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Abstract 

 

Aims. A single isolated cardiomyocyte is the smallest functional unit of the heart. Yet, 

all single isolated cardiomyocyte experiments have been limited by the lack of proper 

methods that could reproduce a physiological cardiac cycle. We aimed to investigate 

the contractile properties of a single cardiomyocyte that correctly mimic the cardiac 

cycle. 

Methods and Results. By adjusting the parameters of the feedback loop, using a 

suitably engineered feedback system and recording the developed force and the 

length of a single rat cardiomyocyte during contraction and relaxation, we were able 

to construct force-length relations analogous to the pressure-volume relations at the 

whole heart level. From the cardiac loop graphs, we obtained, for the first time, the 

power generated by one single cardiomyocyte. 

Conclusion. Here, we introduce a new approach that by combining mechanics, 

electronics and a new type optical force transducer, can measure the force-length 

relationship of a single isolated cardiomyocyte undergoing a mechanical loop that 

mimics the pressure-volume cycle of a beating heart. 
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1. Introduction 

The functional properties of a beating heart are typically captured by analyzing how 

the pressure-volume (PV) relationship evolves during a cardiac cycle.1-3 This 

approach is widely recognized as an invaluable tool in cardiovascular 

(patho)physiology and pharmaceutical research.4-8 To study the effects of various 

hemodynamic conditions and disease states at the tissue level, researchers often 

rely on direct measurements of the force-length (FL) loop of multicellular cardiac 

muscle strips.9, 10 The interpretation of multicellular muscle strip experiments is 

complicated by the presence of the extracellular matrix, which makes it difficult to 

disentangle the properties of the cardiac muscle cells from those of the milieu.11 

Moreover, multicellular muscle strip experiments suffer from diffusion constraints that 

limit oxygenation and metabolic work. This can be overcome with the use of ultra-thin 

trabeculae,12, 13 however that is a skill few laboratories possess. Both problems can 

be solved by replacing the multicellular strip with a single isolated cardiomyocyte.14, 15 

However, the forces generated by a single intact cardiomyocyte under physiological 

conditions are 3 orders of magnitude smaller than those recorded in multicellular 

muscle preparations.16 It is thus not surprising to find that none of the force 

transducers presented in the literature has been able to achieve the required 

sensitivity and responsiveness (i.e. reaction speed) to establish FL cycles in a single 

isolated cardiomyocyte experiment that could correctly mimic the behavior of cells in 

the heart. To perform such measurements a feedback control system would be 

needed that could accurately measure the force developed by the cell and, in real 

time, change its length to control force development. Here, we solve this 

longstanding problem by introducing a sensor that improves sensitivity and 

responsiveness by an order of magnitude over the current state-of-the-art. We 

demonstrate that, by anchoring a single cardiomyocyte to our force transducer, it is 

indeed possible to drive a feedback control loop that adapts the length of the cell to 

control the force it exerts. We show that this approach can be used to functionally 

approximate the cardiac PV relationship at the cellular level by imposing a ‘pre-load’ 

and ‘after-load’ by modulating cardiomyocyte length using feedback based on force 

level. This allows measuring the external work performed and the power generated 

by a single intact cardiomyocyte under physiological conditions. 
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2. Methods 

The animal experiments were performed in accordance with the guidelines from 

Directive 2010/63/EU of the European Parliament on the protection of animals used 

for scientific purposes. 

 

2.1 Force transducer design 

Intact isolated cardiomyocytes at 37°C produce 10-20% of the maximum forces 

measured in membrane-permeabilized cardiomyocytes at equivalent sarcomere 

lengths (SLs) at room temperature.15 To measure the force generated by a single 

intact cardiomyocyte with sufficient sensitivity, responsiveness and stability to allow 

force control, a new type of force transducer was developed. For any force control to 

be meaningful, the base-line drift has to be low, which was targeted at constant 

temperature <0.1 μN/minute. As most of the baseline drift arises from the air-water 

interface (buoyance, surface tension) the only practical solution was to design a force 

probe that could be fully submersed.  

