
VU Research Portal

Beyond HTTP: An Implementation of the Web in Globe

Kuz, I.; Verkaik, P.; van der Wijk, I.; van Steen, M.R.; Tanenbaum, A.S.

1999

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Kuz, I., Verkaik, P., van der Wijk, I., van Steen, M. R., & Tanenbaum, A. S. (1999). Beyond HTTP: An
Implementation of the Web in Globe. (W&I Technical Report IR-465). Computer Systems.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 23. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303552651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.vu.nl/en/publications/f6c2e3d4-224d-4f33-a42b-bd5bf1425f47

A Distributed-Object Infrastructure for Corporate Websites

Ihor Kuz
Patrick Verkaik

Maarten van Steen
Henk J. Sips

Internal report IR-465
April 2000

Revised version

Abstract. A corporate website is the virtual representation of a corporation or organization on
the Internet. Corporate websites face numerous problems due to their large size and complexity,
and the nonscalability of the underlying Web infrastructure. Current solutions to these problems
generally rely on traditional scaling techniques such as caching and replication. These are usually
too restrictive, however, taking a one-size-fits-all approach and applying the same solution to every
document. We propose Globe as a foundation upon which to build scalable corporate websites,
and introduce GlobeDoc, a website model based on Globe distributed shared objects. This paper
describes GlobeDoc, highlighting the design and technical details of the infrastructure.

Keywords: Website, architecture, scalability, distributed objects, Globe, design, implementation

This work was sponsored by a grant from the NLnet Foundation.

vrije Universiteit

Department of Mathematics and Computer Science

1 Introduction

A corporate website is the virtual representation of a corporation or organization on the Internet. It is
typically a large website that contains a wide variety of information about or related to that corpora-
tion. This information can range from publicly available marketing and PR information, through an-
nouncements, news, technical and support information, to internal information with access restricted
to employees only. Because of its varied character the information is usually maintained by a diverse
group of people. Some of the website’s contents may be provided by the marketing department, other
parts of the site may be designed and maintained by individual product groups, and yet other parts of
the site may be maintained by specific regional departments.

Clients of corporate websites vary just as widely. There is often no single client profile with regards
to location, access times, access frequency, etc. Clients will access the site from a wide range of
locations, at all times of the day, and with differing access patterns. A corporate website will often
have to deal with a heavy load, though not every part of the site will be equally burdened. For exam-
ple, the pages describing their products may be very popular, while a page describing the marketing
department’s trip to the zoo will be much less popular.

Like other websites, corporate websites face numerous problems due to their large size and complex-
ity, and the nonscalability of the underlying Web infrastructure. These problems manifest themselves
in the form of suboptimal access times to the website, broken links to and within the website and the
presence of wrong or inconsistent information on the site. Access problems are caused either by the
overloading of servers and their network connections from too many requests, or by structural prob-
lems such as the server or network being down. Problems with broken links are usually caused by
internal reorganization of the site, or by unavailable mirrors, while inconsistent information is caused
by improperly updated mirrors or caches.

Current solutions to these problems generally rely on traditional scaling techniques such as caching
and replication and include (proxy) caching, mirroring and clustering. The basic principle behind all
of these techniques is that replicating (parts of) the site on multiple servers reduces the load on any
single server and possibly improves access times by moving the contents closer to the user. Often,
however, the problems are only partially solved. For example, clustering solves the problem of over-
loaded servers, but not that of saturated network connections. At the same time new problems, such
as inconsistent documents, are introduced. What’s more, these solutions are often ad-hoc, leading
to a myriad of different, incompatible, and often unmanageable solutions. There is, for example, no
standard way of creating consistent Web site mirrors and Web site administrators often have to create
their own solutions, quickly leading to a situation where many different incompatible and suboptimal
mirroring approaches are being used.

Many proposed solutions are also too restrictive: they generally take a one-size-fits-all approach,
applying the same solution to every resource. For example, most caching solutions have one caching
algorithm that is applied to every cached Web resource. We claim that, in order for the Web to scale,
it will be necessary to apply distribution solutions to individual Web resources depending on their
needs and characteristics. Thus, while replication-based content delivery network solutions such as
Akamai’s FreeFlow [1] and Digital Island’s Footprint [7] provide complete replication services and
take care of issues such as automatic redirection of requests and document consistency, we feel that
their approach of assigning a global replication strategy to all documents is too coarse.

In addition, the naming scheme used in the Web aggravates many of the scalability problems because

1

it is not location transparent. Each URL contains a Web server address, which means that when
resolving the URL and retrieving the resource, only the referenced server can be contacted. Solutions
utilizing clustering or mirroring of Web sites have to deal with this problem and often come up with
schemes that rewrite Web pages, use dynamic DNS tables, or modify IP routing tables to allow the
address in the URL to refer to more than one actual server. This problem with naming in the Web has
been widely recognized by the Web community and work continues on a location-transparent naming
structure (URNs) [17].

Based on these observations, we claim that a good solution to the problems encountered by corporate
websites must have the following characteristics. The solution must be scalable, that is, it should
offer an infrastructure that is able to handle a growing number of users, resources, and requests per
resource worldwide. Resource names and references must be location transparent, and remain valid
if the resource is moved or distributed over multiple locations. It must also be flexible and extendible,
so that new resources and new solutions can easily be added (without having to resort to solutions
outside the system). Furthermore, the solution should not degrade overall system performance, and
last, but not least it must be compatible with existing WWW clients and websites.

