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Kohn-Sham potentials and exchange and correlation energy densities from one- and two-electro
density matrices for Li2, N2, and F2

P. R. T. Schipper, O. V. Gritsenko, and E. J. Baerends
Scheikundig Laboratorium der Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands

~Received 27 May 1997!

A definition of key quantities of the Kohn-Sham form of density-functional theory such as the exchange-
correlation potentialvxc and the energy density«xc in terms of wave-function quantities~one- and two-electron
density matrices! is given. This allows the construction ofvxc and«xc numerically as functions ofr from ab
initio wave functions. The behavior of the constructed exchange«x and correlation«c energy densities and the
corresponding integrated exchangeEx and correlationEc energies have been compared with those of the
local-density approximation~LDA ! and generalized gradient approximations~GGA! of Becke, of Perdew and
Wang, and of Lee, Yang, and Parr. The comparison shows significant differences between«c(r ) and the
«c

GGA(r ), in spite of some gratifying similarities in shape for particularly«c
PW. On the other hand, the local

behavior of the GGA exchange energy densities is found to be very similar to the constructed«x(r ), yielding
integrated energies to about 1% accuracy. Still the remaining differences are a sizable fraction (;25%) of the
correlation energy, showing up in differences between the constructed and model exchange energy densities
that are locally even larger than the typical correlation energy density. It is argued that nondynamical corre-
lation, which is incorporated in«c(r ), is lacking from«c

GGA(r ), while it is included in«x
LDA(r ) and«x

GGA(r )
but not in«x(r ). This is verified almost quantitatively for the integrated energies. It also appears to hold locally
in the sense that the difference«x

GGA(r )2«x(r ) may be taken to represent«c
nondyn(r ) and can be added to

«c
GGA(r ) to bring it much closer to«c(r ). @S1050-2947~98!02703-6#

PACS number~s!: 31.15.Ew, 31.15.Ar, 31.25.Nj, 31.10.1z
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I. INTRODUCTION

Examples of accurate Kohn-Sham~KS! functionals con-
structed numerically from accurate~ab initio! wave functions
for chemically interesting systems are of importance for
understanding of the success of density-functional the
~DFT! and for its further development as well as for analy
of the effect of electron correlation@1,2#. It has recently been
shown that it is indeed possible to obtain all the key K
quantities such as the exchange-correlation KS poten
vxc(@r#;r ) @3–8#, energy density per particle«xc(@r#;r )
@9,10#, and various energy characteristics from the correla
ab initio electron densityr~r ! and the one- and two-electro
density matrices.

The energy density«xc is usually considered to be th
most interesting quantity since it directly yields th
exchange-correlation energyExc of a many-electron system
through the integral

Exc@r#5E r~r !«xc~@r#;r !dr . ~1.1!

Modeling of «xc with approximate functionals has therefo
become an essential part of the development of DFT.
specific expression which the approximate energy den
takes as a function of the electron coordinate is, however,
uniquely defined, i.e., the expression can be altered by a
tion of any functional of the density that integrates to ze
over the density. In this respect the uniquely defin
exchange-correlation potentialvxc , defined through the func
tional derivative
571050-2947/98/57~3!/1729~14!/$15.00
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vxc~r !5
dExc@r#

dr
, ~1.2!

is a severe test for approximate functionals. Unfortunate
the potentials corresponding to the local-density approxim
tion ~LDA ! and the current generalized gradient approxim
tions ~GGA! do not reproduce essentially accurate potent
particularly well @6,11,12#, so that special gradient- an
Laplacian-dependent approximations were developed forvxc
@6,13#. In spite of the fundamental importance ofvxc , how-
ever, it is rather the energy density«xc that is receiving most
attention.

Usually, «xc is further subdivided into the exchange«x
and correlation«c energy densities that yield the correspon
ing energiesEx and Ec . Approximate functional forms of
«x(@r#;r ) and «c(@r#;r ) are derived from homogeneous o
inhomogeneous electron-gas models@14,15# with due ac-
count of various scaling and asymptotic properties. The
rameters of the approximate functionals can be obtained n
empirically from sum-rule conditions@15# but usually they
are fitted to reproduce conventionalEx @16# andEc @17–19#
values for prototype atomic systems. The current GGA fu
tionals obtained in this way provide a surprisingly good d
scription of a number of molecular characteristics, in partic
lar, of the molecular thermochemistry. In many cases
accuracy of the calculated bonding and atomization ener
of molecules is approaching conventional ‘‘chemical acc
racy’’ @20,21#.

In spite of the extensive analysis of the GGA functiona
performed in the literature, the form of«x and «c as func-
tions of the electron coordinater is seldom taken into con
sideration and little is still known about the local behavior
1729 © 1998 The American Physical Society
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the standard LDA and GGA«x and «c models. Moreover,
for molecules the exchange and correlation energies obta
with these models are seldom compared with the estimate
the true DFT exchange and correlation energies.

In this papervxc and«xc are constructed numerically from
ab initio one- and two-electron density matrices for t
homonuclear diatomic closed-shell molecules Li2, N2, and
F2. These molecules are considered as prototype sys
with truly covalent bonds and they are included into a
representative set of molecules to check the accuracy of
proximations in DFT. They represent rather different ca
of covalent bonding, ranging from the weakly bonded L2
with a single 2s-baseds bond, to the very strongly bonde
N2 with one s and twop bonds, to the weakly bonded F2
with one 2p-baseds bond and Pauli repulsion between tw
pp lone pairs on each F atom.

The paper is organized as follows. Section II conta
definitions of the quantities«xc and vxc in terms of density
matrices. We will show that some physically meaning
contributions to these quantities can be distinguished
clarify the relationship between«xc andvxc . These are, first,
the potential of the exchange-correlation holevxc

hole and the
potentialvc,kin , representing the effect of Coulomb correl
tion on the kinetic functional. The sum12 vxc

hole1vc,kin repre-
sents a physically well motivated choice for the functi
«xc(r ) and these potentials also constitute important con
butions tovxc . In addition there is the potentialv resp, which
only entersvxc but not«xc and represents ‘‘response’’ effec
on vxc

hole andvc,kin . Details concerning the accurate config
ration interaction~CI! calculations and the correspondin
Kohn-Sham solutions are given in Sec. III. In Sec. IV
comprehensive discussion is given ofvxc and its compo-
nents. Characteristic features in the shape of these poten
are related to the molecular electronic structure, in particu
the behavior of Fermi and Coulomb correlation holes.
nally, «xc and its components«x and «c are considered in
Sec. V. A comparison is made between the constructed«xc ,
«x , and«c—keeping in mind their nonuniqueness—and t
model exchange-correlation energy densities, such as
GGA models of Becke@22#, and of Perdew and co-worker
@15,23,24# for exchange and of Perdew and co-worke
@15,23,24#, and of Lee, Yang, and Parr@25# for Coulomb
correlation. Also the corresponding GGA integrated e
change and correlation energies are compared to the ‘‘ex
quantities.