 In addition to having to function submerged in an aqueous solution, the force 

transducer was required to sense forces on the scale of μN with a resolution of nN 

and with a resonance frequency >1 kHz to enable feedback control of force. To 

match these requirements, we designed an optical force transducer where we use 

the traditional deflection of a cantilever as an indicator of force, though bending of the 

cantilever was measured via laser interferometry (Fabry-Perot type interferometer) as 

already used for applications in other research fields (Figures 1A and 1B).13, 17 Briefly, 

laser light is delivered to the cantilever through a standard 125 µm diameter optical 

fiber (Figure 1B). The light reflected from the fiber-to-liquid interface and from the 

cantilever travels back through the same optical fiber towards its distal end, creating 

an interference signal whose amplitude depends on the position of the cantilever end 

relative to the fiber. Before the start of the experiment, the wavelength of the laser is 

adjusted to put the interferometer in quadrature condition, i.e. at the point where the 

sine that describes the amplitude of the interference signal has maximum 

derivative.17 Under this condition, the linear range of the signal (i.e. <5% error) 

extends over a range of at least 100 nm in either direction, with a resolution of 1 nm 

(over 20 kHz bandwidth). Stiffness of the manufactured probes can easily be varied 

between 5 and 100 N/m, which will affect the force resolution accordingly.  Because 

the spring constant of the cantilever used for these experiments was equal to 37 
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N/m, the force had a force resolution of 37 nN on a 3.7 µN range in either direction 

with a noise band of 1.5 nm which equals 56 nN. Baseline drift was <0.1 µN/minute 

at constant temperature. None of the traces shown in this paper are filtered; they all 

show the raw output of the read-out. As the cantilever is just a very small rectangular 

sheet of gold coated glass (1200 µm x 400 µm x 40 µm), it has a high resonance 

frequency of approximately 7 kHz. This provides sufficient responsiveness to allow 

force control. For details on the manufacture and calibration of the probe see the 

online methods section. 

 

2.2 System set-up 

The work loop data collected for this paper were generated with a system built 

around a standard Ionoptix set-up designed for calcium and contractility 

measurements in cardiac myocytes. To be able to attach cardiomyocytes, two 3-D 

micromanipulators were attached on the back of the microscope. To each of the 

micro-manipulators an arm was attached to which a force probe or a piezo translator 

(Mad City Labs) was mounted. From both the force probe and the piezo translator a 

35 µm diameter glass needle protruded (Fiberoptics Technologies, Pomfret, CT) that 

was used to pick up the myocyte.  

 The interface box of the Ionoptix system contains a Field Programmable Gate 

Array (FPGA, Cyclone III, Altera, San Jose, CA) that was re-programmed to apply 

the work loop algorithm. The feedback parameters of the force clamp (frequency of 

the iteration loop and the multiplier of the proportional correction) could be modified 

via a newly designed module that was added to the Ionoptix software and could be 

adjusted interactively during the experiment. 

 Excitable cardiomyocytes are normally between 100-140 μm in length and 15-

30 μm in width. Under experimental conditions at 37°C, unloaded cardiomyocytes, 

excited with electrical stimulation, can shorten up to 15 μm with the fastest rates of 

shortening in the order of 500 μm/s (10 μm within a 20 ms time period). To follow this 

contraction, our setup relies on a closed-loop direct drive piezo-translator that has 50 

μm range and that can complete a 1 μm step in less than 1 ms (Mad City Labs, 

Madison, WI). To determine the SL, the sarcomere length acquisition module from 

Ionoptix (Milton, Ma) in combination with a high speed camera (Myocam-S, Ionoptix) 

was used to acquire SL at a rate of 250Hz. The algorithm does a frequency analysis 

of the region of interest (FFT) from which the SL is determined. 
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2.3 Attachment of single cardiomyocyte 

Cardiomyocytes were glued to 35 micron glass needles that were attached to the 

cantilever of the force transducer and to the piezo translator (Figure 1C). The 

needles were between 0.5 and 1.5 mm long, and were sufficiently stiff to prevent 

bending during the contractions. The gluing procedure is similar to the method 

described by Prosser et al.18 The tips were coated with an aluminum silicate 

suspension (Ionoptix pre-coat). The pre-coat was air-dried after which they were 

dipped in MyoTak (Ionoptix). In a well-attached cell we could do force measurements 

for up to an hour in a temperature controlled chamber (Figure S1) at 37°C without 

significant run-down of the preparation.  