We propose Globe as a foundation upon which to build corporate websites. Globe is a wide-area
distributed system based on the concept of distributed objects that fully encapsulate their own dis-
tribution policies - including replication, migration, and partitioning. A detailed description of the
Globe model can be found in [19]. We believe that Globe has the necessary characteristics to provide
a good infrastructure for very large websites.

By providing a framework that lets scaling techniques be applied on a per-object basis, Globe allows
scalable components and applications to be created. Also, because Globe allows distribution strategies
to be tailored per object it is possible to provide optimal solutions by applying strategies based on the
object’s (expected) usage and characteristics.

Flexibility and extendibility are provided by Globe’s interface-based object design and modular ob-
ject structure. An interface-based design means that Globe-object clients call methods through inter-
faces that are independent of actual method implementations. Method implementations can, therefore,
change (or be replaced) without modification of clients that use them. Internally, Globe objects are
built up modularly out of subobjects. This means that specific object parts can be replaced without af-
fecting any of the other parts. It is therefore possible for an object’s distribution strategy, for example,
to be replaced without having to go through the trouble of reimplementing the whole object.

Globe also has a scalable naming service that provides location transparency. In Globe, object names
are separate from, and independent of, their location: an object may change its location, or even be
replicated, yet keep the same name. This transparency is achieved by splitting the naming and locating
of objects into two separate services. A name service is used to resolve symbolic user-defined names
to fully location-independent and globally unique persistent object identifiers called object handles.
Object handles are, in turn, resolved by a location service to object contact addresses that describe
where and how an object can be contacted. The name and location services will be described in more
detail later.

The goal of this paper is to describe a Globe-based infrastructure for corporate websites called Globe-
Doc. We will focus on the design and technical details of the infrastructure rather than on motivation
of our (design) choices as these are already covered elsewhere. Contributions made by this paper
include solutions to how large websites (and other distributed applications) can be organized and
built using distributed objects in a way that solves many of the current problems. Recognizing that

2

the Web’s strength is that everything can be accessed through standard browsers, we also show how
Globe-based websites can be fully integrated into the current Web structure.

The rest of the paper is structured as follows: Section 2 will present the model and system architecture
of the GlobeDoc corporate website infrastructure followed by a detailed description of all the system
components in Section 3. Section 4 will delve deeper into the design of the corporate website, de-
scribing the objects used and issues that must be dealt with. Section 5 will examine related work and
Section 6 will conclude with a summary of the project status and directions for future work.

2 The GlobeDoc corporate website model

2.1 Assumptions and definitions

The following assumptions about (corporate) websites and their environment are made. A corporate
website is accessible from the Internet or from an internal intranet and access to the site will be through
regular Web browsers. As the users of corporate websites may reside anywhere in the world, the site
will be accessed from a variety of geographic regions. The majority of such a website’s contents will
be based on static data and contain regular Web content (e.g. static HTML pages, images, etc.); only
a small percentage will be dynamically generated or contain streaming content such as information
about the company’s stocks, or a speech by the company’s president. The website will be heavily
used (by either internal or external users), however this usage will not be evenly balanced (i.e., some
documents will be very popular while others will rarely be accessed).

To facilitate further discussion of corporate websites and distributed-object based websites, we present
definitions of some key concepts. We define a website as a collection of related Web documents and
applications. For example, the website of a corporation contains a collection of documents that are in
some way related to the corporation. Note that a website, in our view, may be physically distributed
accross multiple locations. A Web document is defined as a collection of related Web resources.
A Web resource is simply anything that can currently be accessed over the Web, such as, HTML
pages, images, video clips, audio clips, applets, etc. The relation between the resources contained in
a Web document is stronger than that between the documents contained in a website. For example,
a Web document may contain the HTML pages that make up a news story plus the icons and other
multimedia elements that are referenced in the HTML pages. Note that Web documents are static,
that is, they do not contain dynamic content such as dynamically generated, or interactive pages. Web
applications are used to provide such dynamic content. In this paper we concentrate only on (static)
Web documents.

2.2 Distributed-object based website

In our model all Web documents are encapsulated in distributed objects called GlobeDoc [20] objects
(or simply GlobeDocs). These objects provide a standard interface that allows the resources mak-
ing up the document (i.e., its elements) to be retrieved. To access a website, a client must look up
the GlobeDoc objects that it is interested in and connect to them. Once connected, the client calls
appropriate methods to retrieve the object contents and present them to its user.

GlobeDoc is based on Globe and as such every GlobeDoc object is an instance of a Globe distributed
object. Globe distributed objects are physically distributed, meaning that they are literally spread out

3

over multiple address spaces; we call them distributed shared objects (DSOs). Each DSO consists
of a number of local objects, called local representatives (LRs), one in each address space covered
by the object (see Figure 1). Local objects are completely contained in one address space and can be
implemented in any supported (not necessarily object-oriented or object-based) language.

Network

A2

A3 A4A5

Local
Representative

Address
Space

Distributed
Shared
Object

A1

Figure 1: A distributed shared object

The benefit of a DSO is that its state can be copied or partitioned over any of the LRs. In some
distributed shared objects the LRs might contain replicas of the state, in others the full state might be
contained in only one of the LRs, and in still others each LR might contain only a part of the whole
state. Globe DSOs allow this distribution of state to be determined by the object implementation
itself. Because the state distribution is encapsulated within the object, the replication or partitioning
is transparent, that is, neither clients, nor other system components need to be aware of an object’s
distribution policy. An object’s distribution policy can therefore be set to one that suits the object’s
needs (i.e., the way that it is used), and need not depend on some global system policy.