II. PARTITIONING OF THE KOHN-SHAM POTENTIAL
vxc AND THE RELATION BETWEEN vxc AND THE

EXCHANGE-CORRELATION ENERGY DENSITY «xc

In this section we will present the definition of the K
functionals which can be constructed usingab initio wave
functions. A central quantity of DFT is the electron dens
r~r ! which is represented in the KS theory as a sum oveN
occupied orbitalsf i(r ). Both the orbitalsf i ~which are
functionals of the density! and the densityr are used in the
KS expression for the total electronic energyE@r#,

E@r#5Ts@r#1V@r#1WH@r#1Exc@r#. ~2.1!
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Here Ts is the kinetic energy of noninteracting particle
~$xi%5$r i ,si%, $r i% are the space andsi are the spin vari-
ables!,

Ts@r#52 1
2 (

i 51

N E f i* ~x!“2f i~x!dx. ~2.2!

V is the energy of electron-nuclear attraction,WH is the Cou-
lomb or Hartree energy of the electrostatic electron-elect
repulsion, andExc is the~unknown! exchange-correlation en
ergy functional. In order to subdivideExc into the exchange
Ex and correlationEc components, the determinantCs built
from the KS orbitalsf i is used as a reference wave functio
with the energyEKS,

EKS5^CsuĤuCs&5Ts1V1WH1Ex , ~2.3!

whereĤ is the Hamiltonian of the system andEx is the DFT
definition for the exchange energy,

Ex52
1

2 (
i 51

N

(
j 51

N E f i* ~x1!f j~x1!f j* ~x2!f i~x2!

ur12r2u
dx1dx2

5
1

2 E r~x1!rx~x2ux1!

ur12r2u
dx1dx2 ~2.4!

in which rx(x2ux1) is the exchange~Fermi! hole function.
The correlation energyEc in DFT is defined as the remainde
when the exchange energyEx defined above is subtracte
from Exc , which implies thatEc is simply the difference
between the exact energyE of Eq. ~2.1! andEKS of Eq. ~2.3!,

Ec5Exc2Ex5E2EKS. ~2.5!

The KS determinantal wave function thus plays the sa
role as the Hartree-Fock~HF! determinantal wave function
does in the conventional definition, but nowEKS is defined in
terms of the exact densityr and corresponding KS orbital
f i , while EHF is defined in terms of the HF densityrHF and
the related HF orbitals.

We proceed with the definition of the exchange corre
tion energy density«xc @Eq. ~1.1!# which allows its construc-
tion from ab initio first- and second-order density matrice
According to @9,10#, «xc can be represented as the sum
kinetic vc,kin and potentialvxc

hole components as follows:

«xc~@r#;x!5vc,kin~@r#;x!1 1
2 vxc

hole~@r#;x!. ~2.6!

Herevxc
hole is the potential of the exchange-correlation hole

cannot be obtained as a functional derivative but it can
expressed through the exchange-correlation hole func
rxc(x2ux1) defined in terms of the diagonal part of th
second-order density matrixr2(x1 ,x2) or through the pair-
correlation functiongl(x1 ,x2) with the electron interaction
l/r 12 at full strengthl51,
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vxc
hole~x1!5E r2~x1 ,x2!2r~x1!r~x2!

ur12r2ur~x1!
dx2

5E rxc~x2ux1!

ur12r2u
dx2

5E r~x2!@gl51~x1 ,x2!21#

ur12r2u
dx2 . ~2.7!

The kinetic componentvc,kin @10,26# is the kinetic correla-
tion energy density,

Tc5T2Ts5E r~x!@vkin~x!2vs,kin~x!#dx

5E r~x!vc,kin~x!dx. ~2.8!

In view of the recent comments by Huang and Umrigar@27#
on the equality of expressions forvc,kin ~called tc in Ref.
@27#! in terms of first or second derivatives of the on
electron density matrix we make the following observatio
The quantitiesvkin and vs,kin are local potentials that ar
components of the effective local potential in the Sch¨-
dinger type of equation for the ‘‘density orbital’’Ar/N
@26,28#. vkin results if the derivation is carried out@26# with
the exact ground-state wave functionC0 for the effective
potential for the exact density, whilevs,kin results if the the
derivation is carried out for the system of noninteracti
Kohn-Sham electrons with wave functionCs and of course
the same density. It has been shown in Ref.@26# thatvkin and
vs,kin can be defined in terms of the conditional probabil
amplitudes@28# F of the total ground-state wave function

F~x2 ,...,xNux1!5
C0~x1 ,...,xN!

Ar~x1!/N
, ~2.9!

vkin~x1!5E @F* ~x2 ,...,xNux1!

3~2 1
2 ¹1

2!F~x2 ,...,xNux1!#dx2•••dxN

~2.10!

and similarlyFs of the KS determinantCs . For real wave
functions it is easy to prove from the conditio
*F* (x2 ,...,xNux18)F(x2 ,...,xNux1)dx2•••dxN51 for x18
5x1 that also the alternative expression

vkin~x1!5E u“1F~x2 ,...,xNux1!u2dx2•••dxN ~2.11!

holds. This leads to two alternative expressions forvkin in
terms of the one-electron density matrixg(x18 ,x1) and the
diagonal densityr(x1)5g(x1 ,x1). The first†Eq. ~26! in Ref.
@26#‡ is

r~x1!vkin~x1!52
1

2
¹1

2g~x18 ,x1!U
x

185x1

2NS r~x1!

N D 1/2

3S 2
1

2
¹1

2D S r~x1!

N D 1/2

, ~2.12!
.

which shows thatvkin is the energy density of the kineti
energyT minus the von Weisza¨cker kinetic energyTW , the
latter beingN times the kinetic energy of the density orbit
Ar/N. The second†Eq. ~42! in Ref. @26#‡ is

r~x1!vkin~x1!5
1

2
“18•“1g~x18 ,x1!U

x
185x1

2
u“1r~x1!u2

8r~x1!
.

~2.13!

Similar expressions hold forvs,kin in terms of the one-
electron density matrixgs corresponding to the Kohn-Sham
determinantCs . If we take the differencevkin2vs,kin , using
either expressions~2.12! in both cases, or using expressio
~2.13!, the second term in these expressions cancels exa
sincer5rs . We may therefore write the kinetic correlatio
energy density either in terms of second derivatives or fi
derivatives of the one-electron density matrices,

r~x1!vc,kin~x1!52 1
2 ¹1

2g~x18 ,x8!ux
185x1

1 1
2 ¹1

2gs~x18 ,x1!ux
185x1

5 1
2 “18•“1g~x18 ,x1!ux

185x1

2 1
2 “18•“1gs~x18 ,x1!ux

185x1
. ~2.14!

In Ref. @26# and subsequent work@9,10# always the form
with the first derivatives is used since the expansion
Gaussian basis functions leads to increased local inacc
cies for second derivatives@29#.

We wish to stress that the well-known nonuniqueness
the kinetic energy density, alternative forms being obtain
by carrying out a partial integration of the kinetic energ
does not pertain tovc,kin : vc,kin is a unique function of po-
sition. Definition~2.6! of «xc is in fact in terms of potentials
vxc

hole andvc,kin that have a clear physical interpretation, a
which are unique functions of position, being components
the exchange-correlation partvxc of the KS potential~see
below! which is known to be a unique function of position
In the DFT literature an alternative definition of«xc is often
used, in which it is expressed via an integral over the c
pling parameterg @30,31#,

«xc~x1!5
1

2 E E
0

1 r~x2!@gl~x1 ,x2!21#

ur12r2u
dl dx2 .

~2.15!

The nonuniqueness of the exchange-correlation energy
sity as a function of position is well known, as is the non
niqueness of the kinetic energy density, but in this paper
choose definition~2.6! that is in terms of components of th
KS potential thatare unique functions of position. Expres
sions~2.7! and~2.14! allow us to construct«xc from ab initio
first- and second-order density matrices, we do not nee
know the dependence ofgl on l.