2.4 Work loop algorithm 

To mimic the cardiac PV relationship at the cellular level with an analogous FL 

relationship, we implemented a feed-back control system that, by modulating the 

cardiomyocyte length, controls the force generated by the cardiomyocyte between a 

predefined pre-load and after-load. Pre-load and after-load when used in this paper 

refer to the target force levels of the feed-back control during the diastolic and 

systolic phase of the myocyte contraction, respectively. In our method, the four 

phases of the cardiac cycle are defined as follows (Figures 2A and 2B); Phase I, 

which is analogous to the isovolumic contraction of a ventricle, starts immediately 

after electrical stimulation and encompasses a brief period of time during which the 

cell generates a force without substantially changing its length. Phase II, which is 

analogous to the ejection phase of the ventricle after the aortic valve opens, refers to 

the period of time when the pre-programmed after-load force is maintained constant 

by shortening the cell via the feed-back loop. This phase ends when the force 

measured by the transducer drops below the after-load value. The reversal of the 

piezotranslator from shortening to stretching, when it tries to maintain the force level, 

triggers the exit of phase II. Phase III, which is analogous to the isovolumic 

relaxation, is characterized by a natural decrease of force at constant length.  Phase 

IV starts as soon as the force decreases below the pre-programmed pre-load force. 

In this last phase, which simulates the filling of the heart in diastole, the feedback 

loop stretches the cell to maintain the pre-load force value until the start of the next 

cycle with the next electrical stimulus. For the implementation of the algorithm, we 

used FPGA, which digitizes in real-time the force signal and the prescribed pre-load 

and after-load values (programmed and communicated via the software). The output 

from the FPGA drives the piezoelectric translator in Phase II and Phase IV to 

maintain the force exerted by the cell constantly equal to the prescribed values.  
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The precision of the force control can be tweaked with two parameters, the frequency 

of the iteration loop and multiplier of the proportional correction when a mismatch 

between the set-point and the actual is measured. We set the frequency of the 

iteration loop as close as possible to the update frequency of the force transducer (20 

kHz). During test runs the multiplier was increased to the point where oscillations 

started to occur and then used half that value for the remainder of the experiments. 

This resulted in an overall response frequency of the feed-back system in the order 

of 100 Hz. At room temperature this was fast enough to achieve practically square 

loops (Figure S2). At 37°C however this still left significant overshoot of the set-

points. This can probably be solved with more sophisticated feed-back algorithms, 

but that was beyond the scope of this study. Figures 2A and 2B show exemplary 

force and length signals acquired during one of these cycles. Figure 2C further 

shows, by way of example, the FL curves obtained for different pre-load and after-

load values in a series of mechanical loops with the myocyte beating at 4 Hz. As 

expected from whole heart experiments, the slope of the loop curve at the end-

systolic point is relatively constant throughout the entire maneuver.  

 

2.6 Experimental protocol 

To set the feedback control parameters, a rat ventricular myocyte was electrically 

stimulated and stretched until a minimum force development of 0.3-0.5 μN was 

recorded. The forces at 10% and 30% of the developed force (i.e. of the difference 

between the maximum and minimum forces registered from isometric contractions) 

were used to designate the initial preload and afterload values, respectively. With 

these initial preload and afterload values set, we engaged the force clamping 

algorithm. When control of the cardiac cycle appeared stable the actual protocol was 

started (see Figure S3 for an example of a stable recording).  At each pre-load 

condition, the after-load was varied using a ramp function that would rise over 

several electrical stimulations by 0.75 µN and then decline back by 0.45 µN. The 

preload was then raised by 0.3 µN and, thereafter, by another 0.3 µN (Figure S4). 

This protocol was repeated for 1, 2, 4, 6 and 8 Hz pacing frequencies in the presence 

of Tyrode or Tyrode with 100 nmol/L isoprenaline (ISO, Sigma Aldrich). More than 

90% of the attempts to attach a cell was successful. Because of the elaborate 

protocol, the full protocol could be completed in 3 to 5 cells per experimental day. 
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2.7 Data presentation and analysis 

For data analysis, we imported the force- and length-data into the pressure-volume-

loop module from LabChart 7.0 (AD instruments, Australia). The analysis calculated 

the external work value and the end-systolic and end-diastolic force values for each 

loop. Further analysis of these loop data was done in a Microsoft Excel spreadsheet 

and Prism version 6.0 (Graphpad Software, Inc., La Jolla, CA). All the force and 

length measurements were differential, i.e. initial force was not set to zero, which 

explains why the forces do not go to zero as would be expected in some of the 

graphs. Length always refers to movement of the piezo motor, not to cell length. 

