected to lift a
6.6 kg box, the abdominal muscles did not show as clear
a burst of activity as in the condition in which the
subjects expected to lift a 1.6 kg box. The back muscle
activation did not show a second burst as clearly as in

the condition in which the subjects expected to lift a
1.6 kg box either (Fig. 3).

The threat to balance appeared not to be consistently
related to the expectation of the subjects about the mass.
In the condition in which the subjects were expecting a
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6.6 kg box, one subject had to make a step to regain
balance. However, the difference in linear and angular
momenta between the mass change condition and the
light mass condition were less in the 6.6 kg condition
than in the 1.6 kg condition (Fig. 4).

3.3. Influence of the size of perturbation on low-back
loading

From a comparison of the 5 kg mass change condi-
tion and both 10 kg mass change conditions it appeared
that the maximum torque at the L5-S1 joint and the
maximum low-back angle were not related to the size of
perturbation that had been imposed (Tables 1 and 2).
The deviation from the planned movement in the 5 kg
mass change condition was less than in both the 10 kg
mass change conditions (Figs. 1 and 2). Until approxi-
mately 100 ms after the subjects lifted the unexpectedly
heavier box, the muscle activation was similar to the
light box condition. After this time, the muscle activa-
tion was not much different from the muscle activation
in the heavy (11.6 kg) box condition.

The balance disturbance appeared to be related to the
size of perturbation imposed. In the 5 kg mass change
condition the momenta were not different from the
momenta observed in the light box condition, in con-
trast with the 10 kg mass change condition.

4. Discussion

This study was designed to investigate the effects of
lifting an unexpectedly heavy object on low-back load-
ing and loss of balance in bimanual, whole body lifting
tasks. To this end, the subjects had to lift a box, of
which the mass was increased by 5 or 10 kg without
them being informed. In all mass change conditions, the

maximum torque at the lumbo-sacral joint and the
maximum lumbar angle were the same as in the light
mass condition. The abdominal muscles showed a burst
of activity only in the condition in which the subjects
were expecting to lift the 1.6 kg box, but were actually
lifting the 11.6 kg box.

On basis of the results, it can be concluded that the
subjects did not expect the mass of the box to be heavier.
This cannot be concluded from the period before the
subjects grasped the box, because no differences in
movement execution were found between the different
conditions (light, heavy and unexpected). Nevertheless,
just after the box grasp it was seen that muscle activity
in the mass change condition was similar to that found
in the low load mass condition, but less than in the
heavy mass conditions.

When the subjects were lifting an unexpectedly heavy
box, the execution of the upward movement was slo-
wed down (Fig. 2). This is probably the result of the
low activation of the back muscles compared with the
activation in the heavy box condition. The back muscle
activation pattern appeared to be based on the expected
low object mass and was adjusted to the actual box
mass approximately 175 ms after the box grasp (Fig. 3).
The slowing of the upward movement may limit the
effect of the disturbance, since the amount of force
that a muscle can develop at a given activation level
increases when the contraction velocity decreases.
Adaptations in torque at the L5-S1 joint were seen
250-300 ms after the subjects grasped the box (Fig. 1).
The time elapse between the adaptation of back muscle
activity and the torque at the L5-S1 joint can be
accounted for by the electromechanical delay of these
muscles [23].

In previous studies it was found that lifting a heavy
object of an unknown mass did not increase the me-
chanical loading of the spine [13,24]. The same results
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were obtained in this experiment. Moreover, at all mass
changes it was found that the maximum torque at the
L5-S1 joint was smaller than the maximum torque
which was found when the subjects were lifting the same
load mass with the correct mass knowledge.

The lifting of an unexpectedly heavy box did not re-
sult in an increased maximum lumbar flexion. This in-
dicates that the strain of the passive tissues (ligaments,
tendons, lumbodorsal fascia and disc) did not increase.
Therefore, it can be concluded that the risk of injury to
the passive tissues does not increase when an unex-
pectedly heavy object is lifted. However, it cannot be
excluded that the movements of individual vertebrae are
more seriously disturbed than the movement of the
trunk as a whole. Therefore no conclusive evidence with
respect to injury risk can be presented.