2.3 System Architecture

2.3.1 Binding and Services

To communicate with a DSO (e.g., a GlobeDoc), a client must bind to the object. This causes a new
LR to be created in the client’s address space, effectively connecting that address space to the rest
of the DSO. Once an LR is created in a client’s address space, the client can communicate with the
whole DSO by calling (local) methods on the LR. The binding process is illustrated in Figure 2. It
can be divided into two main phases: finding an object and installing the appropriate LR.

In the first phase, a binding client starts by passing a name of the DSO to the naming service. The
Globe naming service is responsible for mapping a name to a globally unique, location-independent
object handle. The naming service returns an object handle, which is then passed on to the location
service. The location service maintains a mapping of each object handle to a set of contact ad-
dresses, which represent the contact points of a DSO (analogous to service access points in computer
networks). Although normally more than one of these addresses may be returned to the binding client,
we assume, for simplicity, that only one address is returned.

4

4 3

5

2

6

Object Handle

Distributed Shared Object

1

Contact
Address

Naming Service

Location Service

Client Process
Name

Class

Implementation

Archive

Local Representative

Make contact

Handle

Implementation Repository

Figure 2: The binding process

In the second phase, the contact address is used to find and install an appropriate LR in the client’s
address space. The first step of the second phase involves extracting an implementation handle
(which identifies an implementation) from the contact address and passing it to an implementation
repository. The implementation repository finds a corresponding implementation and returns it in the
form of a class archive. A class loader subsequently extracts the implementation code from the class
archive, loads it into memory, creates the actual LR and initializes it. Once the LR is initialized, the
client will be able to communicate with other parts of the DSO. We say that the client is now bound
to the DSO. The LR in the client’s address space is said to be connected to the rest of the DSO.

Splitting the binding process into these different steps makes the whole system more flexible. As
mentioned above, naming and location are split into separate services so that object names and object
locations can be kept separate. By separating naming from location, we avoid the need to change
names (as is the case with current URLs) when an object changes its location or is replicated. The
implementation repository is kept separate from the location service for a similar reason: an object’s
location and its implementations remain independent of each other. Because performance is impor-
tant, it is conceivable that contact addresses will be stored and reused by clients to avoid having to
resolve names and object handles. Although our contact addresses are comparable to the (location-
dependent) object references in CORBA and Java RMI, a Java RMI object reference, for example, is
actually a complete serializable proxy that is handed out between different processes. By separating
implementations from contact addresses, it becomes possible for us to return client-specific imple-
mentations. Thus, for example, a client that prefers to use only certified LR implementations may use
the same contact address as one who also accepts non-certified implementations.

5

2.3.2 Structural support

Implementing a website as a collection of Globe DSOs requires structural support for the DSOs.
This support includes providing address spaces for LRs, providing access to the services used during
binding (i.e., name service, location service, etc.), and providing a means to access objects from client
Web browsers. Figure 3 shows an infrastructure that provides such support. The following description
of requesting a Web page from an object will highlight the most important components in the figure.
A detailed description of each component is given in the following section.

Translator

Browser

N

Server

Service
Location
Service

LR LR

Network

GatewayProxy

Globe Object

Distributed Shared Object

Naming

Client

Implementation
Repository

Path A
Path B

Figure 3: The Globe website infrastructure

In our approach (path A), a browser sends a request for a Web page (as a URL) to a proxy server
that filters GlobeDoc-specific names from regular URLs. GlobeDoc-specific names are forwarded to
a GlobeDoc gateway, and regular URLs are forwarded in the normal way (an alternative, path B,
is that requests for embedded URIs are sent directly to a gateway and results are returned through a
translator, this will be described in more detail later). The gateway is a special instance of a Globe
object server and provides address spaces and service access to LRs. It binds to the referred object
causing a new LR to be created in the gateway’s address space. This newly created LR connects
to another LR (or replica) hosted by a remote Globe object server (with functionality similar to the
GlobeDoc gateway), and becomes part of the DSO. Once it is bound to the DSO, the gateway calls
a method on the LR requesting the Web page. This causes the LR (depending on the replication
strategy) to request the page from the remote LR or look it up in its local state, and return it to the
gateway. The gateway passes the page on to the proxy or translator where it is packaged in a proper
HTTP reply and sent to the Web browser. Note that when requesting Web pages from objects that
have already been bound to, the whole binding step can be skipped and the page can be immediately
requested from the LR.

6

3 System components

We now describe each of the components shown in Figure 3 in more detail.

3.1 Naming service

The naming service implements a name space for all Globe distributed objects by mapping object
names onto object handles (which act as unique object identifiers). Whereas object handles and
the contact addresses that they resolve to are intended for automated processing only, Globe (and
GlobeDoc) object names are user-defined and human-readable character strings similar to domain
and file names. Globe allows an N-to-1 relationship between these names and object handles, that is,
different names can refer to the same object handle, but each name refers to exactly one object handle.