 

3. Results 

3.1 Optimal cardiomyocyte isolation  

Stretching intact myocytes has been possible for a long time using carbon fibers15, 

but the force bearing capacity was limited. The development of a glue specific for 

intact myocytes,18 greatly improved the ability to stretch intact cardiomyocytes. In rat 

cardiomyocytes we can now measure forces of up to 3-4 µN, which is a 5-to 10-fold 

improvement over the carbon fiber method.15 To achieve these relatively high levels 

of force, cell isolation had to be optimized for mechanical experiments. We attempted 

two different digestive enzymes, Liberase TM (0.16 mg/mL; Roche) and Worthington 

type II. While cardiomyocyte yield was highest with Liberase digestion, the 

Worthington type II digested cells were more sticky and would bear forces that were 

2-3 times higher before cells detached. We also found that we could not add 

protease to the digestion procedure.19 Protease is used to make cardiomyocytes 

more accessible for patch clamping. We found however that adding protease led to 

cells that were very prone to arrhythmias when stretched.  

 

3.2 Workloops 

We were able to control force development by the myocyte by modulating cell length 

in a real-time feed-back loop. Figure S3 shows an example of a stable recording 

where the data show that force can be successfully modulated. Figure S3 also shows 

over- and under-shoot of the targeted pre- and after-load at 37°C. Feed-back is often 

set up using Proportional-, Integral-, and Derivative (PID) response. Our algorithm 

only has a proportional response. This works well for the slow changes at room 

temperature, but proved to be inadequate at 37°C; the rapid rate of force 

development in early systole and early diastole could easily be controlled at the set-
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point by setting the multiplier of the P (Proportional) very high, but this resulted in 

oscillations when the relaxation later in diastole slowed down. The lesser of two evils 

was accepting an over- and undershoot. The relative over/undershoot will vary with 

the rate of force development; the higher the pre-load and the closer the afterload is 

to the pre-load, the more over- and undershoot. This does not materially affect the 

experiments as the end-systolic and end-diastolic values are still controlled and 

correct. To remove the over- and undershoot, the feed-back response has to be 

differentiated with respect to the rate of force change. To do this properly however, it 

should probably also include a time-varying after-load to better mimic the cardiac 

cycle. The electronics infrastructure allows for this and will be the subject of a next 

study. 

 Signal generators built into the software allowed us to pre-program changes in 

the pre- and afterload. Figure 2C shows the results of a typical protocol. The data 

traces show that both pre- and after-load can indeed be varied in a controlled 

manner. The end-diastolic and end-systolic force relation are well described with a 

linear line in the region studied.  

 Furthermore, calculating the area within a FL cycle (or, in other words, by 

integrating the force loop as a function of length over a cardiac cycle), we can obtain 

the total mechanical work produced by the cardiomyocyte during the contraction-

relengthening process (Figure 3A). This method allows us to study how the 

mechanical work may vary as a function of pre-load, after-load and stimulation 

frequency. It is expected that, for very low or very high after-load values, the cycle 

would be predominantly isotonic or isometric, respectively, producing virtually no 

external mechanical work (Figure 3A). Therefore, for each value of pre-load force, 

there must exist an after-load force value for which the external mechanical work 

produced is maximal. To find the peak work, the work versus after-load relation was 

fitted with a 2nd order polynomial. Figure 3B proves that our method is indeed capable 

to capture this feature (for more examples see on-line supplement Figure S2). 

Knowing the pacing frequency, we can then quantify the power generated by a single 

cardiomyocyte, as shown in Figure 3C. The average peak power was 55.2±20.5 pW 

(n=10). Maximum work per loop was achieved at 4 Hz for 8 out 10 cardiomyocytes, 

peak power was achieved at 6 Hz for 7 out of 10 cells. The maximal power generated 

by a single cardiomyocyte is thus achieved at physiological heart rates. 

 We tested our approach by exposing a single cardiomyocyte to a β-adrenergic 

receptor stimulus by measuring the FL relation before (Figure 4A) and after steady-

state exposure to 100 nmol/L ISO (Figure 4B). The ISO increased the developed 

force as expected, and lowered the slope of the end-diastolic force-length (EDFL) 
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relation (Figures 4A and 4B). The combination of increased force development, 

illustrated by the higher end-systolic force-length (ESFL) relation, and reduced EDFL 

led, in this example, to a fourfold increase in the work performed per cycle (Figure 

4C).  