Using Eqs. ~2.4! and ~2.5! we can subdivide the
exchange-correlation energy density into its exchange c
ponent,
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«x~x1!52
1

2r~x1! (
i 51

N

(
j 51

N

3E f i* ~x1!f j~x1!f j* ~x2!f i~x2!

ur12r2u
dx2

5
1

2
vx

hole~x1! ~2.16!

and its correlation component,

«c~x1!5«xc~x1!2«x~x1!5vc,kin~x1!1 1
2 vc

hole~x1!,
~2.17!

wherevc
hole is the potential of the Coulomb correlation ho

vc
hole~x1!5vxc

hole~x1!2vx
hole~x1!5E rc~x2ux1!

ur12r2u
dx2 .

~2.18!

Equation ~2.6! for «xc also provides a partitioning of th
exchange-correlation potentialvxc . Taking the functional de-
rivative of Exc@r#, Eqs.~1.1! and ~1.2!, leads to the follow-
ing expression forvxc :

vxc~@r#;x1!5vxc
hole~@r#;x1!1vc,kin~@r#;x1!1v resp~@r#;x1!,

~2.19!

wherev resp(@r#;r ) is the ‘‘response’’ potential

v resp~@r#;x1!5
1

2 E r~x2!r~x3!

ur22r3u
dgl51~@r#;x2 ,x3!

dr~x1!
dx2dx3

1E r~x2!
dvc,kin~@r#;x2!

dr~x1!
dx2 .

As was shown in@26,32#, v respcan be expressed also throug
the expectation values of the Hamiltonian of t
(N21)-electron system calculated with the condition
probability amplitudesF andFs of Eq. ~2.9!.

In the next section a procedure for the numerical c
struction ofvxc and«xc and their components and the calc
lation of the KS energy characteristics will be outlined.

III. COMPUTATIONAL DETAILS

Since the scheme ofvxc and «xc construction fromab
initio wave functions used in this paper has already b
presented and discussed in@9,10#, we will only give some
specific details concerning the present calculations. The
related reference densities and one- and two-electron de
matrices have been obtained by means of Hartree-Fock
subsequent configuration interaction calculations using
ATMOL package@33#. We have calculated, in a basis of co
tracted Gaussian functions, the ground states of Li2, N2, and
F2 at the experimental equilibrium bond distancesRe
55.05 a.u. for Li2, Re52.074 a.u. for N2 and Re
52.668 a.u. for F2. For Li a basis@34# with eights- and four
p-type functions has been used, which has been augme
with extra p and d polarization functions. For N and F th
correlation-consistent polarized core-valence triplez added
~CC-PCVTZ! basis sets@35# have been used. A mor
l

-

n

r-
ity
nd
e

ted

detailed discussion of the applied basis sets can be foun
Ref. @36#.

The multireference CI~MRCI! calculations have been
carried out within the direct CI approach with 106 referen
configurations for Li2 and N2 and 36 reference configuration
for F2. The reference configurations were selected within
internal space of eight lowest-energy Hartree-Fock molec
orbitals ~MO! for Li2 and ten orbitals for N2 and F2. All
single and double excitations from each reference config
tion to either internal or external subspaces have been
cluded in the MRCI, which have also been augmented w
the configurations obtained by single excitation from a r
erence configuration to the internal subspace with subseq
single excitation to the external subspace. The MRCI cal
lations performed atRe recover 86% of the total Coulomb
correlation energy for Li2 and N2, and 84% for F2.

To constructvxc , «xc , and their components, the firs
order density matrixg(r18 ,r1), its diagonal partr~r !, and the
diagonal partr2(r1 ,r2) of the second-order density matri
are calculated from the MRCI wave function by means o
Gaussian orbital density functional code@26,37# based on the
ATMOL package.

The KS orbitals are constructed in an iterative proced
@6,8# in the same basis of MO’s as has been used for
MRCI calculations. After 75–100 iterations the procedu
has reached its saturation state and further iterations m
changes only within a few millihartrees for the calculated K
orbital energies« i and the kinetic energyTs . The accuracy
of the resultant KS solution can be characterized by the
ues of the absolute integral error atmth iteration,

Dr5E urm~r !2r~r !udr , ~3.1!

with the valuesDr50.0035e for N2, Dr50.007e for F2,
and Dr50.04e for Li2 obtained after 100 iterations. Th
relatively large error for Li2 appears, probably, because f
this molecule with its diffuse electron density the region
density tails~where both the Gaussian basis set represe
tion and the potential construction procedure are less
equate! plays a more important role.

IV. THE EXCHANGE-CORRELATION POTENTIAL
AND ITS COMPONENTS

In Fig. 1 the molecular Kohn-Sham exchange-correlat
potentialsvxc and their componentsvxc

hole, vc,kin , and v resp

constructed for Li2, N2, and F2 at Re(A-A) are plotted along
the bond axis as functions of the distancez from the bond
midpoint. The pictures thus represent the regions ofs bonds.
In all cases bothvxc andvxc

hole are negative functions, withvxc

being consistently less attractive than the correspond
vxc

hole. This can be understood from the fact thatvxc
hole is the

~negative! potential of a negative density, i.e., the exchang
correlation hole which represents the main correlation effe
According to Eq.~2.19!, vxc is formed by the addition of the
usually repulsive contributions ofvc,kin andv resp to vxc

hole.
The form ofvxc resembles that ofvxc

hole. In particular, both
potentials have a deep well around the nucleusA, which
corresponds to a strongly attractive exchange-correlation
tential in the 1s core shell. Still, there exists a significan
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FIG. 1. The total exchange-correlation potentialnxc and its components, the potentialsnxc
hole, nc,kin , andn resp, along the bond axis at the

equilibrium bond distance;z is the distance from the bond midpoint.~a! Li2, ~b! N2, and~c! F2.
en
o

r

ot
n
e
r

has

x-

ible
difference betweenvxc and vxc
hole. The latter is a rather

smooth potential, whose most visible feature is its differ
slope in the core and valence regions. It is interesting to n
the somewhat different form ofvxc

hole in the bonding and oute
regions of Li2 and N2. While in the outer region~larger z
values! vxc

hole smoothly approaches the Coulombic asympt
ics vxc

hole>21/r , it forms a plateau in the bonding regio
~small z values!. For N2 this plateau is at significantly mor
negative energy than that for Li2, which reflects the stronge
t
te

-

exchange-correlation effects in the former case@see Figs.
1~a!, 1~b!#. For F2, on the other hand,vxc

hole in the bonding
region does not clearly exhibit such a plateau, although it
a rather flat maximum at the bond midpoint@see Fig. 1~c!#.

As will be shown in the next section, the dominant e
change componentvx

hole of vxc
hole which, according to Eq.