The organization of the Globe name space is very similar to that used in, for example, UNIX file sys-
tems. The name space is organized as a hierarchical rooted tree in which an interior node represents a
directory, and a leaf node represents a Globe object. Every edge is labeled with the (simple) name of
the node it points to and a (composite) object name is composed of a sequence of the labels represent-
ing a path in the name space. As in UNIX, the labels are separated by a slash (“/”). An absolute object
name, that is, one that represents a path starting at the root of the name space, always begins with a
slash. Composite object names in Globe are always absolute. When used in the Web, Globe object
names follow the URI syntax and are preceded by the “globe” scheme identifier. For example, the
GlobeDoc name /nl/vu/cs/object/foo becomes globe://nl/vu/cs/object/foo in a Web environment. Resolving
object names is done in the usual (iterative or recursive) way and results in the object handle of the
object to which the name refers.

The current name space implementation is largely based on DNS [14] name servers. In this imple-
mentation it is assumed that the root as well as (hierarchically) higher-level nodes in the name space
correspond to regular DNS domains. In theory, leaf nodes, which represent actual DSOs, and lower-
level interior nodes also correspond to DNS domains, but these are implemented in a Globe-specific
way. Such Globe domains, (i.e., Globe-specific as opposed to regular DNS domains) are implemented
by Globe domain servers. A Globe domain server consists of two parts: a name server and a naming
authority. The name server is the main part and implements the subtree rooted at the node represented
by the Globe domain. This subtree corresponds to a DNS zone. Currently our name servers are im-
plemented using BIND8 [2]. The naming authority is a server colocated on the same machine as the
name server and is the only entity allowed to invoke update operations at the name server.

To adhere to DNS naming syntax, we transform a name such as globe://nl/vu/cs/object/foo into foo.object.cs.vu.nl.
When resolving it, the DSO name (e.g., foo.object.cs.vu.nl) is passed to a DNS resolver as though it
were a regular host name. The resolution eventually reaches a Globe name server (e.g., the server for
object.cs.vu.nl), where the remainder of the name is resolved to the appropriate object handle. Details
on the name service implementation can be found in [4].

3.2 Location service

An object handle is resolved to one or more contact addresses by the location service. As mentioned,
an object handle is a location-independent and universally unique object identifier that can be used as
a worldwide object reference. A contact address, on the other hand, describes a contact point, which

7

object.cs.vu.nl

foo kermit object1

bar

globe.org

globesite.its.tudelft.nl

DNS

(Domain Name System)

Globe domains

Figure 4: DNS based Globe name space

is an address where a DSO can be contacted. It contains information about where and how the object
can be reached. This information is stored in the form of an implementation handle, which identifies
the implementation of the LR needed to contact the object, and data used to initialize the LR, which
includes the actual network address of the contact point. While a DSO has only one object handle that
does not change throughout its life, contact addresses can be added, removed or updated as necessary.

The location service stores every DSO’s contact addresses and maintains a mapping of every object
handle to a set of contact addresses. Because of this, it must be capable of storing and supporting
frequent updates of large numbers of contact addresses. It must also be able to efficiently resolve
object handles to contact addresses. To ensure scalability, it is essential that the location service
exploits locality.

The location service is implemented as a worldwide distributed search tree in which all requests for
updates and look-ups are initiated at leaf nodes. If a leaf node cannot handle a request, the request
is forwarded to its parent. In this way, we exploit locality and achieve scalability. To prevent higher-
level nodes from being swamped with requests, we partition these nodes by dividing the set of object
handles using a hashing technique. It is beyond the scope of this paper to explain in detail the imple-
mentation of the location service. Further information can be found in [18].

3.3 Implementation repository

The implementation repository is a service that stores LR implementations and makes them available
to binding clients. These implementations are stored and transferred as class archives, which are files
that contain all the implementation code needed by an LR. Storing the entire implementation of an LR
in a single class archive makes its transportation and management easier compared to having multiple
files. In our implementation, a class archive is a Java jar file and contains the Java class files that form
an LR implementation.

8

When an LR implementation is registered at the implementation repository it is assigned an imple-
mentation handle. The implementation handle is placed in a contact address and subsequently used
by a binding client to retrieve (copies of) the implementation. An implementation handle is an opaque
identifier that is generated by the implementation repository. Currently, we support only file URLs as
implementation handles, that is, a handle simply contains the path name of a locally available class
archive file. Other schemes, such as those based on ftp or http URLs, may be preferred for a wide-area
system such as the Web. We plan to support such URLs as well.

Better than URLs, however, are logical names such as URNs, which are globally unique and location
transparent. Location transparency has the benefit of allowing us to easily set up a distributed imple-
mentation repository without the drawbacks of having to make its distribution visible to the users. For
example, it becomes easier to move or replicate files without affecting their name as known to users
(or stored in contact addresses).

Besides location transparency, URNs also have the benefit of not having to refer to specific class
archive files. In other words, we can use a URN as a specification for an implementation type. When
an implementation handle specifies an LR type, the implementation repository is given the freedom
to choose an appropriate class archive for the requesting client. A class archive in this sense thus acts
as an instance of the implementation type of the LR. The choice for a specific class archive could, for
example, be influenced by the particular platform of a client, or by security requirements. In this way,
clients binding to Globe objects can keep control over the code loaded into their address spaces.

3.4 Globe object server (including the gateway)

The GlobeDoc gateway and Globe object server both provide address spaces and runtime services
to LRs. The difference between the two is that the gateway’s main goal is to provide clients with
access to GlobeDoc LRs and their methods, while the Globe object server provides an environment
for non-client Globe LRs. The gateway is usually placed either very close to a client (e.g., on the same
machine or the same local network) or is actually part of the client process (e.g. built into a browser).
It provides facilities that allow clients to bind to GlobeDocs and call methods on the resulting LRs.