 Another example is shown in Figure 5 and online video S2, where pacing 

frequency is switched abruptly from 8Hz to 1Hz. In the build-up of frequency from 1 

Hz (not shown) to 8 Hz, there is little difference in the maximum amount of work per 

loop; the increase in peak systolic force at 8 Hz due to higher systolic calcium is 

cancelled out by impaired relaxation. The post-rest potentiation effect due to the 

systolic effect of high sarcoplasmic reticulum calcium load after 8Hz pacing and the 

improved relaxation in diastole leads to a 5-fold increase in the work performed per 

loop (Figure 5C).  

 The method is repeatable. In a number of cells (n=8) we repeated the 4 Hz 

pacing frequency after completing the protocol from 1 to 8 Hz pacing frequencies 

(Figure S6A). Returning to a lower frequency after pacing at 6 and 8 Hz leads to a 

small reduction in the maximum work vs. end-diastolic sarcomere length relation, 

which may be indicative of some run down (Figure S6B-I), but a Bland-Altman plot 

shows that the repeated runs at the 4 Hz pacing frequency are well in agreement 

with each other (Figure S7A and S7B; n=8). This indicates that the method presented 

in this paper is suitable for repeated measures, for example to test pharmaceutical 

compounds. 

 

3.3 Sarcomere length range 

In the experiments described in the present study, the ceiling of the end-diastolic SL 

at the highest pre-load level was frequently between 2.0 and 2.1 μm, but almost 

never exceeded 2.1 μm (supplemental Figure S5A demonstrates  the sarcomere 

length range of  each experiment and thereby the generated work). It is important to 

note that these SLs were commonly achieved at low pacing frequencies (1 and 2Hz). 

At higher pacing frequencies, the end-diastolic SL decreases slightly. End-systolic 

SLs were always between 1.6 and 1.7 μm SL.  

 

4. Discussion 

 

Using a force transducer based on laser interferometry in combination with a micro 

machined probe we were able to measure the force development of a single 

cardiomyocyte with unprecedented sensitivity, signal quality and responsiveness. Its 

sensitivity bridges the gap between Atomic Force Microscopy, which excels in the 
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picoN range and the classic force transducers used for muscle physiology, which 

show effective sensitivity ends in the μN range. The ability to fully submerse the force 

transducer also gives it very good baseline stability. The combination of nN-

sensitivity, stability and a 7kHz resonance frequency for the first time opens up the 

possibility to control the force development at the level of a single intact myocyte 

using true feed-back.  

 

4.1 Work loops and power generation 

We have used the ability to control force to mimic the cardiac cycle at the single 

myocyte level. Our method provides reproducible linear EDFL as well as ESFL 

relations. Changes in the inotropic state of the cardiomyocyte by increasing the 

pacing rate or β-adrenergic receptor stimulation changes the ESFL and EDFL in a 

predictable manner. We are also able to measure the changes in cardiomyocyte 

generated work in response to changes in pre- and after-load. In particular the ability 

to do repeated measures will be useful in studying pharmaceutical interventions. 

 The focus of the experiments in the present study was to establish the relation 

between levels of pre-load, after-load and pacing frequency with the external work 

the myocyte produces. The amount of external work is what ultimately determines 

the capacity of the heart to pump blood. The amount of work per loop increases with 

pacing frequency up to 4Hz. At 6 and 8Hz the work per loop decreases slightly, 

mostly due to an elevated EDFL. The power generation peaks at 6Hz. This is 

consistent with studies on ultra-thin rat trabeculae20  that can be paced at high rates, 

where isometric force peaks at 6Hz. In cardiomyocytes the pacing frequency has a 

limited effect on power generation between 4 and 8Hz (Figure 3C), while the major 

determinant of power generation is the pre-load level (Figures 3B). Rat ventricular 

myocytes appear to be adapted to produce most power over the physiological range 

of heart rates.21 Output per cardiomyocyte is further increased by β-adrenergic 

receptor stimulation.  