~2.16!, is twice the exchange energy density«x , displays a
similar plateau for all three molecules considered. A poss
interpretation of the plateau form ofvxc

hole and«x around the



t
e
o
s
ll

t

n

d

a
g

ze
re

at

e

hi
ta
o
c
i

.
s
n

en
io
aly

io

c

e-

t
c

r

id

re

ed
es

le

tron
.

ed
ks
la-
hell

nge-
ey
Ref.
e
s on
s,

ing
us

lar-

on
ther
s a
h
ent
ous
le
si-

eak

er-

ed-

plike
es
wer

1734 57P. R. T. SCHIPPER, O. V. GRITSENKO, AND E. J. BAERENDS
bond midpoint is that for the valence electrons of thes bond
this region is the interior region of the exchange~Fermi! hole
which is delocalized symmetrically over both atoms ofA2
@38#. The hole has large depth around each nucleus, and
charge distribution of such a hole can be approximated
fectively with a simple electrostatic model of two charges
20.5e which are placed along the bond axis at distancer
and 2r from the bond midpoint. Furthermore, it is we
known that the exchange hole of an electron pair bond
essentially static, i.e., it does not change shape when
reference position is changed around the bond midpoint@38#.
We are thus led to consider the following very simple pote
tial for small displacementsz from the bond midpoint:

vmod~z!52
0.5

r 2z
2

0.5

r 1z
>2

1

r S 12
z2

r 2D . ~4.1!

Within this model the potential will only change in secon
order for small displacements (z/r !1) from the bond mid-
point, showing that our model potential is essentially fl
around the bond midpoint. These simple electrostatic ar
ments indicate that the plateau ofvxc

hole in the bonding region
can be understood as a manifestation of the delocali
static nature of the corresponding Fermi hole and the p
ence of the additional Coulomb hole, which atRe is much
weaker than the exchange hole, does not change this fe
qualitatively for Li2 and N2.

Contrary to this, the addition of the Coulomb hole do
change the form ofvxc

hole in the bonding region of F2 as was
mentioned above. A possible interpretation is that in t
case the addition of the Coulomb hole makes the to
exchange-correlation hole substantially more localized
the atom where the reference electron is. A more pronoun
effect of the Coulomb hole is expected when the bond
relatively long and weak~cf. H2 at long distance in Ref
@38#!, which is the case in F2. As a result, the total hole start
to localize on the nucleus that is nearest when the refere
position moves away from the bond midpoint, and the pot
tial becomes Coulombic rather than flat. In the next sect
these qualitative arguments will be supported with the an
sis of the constructed correlation energy density«c , which
includes as a part the potential of the Coulomb correlat
hole vc

hole, Eq. ~2.18!.
In contrast to the rather structurelessvxc

hole, the total
exchange-correlation potentialvxc displays a characteristi
structure. The most visible features ofvxc are the local
maxima~intershell peaks! between the core and valence r
gions of atomA. These peaks are clearly exhibited for N2 at
z50.6 and 1.5 a.u., and for F2 at z51.0 and 1.6 a.u., while
for Li2 they are less pronounced. Beyond these peaks on
outer sides of the N and F atoms there are weak lo
minima, while for the lighter Li2 moleculevxc has a smooth
monotonic form in this region. Another characteristic featu
for Li2 is that near the bond midpointvxc is almost parallel to
vxc

hole as it forms a plateau. For N2 and F2 in contrast,vxc

displays, after passing through a local minimum, a bond m
point ‘‘peak’’ @see Figs. 1~b! and 1~c!#. Since thevc,kin and
v resp parts ofvxc are responsible for its observed structu
we will next analyze these contributions tovxc in more de-
tail.
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The kinetic componentvc,kin of vxc is defined by Eq.
~2.11! in terms of the difference between the integrat
squares of the gradients of the conditional amplitud
u“1Fu2 and u“1Fsu2. In other words,vc,kin represents the
difference in sensitivity of the full exchange-correlation ho
and the exchange-only~Fermi! hole in the distribution of the
other electrons to displacement of the reference elec
@10,26#. ~Note thatvc,kin is enhanced by a factor of 10 in Fig
1.!

The characteristic features ofvc,kin in the s bond region
are the 1s-2s intershell peaks, which occur for N2 at about
z50.5 and 1.4 a.u.~for Li 2 at 1.1 and 4 a.u. and for F2 at 1
and 1.6 a.u.! and which contribute to the above-mention
corresponding peaks invxc at these positions. These pea
reflect the added effect of mobility of the Coulomb corre
tion hole when the reference electron crosses the inters
border, so that the corresponding change of the excha
correlation hole is larger than that of the Fermi hole. Th
are analogous to the peaks observed and explained in
@10# for the hydrides LiH, BH, and HF. In all cases th
intershell peaks are clearly displayed as the largest one
both sides of atomA. At smaller distances from the nucleu
in the core regions, there are also smaller peaks invc,kin
which get considerably closer to the nucleus when go
from Li2 to N2 and coalesce into a single peak at the nucle
for F2. According to the interpretation given in@10#, these
peaks are related to the change in Coulomb hole from po
ization to expansion shape in this region@38#.

Another feature ofvc,kin is its definitely positive value in
the bond midpoint region~in the case of F2 even a peak!.
This also can be explained directly from the definition~2.11!
in terms of the probability amplitudes~2.9! @26#. If the ref-
erence electron is displaced from a pointr1 close to the bond
midpoint towards a certain atom, the probability distributi
of the second electron in this bond increases at the o
atom due to the left-right Coulomb correlation. This cause
change in the exchange-correlation hole associated witF
and produces positive values of the amplitude gradi
u“1Fu2. In the corresponding KS case there is no analog
effect for u“1Fsu2, sinceFs describes a pure exchange ho
which for an electron pair bond is independent of the po
tion of the reference electron. Therefore the resultingvc,kin is
definitely positive in this region. As was established in@26#
for H2 and in@10# for the monohydridesXH, X5Li,B,F, the
increasing left-right correlation provides an appreciable p
for the dissociating molecule, while forRe the height of the
‘‘peak’’ ~if any! is small. The present results forvc,kin show
a similar trend. The bond midpoint peak is displayed invc,kin
for F2, while for Li2 and N2 vc,kin exhibits only a positive
plateau in this region. This is in agreement with the obs
vation made before that thes bond in F2 starts to exhibit
behavior that is typical for stretched bonds. The Pauli clos
shell repulsion between the occupiedpp orbitals on the F
atoms is indeed supposed to ‘‘stretch’’ theps bond of F2.

The response potentialsv resp plotted in Fig. 1 have been
obtained by subtractingvxc

hole and vc,kin from vxc . The re-
sponse potential is repulsive and has a characteristic ste
form with higher values for the core electrons, lower valu
for other electrons, and a steep descent from higher to lo
values@10,32,39#. The typical height of the core stepDv resp
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of the constructedv resp is in agreement with its rough est
mate@40# for the case of the exchange-only potentialvx of
the optimized potential model~OPM! @41–44#,

Dn resp'0.38A«HOMO2« i , ~4.2!

where «HOMO denotes the energy of the highest occup
molecular orbital and« i is in this case the energy of the co
orbital. The step pattern ofv resp is disturbed by cusps an
wiggles near the nucleus, which might very well be caus
by the incorrect Gaussian basis set representation of the
sity near the nucleus@29#. However, we have not furthe
analyzed this point. Beyond the steep descent ofv respon the
outer side of the N and F atoms one can notice a small lo
maximum~for F2, for instance, betweenz52.5 and 3 a.u.!,
which is responsible for the corresponding feature ofvxc .