When the gateway is a separate process, it must provide an external interface through which clients can
bind to a GlobeDoc and call its methods. This can take the form of a dedicated RPC-style interface,
or a server that accepts custom HTTP requests from clients. When the gateway is integrated with
the client, the client can perform method calls directly on the LRs as both are in the same address
space. The client will also have direct access to the Globe runtime system and can use its services and
resources to bind to DSOs.

A Globe object server always runs as a separate process. It has a remotely accessible interface that
allows LRs, other Globe object servers, or administrators to request services from it. These services
include binding to an existing DSO, unbinding from a DSO, creating a DSO and destroying a DSO.
A binding request causes the Globe object server to bind to the given DSO, resulting in an LR of that
DSO being created in the Globe object server’s address space. Likewise, a Globe object server can be
requested to unbind from a DSO, resulting in all LRs of that DSO being removed from the server’s
address space.

In the remainder of this section, we concentrate on the Globe object server. The GlobeDoc gateway
has very similar semantics, except that it can support only client LRs. In practice, this means that
a GlobeDoc gateway cannot offer a contact point for a DSO. The most important functions of both

9

(the gateway and Globe object server) are, however, that they provide access to services such as the
naming and location service, facilities for binding to a DSO, and local services to LRs contained in
its address space. These issues are described next.

3.4.1 Access to external services

The naming service, location service and implementation repository are all external services, that is,
they are implemented outside of the Globe object server. Because LRs (and other runtime system
components) can access only resources in the Globe object server’s address space, the runtime system
provides local proxies to the external services. These proxies, called resolvers, provide local interfaces
through which the external services can be used. They can be implemented as simple proxies that
forward all requests and replies to and from the actual services, or they can be more complex, storing
and manipulating their own local state (e.g., to cache results). The latter are often used to improve
system performance. Performance of access to external service is important because it can greatly
affect the overall performance of the client-to-object binding process.

3.4.2 Support for binding

The Globe object server also provides the facilities needed for binding. These are encapsulated in a
binding object, a local object that is part of the runtime system. Binding in Globe consists of at least
three steps: (1) name resolution, (2) object handle resolution, and (3) loading and initialization of a
LR. Normally, binding starts at the first step. It is, however, possible to begin binding at any other
step, as long as the information needed by that step is present. For example, to start binding at the
second step, a client would need to have an object handle to pass to the location service. A Globe
object server might store an object handle as previously returned in step 1 to avoid a name look-up
when it is requested to bind to that same object again later.

When a Globe object server is requested to unbind from a DSO, effectively, its LR for that DSO has to
be disconnected from the rest of the DSO. The process of disconnecting an LR from the rest of a DSO
is generally object specific. For example, in some cases it may be necessary to migrate the LR’s state
to another Globe object server, while in other cases, it may be safe to simply discard the state because
the LR is, in fact, a replica. Also, if the Globe object server was offering a contact address for the DSO,
the corresponding contact addresses would have to be removed from the location service. Therefore,
when unbinding from a DSO, we assume that the DSO implements its own disconnection algorithm.
When the LR has been disconnected, the server simply reclaims local resources and removes the LR
from its address space.

However, it is not always wise to immediately fulfill a request to unbind from a DSO. Consider, for
example, a GlobeDoc gateway that has just bound to a DSO to retrieve information for a client. In
the same style as HTTP, the gateway could decide to immediately unbind from the DSO as soon as it
has passed the information to the browser. However, it may be much more efficient to stay bound to
the DSO, anticipating more requests for that object. In effect, a server or gateway can decide to cache
a binding for later use. In our current implementation, which supports only passive Web documents,
the effects of caching bindings turns out to be comparable to that of traditional Web caches.

10

3.4.3 Local resources

A Globe object server also manages local resources. Providing an address space for LRs is straight-
forward; LRs are passive objects, which means that they do not have an active thread of execution.
The Globe object server, therefore, simply needs to provide memory to load the LR code. Memory
management is handled by a local garbage collector. In addition, the server provides the runtime sup-
port needed by LR implementations. For example, a Java virtual machine and accompanying runtime
library are needed to support Java implementations of LRs.

Although LRs are not active objects, they do require thread management facilities. For example, a
thread is started whenever a message comes in from another LR. The thread facilities are provided by
the runtime system. The runtime system also offers access to low-level resources such as communica-
tion points (e.g., sockets) and persistent storage (such as files on disk). These resources are all offered
through standard platform-independent interfaces.

3.5 Local representative

As mentioned earlier, a local representative is a local object that is wholly contained in one address
space. A local representative implements the interfaces exported by its DSO. Each LR may implement
these interfaces in a different way, depending on its role in the distribution strategy of the DSO. For
example, in a DSO with only one copy of the state, there will be a ”primary” LR that contains that
state. Other LRs in that DSO will implement the DSO’s interfaces by simply forwarding requests to
the primary. However, when the state has been replicated across multiple machines, an LR may hold
a local copy of that state. In that case, when a client invokes a write method, that method may have to
be propagated to all other LRs, as in active replication.

The aim in Globe is to support object developers by separating functionality from distribution. In
principle, an object developer should be able to concentrate only on designing and implementing
the object’s basic functionality as specified in that object’s interfaces. Separate from this activity,
a developer should concentrate on how that functionality is to be distributed and replicated across
a network. We refer to the latter as designing and implementing a distribution strategy. It is this
separation of concerns that gives Globe much of its flexibility.