 The effects of β-adrenergic stimulation have been studied extensively in linear 

preparations such as permeabilized myocytes, unloaded intact myocytes or muscle 

strips like trabeculae or papillary muscle.22-24 Experiments on permeabilized 

myocytes are suitable to measure the effects of PKA-mediated phosphorylation on 

calcium-sensitivity and passive force of the myofilaments.25, 26 Unloaded, intact 

myocytes are ideal for studying the effects on excitation-contraction coupling 

because of the ease with which calcium kinetics can be measured in combination 

with myocyte shortening. The current work-loop experiments on intact 

cardiomyocytes illustrate the contribution of both changes in sarcomere properties 
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and in calcium handling. The combined effects of myofilament calcium 

desensitization, reduced passive force and enhanced calcium re-uptake during β-

adrenergic receptor stimulation led to a small decrease in the slope of the EDFL 

relation. The reduced slope of the EDFL relation, while the pre-load stays constant, 

results in increased stretch of the cardiomyocyte at end-diastole. This extra stretch 

further enhances the force development in systole by length-dependent activation, on 

top of the increased force development caused by higher end-systolic cytosolic 

calcium levels. The increase in stretch during diastole and greater force development 

in systole both augment the area encompassed by the work-loop. It leads to an 

approximate 4-fold increase in the work generated by the cardiomyocyte (Figure 4C) 

upon β-adrenergic receptor stimulation.  

 

4.2 Limitations of the used methods 

Measuring work loops in isolated myocytes by controlling the force in parts of the 

cycle gives results similar to those achieved in PV-loop measurements of the whole 

heart. This is illustrated by the suitability of existing PV-loop analysis software to 

analyze the data. But it would go too far to consider these force-length loops as one 

dimensional PV loops. For example we have no dynamic force control in systole to 

mimic the changing impedance in the ejection phase. Better models have been made 

in the past using trabeculae.27-29 The use of a real-time programmable machine, such 

as the FPGA, will allow future modifications of the algorithm that do take these 

complexities into account. The data shown here do however properly represent some 

of the key aspects of the whole heart measurements, most importantly a consistent 

end-diastolic and end-systolic pressure (i.e. force) - volume (i.e. length) relation. This 

had been shown before by Iribe et al.,15 however those graphs had to be 

painstakingly constructed by manually adjusting the feed-forward parameters with 

each change in pre- and after-load. The current method greatly simplifies the 

process. The data for Figure 2C where three pre-load levels were tested for a full 

range of afterloads took less than 13 seconds to collect. As it is feed-back and not 

feed-forward it is also sufficiently robust to cope with beat-to-beat changes in 

contractility. An example is shown in Figure 5C where pacing is abruptly changed 

from 8Hz to 1Hz, resulting in an acute 5-fold increase in the amount of work 

performed per stroke.  

 The work loops in Figure 3B and the power calculated in Figure 3C are based 

on the length change of the piezo translator as force x length change determines the 

external work performed by the myocyte. Looking at Figures 5B however, and this is 

exemplary for all our data, there is a lot of internal shortening of the sarcomeres. The 
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sarcomeres display no distinct isometric activation and isometric relaxation phase. 

With the current gluing procedure this cannot be avoided and it probably can never 

be completely avoided, even with better attachment methods. In the past, using the 

carbon fiber technique that has less compliance in the attachment we experienced 

the same.15 The classic study by ter Keurs et al16 where length-dependent activation 

in rat trabeculae is described,  shows internal shortening where end-systolic SL does 

not increase till the trabecula is stretched beyond 1.95 µm end-diastolic SL.16 At that 

point the majority of length-dependent force increase has already taken place. It 

appears as if in rats the end-systolic SL is of limited relevance for the force 

development, which for a given inotropic state is dominated by the end-diastolic SL.  

The upper limit of the end–diastolic SLs in our experiments was found to be 

approximately 2.1 µm, but usually ended between 1.95-2.00 µm SL after which 

further increases in pre-load did not further stretch the cells. The experiments here 

were done at relatively high extracellular calcium levels (~1.8 mmol/L). We 

hypothesize that the intracellular calcium levels were such that the diastolic force 

levels had an active component (as previously shown in King et al30) that was further 

enhanced by length-dependent activation upon stretch, effectively leading to a very 

non-linear relation between pre-load and SL increase.  We do think that we cover the 

majority of the physiological range with maximal end-diastolic SLs of up to 2.1 µm. X-

ray studies on intact mouse hearts and measurements on skinned mouse hearts 

come up with a range of 1.9-2.1 and 1.8-2.1 µm respectively.31, 32 Older studies on 

fixed rat hearts showed SLs of 2.0-2.1 µm at diastolic filling pressures.33 The 

physiological range likely increases with the size of the animal, but even in canine 

hearts fixed at end-diastolic pressure, the SLs were below 2.1 µm.34 Rat 

cardiomyocytes have a compliance similar to mouse myocytes and we thus expect a 

comparable physiological SL range in mice.  