An interesting feature ofv resp for N2 and F2 is that it
displays a bond midpoint peak after passing through a m
mum in the bonding region. The response potential for2
lacks this peak and just goes through a rather shallow m
mum at the bond midpoint. This peak inv resp, which for F2
is higher than for N2, is responsible for the same feature
vxc for N2 and F2 ~as opposed to the flat behavior ofvxc

hole!.
The presence of this repulsive feature in the potential for2
and F2 correlates with the existence of a repulsive interact
~Pauli repulsion! between the occupied 2s subshells of the
atoms N and F in N2 and F2. For the Li2 moleculeRe~Li-Li)
is large and the closed shells consist, apart from the sin
valence orbital, of the localized 1s core orbitals, which have
very little overlap and therefore virtually no Pauli repulsio
This corresponds to the absence of a bond midpoint pea
v resp for Li2. We defer a discussion of the relation betwe
Pauli repulsion and a bond midpoint peak in the respo
potential to a future paper, since this question is somew
involved and has no bearing on the behavior of the ene
densities«x and«c which we study in the next section, th
response potential not being a component of these en
densities.

V. CONSTRUCTED AND MODEL „LDA AND GGA …

EXCHANGE-CORRELATION ENERGY DENSITIES

The success of DFT is due to the existence of accu
exchange-correlation functionalsExc@r# or rather exchange
correlation energy densities«xc@r#(r ), which integrate to re-
liable exchange-correlation energies. For many properties
LDA functionals are already quite accurate, for others~nota-
bly bond energies! the GGA functionals have brought con
siderable improvement. In order to study the local quality
the approximate energy densities we have constructed
exchange-correlation energy density per particle«xc numeri-
cally. In particular, we compare its exchange and correla
parts «x5 1

2 vx
hole @Eq. ~2.16!# and «c5vc,kin1 1

2 vc
hole @Eq.

~2.17!#, with some of the currently used GGA functiona
«x

GGA and«c
GGA, which are explicit functions of the densityr

and its gradientu“ru.

A. Correlation energy and energy density

Before discussing the Coulomb correlation energy den
«c calculated as the difference between«xc and «x , or
~equivalently! the sum of12 vc

hole andvc,kin , we first consider
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the following. While we expect that the KS orbitals an
hence, the KS exchange energyEx obtained are of reason
able quality, the correlation energyEc calculated with the
restricted CI amounts to only about 85% of the total cor
lation energy, as was mentioned in Sec. III. The limitatio
on the CI calculation lead toEc values which definitely un-
derestimate the correlation of the core electrons as wel
core-valence correlation and possibly to some extent also
interpair correlation of valence electrons.

In order to correct for this deficiency, we estimate the tr
DFT correlation energies from the conventional empiric
correlation valuesEc

HF,empas they are traditionally defined i
quantum chemistry. TheEc

HF,emp values have been obtaine
as the difference between the empirical total nonrelativis
electronic energy of a systemEemp estimated from spectro
scopic data@45# and the Hartree-Fock electronic energyEHF,

Ec
HF,emp5Eemp2EHF. ~5.1!

Using the electronic energyEKS of the KS system~2.3! cal-
culated within the iterative procedure of Sec. III, we c
obtain an estimateEc

emp of the DFT correlation energy,

Ec
emp5Eemp2EKS5Ec

HF,emp1~EHF2EKS!, ~5.2!

which is presented in the row labeled ‘‘KSemp’’ of Table
We feel thatEGGA should rather be compared to the empi
cal estimate of the true DFT correlation energyEc

emp. In fact,
the GGA’s are always judged by their performance for e
perimental~bond! energies.

For the same reason, we feel that«c
GGA should be com-

pared to the scaled empirical energy density«c
emp, defined by

«c
emp~r !5

Ec
emp

Ec
«c~r !, ~5.3!

which integrates toEc
emp. Meanwhile the form of«c

GGA will
hardly change when the exact density is used in this fu
tional instead of the present CI density.

In Fig. 2 we compare«c
empwith the LDA correlation func-

tional «c
LDA @46# as well as with the GGA correlation func

tional of Perdew and co-workers~PW! «c
PW @15,23,24#, and

that of Lee, Yang, and Parr~LYP! «c
LYP @25#, the latter being

in the gradient-only form of Miehlichet al. @47#. We note
that the «c

LDA curve differs considerably from the othe
curves. It is structureless and it is, in general, significan
lower than the other ones. This is due to the well-kno
difference in correlation between the homogeneous elect
gas model~which is represented by the LDA! and finite in-
homogeneous atomic and molecular systems. All the st
ture in «c

emp arising from atomic shell effects and molecul
bonding effects is absent from«c

LDA . Moreover, it is known
@48# that in the homogeneous electron gas the Coulomb
relation of electrons with like spins brings about the sa
contribution to Ec as that of the opposite-spin electron
However, in finite systems correlation of like-spin electro
is substantially suppressed by their exchange, so that
brings only a small contribution toEc . The local-density
approximation therefore tends to overestimate correlation
finite closed-shell systems, and indeed it is obvious that«c

LDA
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is consistently too negative. Because of this local overe
mation of correlation,«c

LDA , when integrated againstr,
yields about 100% too negative correlation energiesEc

LDA

~see Table I!.
An important feature of the constructed«c

emp as well as of
«c

PW and«c
LYP is their considerable amount of structure. A

the functions have a well around the nucleusA, which rep-
resents correlation of the 1s core electrons. The averag
depth of the well does not increase with atomic number ofA.
This reflects the fact that for neutral systems the contribu
to Ec from the 1s electron pair does not depend much on t
atomic number of the corresponding atom. In this resp
correlation of the 1s electrons differs from their exchange
which almost completely reduces to the self-interaction
the 1s electron. As can be seen from Fig. 3, the depth of
well of the exchange energy density«x around the nucleus
does increase with increasing atomic number due to the
creasingly contracted nature of the 1s, leading to stronger
self-interaction.

The wells in «c
emp, «c

PW, and «c
LYP are terminated by

peaks in theK-L intershell region, at distances of abo
61.4 a.u.~Li2), 60.4 a.u.~N2), and60.3 a.u.~F2) from the
nuclei. Comparison with Fig. 1 shows that in the case of
constructed«c

emp these peaks are determined, primarily,

TABLE I. Kohn-Sham, LDA, and GGA exchange and correl
tion energies~a.u.!. The approximations for exchange and corre
tion are both indicated~e.g, B-PW: Becke for exchange, Perdew
Wang for correlation!. The row labeled KS contains the ‘‘exact
correlation energy, i.e., the calculated CI energy minus the en
of the KS determinant, and the exchange energy evaluated with
KS orbitals. In the row KSemp the calculated CI energy has b
replaced with the exact~spectroscopically determined! total energy.