Separation is achieved by constructing LRs in a modular way. An LR is built up of (at least) four
subobjects, each responsible for a different part of the functionality, as shown in Figure 5. The com-
munication and replication subobjects work together to implement the distribution strategy of a DSO.
The replication subobject takes care of replication and consistency issues, while the communication
object is responsible for exchanging messages with other LRs. The semantics subobject implements
the actual functionality of the DSO. A DSO’s state is generally stored in the semantics subobject of
its LRs. Finally, the control subobject takes care of invocations from client processes and controls
interaction between the semantics and replication subobjects. Details can be found in [19].

We return to precise definitions of interfaces below.

3.6 Browser and translator

Ideally, users should be able to use regular Web browsers to access GlobeDoc Web documents. Unfor-
tunately, current browsers are incapable of resolving GlobeDoc URIs as they do not understand globe:

11

control

replication user defined

commCallBack

comm

user defined

object

Replication
object

Communication
object

object
Semantics

Control

Figure 5: Local Representative

schemes. A way around this problem is to use GlobeDoc-aware proxies. These are Web proxies that
filter out GlobeDoc requests and send them to a (local) GlobeDoc gateway. The gateway binds to the
appropriate objects and performs methods on it on behalf of the user. Any results from the methods
are returned to the user’s browser through the proxy. Non-Globe requests are passed to appropriate
servers, as in regular proxies.

A disadvantage of the proxy approach is that all requests from the browser (including non-GlobeDoc
requests) must be forwarded through the proxy. As a result, the proxy must be able to handle all the
various kinds of schemes supported in URLs, or forward them to a proxy that can. An approach that
avoids this problem uses a GlobeDoc translator. This component translates GlobeDoc URIs to what
we call embedded URIs. An embedded URI is a regular HTTP URL that contains an object name
and a gateway address, such as http://globedoc.cs.vu.nl/nl/vu/cs/foo/object. When an embedded URI link
is clicked, an HTTP request for the embedded object name is sent to the gateway. The gateway binds
to the object and calls methods on it as usual, except that results are passed to the translator. At the
translator, each link consisting of a GlobeDoc URI, is rewritten to contain an equivalent embedded
URI. The modified result is then passed on to the browser. In this way, access to non-GlobeDoc Web
resources is not affected by the added ability to access GlobeDoc resources.

We have recently built a GlobeDoc-aware Web browser. This is a browser that can natively resolve
GlobeDoc URIs and bind to the corresponding GlobeDoc objects, that is, it has the gateway function-
ality built into it. Rather than build a GlobeDoc-aware browser from scratch, we are investigating the
use of browser plug-ins to add GlobeDoc functionality to existing browsers. Such plug-ins are loaded
and used when URIs with appropriate scheme identifiers are accessed. We have currently modified
Mozilla (the open-source version of Netscape’s browser) to support protocol plug-ins. Microsoft’s
Internet Explorer already supports this extensibility, while Mozilla is officially adding it as well.

12

4 GlobeDoc objects

As mentioned earlier, in our model, a website consists of related Web documents, each encapsulated
in a GlobeDoc object. A GlobeDoc encapsulates an entire Web document and contains a collection of
logically related elements including Web pages and other resources such as icons, images, sounds, etc.
Elements in a GlobeDoc may contain internal as well as external hyperlinks. An internal link refers to
an element in the same GlobeDoc, whereas an external link refers to an element in another GlobeDoc.
Every GlobeDoc assigns one element to be the root, which provides access to other elements through
internal links, and is comparable to the index.html file. Because we do not say anything about the
contents of an element, every element has a set of properties associated with it. At the least, these
properties include a MIME type that describes an element’s contents.

4.1 The GlobeDoc semantics subobject

A GlobeDoc allows elements to be added and removed, as well as the contents and properties of
existing elements to be modified. Its functionality is implemented by a semantics subobject having a
set of predefined interfaces as shown in Figure 6. Clients use methods from these interfaces to access
and modify the elements contained in a GlobeDoc.

interface document {
void addElement(name, elementType, contents);
void deleteElement(name);
name getRoot();
name[] allElements();

}

interface content {
contents getContent(name);
void putContent(name, contents);
void putAllContent(name[], contents[]);

}

interface property {
properties getProperties(name);
void setProperties(name, properties);

}

Figure 6: The GlobeDoc interfaces

The document interface contains methods that act on the document as a whole. It allows elements to
be added and removed, as well as element names to be retrieved. An element is always referenced
by its name, which is a character string. The content interface is used to retrieve and set an element’s
contents. The contents are contained in a byte array. An element’s properties can be set and retrieved
through the property interface. Properties are represented as strings of (attribute,value) pairs.

Modifying an element is a three-step process. In the first step, a copy of an element’s contents must
be extracted with the getContent method. Next, the element can be modified using an appropriate tool,

13

such as an HTML or image editor. When all modifications have been made, the element is returned
to the GlobeDoc using the putContent method.

4.2 Naming

A GlobeDoc, like other Globe DSOs, is referenced by a location-independent object name. GlobeDoc
element names are, on the other hand, valid only in the context of a GlobeDoc. To refer to a
GlobeDoc element, therefore, both the GlobeDoc and element names are required. For convenience,
we allow a GlobeDoc URI to contain both a GlobeDoc home and an element name. The URI
globe://nl/vu/cs/object/gdObject:/element.html, for example, refers to an element named /element.html in
a GlobeDoc named /nl/vu/cs/object/gdObject. A GlobeDoc URI with an empty element name implicitly
refers to the root element. For integration in the current Web, GlobeDoc URIs can be embedded in
URLs, for example as http://globe.cs.vu.nl/nl/vu/cs/object/gdObject:/element.html.