 

4.3 Advantages of work-loop measurements at the single cell level 

Work-loops offer a specific advantage over isometric contractions which have been 

the norm over the past decades, and that is the sensitivity to changes in diastolic 

properties. As the slope of the EDFL is shallow, a small change in the slope will 

result in a significant change in end-diastolic sarcomere length, while other 

parameters remain equal. As our data show, a 0.1 um increase in end-diastolic 

sarcomere length results in a ~100% change of the maximum work that can be 

produced at that pre-load. This is illustrated in the schematic drawing of Figure 4D. 

The figure also shows the contrast with equivalent isometric contractions, where a 

small change in the slope will result in a small change in the measured end-diastolic 
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force that, although important, may sometimes not even be noticed.35 It could be 

argued that the bias towards systolic changes with studies using isometric 

contractions has led to a research bias towards treatments that affect systolic 

function. We therefore think that the ability to measure work-loops at the single cell 

level adds an important tool to study the functional consequences of disease and 

treatment options in animal models, notably with respect to diastolic dysfunction. This 

paper describes for the first time a method that can be used practically in testing the 

effect of drugs or disease models that affect diastolic function by measuring its effect 

on the work that the myocyte can perform. 
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Figure Legends 

 

Figure 1 The experimental approach. (A) Schematic view of the experimental setup. 

(B) Microscope image of an intact, live cardiomyocyte glued in between the two 

anchoring needles; one of the two needles is anchored to the free hanging end of the 

cantilever, the other to a piezoelectric translator that allows one to modulate the 

length of the cell. (C) Microscope image of the force sensor.  

 

Figure 2 The four phases of the cardiac cycle. (A,B) Force and length tracings of a 

myocyte contracting at 4Hz (240 bpm) subjected to pre- and after-load force control. 

The three depicted contractions have the same pre-load but different after-load. 

Phase I through IV correspond to the cardiac cycle (see text for details). (C) Force 

vs. length work-loops; the area within a loop represents the mechanical work 

performed by the cardiomyocyte. 

 

Figure 3 The power generation of a single cardiomyocyte. (A) Diagram to illustrate 

that the expected power generated by a single cardiomyocyte will be maximal at 

intermediate values of after-load; (B) Work performed by a single isolated 

cardiomyocyte (paced at 4 Hz) plotted as a function of after-load for three different 

values of pre-load (0.2μN, 0.5 μN, and 0.8 μN). Data were fitted with a parabola to 

find the highest value of performed work; (C) Peak power generated by a single 

isolated cardiomyocyte as a function of pacing frequency. The maximum peak power 

is generated at physiological rates, where pre-load is the main determinant of power 

generation. 

 

Figure 4 The power generation of a single cardiomyocyte upon isoprenaline (ISO) 

treatment. (A) Force-length (FL) relation of a single cardiomyocyte was monitored in 

Tyrode for several stretches (i.e. increase in pre-load). (B) After the baseline (BL) 

measurements, the cell was exposed to 100 nmol/L of ISO and subsequently the 

force-length relation was repeated. End-diastolic force-length (EDFL) and end-

systolic force-length (ESFL) value can be determined for both Tyrode as well as ISO-

treated cardiomyocytes. (C) For every pre-load step, the generated power (i.e. the 

area of a single loop) is higher with in ISO-treated condition. (D) Schematic 

comparison between work-loops and isometric contractions and the response to 

isoproteronol, that has an effect on both the EDFL and the ESFL. The loop marked 
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with (1) is at baseline. (2) is the loop after ISO with the same pre- and afterload as 

(1). (3) is the loop where the afterload is adjusted to measure the maximum amount 

of work. On the right a sketch of the equivalent isometric contractions. With the 

isometric contraction the measured change is heavily weighted towards increases in 

systolic force development, with only a small change in diastolic force. This is due to 

the EDFL being much shallower than the ESFL. Using work-loops, the functional 

effects on both diastole and systole are given equal weight. The change upon an 

inotrope stimulus is further enhanced when looking at the maximum work that can be 

performed for a given pre-load. Now work-loops show an approximate four-fould 

increase in work vs. a 50-75% increase in isometrically developed force. The figure is 

based on the loops collected in Figure 4C. 

 

Figure 5 The post-rest potentiation effect. Switching the frequency from 8 to 1Hz, 

resulted in an increase in force development (A), sarcomere shortening (B) and ~5-

fold increase in single cell work generation within the first contractions (C). 
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