Ec Ex Exc

Li 2 KS 20.111 23.565 23.676
KSemp 20.128 23.565 23.693

Ec2Ec
nd520.119 Ex1Ec

nd523.574
LDA 20.330 23.084 23.414

PW-PW 20.137 23.537 23.674
B-PW 20.137 23.555 23.692
B-LYP 20.134 23.555 23.699

20.119 23.574
N2 KS 20.475 213.114 213.589

KSemp 20.552 213.114 213.666
Ec2Ec

nd520.476 Ex1Ec
nd5213.190

LDA 20.942 211.873 212.815
PW-PW 20.490 213.180 213.670
B-PW 20.490 213.208 213.698
B-LYP 20.484 213.208 213.692

KS 20.475 213.114 213.589
KSemp 20.552 213.114 213.666

F2 KS 20.632 219.935 220.567
KSemp 20.755 219.935 220.690

Ec2Ec
nd520.676 Ex1Ec

nd5220.014
LDA 21.296 218.211 219.507

PW-PW 20.669 220.066 220.735
B-PW 20.669 220.101 220.770
B-LYP 20.675 220.101 220.776
ti-

n

t,

f
e

n-

e

the corresponding peaks in the kinetic partvc,kin . Beyond
the intershell peaks there are distinct wells in«c

empfor N2 and
F2, which in the case of F2 are even lower than the well a
the position of the nucleus. Going next to the bond midpo
one notes a striking difference between the three molecu
The «c

emp of Li2 becomes perfectly flat after the inner 1s-2s
intershell peak, but for N2 there is a clear bond midpoin
peak, which for F2 becomes relatively high and even reach
positive values@see Fig. 4~c!#. Sincevc

hole, the potential en-
ergy part of«c

emp, is an everywhere negative potential, th
indicates that features of both the kinetic partvc,kin and the
potential energy partvc

hole contribute to the bond midpoin
peak in«c

emp. The form of «c
emp in the bonding region re-

sembles that for the H2 molecule@38#, where a peak around
the bond midpoint arises from a peak in the~still negative!
nc

hole and a positive peak innc,kin , originating from left-right
correlation. The Coulomb hole representing the left-rig
correlation is negative around the nucleus nearest to the
erence electron and it is positive at the other nucleus. W
the reference electron crosses the bond midpoint, the C
lomb hole ‘‘jumps,’’ @26# changing its sign around the nu
clei, which leads to a bond midpoint peak innc,kin and hence
in «c

emp. In the case of F2 this type of left-right correlation
will occur for the electrons of the relatively weak singles
bond. For N2 the well in «c

emp beyond the outer peak is sig
nificantly deeper than that in the bonding region and
bond midpoint peak is relatively small. In this case, the bo
midpoint peak of«c

emp reflects entirely the maximum in th
correlation hole potentialnc

hole, sincenc,kin for N2 lacks a
corresponding peak in this region.

Keeping in mind that only tentative conclusions can
drawn from comparison of the various energy densities
view of their nonuniqueness, we can make the followi
observations. It is interesting to note that the shape of
GGA functionals«c

PW and«c
LYP resembles that of«c

emp much
better than«c

LDA does. Still, there is an appreciable differen
between the two GGA functionals. In the case of Li2, the
outer intershell peak in«c

LYP is much larger than the peak i
the bonding region, while both peaks in«c

PW are somewhat
more shallow. On the other hand, for N2 and F2 it is «c

PW that
has more pronounced intershell peaks and also wells bey
the peaks, as well as a deep well at the nucleus, while«c

LYP is
a rather more shallow function for these molecules. Tak
into account also the relatively deep well at the nucleus,«c

PW

has a certain shape resemblance with the constructed«c
emp,

although this similarity is by no means quantitative. Esp
cially in the the bonding region of N2 and F2 all the model
functionals are very different from the constructed«c

emp.
Near the bond midpoint«c

PW consistently reduces to the fla
and much too negative«c

LDA . This is a characteristic featur
of all functionals that, like the PW one, are based on
electron-gas model and include only gradient-dependent
rections to«c

LDA . In the limit of a small density gradien
¹r→0, as occurs near the bond midpoint, such function
turn into «c

LDA by construction. In its turn,«c
LYP reduces to

the Wigner-type formula for small gradients. This function
is also derived from the homogeneous electron-gas mo
but with the parameters fitted for the He atom. Because
this, «c

LYP does not reduce to«c
LDA near the bond midpoin

-

gy
he
n
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FIG. 2. The constructed empirical correlation energy density«c
emp ~«c

CI scaled so as to integrate to the empirical correlation energy! and
the corresponding LDA functional«c

LDA and the GGA functionals of Perdew and co-workers«c
PW and Lee, Yang, and Parr,«c

LYP , along the
bond axis at the equilibrium bond distance;z is the distance from the bond midpoint.~a! Li2, ~b! N2, and~c! F2.
id
,

re

de
n

and it is closer to«c
emp than«c

PW is in this region. Still,«c
LYP

always has a flat form and it does not exhibit the bond m
point peak for N2 and F2 which is such a distinct feature
related to left-right correlation, of«c

emp.
The first column in Table I presents the integrated cor

lation energiesEc ~rows labeled KS and KSemp!, Ec
LDA ~row

LDA !, Ec
PW ~rows PW-PW and B-PW! and Ec

LYP ~row B-
LYP!. Comparing theEc

GGA to Ec
emp, since the GGA func-
-

-

tionals should give the full correlation energy, we conclu
that theEc

GGA amount to only 84–89 % of the true correlatio
energy. The discrepancies betweenEc

GGA and Ec
emp are sig-

nificant: for N2 the largest difference betweenEc
GGA andEc

emp

is 0.068 hartree forEc
LYP and for F2 the largest difference is

0.086 hartree forEc
PW.

We have argued elsewhere@36# that theEc
GGA correlation

energies are too small compared toEc
emp since they do not
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FIG. 3. The constructed exchange energy density«x and the corresponding LDA functional«x
LDA and the GGA functionals of Becke,«x

B ,
and Perdew and co-workers,«x

PW, along the bond axis at the equilibrium bond distance,z is the distance from the bond midpoint.~a! Li2,
~b! N2, and~c! F2.
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incorporate all of the electron correlation. The effect of t
left-right correlation discussed above, which deepens
Coulomb hole around the reference electron, may be m
ing. Indeed, the LDA and GGA correlation functionals ha
been developed from the homogeneous or inhomogen
electron gas, which~at least for the densitiesr typical for
atomic and molecular systems! does not contain the phenom
enon of left-right correlation. In the prototype case of dom
nating left-right correlation, nearly dissociated H2, it has
e
s-

us

-

been shown@9# that indeed«c
GGA completely fails to describe

«c , while alsoEc
PW at R~H-H!55 a.u. covers less than 20%

of Ec @49#. We have noticed above the lack of the bo
midpoint peak, related to left-right correlation, in the«c

GGA of
N2 and F2. Even though the left-right correlation, or mor
generally the so-called nondynamical or near-degener
correlation is probably missing from the GGA’s for correl
tion, the rest of the correlation effect, the so-called dyna
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cal correlation, is hopefully described by the electron-g
based correlation functionals.

The energy of nondynamical correlationEc
nd can be esti-

mated assuming that the simple CI wave functions co
structed in Ref.@34#, which provide the proper dissociation
limit ~PDL! for the dimersA2 , take into account the effect of
nondynamical correlation and neglect dynamical correlatio
With this assumption the energyEc

nd can be estimated as the
difference between the electronic energies of the PDL a
HF functions,Ec

nd5EPDL2EHF. This yields Ec
nd values of

20.009,20.076, and20.079 hartree for Li2, N2, and F2,
respectively. Thus the energy effect of nondynamical corr
lation atRe(A-A) is small for Li2, while it is appreciable for
N2 and F2. In Table I we present the energy of dynamica
correlationEc

d estimated as the differenceEc
d5Ec

emp2Ec
nd.

The energiesEc
d appear to be close to the GGA correlatio

energies

Ec
GGA>Ec

d . ~5.4!

Thus we arrive at the conclusion@36# that the GGA correla-
tion functionalsEc

GGA @r# ~Ec
PW or Ec

LYP! effectively model
the dynamical correlation of electrons only. We will return t
the implications of this finding for the local differences be
tween the energy densities«c

GGA and «c later, but first turn
to «x .