4.3 GlobeDoc replication

Our claim for Globe’s scalability, and thus the reason for basing corporate websites on Globe, rests on
its flexible approach to distribution strategies. To experiment with this flexibility we have implemented
a number of simple replication strategies, and are looking into other strategies that are optimal for large
(corporate) websites. The simplest distribution strategy is client/server interaction. In this strategy
there is one LR that acts as a server and contains all of the object state (i.e., all the elements). The
rest of the LRs are stateless proxies that forward all requests to and receive all replies from the server.
We have also implemented active replication where all the LRs contain full replicas of the state. Read
operations are served locally by an LR, while write operations are forwarded to and executed on all
LRs. Another strategy that we have implemented is a simple master/slave variation. Here all LRs
have a replica of the state, but only one master LR is allowed to perform updates. When the master
performs an update it sends a message to all the other LRs informing them of the update. Examples
of more complex strategies are those that combine replication and caching — some LRs acting as
consistent full replicas, and others acting as less consistent pull caches.

These are all examples of what we call static strategies, strategies that do not adapt to an object’s cir-
cumstances. We are currently experimenting with adaptive distribution strategies. These are strategies
that monitor an object, detect when its configuration becomes suboptimal, and cause it to change to a
new strategy. Adaptive distribution strategies are especially useful in the face of flash crowds. These
are extreme (but temporary) increases in requests caused by unexpected interest in some documents.
Because a flash crowd is unexpected the mass of requests coming in usually overwhelms the server,
causing it to fail. By determining that it is experiencing a flash crowd, a GlobeDoc with an adaptive
distribution strategy can start making widely distributed replicas, preventing any single replica from
becoming overloaded, and thus keeping the document available. When the flash crowd subsides, the
GlobeDoc can recall the replicas that are no longer being used.

To gain insight into the various replication strategies, we have performed experiments based on sim-
ulations (using Web server logs) of static and adaptive distribution strategies under normal and flash
crowd conditions. The results show us that not only do different documents require different strategies
(i.e., a one-size-fits-all approach to replication strategies is not appropriate) but that adaptive distri-
bution strategies can (and do) correctly respond to and prevent problems from flash crowds. Details
about these experiments and our results can be found in [15].

14

Two important aspects of adaptive distribution strategies are determining when and how to change
the strategy (e.g., discovering flash crowds), and actually making the changes. While the former
involves monitoring an object’s network usage and performance and applying heuristics to determine
appropriate changes, the latter involves actually creating and destroying replicas (LRs). In order to
create an LR, a Globe object server that can host the LR must be found. To make finding Globe object
servers possible we are developing a Globe virtual network. This is a service that keeps track of
all available Globe object servers and contains information about every server’s location, available
resources (e.g., disk, memory, network access, persistence, fault tolerance, etc.), and authorization
requirements (i.e., who is allowed to use the server).

5 Related Work

With the increasing importance of the Web, improving the performance of the Web in general and
large corporate websites in particular has become a high priority topic. As such, many commercial
and research projects have been proposed to solve this problem, with the two most popular approaches
being clustering and content delivery networks (CDN).

Clustering offers distribution of requests among a fixed set of mirror servers. The greatest challenge
in clustering is to transparently redirect requests to appropriate servers. Approaches to this transpar-
ent redirection range from redirection of requests at the DNS level [11] to redirection in the routers
themselves [6] [5]. While most of these approaches solve problems such as load balancing, none offer
dynamic or adaptive replication.

CDNs improve on clustering and tackle the dynamic replication problem. Solutions such as Foot-
print [7], Free Flow [1] and RaDaR [16] provide networks of servers that mirror customer’s sites on
demand. They implement dynamic strategies that make replication decisions based on a site’s traffic
patterns and client locations. This is similar to what we propose in our own model, however, we go
one step further and offer an architecture where the actual replication algorithm can be (dynamically)
determined per document. We show in [15] that this is essential for achieving optimal performance.

Current distributed object systems such as CORBA, DCOM and Java RMI provide remote objects,
rather than physically distributed objects. This means that the actual object state is always kept at a
central server and clients use simple proxies or stubs to access it. Although it is possible to modify
or augment these systems to provide some form of replication [8] [12], these modifications always
prescribe a single global replication strategy to all objects. The reason for this is that modifications
are made to the actual middleware layer and services, as opposed to the Globe approach where the
replication strategy is part of the object. As mentioned, we feel that support for per-object replication
is essential in a wide-area distributed system.

Approaches combining distributed objects and the Web range from using CORBA or DCOM objects
for distributed back-end processing in servers [3] and combinations of Java front-ends communicating
with distributed object back ends [10] to complete distributed-object based models of the Web [9]. The
main difference between these and our approach is the flexibility with regards to distribution strategies
that Globe provides.

One model that does provide physically distributed objects is that based on fragmented objects [13].
Although fragmented objects have been designed to encapsulate their own distribution policy, they
have not been designed with worldwide scalability in mind and have not been applied to the Web.