The burst of abdominal muscle activity may increase
the spinal compression and thereby the mechanical
loading of the back. Abdominal muscle activity com-
presses the spine and generates a flexion torque which
has to be compensated for by increased activity of the
back muscles [25]. Due to the simultaneous activation of
the flexor and extensor muscles, this increase in loading
will not fully be seen in the net torque at the L5-S1 joint.
However, the increased activation occurred later in the
lifting movement, and thus in a more extended posture,
with a torque that was half of the maximum torque
(Fig. 1). It is not clear whether this burst of activity will
cause a back load in excess of that during the maximal
torque. The burst of abdominal muscle activation hin-
ders the execution of the lifting movement, because it
leads to a decreased extension torque. An increased
level of abdominal activity was also found when an
unexpected perturbation that caused flexion was im-
posed during standing [8,9] and following backward
support perturbations in lifting [26]. Oddsson et al. [26]
interpreted this burst of abdominal activity as part of
the ‘hip strategy’ aimed at restoring balance. Our data
support this interpretation in view of the increased
balance threat in the condition in which the subjects
were expecting to lift the 1.6 kg box, but were actually
lifting the 11.6 kg box. An alternative explanation may
be that the activation of the abdominal muscle is a
‘flexion response’ to stop the upwards movement. The
fact that one subject actually dropped the box supports
this explanation. Another possible explanation is that
the abdominal muscle activation is increased to main-
tain stability of the trunk. The activation of the ab-
dominal muscles may especially lead to an increased
stability in the frontal plane, in other words it may
prevent sideward buckling [27].

In contrast to the lifting of an unexpectedly light box
[4], an unexpectedly heavy box did not lead to loss of
balance. However, the angular and linear momenta in-
dicate that a situation occurred with an increased chance
of balance loss.

4.1. Influence of the expected mass to be lifted

The maximum torque at the low back was not dif-
ferent between the 10 kg mass change conditions. This
was surprising, because it was suggested by Commissaris
et al. [4] that expected load mass largely determines peak
low-back loading. This unexpected result may be ex-
plained by the instruction to the subjects to lift as fast as
possible. Lifting at a maximal speed may lead to maxi-
mal activation of the back muscles, because a maximal
acceleration is required at the start of the lifting move-
ment. Maximal activation of the back muscles will lead
to a maximal extension torque independent of the object
mass to be lifted. Conform to the above stated hy-
pothesis of Commissaris et al. it was found that the
maximum torques at the low back during the lifting of
an unexpectedly heavy box were similar to the torques
found when the subjects lifted the (light) mass they were
expecting.

The activation of abdominal muscles appeared to be
dependent on the expected object mass. It is seen that at
the time of burst of abdominal muscle activity, the ac-
tivity of the back muscles was lower in the condition in
which the subjects were expecting to lift a 1.6 kg box
than when the subjects were expecting to lift a 6.6 kg
box. As a consequence, at this time the stability of the
spine is lower in the unexpectedly 11.6 kg condition,
because a low muscle activation leads to low stability of
the spine [28,29]. The increased abdominal activation
may serve as a stabilizer of the lumbar spine [27], which
seems to be especially important when the initial muscle
activation is low [9].

4.2. Influence of the size of the perturbation

The maximum torque at the L5-S1 joint was inde-
pendent of the size of the perturbation. As a conse-
quence, the lifting movement was slowed down more in
the 10 kg mass change conditions than in the 5 kg mass
change condition. The maximum lumbar angle was in-
dependent of the size of the perturbation. This is in
contrast with the results of Krajcarski et al. [9], who
found that increasing unexpectedly added mass resulted
in larger forward rotations when subjects had to resist a
forward flexion moment during stance. These differences
may also be explained by the high muscle activation in
all conditions caused by the instruction to the subject to
lift a box as fast as possible.

5. Conclusion

Lifting an unexpectedly heavy mass as fast as possible
could not clearly be shown to increase the loading of the
low back, although a burst of abdominal muscle activity
was found in one condition. The maximum torque of the
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low back was independent of the difference between the
expected and actual lifted mass and the magnitude of the
mass the subjects expected to lift. The threat to balance
was increased when the mass was unexpectedly 10 kg
heavier. These results do not fully support the assumed
relation between lifting an unexpectedly heavy object
and low-back injury. Further research is necessary to
examine the effects of maximum lifting speed on the
effects of lifting an unexpectedly heavier object.
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