B. Exchange energy and energy density

In Fig. 3 the exchange energy densities calculated fro
the KS orbitalsf i via Eq. ~2.16! at Re(A-A) are plotted

FIG. 4. Comparison between the constructed empirical corre
tion energy density«c

emp and the GGA correlation energy densitie
to which «x

GGA(r )2«x(r ) is added as a possible representation
the contribution of nondynamical correlation.
s

-

.

d

-

l

m

along the bond axis as functions of the distancez from the
bond midpoint. A comparison is made between«x and the
exchange functional«x

LDA of the local-density approximation
as well as with the GGA exchange functionals of Bec
(B), «x

B @22#, and of Perdew and co-workers,«x
PW

@15,23,24#. In both GGA functionals«x
LDA is augmented with

a correction factor, which is a function of the dimensionle
gradient-dependent argumentu“ru/r4/3. In connection with
the nonuniqueness of the energy density, we note that
LDA and Becke functional were indeed designed to appro
mate the same exchange hole that we use in our definitio
the exchange energy density«x5(1/2)nx

hole, Eq. ~2.16!. This
does not hold for«x

PW, but this energy density was chara
terized by its authors as being nearly identical to«x

B . We
therefore feel that in this case«x and the«x

GGA are more
strictly comparable. The second column in Table I prese
the corresponding exchange energiesEx ~rows labeled KS
and KSemp!, Ex

LDA ~row LDA!, Ec
PW ~row PW-PW! andEx

B

~row B-PW and B-LYP!.
Being the dominant component of the potentialnxc

hole ana-
lyzed in Sec. IV,«x has the same general features, namely
deep well around the nucleus, the asymptotical Coulomb
like behavior at largerz, and a plateau in the bonding regio
~see Fig. 3!. The plateau is observed for all three molecu
considered and its presence has been interpreted in the
ceding section as a manifestation of a static delocali
Fermi hole for electrons of thes bond of A2 . A general
trend for «x

LDA is that it overestimates exchange near t
nuclei, while it clearly underestimates exchange at distan
r A of a few tenths of an a.u. from the nucleus. It also sligh
underestimates exchange at largerr A , both in the outer re-
gion and around the bond midpoint~for Li2 «x

LDA nearly co-
incides with«x around the bond midpoint!. The LDA under-
estimation of exchange at intermediater A , where the density
is still appreciable and the volume of the region is fair
large, overcompensates its considerable overestimation c
to the nucleus, where the density is high but the volume v
small. As a consequence the LDA exchange energiesEx are
considerably smaller~less negative! than the KS energiesEx
~see Table I!.

The GGA gradient corrections to«x
LDA are everywhere

negative functions that shift the LDA curve downwards a
bring «x

GGA closer to«x in the important region at interme
diater A . The gradient approximations, however, worsen
situation in the narrow region around the nucleus, and h
little effect in the bonding region. The functional«x

PW is in-
deed, as noted by its authors, hardly distinguishable fr
«x

B . Note that contrary to«x
PW, «x

B has the correct Coulombic
asymptotics21/(2r ) at largez, but one can hardly see thi
difference for the distances presented. Both«x

B and«x
PW ap-

proach«x more closely at largerz than «x
LDA does. In the

bond midpoint region«x
B and «x

PW are very close to«x
LDA .

This is understandable, because for a homoatomic mole
the bond midpoint is at the same time a saddle point of
densityr, where u“ru50. Due to this, the GGA argumen
u“ru/r4/3 is small in the bond midpoint region, providing
small GGA gradient correction. In particular, for F2 there is a
notable difference between the model and exact«x curves in
the bonding region, both the LDA and GGA«x curves devi-
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ating from the flat plateaulike behavior of«x . We will return
to the meaning of this difference later.

The gradient corrections bring in the present series
molecules the GGA exchange energiesEx

GGA much closer to
Ex as compared toEx

LDA , as they are known to do~actually
designed to do! in the case of atoms. In particular, for Li2 the
negative difference between«x

GGA and«x in the region near
the nucleus@see Fig. 5~a!# appears to be almost perfect
compensated with their positive difference at largerr A , so
that Ex

B is only 10 millihartrees off theEx value. However,
for N2 and F2 the gradient corrections seem to overperfo
and the negative differences betweenEx

GGA andEx are con-
siderably larger than the errors in the GGA correlation en
gies: the largest difference is betweenEx

B and Ex and
amounts to20.094 hartree for N2 and to20.166 hartree for
F2. Although these errors are fairly small as a percentag
the total exchange energy, they are an appreciable frac
~in the order of 25%! of the total correlation energy~see
Table I and the discussion below!. In spite of the impression
given by Fig. 3 of close agreement between the GGA and
exchange energy densities over large regions of space, t
results show that the difference between the LDA and G
exchange energy densities and the KS exchange energy
sity is significant. Furthermore, the local differenc
«x

GGA(r )2«x(r ) are large compared to, for instance, the P
correlation energy density«c

PW(r ). Apart from the region
around the nucleus, there are also large differences at
intershell peaks and in the bonding region~note that the peak
around the bond midpoint corresponds to the deviation of
model exchange energy densities from the plateaulike be
ior of «x noted above!. It is in fact due to cancellation o
positive and negative contributions that«x

GGA(r )2«x(r ) in-
tegrates to only about 25% of the total correlation energ

The LDA and the GGA~at least Becke, but PW is close!
exchange energy densities try to model the KS excha
energy density by the potential of the exchange hole of
homogeneous or inhomogeneous electron gas. Maybe th
rors noted above could have been expected if we recall
the KS exchange energy density is determined by the po
tial of a delocalizedFermi hole, while in the electron gas th
hole is centered at the reference electron. It has been
gested@50–52# that in molecules the LDA exchange fun
tional (Xa), since it mimics a localized hole, effectivel
describes the combined effect of exchange and nondyn
cal ~left-right! correlation. As discussed earlier, this com
bined effect introduces partial localization of the exchan
correlation hole at the atom where the reference electro
residing, and the same localization is effectively provided
an exchange functional that employs the local density
density gradient. It is interesting to investigate~cf. also Ref.
@36#! to what extent this qualitative notion is corroborated
the integrated GGA exchange energies~the LDA approxima-
tion to the exchange functional is too crude, the LDA e
change energies are too small rather than too large!. We
present in Table I the sum (Ex1Ec

nd) of the KS exchange
energyEx and the energy of nondynamical correlationEc

nd

estimated above. It appears that the GGA ‘‘exchange’’ en
gies are actually much closer to the sum of exchange
nondynamical correlation energies
f
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Ex
GGA>Ex1Ec

nd. ~5.5!

In particular,Ex
GGA ~especially, the PW one! for N2 are close

to the sum (Ex1Ec
nd). For F2 the energiesEx

GGA are still too
negative, but they are clearly much closer to (Ex1Ec

nd) than
to the bare exchange energyEx . For Li2 we have already
shown that the effect of nondynamical correlation is smal
Re(Li-Li) and Eq. ~5.5! therefore effectively reduces t
Ex

GGA>Ex .