15

6 Conclusion and Future Work

In this paper we have presented GlobeDoc, a scalable architecture for corporate websites based on
Globe distributed objects. Globe allows scaling techniques, such as replication, to be applied on a
per-object basis which we believe is an essential property for a scalable wide-area distributed system.
We have described the GlobeDoc website model and given details of the system components including
GlobeDoc objects, which are Globe DSO representations of Web documents.

We have recently built a small GlobeDoc based website (publicly accessible from the Globe home
page: http://www.cs.vu.nl/globe) that implements all the main components described in this paper (trans-
lator, gateway, Globe object server, GlobeDoc objects, etc.). The service contains GlobeDocs that
encapsulate the Web documents on the Globe website and is being used as a first test of the archi-
tecture. The general configuration is similar to that in Figure 3. Each GlobeDoc object is started in
its own Globe object server. However, unlike the Globe object servers described in this paper, these
servers are very simple and do not yet offer support for persistence and fault tolerance nor the pos-
sibility of remote management. We have also implemented a Globe-aware version of Mozilla that
recognizes Globe URIs and forwards the requests directly to the gateway (bypassing the translator).
All GlobeDoc components, except for our adaptation of Mozilla, are implemented in Java.

Besides this simple GlobeDoc implementation, we are working on the implementation of a full-blown
Globe object server, adaptive distribution strategies, and the Globe virtual network. A complete Globe
object server will provide support for persistence and fault tolerance. At present we have designed
and implemented persistence support and are researching requirements for fault-tolerant DSOs. With
regards to adaptive distribution strategies we are currently looking at appropriate heuristics for decid-
ing when and were to create new replicas. We are also investigating what replication algorithms are
most appropriate for Web documents and when a document should change algorithms. The Globe
virtual network (described in Section 4) is currently in the design phase. We have determined the
general architecture and are working towards an implementation. Furthermore, we are investigating
how security can be incorporated into the Globe framework so that security policies can be attached
to individual Globe objects in a similar way as done with distribution now. All of these components
will be combined to implement a fully distributed website implementation that can be used to perform
experiments with and validate new distribution strategies.

References

[1] Akamai Technologies, Inc. Free Flow. http://www.akamai.com.
[2] P. Albitz and C. Liu. DNS and BIND. O’Reilly & Associates, Sebastopol, CA., 3rd edition,

1998.
[3] Apple. WebObjects. http://www.apple.com/webobjects/.
[4] G. Ballintijn, P. Verkaik, E. Amade, M. van Steen, and A. S. Tanenbaum. “A scalable imple-

mentation for human-friendly URIs.” Technical Report IR-466, Vrije Universiteit Amsterdam,
the Netherlands, Nov. 1999.

[5] Cisco Systems. Distributed Director. http://www.cisco.com/warp/public/cc/cisco/mkt/scale/distr/.
[6] O. P. Damani, P.-Y. Chung, Y. Huang, C. M. R. Kintala, and Y. M. Wang. “One-IP: Techniques

for hosting a service on a cluster of machines.” Comp. Netw. & ISDN Syst., 29:1019–1027, 1997.
[7] Digital Island, Inc. Footprint. http://www.digisle.net/services/cd/footprint.shtml.

16

[8] P. Felber. The CORBA Object Group Service. A Service Approach to Object Groups in CORBA.
PhD thesis, École Polytechnique Fédérale de Lausanne, 1998.

[9] D. B. Ingham, M. C. Little, C. J. Caughey, and S. K. Shrivastava. “W3Objects: Bringing object-
oriented technology to the Web.” In Proc. Fourth Int’l WWW Conf., Boston, Mass., Dec. 1995.

[10] Iona Technologies. OrbixWeb. http://www.iona.com/products/orbixweb/.
[11] E. D. Katz, M. Butler, and R. McGrath. “A scalable HTTP server: The NCSA prototype.” In

Proc. First Int’l WWW Conf., April 1994.
[12] J. Maassen, T. Kielmann, , and H. E. Bal. “Efficient replicated method invocation in java,.” In

Proc. ACM 2000 Java Grande Conference, San Francisco, CA, June 2000.
[13] M. Makpangou, Y. Gourhant, J. Le Narzul, and M. Shapiro. “Fragmented objects for distributed

abstractions.” In Readings in Distributed Computing Systems. IEEE Computer Society Press,
July 1994.

[14] P. Mockapetris. “Domain names - concepts and facilities.” RFC 1034, Nov. 1987.
[15] G. Pierre, I. Kuz, M. van Steen, and A. S. Tanenbaum. “Differentiated strategies for replicating

Web documents.” In Proc. Fifth Int’l Web Caching and Content Delivery Workshop, May 2000.
[16] M. Rabinovich and A. Aggarwal. “RaDaR: A scalable architecture for a global Web hosting

service.” In Proc. Eighth Int’l WWW Conf., May 1999.
[17] K. Sollins and L. Masinter. “Functional requirements for uniform resource names.” RFC 1737,

Dec. 1994.
[18] M. van Steen, F. J. Hauck, G. Ballintijn, and A. S. Tanenbaum. “Algorithmic design of the Globe

wide-area location service.” The Computer Journal, 41(5):297–310, 1998.
[19] M. van Steen, P. Homburg, and A. S. Tanenbaum. “Globe: A wide-area distributed system.”

IEEE Concurrency, pp. 70–78, Jan. 1999.
[20] M. van Steen, A. S. Tanenbaum, I. Kuz, and H. J. Sips. “A scalable middleware solution for

advanced wide-area Web services.” Distributed Systems Engineering Journal, 6(1):34–42, 1999.

17