C. The energy density of nondynamical correlation

We have arrived at the conclusion that on one handEc
GGA

does not include nondynamical correlation, while on t
other handEx

GGA does include this part of the correlatio
energy. One wonders if this point of view is not only su
stantiated by the values for the integrated quantities, but
also be traced in the shape of the energy densities as f
tions of position. Since the exchange GGA functionals ha
not been constructed with the purpose to contain featu
corresponding to nondynamical correlation, and since
choice of«c(r ) is not precisely the energy density the mo
els strive to mimic, we cannot push this analysis too far. W
just comment on the possibility, suggested by the ab
analysis, that local ‘‘errors’’ in«x

GGA(r ) and«c
GGA(r ) reflect

unintended presence or neglect, respectively, of nondyna
cal correlation and cancel each other. This would mean
«x

GGA(r )2«x(r ), representing nondynamical correlation, h
to be added to«c

GGA(r ), yielding«xc
GGA(r )2«x(r ), in order to

make a meaningful comparison to the KS«c
emp(r ) possible.

Of course some variation is obtained in this comparison
pending on which GGA is used, but we do obtain very s
nificant qualitative improvement when comparing«xc

GGA(r )
2«x(r ) rather than«c

GGA(r ) to «c
emp(r ). This is strikingly

demonstrated for F2 in Fig. 4, in which we compare«c
emp(r )

to the energy densities obtained by adding«x
LDA(r )2«x(r ) to

«c
LDA(r ), «x

B(r )2«x(r ) to «c
LYP(r ), and finally «x

PW(r )
2«x(r ) to «c

PW(r ). Most notably, the peak at the bond mid
point, which we identified as a left-right correlation effect
«c , is built in by the model exchange functionals. It wou
arise both from the LDA and GGA exchange functionals,
the difference between the model«x

LDA(r ), «x
GGA(r ), and the

plateaulike behavior of«x(r ) in Fig. 3~c!. The correspon-
dence is also much improved in the wells, but addition
«x

GGA(r )2«x(r ) and especially«x
LDA(r )2«x(r ) leads to ex-

aggeration at the intershell peaks. The well around
nucleus is of course strongly overestimated, the very d
well at the nucleus being a deficiency of the LDA and GG
exchange functionals that is not related to nondynamical c
relation. Qualitatively similar improvement is obtained f
the other molecules, although not so spectacular as for F2. At
a qualitative level, however, the local behavior of the«c(r )
and«x(r ) curves supports our contention that nondynami
correlation is lacking in the model«c(r ) curves, but is incor-
porated in the model«x(r ) curves.

We conclude by considering the total exchang
correlation energy density. Since the Coulomb correlat
effect is small compared to the exchange,«xc(r ) is practi-
cally indistinguishable from its exchange component«x(r )
displayed in Fig. 3. As a matter of fact, we have just o
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served that locally differences«x
GGA(r )2«x(r ) cancel to a

large extent against differences«c
GGA(r )2«c

emp(r ), so agree-
ment of «xc

LDA and especially«xc
GGA with «xc

emp will be better
than in the exchange-only case. For F2 notably the clear dif-
ference in slope of both the«x

LDA and the«x
GGA’s compared

to «x is no longer present in the«xc curves. The most con
spicuous discrepancy in«x

GGA, the much too negative behav
ior at the nucleus, of course survives in«xc

GGA. At larger
distances from the nucleus«xc

GGA follows «xc rather closely
indeed, but not perfectly. The local differences have oppo
signs in different regions, thus compensating each othe
some extent in the resulting GGA exchange-correlation
ergies. In particular, for Li2 the B-PW value Exc

BPW5
23.692 hartrees practically coincides with the correspond
KS valueEx1Ec

emp523.693 hartrees and the PW-PW an
B-LYP values are also close toEx1Ec

emp. Similarly, for N2

the PW-PW valueExc
PW5213.67 hartrees is very close to th

KS value Ex1Ec
emp5213.666 hartrees and the B-PW an

B-LYP values are not very far fromEx1Ec
emp. For F2 there

is also considerable compensation of the local errors of
posite signs, but a somewhat larger difference between
KS and GGA values forExc remains~see Table I!.

VI. CONCLUSIONS

In this paper the molecular Kohn-Sham exchan
correlation potentialsvxc and the energy densities«xc have
been constructed fromab initio CI one- and two-electron
density matrices for the homonuclear diatomic molecu
Li2, N2, F2. The structure ofvxc has been analyzed in term
of its componentsvxc

hole, vc,kin , andv resp. The bond forma-
tion manifests itself in a plateau invxc

hole in the bonding re-
gion of Li2 and N2, a bond midpoint peak inv respfor N2 and
F2, and a bond midpoint peak invc,kin for F2. The combina-
tion of these features determines the form ofvxc . The rela-
tion of these features with various effects of electronic str
ture and electron correlation has been discussed.

The structure of«xc has been analyzed in terms of i
exchange«x and correlation«c components. The latter com
ponent displays a sharp structure with intershell peaks a
in the case of N2 and F2, a bond midpoint peak, which ha
been related to left-right correlation. The exchange ene
density «x is relatively smooth with a well around th
nucleus, Coulombic asymptotics in the outer region, an
plateau in the bonding region.

We have compared the local behavior of the construc
«x and «c with that of the GGA exchange functionals o
Becke,«x

B , and of Perdew and co-workers,«x
PW, and with
te
to
-

g

p-
he

-

s

-

d,

y

a

d

the correlation functionals of Perdew and co-workers,«c
PW,

and of Lee, Yang, and Parr,«c
LYP , as well as with that of the

corresponding LDA functionals. LDA tends to underestima
exchange and to overestimate correlation. In particular,
LDA correlation energy density«c

LDA is both highly overat-
tractive and structureless as compared to«c . The gradient
corrections create a considerable amount of structure for
correlation functions«c

GGA and bring the GGA exchang
functions«x

GGA closer to«x . Still, the the«x
GGA show appre-

ciable local deviations from«x and significant local differ-
ences in the comparison between the«c

GGA and«c have been
found. The latter cannot be required to coincide, given
nonuniqueness of the correlation energy density, but for
former close correspondence is expected~at least for GGA of
Becke! since the GGA exchange energy density tries
model the exchange hole potential which we use as exact«x .

The gradient corrections also bring the GGA exchan
and correlation energies much closer to the KS excha
energy Ex and to the empirical estimateEc

emp of the true
correlation energy, respectively. For N2 and F2 they seem to
overcorrect and the GGA exchange energies are consiste
too large~too negative! as compared toEx , while the GGA
correlation energies are too small as compared toEc

emp.
However, the differences of opposite signs compensate e
other and the resulting GGA exchange-correlation energ
are rather close~especially, in the case of N2! to the sum
(Ex1Ec

emp).
Concerning the systematic deviation between the G

and KS exchange and correlation energies separately,
have noted that qualitative considerations concerning the
havior of Fermi and Coulomb holes in molecules on o
hand and in the electron gas on the other, suggest tha
LDA and GGA exchange functionals represent effective
not only exchange, but also the molecular nondynam
Coulomb correlation. At the same time the nondynami
correlation is not expected to be covered by the GGA co
lation functionals, which represent the dynamical Coulom
correlation only. We have observed~cf. also@36#!, usingab
initio nondynamical correlation energiesEnd, that the inte-
grated GGA exchange and correlation energies provide se
quantitative evidence for this point of view. In the prese
work we have demonstrated that the local behavior of
GGA exchange and correlation energies provides qualita
support for this point of view. Addition of the differenc
between the GGA and KS exchange energy densities, w
supposedly mimics nondynamical correlation, to the GG
correlation energy density, does give qualitative improv
ment notably in the bonding region towards the KS«c .
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